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Non-technical summary

Research Question

Since the mid-20th century, a fast-growing phenomenon has been transforming our econ-

omy: digitalisation. At the same time, aggregate labour productivity growth has declined

in a number of advanced economies. This coincidence has fuelled an ongoing debate about

the importance of digitalisation for labour productivity growth. Against this background,

we ask how important efficiency gains in the digital sectors are for labour productivity

in Germany, France and the United States and what role input-output linkages play in

transmitting these efficiency gains to the aggregate economy.

Contribution

The data show that a significant part of the output of digital goods producing sectors

serves as an intermediate input. While traditional approaches have mainly focused on the

role of investment in digital capital as a key transmission channel, we study the impact

of efficiency gains in the digital goods producing sectors on aggregate labour productivity

through the lens of a multi-sector dynamic general equilibrium model with detailed input-

output linkages.

Results

Without the total factor productivity (TFP) gains in the digital sectors, aggregate labour

productivity growth would have been about half as high in Germany, France and the

United States between 1996 and 2020. Input-output linkages are a key transmission

mechanism. If production linkages are disregarded, the productivity impact of the digital

sectors is considerably lower.



Nichttechnische Zusammenfassung

Fragestellung

Seit Mitte des 20. Jahrhunderts hat ein sich rasch entwickelndes Phänomen unsere Wirt-

schaft verändert: die Digitalisierung. Gleichzeitig ist das Wachstum der gesamtwirtschaft-

lichen Arbeitsproduktivität in einer Reihe von Industrieländern zurückgegangen. Diese

Koinzidenz hat eine anhaltende Debatte über die Bedeutung der Digitalisierung für das

Arbeitsproduktivitätswachstum entfacht. Vor diesem Hintergrund untersuchen wir, wie

wichtig Effizienzsteigerungen in den digitalen Sektoren für die Arbeitsproduktivität in

Deutschland, Frankreich und den USA sind und welche Rolle Input-Output-Verknüpfungen

bei der Übertragung dieser Effizienzsteigerungen auf die Gesamtwirtschaft spielen.

Beitrag

Die Daten zeigen, dass ein erheblicher Teil der Produktion von Digitalgüter produzie-

renden Wirtschaftssektoren in Form von Vorleistungen genutzt werden. Während sich

traditionelle Ansätze auf die Rolle von Investitionen in den digitalen Kapitalstock als

zentralen Übertragungskanal fokussierten, untersuchen wir die Auswirkungen von Effizi-

enzsteigerungen in den Digitalsektoren auf die gesamtwirtschaftliche Arbeitsproduktivität

anhand eines dynamischen allgemeinen Gleichgewichtsmodells mit detaillierten Input-

Output-Verknüpfungen.

Ergebnisse

Ohne die TFP-Zuwächse in den Digitalsektoren wäre das Wachstum der Arbeitsproduk-

tivität in Deutschland, Frankreich und den USA zwischen 1996 und 2020 nur etwa halb

so hoch ausgefallen. Werden sektorale Verknüpfungen über Vorleistungen außer Acht

gelassen, fällt der Bedeutung der Digitalsektoren für die aggregierte Arbeitsprodukti-

vität erheblich niedriger aus. Input-Output-Verknüpfungen sind demnach ein zentraler

Übertragungsmechanismus.
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1 Introduction

Since the mid-20th century, a fast-growing phenomenon has been transforming our econ-
omy: digitalisation. Yet, its effect on overall labour productivity growth in advanced
economies remains a contentious topic (see, e.g., Gordon, 2016; Byrne, Oliner, and Sichel,
2017; Brynjolfsson, Rock, and Syverson, 2019).

Against this background, our paper analyses the impact of efficiency gains in digital
goods producing sectors on aggregate labour productivity in three advanced economies –
Germany, France and the United States – with a particular focus on a specific transmission
channel: the role of digital intermediate inputs. Table 1 indicates that input-output
linkages might be a relevant channel through which digitalisation can have a productivity-
enhancing effect: In the United States, Germany and France, half or more of the output
produced by digital sectors is used as intermediate inputs.1

To examine the role of intermediates as a transmission channel of sectoral efficiency
gains, we construct a multi-sector dynamic general equilibrium model with a production
network. This framework enables an in-depth investigation of how efficiency improvements
in the production of digital goods have affected labour productivity growth through pro-
duction linkages. Our study thereby adds to the growing body of research emphasising
the significance of sector-specific developments in shaping macroeconomic patterns (see
Foerster, Hornstein, Sarte, and Watson, 2022; Gaggl, Gorry, and vom Lehn, 2023).

Table 1: Usage of digital goods in percent

Germany France United States

Consumption 31 26 24
Investment 16 17 25
Intermediate inputs 53 57 51

Notes: Share of gross output of the digital goods producing sectors in the year 2000 used as consumption

goods, investment goods or intermediate inputs. Digital sectors consist of divisions C26 Manufacture of

computer, electronic and optical products and C27 Manufacture of electrical equipment of the NACE

Rev. 2 classification as well as section J Information and communication. Source: World Input Output

Database.

According to the model simulations, cumulative labour productivity growth in the
United States, Germany and France would have been about half as high between 1996
and 2020 without total factor productivity (TFP) growth in the digital sectors, compared
to the benchmark simulation. Quantitatively, this amounts to a difference of 25 percentage
points in the United States, and disparities of 15 and 11 percentage points in Germany and
France, respectively. Production networks play a key role in transmitting TFP growth
from the digital sectors into the broader economy. In a second set of simulations, we

1Digital sectors are defined on the basis of the current version of the statistical classification of economic
activities in the European Community (NACE Rev. 2) as the Manufacture of computer, electronic and
optical products andManufacture of electrical equipment (divisions C26 and C27) as well as the IT services
sector Information and communication (section J).
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show that disregarding network connections substantially reduces the influence of the
digital sectors on the simulated trajectories. When digital intermediates are not taken
into account, simulated labour productivity growth is 10, 7 and 5 percentage points lower
than in the baseline scenario for the United States, Germany and France, respectively.

Our modelling framework is a closed-economy, flexible-price dynamic general equi-
librium model with multiple interrelated production sectors. Goods can be consumed
or invested. Compared to the conventional one-sector model, however, sectoral output
also serves as an intermediate input for production, thereby affecting aggregate labour
productivity growth through production networks. In terms of parameterisation, the sec-
tors deviate from each other with respect to their factor intensities and relevance for
consumption, investment and intermediate input demand. The benchmark model cov-
ers eight sectors that are calibrated using the latest version of the World Input-Output
Database (WIOD, see Timmer, Dietzenbacher, Los, Stehrer, and De Vries, 2015). We
set up separate versions of the model for Germany, France and the U.S. respectively, and
solve them non-linearly.

Sector-specific shocks to TFP growth are the only exogenous driver in the model.
They are derived from empirical measures of sectoral TFP growth, which are corrected
for changes in capacity utilisation. The estimates show that TFP growth in the digital
sectors was significantly higher than in the remaining sectors. For instance, TFP in the
United States’ digital sectors tripled from 1996 to 2020, whereas it increased by a mere
10 percent in the remaining sectors.

