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Abstract

Central banks and international supervisors have identified the difficulty of obtaining climate in-

formation as one of the key obstacles impeding the development of green financial products and

markets. To bridge this data gap, the utilization of satellite information from Earth Observation

(EO) systems may be necessary. To better understand this process, we analyze the potential of

applying satellite data to green finance. First, we summarize the policy debate from a central

banking perspective. We then briefly describe the main challenges for economists in dealing with

the EO data format and quantitative methodologies for measuring its economic materiality. Fi-

nally, using topic modeling, we perform a systematic literature review of recent academic studies

to uncover in which research areas satellite data is currently being used in green finance. We find

the following topics: physical risk materialization (including both acute and chronic risk), deforest-

ation, energy and emissions, agricultural risk and land use and land cover. We conclude providing

a comprehensive analysis on the financial materiality of this alternative source of data, mapping

these application domains with new green financial instruments and markets under development,

such as thematic bonds or carbon credits, as well as some key considerations for policy discussion.
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1 Introduction

Since the publication of the initial report from the Network for Greening the Financial System

(NGFS, 2019), there is consensus among central banks and international supervisors that closing

existing data gaps and obtaining reliable data is crucial to analyze climate-related risks and oppor-

tunities. Although much effort has been made in this direction, as evidenced by, for example, the

improvement in climate-related corporate disclosures (Bommel, Rasche, and Spicer, 2023; Diwan

and Amarayil Sreeraman, 2023; Singhania and Saini, 2023), the need for better climate-related

data remains true today. This is illustrated, for instance, by the recent publication by the European

Central Bank (ECB) of a new set of experimental climate-related statistical indicators to narrow the

climate data gap (ECB, 2023), or the recent effort from the International Monetary Fund (IMF) to

strengthen its climate information architecture (Ferreira, Rozumek, Singh, and Suntheim, 2021).

In the financial system, it is noteworthy that the challenge of collecting and maintaining high-

quality, granular climate data involves not only financial institutions, but also central banks, which

are consequently increasing efforts to integrate sustainability and climate-related considerations

into their operations (Delgado, 2023; Dikau and Volz, 2021; Durrani, Rosmin, and Volz, 2020; Volz,

2017). This includes investment decisions (BdE, 2023; Bundesbank, 2023; ECB, 2021b; NGFS,

2019), monetary policy tools (ECB, 2021a), financial stability assessments through climate stress

tests (Acharya et al., 2023; Alogoskoufis et al., 2021; Battiston, Mandel, Monasterolo, Schütze,

and Visentin, 2017; European Central Bank, 2022), and the supervision of financial institutions

(ECB, 2022; Heynen, 2022; Kedward, Ryan-Collins, and Chenet, 2023).

As pointed out by NGFS (2022), however, gaps in climate-related data encompass three dimen-

sions: availability (e.g., coverage, granularity, and accessibility), reliability (e.g., quality, auditability,

and transparency) and comparability (as there is not yet a unique official reporting standard).1)

In some instances, relevant ground-based datasets are not available.2) In other cases, the data

exists but lacks the appropriate granularity, cannot be verified, or is of poor quality. Finally, in

some cases, the available data sources are incomparable or inconsistent. Beyond data needs and

gaps, climate-related data sources that do exist are underexploited by finance professionals. This

can occur for a number of reasons: The specific data formats might not be immediately tract-

able for economic modeling, as it might require expert domain of its parametrization, complex

pre-processing pipelines to generate interpretable information, or it might simply not be widely

known enough.

Satellite data is a potential candidate to help alleviate these challenges. Satellite data sources, also

referred to as Earth Observation (EO) systems, could significantly narrow existing data gaps: This

data source, collected by satellites orbiting Earth, is highly granular and has an important spatial

component. As some satellites are able to capture high-resolution images with resolutions as little

as 30 by 30 meters, they can provide consistent, objective, and close to real-time information –

all while covering virtually the entire world. These unique characteristics of satellite data address

common issues of using official (administrative) statistics for climate finance, such as publication

time lags, data quality issues (especially in Global South economies), and the spatial heterogeneity

1 Though, notably international organizations like the International Financial Reporting Standards (IFRS) and the European
Financial Reporting Advisory (EFRAG) are working on it thoroughly, e.g.: IFRS (2024) or EFRAG (2024).
2 Ground-based data refers to data not collected remotely, e.g., by sensors or satellites.
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of the real effects of climate change.3)

The information contained in satellite data can be used to measure different features of the Earth’s

surface or atmosphere, such as temperature, terrain, or pollutants, which in turn could be helpful

to build indicators for environmental health, land use, deforestation rates, and more. The recent

and widespread availability of this (largely free) data source opens unique pathways for researchers

and practitioners to track economically relevant activity.4)

In the context of economic modeling for developing economies, remotely sensed data has been

used for quite some time.5) In the context green finance, however, its use began in the insur-

ance market, where it has been suggested and, in some instances, successfully implemented as a

productive tool for claims settlement or risk estimation (Nagendra, Narayanamurthy, and Moser,

2022; Nagendra, Narayanamurthy, Moser, Hartmann, and Sengupta, 2022; Stigler and Lobell,

2020).

In new domains of sustainability and green finance, the application of satellite data and remote

sensing expands far beyond traditional use cases like catastrophes’ insurance. Simultaneously,

however, satellite data has its limitations, all of which pose significant barriers to entry for new-

comers to the field. For instance, the databases with the highest-resolution images tend to be

private, the matching to external data sources is complicated, it might be difficult to track long

periods of time.

Blindly using more data – even if it has high quality and/or granularity – is not in itself sufficient

to conduct robust climate risk analyses (WWF, 2023). Notably, this requires an investment with

a considerable upfront cost, including the acquisition of new information technology resources

and training employees with multidisciplinary skill sets, in order to be able to shift international

capital flows towards more environmental friendly objectives (Elderson, 2023). All in all, a sound

understanding of how to integrate climate-related information with financial asset-level data is

imperative. This general notion is acknowledged by the principle of double materiality, which

describes the two reciprocal facets of climate change (Gourdel, Monasterolo, Dunz, Mazzocchetti,

and Parisi, 2022): the materiality, or impact, of economic activity on the environment on the one

hand, and how the materialization of climate change affects businesses’ financial well-being on

the other hand.6)

The establishment of the Innovation Hub of the Bank of International Settlements in 2019 (BISIH)