To examine the role of digital transformation in labour productivity growth, we con-
struct two counterfactual scenarios. In the first, we simulate the path of aggregate labour
productivity under the assumption that there is no growth of TFP in the digital sectors.
This allows us to evaluate the importance of efficiency gains in the digital sectors as a
whole. In the second, we analyse how labour productivity would have evolved if digital
products had not served as inputs in other sectors of the economy. This exercise sheds
light on the role of the production network. The counterfactual scenarios show that TFP
growth in the digital sectors is a major driver of aggregate productivity growth. For the
United States, the model predicts that aggregate labour productivity would have stag-
nated since the mid-2000s without the efficiency gains from the digital sectors. Significant
productivity contributions from the digital sectors are also present in the other countries
studied. Moreover, the simulations emphasise the importance of input-output linkages as
a transmission channel. When digital output is used exclusively for consumption or in-
vestment purposes, labour productivity growth between 1996 and 2020 falls considerably
short compared to the baseline model in all of the countries considered.

Looking at the cross-country differences in the production structure more broadly,
we find that the higher labour productivity growth in the United States is not only due
to the marked efficiency improvements in the digital sectors, but also promoted by an
overall favourable production structure. This conclusion is drawn from replicating the
benchmark analyses for the United States, while replacing the input-output matrices
with those corresponding to Germany and France.

Related Literature Our paper is related particularly to analyses integrating produc-
tion networks into dynamic general equilibrium models as well as work centering on the
impact of digitalisation on productivity.
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The studies that come closest to ours are those that use dynamic multi-sector flexible-
price general equilibrium models to highlight the role of sectoral developments for the
evolution of key macroeconomic variables, such as Foerster et al. (2022), Gaggl et al.
(2023), and vom Lehn and Winberry (2022). The latter focuses on the effects of TFP
shocks and their amplification through investment networks over the business cycle fre-
quency. Foerster et al. (2022) and Gaggl et al. (2023), in turn, examine the contribution
of sectoral developments to aggregate growth.

Both Foerster et al. (2022) and Gaggl et al. (2023) characterise an aggregate bal-
anced growth path and decompose aggregate GDP growth into its sectoral contributions.
Specifically, Foerster et al. (2022) use Cobb-Douglas preferences and a production struc-
ture with heterogeneous sectoral parameters to derive sector-specific multipliers that can
be decomposed into a direct and an indirect (network) effect. Their framework, however,
does not allow for production networks to change endogenously over time as pointed out
by Gaggl et al. (2023), who study structural change by specifying production and pref-
erence functions with constant elasticity of substitution (CES). They find that inputs
produced by different sectors are substitutes in the production of investment goods and
complements in the production of intermediates and consumption goods, implying that
structural change is mainly driven by investment. However, to characterise the balanced
growth path, the authors assume that the sectoral production parameters are identical
across sectors.

While our study also highlights the importance of sectoral developments for macroeco-
nomic trends, it conceptually complements the works of Foerster et al. (2022) and Gaggl
et al. (2023) in that we directly capture the impact of sectoral TFP changes on aggregate
variables by constructing counterfactuals rather than decomposing sectoral contributions
along an aggregate balanced growth path. This allows us to combine CES-type preferences
and production structure with sector-specific production parameters. Moreover, since we
solve the model nonlinearly, the effects of sectoral TFP shocks are state-dependent in our
setting.

Other papers using multi-sector dynamic general equilibrium models but with nominal
rigidities are those of Bouakez, Cardia, and Ruge-Murcia (2011), Pasten, Schoenle, and
Weber (2020), Bouakez, Rachedi, and Santoro (2021), and Peri, Rachedi, and Varotto
(ming). While the former uses a multi-sector framework to assess the impact of intersec-
toral linkages on the government expenditure multiplier in the United States, the latter
examines the effects of government investment. Bouakez et al. (2021), in turn, introduces
durable goods into a multi-sector framework to examine the sectoral and aggregate effects
of monetary policy shocks. Pasten et al. (2020) analyse the role of heterogeneous price
rigidities for the responses of sectoral output and inflation to a monetary policy shock
in the United States (see also Bouakez, Cardia, and Ruge-Murcia, 2014). In addition to
analysing prototypical macro policies, multi-sector dynamic general equilibrium models
have recently also increasingly been used in an environmental context (see, e.g., Hinter-
lang, Martin, Röhe, Stähler, and Strobel, 2022; Ernst, Hinterlang, Mahle, and Stähler,
2023).

Further studies that investigate the effects of sectoral TFP shocks in a static but rich
multi-sector environment include, inter alia, those of Acemoglu, Carvalho, Ozdaglar, and
Tahbaz-Salehi (2012), Baqaee and Farhi (2019, 2020), and Bigio and LaO (2020).

Interrelation of digitalisation and productivity has been the focus of a vast strand of
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literature (see, e.g., Gordon, 2000; Oliner, Sichel, and Stroh, 2007; Jorgenson, Ho, and
Stiroh, 2008; Byrne, Fernald, and Reinsdorf, 2017; Byrne et al., 2017; Goldfarb and Tucker,
2019; Byrne, 2022; Acemoglu, Autor, and Patterson, 2023). The coincidence of a rapid
spread of digital technologies and declining labour productivity growth – often termed
a modern productivity paradox – has fuelled a controversial debate about the impact of
digitalisation on aggregate labour productivity growth in advanced economies (see, e.g.,
Gordon, 2016; van Ark, 2016; Brynjolfsson et al., 2019). Previous work on this topic
has focused, in particular, on investment as the central transmission channel (see, e.g.,
Greenwood, Hercowitz, and Krusell, 1997; Jorgenson and Stiroh, 2000; Oliner and Sichel,
2000; Basu, Fernald, Oulton, and Srinivasan, 2003; Brynjolfsson and Hitt, 2003; Cette,
Clerc, and Bresson, 2015; Bergeaud, Cette, and Lecat, 2017). Digital products, however,
enter production processes not only as capital goods but also as intermediate inputs.
Against this background, we explicitly account for the role of input-output linkages in the
diffusion of efficiency gains.

The rest of the paper is organised as follows. Section 2 describes the construction of
sectoral TFP shocks. The theoretical model is introduced in Section 3, its calibration in
Section 4. Simulation design and results are described in Section 5. Section 6 discusses
the results and provides several robustness checks and Section 7 concludes.

2 Constructing time series of sectoral TFP shocks

In order to examine the impact of efficiency gains in digital sectors on aggregate produc-
tivity growth, we calculate TFP growth rates at the sectoral level and feed them into
our theoretical model. A key challenge in estimating TFP lies in the measurement of the
production factors used. For example, the calculated TFP growth series may be distorted
by idle assets or under-utilisation of labour.