3 We will discuss spatial heterogeneity in more detail later on. At this point, we are referring to the fact that the effects
of catastrophic climate events are not spatially or geographically homogeneous. The Global South suffers much stronger
adverse effects than the North, and even within continents, countries, or counties, transition and physical risks as well as
repercussions are different. Depending on the level of granularity of the official statistic in question, these heterogeneities
cannot be captured by administrative datasets and the associated common modeling techniques, such as spatially invariant
regressions.
4 See for instance private sector initiatives like Planet Labs (https://www.planet.com/), DrivenData Labs (https://drivendata.
co/), or GMV (https://www.gmv.com/es-es/sectores/espacio).
5 See, e.g., Rangel-Gonzalez and Llamosas-Rosas (2019) or Beyer, Hu, and Yao (2022).
6 To comprehend the financial materiality of a climate event, it is crucial to convert an environmental measure (e.g.,
droughts, forest area coverage, greenhouse gas emissions) into an economic indicator (e.g., employment rates, infla-
tion rates, industrial production growth, see Gratcheva et al., 2021), and consequently its impact on corporates and
financial institutions performance. This requires appropriate data modeling techniques which are capable of illustrat-
ing complex environmental-financial relationships. Examples include causal machine learning techniques (Giannarakis,
Sitokonstantinou, Lorilla, and Kontoes, 2022; Iglesias-Suarez et al., 2024), which enable the identification and analysis of
cause-effect relationships between climate variables and economic outcomes, and other econometric approaches which
facilitate understanding the immediate response of economic variables to climate shocks (such as the Local Projections
Method, see Jordà, 2005).

https://www.planet.com/
https://drivendata.co/
https://drivendata.co/
https://www.gmv.com/es-es/sectores/espacio
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showcases how important data quality and availability – as well as the technology required to ana-

lyze it – are for green finance in central banking. While not being the sole priority area, since the

inception of this joint initiative led by the international community of central banks, green finance

has been at its core. The goal of this collaborative platform is to exchange knowledge between

its members and experiment using different technologies, such as Natural Language Processing

(NLP) or blockchain, to help solve current issues in (sustainable) finance.7) In this respect, the BISIN

working group on green finance identifies satellite data as one the main technologies which could

assist both scaling up the availability of climate-related data and assessing its environmental ma-

teriality, which in turn could enable the creation of digital measurement, reporting and verification

(MRV) systems, for instance (BISIN, 2023).8)

Therefore, we aim to investigate the potential of satellite data for green finance. To this end,

Section 2 provides background information on financial innovation and bridging sustainability data

gaps at the policy level. In Section 3, we introduce the main characteristics of satellite data formats

and the limitations of satellite data, andwe discuss themain econometric modeling challenges. We

devote Section 4 to a survey of the academic literature on satellite data for different applications

in economics and finance, such as development economics or quantitative trading strategoes.

Herein, we identify a gap in the prior literature on green finance. Based on this finding, our

main contribution will be presented in Section 5, where we use NLP techniques to uncover new

domains of satellite data application for sustainable finance. We do so in collecting and sorting a

large set of over 17,000 scientific sources in a semi-automated fashion. Based on a final sample

of over 200 relevant sources, we use topic modeling analysis to uncover the specific domains

of (sustainable) finance and economics where satellite data has been explored to date. Finally,

we provide concluding remarks including our assessment of why this time (i.e., the case of green

finance) might be different for the successful and productive use of the potential offered by satellite

data in Section 6.

2 The role of technology to bridge climate data gaps

Central banks and international financial authorities are faced with the question of the role they

can play in improving the availability, reliability and comparability of climate-related data. A survey

conducted by the Irving Fisher Committee (IFC) on Central Bank Statistics found that central banks

are increasingly focusing on climate-related data in particular, but also sustainable finance data

issues as a whole, pointing to the following main recommendations for central banks (IFC, 2021):

1. One prerequisite for sustainable finance is to identify the data needed by central banks to

support their policy objectives in order to fulfill their mandates at both the micro- and macro-

prudential levels.

2. Given the novelty of the subject, central banks should cooperate with traditional and new

stakeholders to close data gaps, dealing with new environmental information providers; and

7 For instance, the Eurosystem Center of the BISIH is exploring the use of Large Language Models (LLMs) to automate the
collection and management of climate-related information from corporates at scale with Project Gaia (https://www.bis.
org/about/bisih/topics/suptech_regtech/gaia.htm), while the Hong Kong Center has finalized Project Genesis 1.0 (https://
www.bis.org/about/bisih/topics/green_finance/green_bonds.htm) and 2.0 (https://www.bis.org/about/bisih/topics/green_
finance/genesis_2.htm), which aim to help gauge how distributed ledger technologies (DLT) could aid the development of
digital green bonds. Meanwhile, the Singapore Center has conducted Project Viridis, a digital dashboard which tracks the
exposure of banks to extreme weather events (https://www.bis.org/about/bisih/topics/green_finance/viridis.htm).
8 The BIS created the Innovation Network in 2021 to track technological trends and developments with relevance to the
thematic areas of the BISIH (for more information, visit https://www.bis.org/about/bisih/network.htm?m=273).

https://www.bis.org/about/bisih/topics/suptech_regtech/gaia.htm
https://www.bis.org/about/bisih/topics/suptech_regtech/gaia.htm
https://www.bis.org/about/bisih/topics/green_finance/green_bonds.htm
https://www.bis.org/about/bisih/topics/green_finance/green_bonds.htm
https://www.bis.org/about/bisih/topics/green_finance/genesis_2.htm
https://www.bis.org/about/bisih/topics/green_finance/genesis_2.htm
https://www.bis.org/about/bisih/topics/green_finance/viridis.htm
https://www.bis.org/about/bisih/network.htm?m=273
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working on acquiring new skillsets at working staff level, either through dedicated training or

inter-disciplinary hiring.

3. In addition, central banks should lead by example in that they improve the usage of the new

data being collected.

As pointed out by the IFC Bulletin “Post-pandemic landscape for central bank statistics”, the stat-

istical sources and tools have to be continuously refined to match the landscape of ever-evolving

challenges (IFC, 2023). Furthermore, the IFC stresses that the quantity and quality of sustainable

finance data need to be increased to assess climate-related risks in the financial sector and monitor

the green transition.

To narrow the existing climate data gap and fulfill the commitments of its climate action plan, the

European Central Bank (ECB) has published a first set of climate-related statistical indicators (ECB,

2023).

However, these indicators are experimental. As such, they comply with many, but not all of the

quality requirements of official ECB statistics. The three main areas covered are: an overview of

green debt products, analytical indicators of carbon emissions financed by financial institutions,

and indicators on the impact of physical risk events, such as the impact of natural hazards (e.g.,

floods, wildfires, or storms) on investment portfolios. Nevertheless, this factual information is not

sufficient to enable forward-looking analysis of climate-related risks. Also, to ensure that these in-

dicators are accessible and replicable, the authors use existing data from the European System of

Central Banks (ESCB) or other publicly available data where possible. Another example in the field

of natural capital and ecosystems is the work of Giglio, Kuchler, Stroebel, and Zeng (2023), who

aim to measure biodiversity risk exposure using a novel set of information. However, all of the pro-

posed metrics are collected from company disclosures or opinions elicited from professionals. Both

of these examples demonstrate how the inherent challenges of using novel data sources can be

exacerbated by regulatory requirements which impede the speedy adoption of new environmental

data types and sources for the green transition.

More recent work postulates that the path towards more and better climate-related information

underpins technological innovation (Ofodile et al., 2024). Going forward, it is likely that central

bank statistics need to rely heavily on the use of data science techniques to perform their traditional

tasks and adhere to their missions. Therein, they would have to acknowledge that – while largely

unparalleled in terms of quality – ground-based (administrative) datasets might not be suitable,

or enough, to gain scalability in many types of sustainable finance applications. Consider this ex-

ample: One companymay have hundreds of assets connected to tens of thousands of sites through

global supply chain processes. Therefore, in the absence of prohibitively costly ground-based data

collection methods, actors might decide to turn to geospatial or remotely sensed alternatives for

insights at scale (WWF, 2023).

Among geospatial data sources, we particularly focus on the use of Earth Observation (EO) systems,

leaving out of this study uses of satellite information for astronomical purposes, navigation or

communications. Indeed, we define EO systems as data collected by satellites which orbit the

Earth, including both land imagery and sensor data, such as greenhouse gas (GHG) emissions or

heat loss. This type of data adds a new layer of valuable information for economists and financial

analysts by including geolocated observations at a neutral stance. Therefore, the data is also
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reliable and objective. Importantly, the use of satellite data for official statistics is subject to some

limitations which need to be considered. E.g.: we discuss the format of satellite data and its

limitations in more detail in Section 3.

3 What is satellite data

The data collected by satellites from outer space varies depending on its orbital altitude, which in-

fluences both coverage area and travel speed. Typically, satellites are classified into four main types

according to their function: Communication, Earth Observation, Navigation, and Astronomical. In

this paper, our focus is primarily on Earth Observation satellites. These can be further divided into

categories such as Weather satellites, which are crucial for monitoring and forecasting weather

patterns, and providing up-to-date meteorological data. Another category, known as Remote

Sensing satellites, is vital for environmental monitoring and geographic mapping. Notably, three

outstanding primary sources for medium resolution imagery, which are available for public use,

are Landsat data from the USGS Earth Explorer, Sentinel data from the Copernicus Open Access

Hub, and MODIS data from the NASA Earth Data website.

Furthermore, a single satellite can have multiple instruments, and each instrument can have mul-

tiple sensors. Each sensor can detect light in one or more spectral bands, i.e., specific ranges of

wavelengths of light, at one or more levels of spatial resolution. This means that one pixel corres-

ponds to some geographic area at units such as “meters per pixel”. Complete images have a total

size which is often referred to as a frame.

Finally, satellite instruments can be passive, meaning that they simply collect the photons radiating

from the Earth or bouncing off it from the Sun; or active, meaning that they send some form of

signal down to the Earth’s surface or atmosphere and measure how it is reflected back. Active

sensors help overcome certain limitations of passive sensors because they can penetrate clouds

and capture images at night.

The information thus captured by satellites can be used to measure different features of the Earth’s

surface or atmosphere, such as temperature, terrain, or pollutants. Signals from sensors can be

combined to form a wide variety of images, from (i) “natural color” images, resembling what we

humans might see if we were in orbit, to (ii) false-color images, which either show light we cannot

perceive or enhance certain types of features, to (iii) videos, even. In Box 1, we explain how

meaningful metrics can be obtained from this information. In the example cases shown in Box 1,

the parameters can be used to measure the impact of economic activity on the ecosystem with

the Normalized Difference Vegetation Index (NDVI), inspect wildfires using the Normalized Burn

Ratio (NBR), or assess water scarcity with the Normalized Difference Water Index (NDWI).

The recent and widespread availability of this data source opens unique pathways for researchers

and practitioners to track economically relevant activity. As seen in Box 1, metrics derived from

satellite data allow us to estimate indicators on environmental health, land use, and deforestation

rates in a consistent and objective fashion, in real-time, and with coverage of virtually the entire

world. These unique traits hold enormous potential for economics and finance, as we show in the

large-scale literature review (Sections 4 and 5).

Notably, these unique opportunities are mirrored by unique challenges not only in terms of data
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access, cleaning, and pre-processing, but also econometric modeling. When acquired by satellite

sensors and downloaded to ground stations, data is in raw format. Most use cases will, however,

require different treatments of this raw EO data to ensure its interpretability. To evaluate the po-

tential of EO data for sustainable finance, we identify and discuss data formats and (econometric)

modeling as the two major challenges to its economic materiality.

Understanding Satellite Color Bands and building metrics

Landsat collects 8 color bands:
– B1 captures deep blue and violet light.

Useful for identifying aerosol particles which scatter short wavelengths like deep blue and violet.

– B2 Captures blue light.

Helps differentiate between water bodies, as water reflects blue light more effectively.

– B3 Captures green light.

Green light is strongly reflected by healthy vegetation, aiding in its assessment.

– B4 Captures red light.

Essential for identifying plant types and assessing their health.

– B5 Captures near-infrared light.

Biomass content: Indicates the health and density of plants.

– B6 Captures shortwave infrared light (SWIR 1).

Useful for differentiating moisture levels in soil and vegetation.

– B7 Captures shortwave infrared light (SWIR 2).

Maps geological features and vegetation through vapor penetration for clearer images.

– B8 Captures panchromatic light.

Offers a broad wavelength range for detailed landscape imagery.

Each pixel of the image holds a value for each band. These values can be combined to create detailed layers

depicting various features such as vegetated areas, burned areas, water extents, and urban zones. Some

examples of metrics we can build are:

NDVI (Normalized Difference Vegetation Index) = Band5–Band4
Band5+Band4

Primarily measures vegetation health by contrasting near-infrared and red light. NDVI is useful for monitoring

vegetation over time, including pre- and post-fire conditions to assess recovery. Healthy vegetation typically

shows NDVI values from 0.3 to 0.8, with values greater than 0.3 indicating vegetated areas.

NBR (Normalized Burn Ratio) = Band5–Band7
Band5+Band7

Specially designed for identifying burned areas and estimating burn severity, utilizing near-infrared and shortwave

infrared bands. Lower NBR values indicate higher burn severity, making it ideal for analyzing fire impacts

and severity. Threshold adjustment should be based on specific burn severity levels and regional ecosystem

characteristics.

NDWI (Normalized Difference Water Index) = Band3–Band5
Band3+Band5

Optimized for water body detection by highlighting liquid water absorption and reflectance. NDWI is used to

monitor changes in water content of leaves and is also particularly effective in delineating open water features.

This index helps differentiate between water bodies and other types of land cover.

Each pixel will have a value for these metrics. Using these indices, we can create detailed maps and areas from

satellite images, enabling the assessment of vegetation health, water body extents, or burned area extents,

among others.
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3.1 Data format and parametrization

EO systems have a set of technical parameters that can be tuned to extract relevant information,

and defines the quality of the data obtained. In general, some key parameters of EO data are

resolution, size, and frequency (or refresh time, ESA, 2020).

The spatial resolution of an image relates to the level of detail that can be retrieved from a scene.

Image resolution can be measured in several ways; one of the most common, the Ground Sample

Distance (GSD), is the distance between adjacent pixel centers measured on the ground. The lower

this number is, the finer the detail that can be interpreted from the image. High resolution images

will be required, for instance, to collect data for high precision agriculture, while lower resolutions

are enough for applications such as weather forecasting.