We use a two-step procedure to account for the degree of capacity utilisation in the
measurement of TFP growth rates, similar to Basu, Fernald, and Kimball (2006) and
Comin, Quintana, Schmitz, and Trigari (2020).2 Specifically, we first derive Solow residu-
als using annual sectoral data from the 2023 version of the EU KLEMS data for Germany,
France and the United States. The growth accounting exercise builds on a standard Cobb-
Douglas production function and spans the time period from 1997 to 2020.3 The sample
comprises 21 sectors that cover the non-farm, non-mining private market economy (see
Table 2). In a second step, we adjust the Solow residuals for changes in the utilisation of
production factors within a panel model. Specifically, we regress the sector-specific Solow
residuals on measures for sectoral capacity utilisation and sector-specific fixed effects. As
the level of capacity utilisation is, in general, unobserved, we apply two different proxies
to measure it. For the European countries, we adapt the approach of Comin et al. (2020)
and use survey answers about the level of factor utilisation from the European Commis-
sion’s business and consumer surveys. For the United States, we follow Basu et al. (2006)
in using changes in average weekly hours worked.4 Our final sectoral TFP series are given

2Details for the estimation can be found in the Appendix.
3The respective sectoral labour and capital income shares are permitted to be time-varying. The

income shares show only little variation over the sample period; see supplementary Appendix.
4As in Basu et al. (2006) and Comin et al. (2020), the impact of utilisation on TFP growth is estimated

with a instrumental variable approach (see Appendix for details).
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by the difference between the sector-specific Solow residual and the estimated impact of
capacity utilisation.

Table 2: Sectors

Manufacturing Non-manufacturing
Food, beverages, tobacco products [C10-C12] Construction [F]

Textiles, wearing apparel, leather [C13-C15] Trade; repair of motor vehicles [G]

Wood, paper, printing [C16-C18] Transportation and storage [H]

Chemicals, basic pharmaceutical products
[C20-C21]

Accommodation and food service activities [I]

Rubber, plastic, non-metallic mineral products
[C22-C23]

Information and communication [J]

Metal products [C24-C25] Financial and insurance activities [K]

Computer, electronic, optical products
[C26-C27]

Professional, scientific and technical activities
[M]

Machinery and equipment n.e.c. [C28] Administrative and support service activities
[N]

Motor vehicles, trailers, other transport equip-
ment [C29-C30]

Arts, entertainment, recreation ; other services
[R-S]

Furniture, jewellery, musical instruments, toys
[C31-C33]
Electricity, gas, steam, air conditioning supply
[D]
Water supply, sewerage, waste [E]

Notes: List of sectors included in the estimations with NACE codes in parentheses. Digital sectors are

highlighted in bold. For the United States, sectors D-E enter the model as an aggregate and C20-C21 is

replaced by C20 owing to missing data.

Figure 1 shows the path of utilisation-adjusted TFP in digital and non-digital sectors
between 1996 and 2020.5 In all countries, TFP growth in the digital sectors was substan-
tially larger than in the remaining sectors. In the United States and Germany the TFP
level in the digital branches more than doubled in the respective years. The growth rate
in France is a bit lower but still considerably higher than for non-digital branches. TFP
in non-digital sectors increased only little over the same period in all countries.

3 The model

Our analysis is based on a flexible-price model that includes a representative household,
a set of S = {1, 2, ..., S} production sectors each containing a perfectly competitive rep-
resentative firm, and perfectly competitive consumption, investment and intermediate
goods retailers.6

5To compute TFP measures for digital and non-digital sectors, we aggregate sectoral TFP growth
rates, using their value-added contributions as weights.

6A detailed derivation of the model is presented in the Appendix.
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Figure 1: TFP in digital and non-digital sectors
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Notes: Figure plots indices of aggregate TFP in the digital (NACE C26-C27 and NACE J) and non-

digital sectors (rest) from 1996 to 2020 (1996=100). Thin lines show TFP without adjustment for capacity

utilisation.

3.1 Representative household

The representative household maximises the stream of expected utility,

E0

∞∑
t=0

βt

{
C1−σ

t

1− σ
− κN

N1+ζ
t

1 + ζ

}
(1)

by choosing a sequence of consumption Ct, labour supply Nt and physical capital invest-
ment It, where 0 < β < 1 is the subjective discount factor, σ denotes the inverse of
the elasticity of intertemporal substitution for consumption, κN measures the disutility
of labour and ζ represents the inverse of the Frisch labour supply elasticity. E0 is the
expectations operator at time t = 0. Given the consumer price index (CPI) PC

t , the rep-
resentative household’s optimisation problem is subject to the followed budget constraint,
which is cast in real terms as

Ct + P I
t It = wtNt + rktKt−1. (2)

The variable P I
t is the CPI-deflated real price of investment goods, wt is the real wage

and rkt is the real rental rate of capitalKt. The capital accumulation process is represented
by the following law of motion

Kt = (1− δ)Kt−1 + It, (3)

with δ denoting the rate of phyiscal capital depreciation.
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We follow Bouakez, Rachedi, and Santoro (2023) in assuming that the household’s
preferences for consumption and investment goods spanning all sectors are represented
by a function with constant elasticity of substitution (CES):

Xt =

[
S∑

s=1

ψ1−σX
X,s XσX

s,t

] 1
σX

,

S∑
s=1

ψX,s = 1, ψX,s ∈ [0, 1], X ∈ {C, I}

where X represents either consumption (C) or investment (I). The term ψX,s represents
the relative preference or weight assigned to goods from sector s within the consumption
or investment bundle. The elasticity of substitution among these goods is controlled by
σX ∈ (−∞, 1), with the corresponding elasticity being 1/(1 − σX). Demand for goods
from sector s as a function of the relative prices and the aggregate bundle Xt is given by
the first-order condition

Xs,t = ψX,s

(
Ps,t

PX
t

)−
(

1
1−σX

)
Xt. (4)

The aggregate price index for consumption or investment goods bundles is given by

PX
t =

[
S∑

s=1

ψX,s (Ps,t)
− σX
(1−σX)

]− (1−σX)
σX

. (5)

3.2 Labour and capital

The allocation of labour and capital to the various sectors s ∈ S within the economy
is based on the assumption of representative labour and capital agencies operating in a
perfectly competitive market. These agencies employ the aggregate labour supply Nt at
the prevailing real wage rate wt and rent out the aggregate capital stock Kt at the real
rental rate rkt . They then supply these factors to producers of intermediate goods across
S distinct sectors.