The size of the scene to be observed is another important parameter. EO sensors on board satellites

are characterized by their swath. The swath of an instrument is the width of the path or the strip

on the ground it can image when the satellite orbits around the Earth. The swath depends on

the features of the instrument and on the orbit of the satellite. Generally, the higher the spatial

resolution, the lower the swath of the instrument.

Finally, the revisit time of a satellite system is a decisive factor of choice. It is defined as the length of

time to wait for the satellite system to be able to observe the same point on Earth. This parameter

is closely linked to the type of orbit of the satellites.

There is an inherent trade-off between spatial resolution and refresh rate. To have a high refresh

rate, the satellite needs to orbit the Earth quickly. But to capture a high-spatial-resolution photo,

the satellite needs to collect data from each tiny area which takes longer. Though, it shall be

noted that more technical parameters might further govern the usefulness and quality of an EO

image, such as bit depth, off-nadir angle, and cloud cover. This required parametrization of the

data might be seen, therefore, as a challenge in itself for official statistical offices which require

climate-related data to be fully transparent, and comparable (NGFS, 2022).

3.2 Econometric modeling

Recent advances in the rapidly growing literature on remote sensing and EO systems offer a pleth-

ora of solutions for spatial analysis. However, it is crucial to recognize that for quantitative analysis,

we must first translate the spectral band data collected by satellites into meaningful metrics. This

process involves several steps, as outlined in the boxes “Understanding Satellite Color Bands and

Building Metrics” and “From Parametrization to Environmental Metrics and Economic Materiality.”

Quantitative modeling has been significantly aided by the widespread availability and use of ma-

chine learning (ML) and artificial intelligence (AI) algorithms, such as neural networks, which are

uniquely equipped to handle prevalent issues in (climate) finance, such as non-linearity, hetero-

geneity, and clustering issues (Alonso-Robisco, Bas, Carbo, de Juan, and Marques, 2024).9) The

Local Projections Method constitutes an alternative econometric approach to obtain the impulse

response to shocks (Jordà, 2005). This method can enable a solid policy discussion of climate

9 Such as, e.g., in the development of the geographical random forest (Georganos et al., 2021; Georganos and Kalogirou,
2022; Hengl, Nussbaum, Wright, Heuvelink, and Gräler, 2018; Santos, Graw, and Bonilla, 2019).
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change, as it utilizes the same language as applied economics in the context of estimating the dy-

namic causal effects of policy interventions (Jordà, 2023). Such interventions would traditionally

refer to new fiscal policies (Jordà, Schularick, and Taylor, 2020), but can now also be adapted to

climate events such as natural disasters or temperature anomalies (Dieppe, Kilic Celik, and Okou,

2020; Nie, Regelink, and Wang, 2023).

Notably, two satellite data-specific characteristics tend to cause econometric modeling challenges

which need to be addressed: spatially interdependent data and spatially heterogeneous estimators.

A multidisciplinary, growing stream of the scientific literature deals with addressing these issues in

order to obtain consistent and unbiased spatial estimates (Georganos and Kalogirou, 2022; Hengl

et al., 2018; Kopczewska and �wiakowski, 2021). In the following, we briefly outline these two

issues of spatial data:

1. Spatial dependency and autocorrelation: Violating the basic assumption of independence

(which tends to be required by the usual econometric models), geolocations in close proximity

to one another are unlikely to be independent from one another. For instance, two neighboring

areas of a forest are likely to be exposed to similar, if not the same, environmental stressors

captured by satellite images. Therefore, models which fail to correct for spatial dependence

and (auto-)correlation can produce biased estimates.

2. Spatial heterogeneity or spatial non-stationarity: the relation between predictor and out-

come variables in spatial settings tend to vary spatially, i.e., different estimates are required

for different areas or locations [@georganos2021geographical]. For instance, the relationship

between precipitation and flood risks differs for adjacent urban neighborhoods depending on

their distance from bodies of water, building quality, or their proximity to disaster relief services.

Spatial weights matrices help address both of these major issues by incorporating the geographical

structure of the data into the econometric model (Anselin, 2022). However, deriving appropriate

weights can be challenging, as the choice of weighting scheme relies on assumptions and increases

model complexity. Though, approaches that address both spatial autocorrelation and spatial het-

erogeneity simultaneously, however, tend to increase computational complexity and cost beyond

the computational capacities of regular machines (Ahn, Ryu, and Lee, 2020).

Beyond these two major concerns specific to geospatial data, analyses leveraging satellite data can

additionally suffer from statistical issues analogous to those of non-spatial models. For instance,

endogeneity is common in spatial analyses, and including spatially endogenous variables further

complicates the modeling process (Brady and Irwin, 2011). Additionally, satellite data is also prone

to suffering from sparsity and missingness. Importantly, these gaps tend to be non-random, i.e.,

systematically informative, and thereby impact results (see, e.g., Khan, He, Porikli, and Bennamoun,

2017).

3.3 Limitations for bridging the climate data gap

As pointed out by the NGFS “Final Report on Bridging Data Gaps” (NGFS, 2022), gaps in climate-

related data encompass three dimensions: availability (e.g., coverage, granularity, and accessib-

ility), reliability (e.g., quality, auditability, and transparency) and comparability. Despite the tre-

mendous potential of satellite data for (sustainable) economics and finance, some key limitations

remain, which can affect their capacity for bridging these data gaps:
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1. Temporal consistency: Some environmentally relevant datasets might have poor temporal

consistency due to missingness. This issue tends to compound over time, affects coverage

and through this impacts availability, which in turn makes long-term environmental monitoring

more challenging.

2. Accuracy: The precision of readily available spatial datasets varies significantly, which affects

their reliability. There are two main categories of spatial datasets: vector files and raster files.

Vector files consist of geometric shapes used to represent man-made delineations such as coun-

try boundaries or biodiversity protected areas. Raster files, on the other hand, are composed

of grid cells (or pixels), each assigned a specific value to represent information like flood risk or

forest loss. Discrepancies between these datasets, particularly in terms of boundary definitions,

are not uncommon and often necessitate costly ground truth validation to ensure data accur-

acy. This situation suggests a possible impact on accessibility due to cost barriers, and affects

reliability due to potential errors and the need for external validation. Additionally, merging

datasets involves aligning spatial scales (e.g.: geocoding economic data), while maintaining

the integrity over time, which is by itself challenging (e.g.: an asset’s area may change over

time from being non-protected to protected). This impacts auditability and adds layers of com-

plexity in ensuring data reliability. Finally, identification of the region of interest (RoI) might

therefore be a challenge in itself. This underscores a significant issue affecting both reliability

and comparability due to ambiguous data interpretations.

3. Spatial resolution: Almost all publicly available raster datasets tend to have low spatial resol-

ution (above 500 square meters), limiting the relevancy of the tasks which could be applied to

(e.g.: deforestation and land degradations usually require finer resolution). This underscores a

significant issue affecting both reliability and comparability due to ambiguous data interpret-

ations. Data interdependence: newly available datasets often draw observational points from

different datasets, with the possibility of compounding previous errors.

4. Relevancy: Parametrization of information makes it technically difficult to quantify variables

of some economically relevant topics (e.g.: Normalized Difference Vegetation or NDVI and

Normalized Burn Ration or NBR are usually applied in to study the impact of wildfires, though

depending on the time of the year, type of vegetation and atmospheric conditions one metric

might be better than the other.); therefore several studies tend to be biased towards the most

technically feasible metrics. This can lead to issues in comparability when different studies or

datasets use different parameters or indices based on their technical feasibility rather than their

applicability.

From Parametrization to Environmental Metrics and Economic Materiality

Analyzing the Economic Impact of a Wildfire (Galicia, 14/10/2017)

Computing the impact on local firms and collateral can provide a tangible measure of economic materiality. However, this process

is challenging due to the need for high-resolution data and accurate economic modeling that can translate environmental damage

into financial terms

Parametrization and Region of Interest (RoI) Identification:
– Satellite choice is key: Landsat’s finer resolution (30 meters per pixel) is balanced against its 16-day revisit time, while MODIS

offers broader coveragewith daily updates at a coarser 250-500meters per pixel resolution, impacting the detail and timeliness
of data.

– RoI alignment is critical: Landsat’s swath of 185 kmmight not match the ROI exactly, leading to data gaps, Particularly in areas
outside the direct pass. A defined RoI like a 20 km radius can provide a focused view but may miss some impacts outside this
range. Techniques like data interpolation, using overlapping satellite passes, or integrating data from multiple satellites could
help mitigate these gaps.

– Preprocessing complexities: Switching between Landsat and MODIS can present challenges, particularly in cloud-prone re-

gions like Galicia. While manual cloud masking is necessary for certain satellites, automatic cloud masking by others like
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MODIS is available, but the resulting cloud-free data sample is not daily and may compromise data frequency.

Environmental Metrics:
– Selecting the right metrics like NDVI and NBR is essential for quantifying fire damage and vegetation health. It is also important

to understand historical values of those metrics in the RoI, and expected variations. A 10% or 20% change could be way to
big or small. A threshold must be chosen based on the normal variability and ecological characteristics of the region, factoring
in seasonal variations.

– Additional indices like EVI or SAVI could provide deeper insights in specific scenarios, such as regions with high biomass or

varying soil reflectance, enabling a tailored approach to environmental impact assessment.

Economic Materiality:
– The economic impact analysis is not only about the direct damages such as property loss, but also indirect effects like supply

chain interruptions, affected collateral in loans, and tourism downturns. This analysis requires an integration of fire damage
data with local economic metrics.

– Specifically, it is vital to evaluate spatial dependence. This dependence often reflects the physical spread of the fire. The
physical spread of a fire can differently affect adjacent sectors such as agriculture, collateral securities and tourism.

– Addressing spatial dependency involves employing spatial econometric models that can dissect and quantify these intertwined
impacts. Techniques like spatial autoregressive models (SAR) or spatial error models (SEM) could be employed to correct for
spatial autocorrelation in the data, ensuring that the estimated economic impacts accurately reflect the localized nature of
the fire’s damage.

– Collaboration with local authorities ensures that findings are grounded in reality

4 Literature review: satellite data in economics and finance

Satellite data has emerged as a powerful tool in some specific domains of economic and financial

research, offering novel insights and harnessing different methodologies across various domains.

In others, however, it remains underexploited. This literature review aims to segment and categor-

ize those streams of the scientific literature which have successfully used satellite data. Generally,

the successful application of satellite data tends to sit in two primary areas: (i) development eco-

nomics, for tracking economic growth in developing countries or tumultuous times, such as the

Covid-19 pandemic; and (ii) capital markets, e.g., in commodities trading (including estimating

oil reserves) as well as equity trading. An illustrative example of such applications can be retail

expenditure forecasting using satellite imagery in commercial areas such as parking lots.

First and foremost, satellite data has proven invaluable in monitoring and understanding eco-

nomic growth in developing regions. Studies such as Ebener, Murray, Tandon, and Elvidge (2005),

Ghosh, Anderson, Powell, Sutton, and Elvidge (2009), Henderson, Storeygard, and Weil (2012),

and Pinkovskiy and Sala-i-Martin (2016) have utilized nighttime lights data as a proxy for economic

activity, demonstrating its efficacy in capturing changes in GDP and economic development over

time. Moreover, the use of high-resolution satellite imagery has facilitated the assessment of urb-

anization patterns, infrastructure development, and land use changes, offering nuanced insights

into regional economic progress.

The nascent literature has also identified limits to satellite data. Specifically, it is noted that this

data source tends to lose its informative power for advanced economies generally situated in the

Global North (Chen and Nordhaus, 2011; Sutton, Elvidge, Ghosh, et al., 2007), as when a country

grows, night-time luminosity tends to de-correlate from production and consumption metrics.

This induced a move towards hitherto less frequently used types of remotely sensed data, such

as NO2 pollution for nowcasting industrial production (e.g., Bricongne, Meunier, and Pical, 2021;

Jiang, He, Cui, Zhou, and Kong, 2020; Zhou, Zhou, and Ge, 2018). Since this substream of the

literature suggests a direction of causality in which economic activity drives pollution, this link can

also be used to detect large economic recessions that lead to a drop in NO2 pollution. Castellanos
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and Boersma (2012) study the reduction in pollution in Europe during the global financial crisis

of 2008. Similarly, Russell, Valin, and Cohen (2012) offer similar insights for the US, as do Du

and Xie (2017) for China. More recently, Tobı
�
as et al. (2020) use pollution data to assess the

impact of the lockdowns during the Covid-19 pandemic in Europe, and Le et al. (2020) and Beyer,

Franco-Bedoya, Sebastian, and Galdo, Virgilio (2021) provide analogous findings for China and

India, respectively.

For Global South economies, previous studies such as Kerimray et al. (2020) and Keola and

Hayakawa (2021) document that changes in NO2 pollution followed lockdown policies. Related

to this, Franke et al. (2009) and Ruyter de Wildt, Eskes, and Boersma (2012) use satellite imagery

to track shipping lanes and study world trade patterns.

Satellite data has also influenced capital markets, for instance in the field of commodities trading,

by offering insights into supply chains, market trends, and natural resources availability. As an

example, satellite imagery has been used to monitor oil storage facilities and track tanker move-

ments, providing crucial information for assessing global oil supply and demand dynamics, as well

as oil spill detection (Tysi�c, Strelets, and Tuszy�ska, 2022).