We follow Bouakez et al. (2023) in assuming that the total amount of labour provided
by the household is a CES function of the labour supplied to each sector, that is

Nt =

(
S∑

s=1

ω1−νN
N,s N νN

s,t

) 1
νN

,

where ωN,s is the weight attached to labour provided to sector s ∈ S. The parameter νN
determines the elasticity of substitution of labour across sectors 1/(1−νN), capturing the
degree of labour mobility. Similarly, aggregate capital, Kt bundles sectoral capital flows,
Ks,t with an elasticity of substitution 1/(1− νK). In the limiting case where νN , νK → 1,
we observe perfect mobility of labour and capital, leading to uniformity in nominal wages
and capital returns across all sectors. Conversely, when νN , νK > 1, capital and labour
are imperfectly mobile, which allows for disparities in wages and capital returns among
sectors. The parameters νN , νK > 1 are thus instrumental in succinctly capturing the
gradual reallocation of labour and capital in response to shocks. The first-order conditions
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for sectoral demand for labour and capital are, respectively, given by

Ns,t = ωN,s

(
ws,t

wt

)− 1

(1−νN )
Nt (6)

and

Ks,t = ωK,s

(
rKs,t+1

rKt+1

)−
(

1
1−νK

)
Kt. (7)

3.3 Sectoral production and intermediate inputs

Within each sector s ∈ S, we consider a representative firm that engages in the production
of sector-specific output, ys,t, by combining labour, Ns,t, capital,Ks,t−1, and a composite of
intermediate inputs, Hs,t. The firms operate under a Cobb-Douglas production function7

ys,t =
(
εV A
s,t K

1−αN,s

s,t−1 N
αN,s

s,t

)αH,s

(Hs,t)
1−αH,s , (8)

where εV A
s,t represents sectoral TFP. The parameters αN,s, αH,s ∈ (0, 1) determine the

sector-specific output elasticity with respect to capital, labour, and intermediate inputs.
We assume that TFP follows a random walk process with innovations es,t,

εV A
s,t

εV A
s,t−1

= 1 + es,t. (9)

The intermediate input bundle,Hs,t, is produced by a perfectly competitive intermediate-
goods retailer that operates a CES production technology

Hs,t =

(
S∑

j=1

ψ
1−σH,s

H,s,j H
σH,s

s,j,t

) 1
σH,s

, (10)

where ψH,s,j determines the weight of the input from sector j in the production of the
intermediate-goods bundle for sector s, and σH,s is the parameter that dictates the elas-
ticity of substitution among these inputs. The optimal demand for intermediate goods
originating from sector j and used in sector s is derived from the first-order condition

Hs,j,t = ψH,s,j

(
Pj,t

PH
s,t

)(
− 1

1−σH,s

)
Hs,t. (11)

7The choice of a unitary substitution elasticity between value added and intermediate inputs (Cobb-
Douglas production function) is motivated by the estimate of Atalay (2017) and implies constant shares
of labour and intermediate inputs. Appendix A.2 presents time series of αN,s and αH,s, supporting the
assumption’s validity for the examined time period.
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3.4 Market clearing and aggregation

In each sector s, product market clearing implies

ys,t = Cs,t + Is,t +
S∑

j=1

Hj,s,t. (12)

At the aggregate level, CPI-deflated sectoral value added is defined as

Y va
t = Ct + P I

t It. (13)

4 Calibration and solution method

There are two subsets of model parameters. The first comprises general parameters related
to the aggregate economy, which are based on values from the literature (see Table 3 for
an overview). The second set of parameters captures the heterogeneity on the production
side. These are calibrated using data from input-output tables. The model is specified
for three different countries: Germany, France, and the United States.

Table 3: Baseline calibration of general parameters

Variable/Parameter Symbol Value

Discount factor β 0.97
Elasticity of intertemporal substitution σ 1.25
Inverse Frisch elasticity of labour supply ζ 1.00
Labour disutility scaling parameter κN 19.94
Capital depreciation rate δk 0.10

Parameters governing the substitution elasticities:
Consumption σC 1-1/1.01
Investment σI 1-1/1.01
Labour νN 2.00
Capital νK 2.00
Intermediate inputs σH,s 1-1/0.20

Notes: Parameterised for the annual frequency. The table shows calibrated values for general parameters

as described in the main text.

General parameters The model is calibrated to the annual frequency. We set the
discount factor to β = 0.968, which implies an annual interest rate of 3.3% in each
country. The intertemporal elasticity of substitution is fixed at a value of σc = 1.25. The
Frisch elasticity of labour supply is set to unity (i.e. ζ = 1). The relative weight of the
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disutility of labour is calibrated to match a targeted aggregate labour supply of N̄ = 0.33.
We assume a capital depreciation rate of 10%, which is a standard choice in the literature.

Substitution elasticities for consumption and investment goods are set to unity, as
in Foerster et al. (2022) and vom Lehn and Winberry (2022). For consumption goods,
this value is close to the estimate for the EU of Hobijn and Nechio (2019), who estimate
a substitution elasticity of 1.01 in a ten-sector specification of their multi-sector model.
Regarding the parameters governing the substitution elasticities of labour and capital
νN and νK , we follow Bouakez et al. (2021) and choose a value of two. In the sectoral
production functions, we assume a unitary substitution elasticity between value added and
intermediate inputs in the sectoral production function, i.e., the Cobb-Douglas production
function, and a relatively low substitution elasticity of intermediate inputs of 0.2. These
values are specified based on the estimates of Atalay (2017) for the United States.8 We
provide further discussion and sensitivity analysis of these key parameters in Section 6.

Sector-specific production parameters For each country, we calibrate the sector-
specific output elasticities, αN,s and αH,s, the respective relative weights assigned to con-
sumption, investment and intermediate goods, ψH,s,j, ψC,s, and ψI,s, and the weights
attached to labour and capital provided by sector s, ωN,s, ωK,s, based on data for 2000
(which is the earliest available year) of the latest vintage of the World Input-Output
Database (WIOD).9 Further information regarding the computation of sectoral parame-
ters and their values is provided in Appendix 7. The benchmark economy in each country
consists of S = 8 sectors, relying on the NACE Rev. 2 classification.10,11 The digital
goods producing sectors consists of NACE section J Information and Communication as
well as NACE divisions C26 Manufacture of computer, electronic and optical products and
C27 Manufacture of electrical equipment. The effects of different sectoral aggregations are
discussed in Section 6. An overview encompassing all sectors included in the benchmark
economy and the respective sector’s share in real value added is provided in Table A.1.

8Appendix D in Atalay (2017) reports estimates of the elasticity of substitution within the basket of
intermediate inputs of 0.2 and between the bundle of intermediate inputs and the capital-labour composite
of one, based on a dataset that includes nine sectors.

9Figure C.8 shows the very similar simulation results for model variants with 19 and 20 sectors,
which represents the greatest possible granularity. For further information regarding the WIOD, see also
Timmer et al., 2015. We employ the calibration toolkit introduced in Hinterlang, Martin, Röhe, Stähler,
and Strobel (2023).

10NACE is a derived classification of the International Standard Industrial Classification of All Eco-
nomic Activities (ISIC). The first level and the second level of ISIC Rev. 4 (sections and divisions) are
identical to sections and divisions of NACE Rev. 2. This allows us to merge information from the WIOD
(classified according to ISIC Rev. 4) and EU KLEMS database (classified according to NACE Rev. 2)

11Overall, TFP data for the three euro area countries cover 21 sections/divisions. We merge, however,
the manufacturing divisions C10 – C18, C20 – C25, and C28 – 33. Furthermore, we merge the digital
divisions Manufacture of computer, electronic and optical products and Manufacture of electrical equip-
ment (divisions C26 and C27) as well as Information and communication (section J); the utilities sectors
Electricity (section D) and Water supply and waste management (section E); Wholesale and retail trade,
repair of motor vehicles and motorcycles (section G) and Transportation and storage (section H); Acco-
modation and food service activities (I), Professional scientific and technical activities (section M), and
Administrative and support service activities (section N); as well as Arts, entertainment and recreation
(section R) and Other service activities (section S).
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Solution method We compute forecasts of the model variables conditional on sec-
toral TFP shocks. The model is solved nonlinearly using the extended path method
(see, e.g., Fair and Taylor, 1983; Adjemian and Juillard, 2010).12 The method indirectly
characterises the decision rules by generating time series for the endogenous variables.
Specifically, in each period, the model is simulated under perfect foresight conditional on
previous period’s outcomes (or initial conditions) and a vector of shocks that occur only
in the current period. The simulation results of each period are then concatenated.