Moreover, the literature on consumer spending estimation has been revolutionized by satellite im-

agery: Feng and Fay (2022) and Kang, Stice-Lawrence, andWong (2021), for instance, use satellite

images of retail parking lots to estimate consumer spending. By counting cars in the lots, the re-

searchers were able to accurately predict store-level sales, demonstrating the potential of satellite

data in retail analytics and economic forecasting. This, in turn, gives rise to an application in equity

trading where international retail company revenues can be estimated ahead of quarterly earnings

announcements for market timing strategies. Notwithstanding, Katona, Painter, Patatoukas, and

Zeng (2018) suggest that access to this source of alternative data might have had an impact on

information asymmetry among market participants without enhancing price discovery.

In the field of green finance, insurance markets are a prominent example of the pioneer usage of

satellite data. In particular, this type of data has led to promising results in agricultural risk manage-

ment through its potential to reduce monitoring costs and alleviate moral hazard as well as adverse

selection issues (Nagendra, Narayanamurthy, Moser, Hartmann, et al., 2022). Exploiting satellite

data, insurers can efficiently price complex weather index insurance policies, protecting small farm-

ers against crop damage (De Leeuw et al., 2014). Hedging the risk of weather shocks, they can

also increase their agricultural productivity (Enenkel et al., 2019), which enables ethical decision-

making in agricultural insurance claim settlement. The latter is crucial from a social perspective,

as beneficiaries of these claims tend do be “poor and powerless”, as Nagendra, Narayanamurthy,

and Moser (2022) put it.

Finally, as predictive analytics are increasingly being recognized as pivotal tools for climate fin-

ance, with applications reaching beyond insurancemarkets and catastrophemanagement (Alonso-

Robisco, Bas, et al., 2024). As detailed by Ofodile et al. (2024), addressing the hurdles associ-

ated with data quality, model uncertainty, regulatory complexities, and the integration of climate-

related factors in financial decision-making processes requires interdisciplinary collaboration and

ongoing technological and financial innovation. This encompasses a wide range of techniques

and information sources including novel climate models and satellite imagery.
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In the context of the previous literature on satellite data for finance and economics, our pro-

position is as follows: While the data source is not new and has seen some success in specific

domains, it remains under-utilized in others. We will subsequently analyze systematically whether

the substream of the literature concerned with green finance can benefit from novel studies using

satellite data. To this end, we briefly introduce Latent Dirichlet Allocation (LDA) in Section 5. The

LDA model helps us uncover thematic clusters in a comprehensive dataset of scholarly papers on

sustainable finance which already use satellite data. The use cases not uncovered by our analysis

can inform us where future efforts of central banks, statisticians, and scholars may be targeted to

effectively aid the green transition.

5 Topic modeling: satellite data in green finance
5.1 Latent Dirichlet Allocation (LDA)

As pointed out above, we rely on the LDA algorithm for the topic modeling task (Blei, Ng, and

Jordan, 2003). In selecting the most suitable methodology for topic modeling within this study,

the choice of LDA over alternatives like BERTopic or Topic2vec is underpinned by several key con-

siderations. For instance, while BERTopic (Grootendorst, 2022) and Topic2vec (Niu, Dai, Zhang,

and Chen, 2015) exhibit commendable performance in capturing semantic relationships and con-

textual understanding, the choice of LDA is rooted in its interpretability, scalability, and established

track record in topic modeling (Jelodar et al., 2019). LDA, a generative probabilistic model, allows

for a clear interpretation of topics as probability distributions over words, enabling a more straight-

forward comprehension of underlying themes within textual data. Additionally, LDA’s computa-

tional efficiency and scalability make it well-suited for handling large corpora, offering a pragmatic

advantage in processing substantial volumes of text data commonly encountered in empirical stud-

ies. Moreover, the widespread use and extensive literature on LDA provide a robust foundation

for comparison, evaluation, and benchmarking against prior research, enhancing the reliability and

interpretability of the findings derived from the topic modeling exercise within this study.

The key practical advantage of LDA is that it allows to treat documents like a mixture of different

topics, while topics are presented as a mixture of words. Furthermore, no label of the documents

is required. This makes it highly flexible and applicable to a wide range of domains and datasets,

which fits the reality observed in climate finance studies, since different topics can partially overlap

within a document. Interestingly, LDA is based on a generative probabilistic model, learning the

topic-word distributions and the document-topic proportions from the data. Last but not least,

LDA is easily scalable, as it handles large-scale datasets efficiently, which makes it valuable to fulfill

our task at hand.

The procedure for extracting the topics consists of a variety of steps required for training, tuning,

and applying the resulting LDA model to the corpus, as an unsupervised learning technique. We

include a detailed description of this process in the Appendix, Section A.

5.2 Data collection

To conduct a systematic literature review, we use Harzing’s Publish or Perish, a free application

which enables large-scale literature searches. The user interface resembles Google Scholar and

similar applications, and thereby allows searching by authors, years, journals, titles, and keyword
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combinations. The application also enables searches of various databases, among them Google

Scholar, CrossRef, Pubmed, and others.

For the literature review, we use Google Scholar, CrossRef, OpenAlex, Semantic Scholar, and

Scopus. Based on domain expertise, we decide on a list of keywords for our search. All com-

binations of these keywords, including mandatory mentions within titles and/or abstracts of the

found papers as well as optional mentions, are considered. This means that, for instance, we use

both “satellite data” and “climate finance” as well as satellite data climate finance separately as a

combination of search terms.

The resulting total number of search word combinations is 112. We search each of the aforemen-

tioned databases (Google Scholar, CrossRef, OpenAlex, Semantic Scholar, and Scopus) for each

of these terms. Within each search, we choose a maximum number of papers to be returned

of 200. There are important differences between the matching paper results returned by each

database: First, Google Scholar has taken precautions against automated data extraction so that

we needed to limit the number of maximum returned papers in order to prevent our IPs being

blocked. Second, Scopus only returns papers which fit the search well enough instead of return-

ing all papers in decreasing order of “fittingness”, which differs from the other platforms. Third,

the scopes and information retrieval systems of all databases differ, as is made evident by the

fact that the returned lists of papers do not overlap fully. The latter is one main reason why we

use four databases, namely, to limit the results being influenced (or biased) by a single database’s

characteristics, and in turn maximize the number of results.

Due to these differences, the initial and final samples of papers do not consist of equal shares from

each database. To obtain our final sample of papers relevant to our research question, we take

several filtering steps. Table 1 illustrates the sample decomposition before and after filtering and

across databases.

Database Initial sample Unique-observation sample

CrossRef 22,400 5,016
Semantic Scholar 22,400 4,842
OpenAlex 20,700 3,748
Scopus 3,681 1,822
Google Scholar 2,419 1,799
Total 71,600 17,227

Final sample after filtering 226

Table 1: List of databases used for data collection

The first step after collecting all papers is to remove duplicates. This step changes the sample from

the initial sample to the unique-observation sample (i.e., sample without duplicates). Subsequently,

we remove results with empty author information, results which author information contains only

non-Roman letters, are published in appropriate media, and whose abstracts contain (i) satellite-

or remote sensing-specific terminology as well as (ii) finance- or economics-specific terminology.