The solution algorithm accounts for the full nonlinearities of the model but requires a
stance on the agents’ expectation horizon. That is, in every period, agents assume that
beside the TFP shocks materialising in the current period, there will be no further shocks.
Since we are not trying to capture the risk associated with TFP shocks, we consider this
adequate as it allows us to capture the nonlinearities of the models.13

5 Results

Before examining the role of efficiency gains in the digital sectors and the transmission
channels for aggregate labour productivity growth, the following section briefly outlines
the propagation of a TFP shock in the model and compares the model fit to the data.

5.1 Propagation of a TFP shock

The effect of an unexpected change in sectoral TFP is standard. A shock to digital
sector TFP, for instance, lowers marginal costs and the price of digital output falls. This
stimulates demand for these goods, both for consumption and investment purposes and
as intermediate inputs. As far as possible, products from other sectors are replaced by
comparatively cheaper digital goods. Due to limited substitutability, however, the demand
for other goods rises as well.

5.2 Benchmark simulation

Figure 2 compares the simulated paths of aggregate labour productivity for the three coun-
tries under consideration to their unconditional empirical counterparts.14 TFP changes
are the only exogenous driver of long-run growth. According to the data, empirical labour
productivity grew by about 27 percent in Germany and France and by about twice as
much in the United States over the period from 1996 to 2020. The model’s predictions
of labour productivity growth for each country are close to the data, with the model pre-
dicting cumulative growth of 28 percent and 26 percent for Germany and France, and 44

12We implement the solution algorithm following Gadatsch, Stähler, and Weigert (2016).
13Figure 1 reveals large differences in the sectoral TFP series. Hence, a first-order approximation of the

model is likely to be inaccurate since the decision rules of the agents would remain unchanged regardless
of the distance from the initial steady state. Another option would be to simulate the model under
perfect foresight. However, this assumes that the model agents know the full TFP path – an assumption
we consider too strong.

14The empirical measure of aggregate labour productivity used for this comparison covers the same
sectors as the model. The respective paths of real gross value added and labour input are displayed in
Figure C.2 in the Appendix.
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percent for the United States. Because the TFP shocks fed to the model are utilisation-
adjusted, the conditional forecasts do not show the decline in labour productivity during
the Great Recession period.

Figure 2: Model-implied and empirical (unconditional) aggregate labour productivity.

1995 2000 2005 2010 2015 2020
0.9

1

1.1

1.2

1.3

In
de

x,
 1

99
6 

=
 1

Germany

1995 2000 2005 2010 2015 2020
0.9

1

1.1

1.2

1.3

In
de

x,
 1

99
6 

=
 1

France

1995 2000 2005 2010 2015 2020
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

In
de

x,
 1

99
6 

=
 1

United States

Benchmark model
Data

Notes: The figure plots model-implied aggregate labour productivity (blue straight line) and its em-

pirical counterpart (orange dashed-dotted line) for the three countries considered. Model-implied labour

productivity is calculated as the ratio of aggregate value added to aggregate labour input. The empirical

counterpart is constructed as the value-weighted sum of sectoral labour productivity over the same sectors

included in our model. Data range from 1996 to 2020.

5.3 The impact of the digital transformation on aggregate labour
productivity

To assess the role of efficiency gains in digital sectors and their propagation for aggregate
labour productivity, we perform two counterfactual analyses. In a first exercise, we focus
on the impact of TFP growth in the digital sectors. Our reference point is the benchmark
simulation. We contrast the latter with a counterfactual scenario in which TFP growth
in the digital sectors is assumed to be constant over the simulation horizon.

Figure 3 shows that labour productivity would have been significantly lower in all
countries if there had been no TFP growth in the digital sectors. Hence, despite their
comparatively small share in total gross value added, the substantial increase in digi-
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Figure 3: Model-implied and counterfactual aggregate labour productivity.
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from 1996 to 2020.
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tal sector TFP has a considerable impact on aggregate productivity.15 In the United
States, labour productivity would have grown only by about 19 percent, i.e. cumulative
growth would have been 25 percentage points lower than in the benchmark simulation. In
the counterfactual simulations for Germany and France, cumulative productivity growth
would have been 15 and 11 percentage points lower, respectively, compared to the bench-
mark scenario.

In the second counterfactual analysis, we explicitly focus on the role of intermediates as
a transmission mechanism of digital efficiency gains. Here, we do not restrict TFP growth
in the digital sector, but assume that digital goods are used exclusively for consumption
or investment purposes and not as intermediate inputs. To do so, we set the respective
elements of the input-output matrix to zero and rescale the remaining values so that the
share of non-digital intermediate inputs in each sector sums up to one.

The dashed line in Figure 2 shows the corresponding simulation results. Compared
to the first counterfactual scenario, the simulation results are closer to the benchmark.
However, aggregate labour productivity growth is significantly lower when digital goods
do not serve as intermediate inputs. Hence, digital inputs play an important role in
transmitting the efficiency gains in the digital sector to the overall economy. Neglecting
this transmission channel may therefore lead to a considerable underestimation of the
effects of the digital transformation.

A rising relative importance of digital inputs in all intermediate goods suggests that
the indirect transmission channel has gained in importance over time. To illustrate this,
it is useful to analyse the value and share of digital intermediate goods in all digital
intermediate goods over time. To this end, we compute the quantity and value shares of
digital intermediate goods in all intermediate goods as

sqt =

∑S
s=1Hs,Digi,t∑S

j=1

∑S
s=1Hs,j,t

, (14)

and

svt =

∑S
s=1 PDigi,tHs,Digi,t∑S
j=1

∑S
s=1 Pj,tHs,j,t

, (15)

respectively. Table 4 shows the respective values in 1996, 2020 and the change between
the two time periods. The initial share of digital intermediate goods in all intermediate
goods is about 14 percent in France, 13 percent in Germany and 13.5 percent in the
United States.16 sqt increases over time in all countries, with the largest absolute increase
observed in the US, by about 7 percentage points. In Germany and France, sqt increases
by about 3 percentage points and 4 percentage points, respectively. The stronger rise in
the digital intermediate share in the United States partly reflects the higher growth rate
of digital sector TFP. By contrast, the expenditure shares svt decreased in all countries
due to the change in the relative price of digital goods over time, as shown in Figure C.3.

15Table A.1 shows the real value added share of the sectors in the initial period, which is about 11
percent in the United States, 9 percent in France and 10 percent Germany.

16The values of sqt and svt coincide in the first period because we set all relative prices equal to one in
the initial steady state.