The last filtering step is the most restrictive and ensures we only consider adequate papers for our

analysis. During this work, we also add any papers which we come across “manually” and deem

fitting for our purposes. The resulting final number of papers is 226. With this final sample, we

conduct the NLP analyses described in the following sections.
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5.3 Uncovering thematic areas

There are two main challenges when it comes to clustering topics in a corpus of texts. First,

there is no one-size-fits-all approach to finding the optimal number of topics, i.e., the process

always includes some trial and error. To aid the parameter selection process, the literature suggests

several metrics, such as the perplexity (Blei et al., 2003) and coherence scores (Röder, Both, and

Hinneburg, 2015). Increasing the number of topics usually improves these statistical measures

during topic modeling. Simultaneously, however, a higher number of topics is associated with

higher computational cost during training. In our case, we decide to estimate an LDA model with

five topics, informed by the rate of perplexity change following Zhao et al. (2015).10)

A further challenge is selecting a number of topics which not only “make sense” to the ML al-

gorithm, but also to humans. To ensure a human-interpretable labeling of the resulting topics,

we conduct a qualitative review with human expert judgment, in which we verify that the words

associated with each topic align roughly with the experts’ domain knowledge of the established

climate finance literature. Upon estimating the LDA model, we label the topics using a two-step

approach: firstly, we examine the tokens with the highest probability for each topic, as detailed in

Table 2. Then, a more thorough analysis of the clusters (see more details in the Appendix, Section

B) allows us to identify the following set of topics: Topic 1 as Physical risk, Topic 2 as Deforesta-

tion, Topic 3 as Energy and emissions, Topic 4 as Agricultural risk, and Topic 5 as Land use and

land cover.

For illustrative purposes, we outline the iterative, human-in-the-loop process of how we arrive at

our final number and demarcation of topics. After reviewing themost frequent terms for each topic

(see Table 2 in the Appendix), we assess the topics based on the relevance metric 11). For instance,

Figure 1 displays the intertopic distance map, which we use to fine-tune the topic selection of our

LDA model. The visualization presented in this map is indicative of topic differentiation, i.e., a

wider distance corresponds to a stricter differentiation. The term-relevance chart, which shows

the importance and the relevance metric of single terms for the selected topic, can be seen on the

right-hand side of Figure 1. For Topic 1, we find significant emphasis on terms such as “weather”,

“temperature”, “rainfall”, and “drought”. This emphasis enables a distinction of Topic 1 from the

other topics, underscoring its semantic concentration on the impacts of extreme weather events

and acute or chronic physical risks. Consequently, we categorize this topic as Physical risk. A

similar methodology is applied to the remaining topics, with term-relevance charts analogous to

Figure 1 provided in Figures 3 through 7.

Uncovering one topic can inform the labeling of others due to their interconnected nature. This

interconnectedness enable us to address their practical implications in the field of green finance,

where each of our topics aligns with emerging financial products in the field. For example, weather

forecasting (Topic 1: Physical risk) is crucial for renewable energy trading (Ghoddusi, Creamer, and

Rafizadeh, 2019), which is closely linked to the discussions in Topic 3 (Energy and emissions). In

addition, as highlighted by Topic 3, assessing carbon emissions over the value chain is essential for

creating effective carbon tax policies and facilitating carbon offset trading in secondary markets,

(Borowski, 2021; TSVCM, 2021). This assessment is a critical step in the design and implementation

of financial mechanisms that aim to reduce carbon footprints.

10 Figure 2 in the Appendix displays the relevant metrics and training times for model versions ranging from one to ten
topics.
11 Using λ = 0.6 and the PyLDAvis Python library proposed by Sievert and Shirley (2014)
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Figure 1: Intertopic distance map, and Top30 most relevant terms for Topic1.

On another note, the emphasis on ecosystem health as the main indicator in nature finance Schi-

manski et al. (2023), aligns with the research focus of Topic 2 (Deforestation) and Topic 5 (Land use

and land cover). Their practical implication is exemplified by the partnership of World Bank and

ESA, which leverages satellite data to monitor deforestation activities in the Peruvian Amazon.

Insights from this collaboration could potentially help developing green finance products, like

Sustainability-Linked Bonds (ESA, 2023), or enabling the verification of commitments in blue bonds

(Thompson, 2022).12)

Lastly, our results support the application of satellite data to better assess agricultural risk (Topic 4).

This is particularly relevant for a just transition where small farmers must adapt to current changes

in climate. The importance of this facet is underscored by, for instance, the joint venture between

IFAD and ESA (IFAD, 2023) and the Catalogue of Geospatial Tools and Applications for Climate

Investments of IFAD (2022).

6 Conclusion and policy discussion

International central banks have identified the need to bridge climate-related data gaps to enable

green finance to scale up. This need comes at a time where pressures on financial institutions are

increasing along three major dimensions: Calls for increased voluntary and mandatory disclosure

and regulation (e.g., the launch of EU Taxonomy, CSRD, and SFDR); the need to address “double

materiality”, which recognizes not only the financial materiality to companies arising from climate

risks and opportunities but also the materiality for society and the environment arising from the

companies’ operations, which in turn can result in financial risks (Gourdel et al., 2022), and the

growing importance for central banks around the topic of the “environment” (WWF, 2023), and

biodiversity (NGFS, 2023).

12 Water resources, including rivers, oceans, floods, etc., occur in Topics 1, 4, and 5 of our LDA model.
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A potential candidate to assist covering climate-related data gaps as defined by [NGFS (2022) is

satellite data. This data source comprises spatio-temporal information retrieved from satellites

and sensors that orbit the Earth. EO systems might potentially open bottlenecks in several op-

erational problems by increasing the widespread availability of climate-related data, adding new

layers of information (geo-location) to currently available data, and/or enhancing the reliability of

self-reported data from corporates. However, they also faced important challenges and decisions

that need to be addressed in order to use this information. We point out potential limitations

of satellite data in addressing climate data gaps: availability (e.g., coverage, granularity, access-

ibility), reliability (e.g., quality, auditability, transparency), and comparability (due to the absence

of a unified reporting standard). While EO systems can enhance data availability, accessibility re-

mains limited, with barriers such as proprietary databases and high costs for newcomers needing

to process raw data.

On the other hand, satellite data boasts impressive advantages, such as general high quality, audit-

ability, and transparency, positioning it as a viable candidate to improve digital measurement and

reporting systems especially in the field of green finance. However, the fact that parametrization

needs to be undertaken individually by each user and use case, complicates the comparability of

results based on spatial analysis.

We have already seen the use of this information in several cases. In emerging countries, inform-

ation such as night-time luminosity has proven valuable for fore- and nowcasting indicators such

as GDP growth and beyond. Similarly, in times of turmoil such as the COVID-19 pandemic, satel-

lite imagery was useful to track urban mobility and estimate the effect of fiscal subsidies to boost

economic activity locally. Within the financial literature, remote sensing has been used to estimate

oil reserves, count cars in parking lots to estimate consumer spending at large retailers, and assist

investors in market-timing strategies for such retailers’ stocks. In the domain of green finance use

cases, satellite data has been somewhat established in the insurance sector. However, we propose

that today, there are more urgent thematic areas where researchers are researchers could harness

this novel and largely free data source to solve a variety of problems.