14



Table 4: Share of digital goods in all intermediate inputs in percent

Germany France United States

1996 2020 ∆1996→2020 1996 2020 ∆1996→2020 1996 2020 ∆1996→2020

svt 13.50 11.34 −2.16 14.04 13.47 −0.57 13.11 11.39 −1.72
sqt 13.50 17.34 3.84 14.04 17.39 3.35 13.11 20.11 7.00

Notes: The table shows the quantity and value share of digital intermediate inputs in all intermediate

inputs, svt and sqt , respectively, in 1996 and 2020 in percent as well as change between the two dates in

percentage points.

6 Discussion

6.1 Centrality and sectoral TFP growth

Our simulation exercise indicates that production networks play a central role in the
transmission of the efficiency gains in digital branches. To illustrate the relevance of its
design, we repeat the benchmark simulation for the United States presented in Section 5
but change the values of the input-output matrix ΨH to those of Germany and France,
respectively. If the US production network would have been equal to the German or French
one, aggregate productivity growth in the United States over the period from 1996 to 2020
would have been 2 to 3 percentage points lower; see also Figure C.10. Hence, the higher
labour productivity growth in the United States is not only driven by relatively stronger
TFP growth but also by the favourable structure of the production network.

The role of the production network can be further investigated by assessing each sec-
tor’s relevance using a (Bonacich) centrality measure (Bonacich, 1972; Carvalho, 2014).17

As outlined in Carvalho and Tahbaz-Salehi (2019), the more important an industry is
as an input supplier to other central industries, the more central it is to the production
network.

Figure 4 shows the centrality measures together with the average annual sectoral TFP
growth rates over the period from 1996 to 2020. The sectors in the model economy can
be broadly classified into three tiers. The industries with the highest centrality score are
manufacturing and business services, which include professional, scientific and technical
services, as well as administrative and support services. These are followed by slightly
less upstream sectors – trade and transportation, financial and insurance activities, and
the digital sector. The least upstream sectors are construction and other services, which
encompass arts, entertainment and recreation, and other services.

The most central sectors are also receiving the highest share of digital intermediate
inputs in all three economies. Specifically, the share of digital intermediate goods used

17Following Carvalho (2014), the vector of centrality measures for the included sectors is computed as
(1−αH)/S(I − λΨ′

H)−1, with λ= 0.5 and αH , ΨH and I corresponding to the vector of stacked sectoral
intermediate input shares, to the input-output matrix and to the identity matrix, respectively. The
sectoral parameters are based on WIOD data for the year 2000 (see Section 4). For a more detailed view,
Figure C.9 in the Appendix provides the graph for the 20-sector variant, the highest level of granularity
our data can offer.
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Figure 4: Centrality and average sectoral TFP growth across countries
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in a given sector relative to the total volume of intermediate inputs produced by the
digital sector, computed as sqDigi = Hs,Digi ÷

∑S
s=1Hs,Digi, are the highest in the most

important nodes in the production network: manufacturing and business services (see
Table 5). However, while the United States has, on average, witnessed positive TFP
growth in the business services sector between 1996 and 2020, the average growth rates
in Germany and France in the sector were negative over this time period. Therefore, in
contrast to the two European countries considered, positive TFP growth in the United
States business services sector raised the demand for and hence the diffusion of digital
goods, thereby further amplifying the impact of the digital sectors’ substantial efficiency
gains on aggregate productivity.

Table 5: Distribution of intermediate inputs from the digital sector across all sectors

Manuf. Constr. Utilities Tr. & Tr. Digi. Fin. act. Busi. serv. Other serv.
sqDE,Digi 19.22 2.95 6.21 8.16 43.53 3.66 14.37 1.89
sqFR,Digi 20.85 1.27 5.33 12.57 31.64 10.75 15.74 1.85
sqUS,Digi 16.97 1.63 4.07 9.18 46.10 6.90 13.57 1.58

Notes: The table illustrates the distribution of intermediate inputs from the digital sector across all

sectors included in the model, expressed as a percentage of the total volume of intermediate inputs

originating from the digital sector.

6.2 How important are non-digital sectors for labour produc-
tivity growth?

In order to gauge the relative importance of the digital sector in propelling aggregate
labour productivity, we compare its contribution to that of the other, non-digital sectors.
To do so, we proceed as in the first counterfactual scenario and simulate the path of
aggregate labour productivity, assuming a zero growth rate for each non-digital sector
at a time. Figure 5 shows that the absence of TFP growth in the manufacturing sector
would have resulted in a cumulative aggregate labour productivity growth from 1996 to
2020 that would have been by about 45 percent lower in Germany, 50 percent lower in
France, and 30 percent lower in the United States relative to the benchmark simulation.

More broadly, the exercise reveals somewhat similar effects across countries but very
heterogeneous effects across sectors. Manufacturing, trade and transportation, and the
digital sector have been instrumental in driving labour productivity growth across all coun-
tries under consideration.18 Several sectors have a negative impact on overall productivity,
which is not unexpected given their negative average TFP growth rates as illustrated in
Figure 5 and the fact that the extent to which various goods are substitutable is limited.

18It is important to note that Wholesale of information and communication equipment and Retail sale
of information and communication equipment are components of the trade and transportation sector,
which could potentially lead to an underestimation of the digital transformation in our model. However,
due to the constraints of the available data, we are unable to segregate the TFP series of these two
subsectors from those of other subsectors within the trade and transportation sector.
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Figure 5: Reduction in aggregate labour productivity growth when not taking into account
sectoral TFP growth of a specific sector
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6.3 Varying the elasticity of substitution

The substitution elasticities are among the key parameters in the model. Empirical ev-
idence on their magnitude, especially for European countries, is scarce. In our baseline
simulations, we follow the studies of vom Lehn and Winberry (2022) and Foerster et al.
(2022) for the United States in specifying elasticities of substitution of (almost) unity in
the consumption and investment goods.19 Gaggl et al. (2023), however, estimate a long-
run elasticity of 2.36 for the investment goods bundle in the United States, and values of
0 and about 0.5 for consumption and intermediate goods, respectively. Regarding inter-
mediate inputs vom Lehn and Winberry (2022) and Foerster et al. (2022) both choose an
elasticity of one.

To assess the robustness of our benchmark results, we run two different scenarios. In
the first, we set the elasticity of substitution of investment goods to a relatively high
value of 2.36, based on the estimate in Gaggl et al. (2023). In the second, we specify
a value of 1.01 for the substitution elasticity of intermediate inputs, consumption and
investment goods, closely following vom Lehn and Winberry (2022) and Foerster et al.
(2022). Table 6 summarises the results of the two counterfactual scenarios presented in
section 5 for different parameterisation. Specifically, the table shows the loss in cumulative
labour productivity growth in the two scenarios over the period from 1996 to 2020 without
TFP growth in the digital sectors (scenario I) and excluding digital intermediate inputs
(scenario II) for the different values of the elasticity of substitution.

Table 6: Loss in cumulative labour productivity growth for different values of the elasticity
of substitution in percentage points

Substitution elasticities Loss in labour productivity growth
Germany France United States

Counterfactual I
Benchmark model 15.33 11.00 25.15
σI = σH = σC = 1.01 14.41 9.88 24.43
σI = 2.36, σH = 0.20, σC = 1.01 15.04 10.61 24.28

Counterfactual II
Benchmark model 7.42 5.17 10.36
σI = σH = σC = 1.01 6.29 3.76 9.41
σI = 2.36, σH = 0.20, σC = 1.01 6.41 4.37 7.48

Notes: The table shows the percentage point difference in cumulative labour productivity growth to

the benchmark simulation between 1996 and 2020 for different values of the elasticity of substitution in

counterfactuals I and II relative to the benchmark scenario. Counterfactual I refers to the simulation in

which TFP growth in the digital sector is neglected. Counterfactual II refers to the scenario in which

output produced by the digital sector can be used only for consumption and investment purposes but

not as intermediate input.

19Hobijn and Nechio (2019) find a value of one for consumption goods in the ten-sector estimation and
a value that is even higher if more sectors are included.
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The findings are quite intuitive. As shown in Figures C.5 to C.7 in the Appendix, the
higher the elasticity, the greater the cumulative growth in labour productivity over time.
The reason is that goods produced more efficiently (and thus sold at a lower price) can
more easily substituted for other goods in the respective bundle. Quantitatively, however,
we find the effects of changes in the substitution elasticity to be small, which applies to
both counterfactual analyses.

7 Conclusion

This study explores the impact of the significant efficiency gains in digital sectors on
labour productivity in the Germany, France, and the United States using a multi-sector
dynamic general equilibrium model with a production network. Despite the digital sector’s
relatively small size in terms of gross value added, aggregate productivity growth in these
economies would have been considerably lower without the efficiency improvements in this
sector. This is not only due to the exceptionally high TFP growth in the digital sectors,
but also to an amplification through the production network: Input-output linkages serve
as an important channel for spreading these efficiency gains throughout the economy.
Neglecting the role of production networks may thus lead to a significant underestimation
of the efficiency gains linked to digital advancement.

Furthermore, our study uncovers notable differences in production networks between
countries. Specifically, we show that the production network of the United States is more
conducive to leveraging the efficiency gains of the digital sectors. While investigating
the underlying causes of these disparities is beyond the scope of this paper, the findings
suggest an interesting avenue for future research.
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Appendix A: Calibration details

A.1 Sectoral parameterisation

Table A.1 shows the sectors included in the benchmark model as well as their respective
shares in real gross value added.

Table A.1: Overview over sectors

Sector NACE code Sectoral share in real value added
Germany France United States

Manufacturing C10–C18, C20–C25, C28–C30 0.20 0.16 0.17

Construction F 0.05 0.05 0.03

Utilities D–E 0.07 0.07 0.06

Trade and transportation G–H 0.25 0.26 0.26

Digital J, C26–C27 0.10 0.09 0.11

Financial and insurance activities K 0.08 0.09 0.11

Business services I, M–N 0.20 0.25 0.20

Other services R–S 0.06 0.03 0.05

Notes: The shares in real gross value added may not sum up to one due to rounding. Numbers reported

refer to the initial period.

The production technology of intermediate goods producers differs across sectors as
we allow for sector-specific factor intensities of labour, capital and intermediate inputs.
Moreover, all sectors contribute differently to final demand. The parameterisation for each
sector s is derived using data from the most recent release of the WIOD for the year 2000.
It includes data on socioeconomic accounts as well as input-output tables for 56 sectors
and 43 countries. We build datasets for the two European countries and for the United
States. The socioeconomic accounts help us to pin down ωN,s, ωK,s, αN,s and αH,s, and
we can use the provided input-output tables to match inter-sectoral trade shares, ψH,s,j,
as well as the sectoral shares in the consumption and investment good bundles, ψC,s and
ψI,s, respectively (see Tables A.2 to A.7). In order to determine sector-specific labour and
capital supply, we first sum up the number of persons engaged and the nominal capital
stock over all sectors, and then compute the respective shares ωN,s and ωK,s. Dividing the
amount of intermediate inputs by gross output per industry yields the factor intensities
for intermediate inputs, 1 − αH,s. In combination with the share of gross output that
flows into labour compensation, we can fix the values for αN,s.

Parameters ψH,s,j describe the share of intermediate inputs consumed by sector s that
are produced by sector j. To obtain these, we first compute the total sum of intermediate
inputs for each sector and then the respective shares of the producing sectors, using the
input-output tables. Relying on WIOD’s national accounts data, the distribution of final
consumption expenditure by households and gross fixed capital formation across sectors
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can be derived, giving us the CES bundle shares ψC,s and ψI,s. To facilitate calculations,
we normalise relative prices to one in the initial steady state.

Germany

Table A.2: Baseline calibration of sector-specific parameters

αN,s αH,s ωN,s ωK,s ψC,s ψI,s

Manufacturing 0.735 0.346 0.241 0.242 0.321 0.363
Utilities 0.472 0.499 0.018 0.186 0.062 0.008
Construction 0.917 0.429 0.101 0.024 0.007 0.359
Trade and transportation 0.748 0.533 0.276 0.192 0.255 0.053
Digital 0.550 0.476 0.069 0.088 0.104 0.161
Fin. activities 0.772 0.472 0.045 0.061 0.086 0.001
Business services 0.512 0.597 0.183 0.135 0.102 0.052
Other services 0.652 0.665 0.067 0.072 0.063 0.003

Notes: The table shows calibrated values for sector-specific parameters as described in the main text.

The values were computed using year 2000 data from the latest vintage of the WIOD.

Table A.3: Input-Output Matrix

ψH,1,j ψH,2,j ψH,3,j ψH,4,j ψH,5,j ψH,6,j ψH,7,j ψH,8,j

ψH,s,1 0.61 0.137 0.435 0.117 0.192 0.019 0.115 0.093
ψH,s,2 0.041 0.297 0.010 0.026 0.013 0.009 0.022 0.035
ψH,s,3 0.009 0.091 0.133 0.022 0.013 0.010 0.024 0.033
ψH,s,4 0.152 0.123 0.140 0.520 0.142 0.026 0.085 0.087
ψH,s,5 0.055 0.084 0.119 0.055 0.443 0.063 0.157 0.107
ψH,s,6 0.017 0.041 0.040 0.056 0.021 0.615 0.048 0.098
ψH,s,7 0.112 0.210 0.116 0.192 0.151 0.243 0.518 0.175
ψH,s,8 0.005 0.016 0.006 0.011 0.026 0.014 0.030 0.372

Notes: The table shows calibrated values for sector-specific parameters as described in the main text.

The second entry in the first row, for example, shows that 4.1 percent of the intermediate inputs used in

sector 1 were produced in sector 2. The digital sector corresponds to s = 5. The values were computed

using year 2000 data from the latest vintage of the WIOD.
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France

Table A.4: Baseline calibration of sector-specific parameters

αN,s αH,s ωN,s ωK,s ψC,s ψI,s

Manufacturing 0.613 0.317 0.192 0.244 0.304 0.225
Utilities 0.387 0.489 0.015 0.127 0.043 0.001
Construction 0.767 0.382 0.089 0.038 0.012 0.464
Trade and transportation 0.695 0.523 0.279 0.182 0.293 0.068
Digital 0.534 0.480 0.060 0.119 0.089 0.153
Fin. activities 0.614 0.406 0.041 0.048 0.092 0.001
Business services 0.692 0.552 0.251 0.183 0.127 0.078
Other services 0.749 0.611 0.073 0.060 0.040 0.011

Notes: The table shows calibrated values for sector-specific parameters as described in the main text.