In order to provide a more systematic analysis of the potential of this data for sustainable finance

we use a semi-automated review of the scientific literature on the application of EO systems for

green finance. To this end, we collect a corpus of scientific studies and, using NLP techniques (LDA),

we uncover five application domains where researchers are exploring the value of EO systems. In

particular, we find that (1) physical risk materialization (including both acute and chronic risk), (2)

deforestation, (3) energy and emissions, (4) agricultural risk, and (5) land use and land cover, are

core areas where satellite data might enable new green financial products and markets, such as

sustainability linked bonds or blue bonds, nature finance, or voluntary carbon markets. Our results

are echoed by innovative private sector players (e.g., DrivenDataLabs, 2023), who offer services

based on artificial intelligence and new data types from EO systems in different business areas, such

as natural resource management, disaster resilience, biodiversity conservation, energy efficiency,

or upstream services.

We conclude by stating that satellite data shall not be an isolated area of research to fill in climate

data gaps. It can work together with improved observational data, leveraging new technologies

like machine learning or landscape audio. Used in this fashion, it can enable and new layers

of information, and thereby boost new insights from ground-based data. Overall, although EO
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systems in green finance are still emerging, their potential has piqued the interest of central banks,

as a potential public good, prompting exploration and collaboration on international platforms

like the NGFS or BISIH to experiment, monitor, and track new developments.
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A LDA: Topic modeling

A necessary first step in topic modeling is processing the corpus of documents by tokenizing each

document into a collection of their individual words where order is unimportant (i.e.: each docu-

ment is treated as a “bag of words”). Then, stopwords that have no topic context (such as “and”,

“of”, “the”), are removed, as well as common terms that are highly repeated in the corpus, which

we identify because they appear in more than half of the documents, or rare terms for which we

set a threshold of being in less than two documents. We deem that both categories of terms

contain little meaning to contribute to a relevant topic.13) Remaining words in a document are

lemmatized to generate the words’ root, and accurately capture unique terms usage.14) For sim-

plicity, we keep our analysis to single word tokens as we find that it allows us to easily label the

topics at the final stage.

Once the corpus is preprocessed, we count with D documents that together contain N unique

tokens that we can represent by an N x D matrix W with entries wn,d, which in turn are the

number of occurrences of token n in document d. Thus, the total number of tokens in document

d is Nd =
∑N

n=0wn,d. The LDA model consists of two matrices, βN×K and θK×D, where K is the

total number of topics. For topic k, the vector βk contains the N token weights, which act as the

probabilities P(n|k) that the token n contribute to a document’s bag of words, conditional on the

topic k contributing to the document. That is, P(n|k) = βk , i.e.: the weight of token n in topic k.

Therefore,
∑N

n=1 βn,k = 1. For document d, the vector θd contains the K topic weights – which act

as the probability P(k|d) that topic k appears in the document. Thus, P(k|d) = θk,d, i.e.: the weight

of topic k in document d. Similarly,
∑N

n=1 θk,d = 1. When these probabilities are significant, we

may say that a topic k is relevant in document d. Finally, this setting allows us to decompose the

probability of a token n occurring in a document d in the following equation (Hofmann, 2001):

P(n|d) =
K∑

k=1

P(n|k) · P(k|d) =
K∑

k=1

βn,k · θn,d (1)

Topic modeling involves reducing the dimensions of these matrices to end up with the same num-

ber of rows (documents) but a restricted number of columns which represent the topics. To this

purpose LDA assumes a particular Dirichlet distribution that can be used to produce probability

vectors βk and θd, that allow an assumption to be made about how topics are distributed across

tokens and documents. Using two external inputs, α and β, as Dirichlet priors, we can determine

the generative process in the LDA (Blei, 2012; Blei et al., 2003). α determines θd or per-document

topic distribution, and the β parameter determines βk or per-topic token distribution.

The LDA posteriors are a result of the trade-off between two inherently conflicting goals. Firstly,

that only a relatively small number of topics are expected in a well-written document, and secondly

that only high probability should be assigned to a small number of tokens that belong to highly

13 We decide not to include bi-grams or tri-grams in this process as we deem that common candidates like “climate
change” or “green bonds” would fall under the definition of common terms when split into two. Therefore, we do not
expect to change our results. Though, further research could be carried out to perform this robustness check.
14 While stemming consists on the removal of suffixes without considering the context or the actual meaning of the word,
which can sometimes lead to the generation of non-interpretable words, lemmatization is the process of grouping together
different forms of the same word, allowing to work with immediately interpretable tokens.
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informative topics. The trade-off exists because if we assign, for instance, a single topic to a single

document, thus succeeding at the first goal, the second goal becomes difficult to achieve because

all tokens in the document must have a relatively high probability of belonging to that topic. The

estimation of the LDA model requires a Bayesian updating from its initial semi-random allocation

of topics to tokens and documents, to converge to a probabilistic distribution of topics across

documents. Technically, the process will be completed when we find matrices βN×K and θK×D

that most likely have produced the observed data W. In our case, the Gensim implementation in

Python, based on a Bayesian approach, finds the best configuration of the model automatically as

well as several settings related to numerical efficiency (Hofmann, 2001). In order not to stop at a

local optimum we use a high enough number of iterations, in particular we needed 40,000 passes

to reach a stable solution.
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B Cluster analysis

Reviewing the top terms for each topic provides us with an initial understanding into their potential

labels. However, this approach does not remove all uncertainty in assigning sufficiently different

and sensible topics: some tokens, such as “vegetation” in topics 1 and 2 and “land” in topics 4

and 5, can be prevalent across multiple topics. Hence, we further scrutinize the top terms using

the relevance metric, which prioritizes terms based on their significance within a topic relative to

their presence in other topics. The relevance metric is defined as follows: for a given term t, its

relevance to topic k is defined as follows:

λ log(βk,t) + (1 – λ) log(
βk,t
pt

), (2)

where βk,t is the probability of term t in topic k, pt is the marginal probability of term t across

all topics, and λ is a parameter that balances term frequency within a specific topic against its

frequency across all topics. By applying this metric, we identify the following set of topics: Topic 1

as Physical risk, Topic 2 as Deforestation, Topic 3 as Energy and emissions, Topic 4 as Agricultural

risk, and Topic 5 as Land use and land cover.
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C Figures and Tables

Figure 2: LDA model selection metrics
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Figure 3: Intertopic distance map, and Top30 most relevant terms for Topic1.

Figure 4: Intertopic distance map, and Top30 most relevant terms for Topic2.
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Figure 5: Intertopic distance map, and Top30 most relevant terms for Topic3.

Figure 6: Intertopic distance map, and Top30 most relevant terms for Topic4.
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Figure 7: Intertopic distance map, and Top30 most relevant terms for Topic5.
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