The values were computed using year 2000 data from the latest vintage of the WIOD.

Table A.5: Input-Output Matrix

ψH,1,j ψH,2,j ψH,3,j ψH,4,j ψH,5,j ψH,6,j ψH,7,j ψH,8,j

ψH,s,1 0.563 0.199 0.387 0.126 0.241 0.023 0.183 0.207
ψH,s,2 0.038 0.45 0.012 0.023 0.026 0.006 0.019 0.056
ψH,s,3 0.007 0.038 0.196 0.006 0.013 0.008 0.013 0.032
ψH,s,4 0.147 0.074 0.119 0.412 0.110 0.031 0.114 0.142
ψH,s,5 0.062 0.042 0.074 0.083 0.347 0.139 0.122 0.146
ψH,s,6 0.021 0.027 0.043 0.099 0.034 0.566 0.070 0.063
ψH,s,7 0.156 0.162 0.164 0.239 0.223 0.219 0.465 0.229
ψH,s,8 0.007 0.009 0.005 0.012 0.008 0.007 0.014 0.126

Notes: The table shows calibrated values for sector-specific parameters as described in the main text.

The second entry in the first row, for example, shows that 3.8 percent of the intermediate inputs used in

sector 1 were produced in sector 2. The digital sector corresponds to s = 5. The values were computed

using year 2000 data from the latest vintage of the WIOD.
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United States

Table A.6: Baseline calibration of sector-specific parameters

αN,s αH,s ωN,s ωK,s ψC,s ψI,s

Manufacturing 0.598 0.37 0.147 0.198 0.229 0.224
Utilities 0.317 0.500 0.009 0.124 0.046 0.001
Construction 0.833 0.507 0.082 0.019 0.001 0.350
Trade and transportation 0.610 0.659 0.268 0.213 0.307 0.081
Digital 0.639 0.461 0.077 0.184 0.087 0.231
Fin. activities 0.586 0.517 0.058 0.086 0.131 0.006
Business services 0.693 0.612 0.300 0.131 0.131 0.106
Other services 0.714 0.661 0.060 0.045 0.069 0.002

Notes: The table shows calibrated values for sector-specific parameters as described in the main text.

The values were computed using year 2000 data from the latest vintage of the WIOD.

Table A.7: Input-Output Matrix

ψH,1,j ψH,2,j ψH,3,j ψH,4,j ψH,5,j ψH,6,j ψH,7,j ψH,8,j

ψH,s,1 0.611 0.064 0.48 0.156 0.15 0.03 0.186 0.204
ψH,s,2 0.037 0.076 0.017 0.041 0.016 0.007 0.032 0.043
ψH,s,3 0.006 0.029 0.001 0.009 0.006 0.007 0.009 0.015
ψH,s,4 0.136 0.246 0.244 0.245 0.096 0.039 0.113 0.139
ψH,s,5 0.066 0.069 0.104 0.094 0.435 0.089 0.141 0.090
ψH,s,6 0.024 0.202 0.027 0.115 0.040 0.587 0.106 0.19
ψH,s,7 0.113 0.290 0.110 0.318 0.234 0.226 0.381 0.216
ψH,s,8 0.007 0.024 0.017 0.021 0.023 0.015 0.031 0.102

Notes: The table shows calibrated values for sector-specific parameters as described in the main text.

The second entry in the first row, for example, shows that 3.7 percent of the intermediate inputs used in

sector 1 were produced in sector 2. The digital sector corresponds to s = 5. The values were computed

using year 2000 data from the latest vintage of the WIOD.
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A.2 Descriptive evidence on the labour income share

Atalay (2017) estimates the elasticity of substitution within the intermediate goods bas-
ket and between the bundles of intermediate goods and gross value added. The preferred
specification of the author yields a relatively low substitution elasticity within the inter-
mediate goods bundle. This elasticity is contingent on the number of sectors incorporated
in the estimation but is consistently estimated to be quite low. Furthermore, a unitary
substitution elasticity between the bundles of intermediate goods and value added is indi-
cated as the preferred estimate. This specification implies that the ratios of labour income
and (nominal) intermediate inputs to gross value added are constant. Figures A.3 – A.5
below show that this is indeed in line with data from both EU KLEMS and WIOD over
the time period considered in our analysis.

Figure A.1: Ratio of labour income and gross value added for Germany
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Notes: The figure plots the ratio of nominal labour remuneration to nominal gross value added, using

EU KLEMS data for Germany for the period from 1996 to 2020.

29



Figure A.2: Ratio of labour income and gross value added for France
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Notes: The figure plots the ratio of nominal labour remuneration to nominal gross value added, using

EU KLEMS data for France for the period from 1996 to 2020.
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Figure A.3: Ratio of labour income and gross value added for the United States
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Notes: The figure plots the ratio of nominal labour remuneration to nominal gross value added, using

EU KLEMS data for the United States for the period from 1996 to 2020.
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Figure A.4: Ratio of intermediate inputs share of gross output
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Notes: The figure plots the ratio of nominal intermediate inputs and nominal gross output using WIOD

data for the period from 2000 to 2014.

Figure A.5: Ratio of labour income and gross output
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Notes: The figure plots the ratio of nominal labour income and nominal gross output using WIOD data

for the period from 2000 to 2014.
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Appendix B: Details on the construction of TFP shocks

In this Appendix, we provide additional information for the derivation of country-specific
TFP shocks.

B.1 Estimation

The utilisation-adjusted TFP series are estimated in a two-step approach. In the first
step, we calculate yearly sectoral Solow residuals (sj,t) by applying a standard growth
accounting technique (Solow, 1957):

sj,t = dyj,t − αj,tdlj,t − (1− αj,t)dkj,t, (B.1)

assuming that sectoral production, yj,t, can be captured by a standard Cobb-Douglas
production function with constant returns to scale and production factors labour (lj,t)
and capital (kj,t). The labour share αj,t is calculated as the average labour remuneration
over the last and current year divided by total production (Tornqvist, 1936). The capital
share is given by 1− αj,t.

The growth accounting exercise is based on several assumptions. Equation (B.1) fol-
lows from a Cobb-Douglas production function with constant returns to scale. Moreover,
we assume perfect competition on the factor markets when deriving the factor shares.
Hence, prices equal marginal costs and factor weights correspond to their respective out-
put shares. Introducing imperfect competition in a growth accounting exercise is not
trivial and might be a source of additional biases (see Hulten, 2010).20 Furthermore, we
use value added growth instead of gross output growth in the growth accounting exer-
cise.21 Further underlying assumptions are a technology level that is Hick’s-neutral and
a stable functional relationship between inputs and output (see Hulten, 2010).

In order to extract TFP growth, the calculated Solow residuals are corrected for
changes in capacity utilisation in a second step. Here, we regress the Solow residual
of sector j on a proxy for the change in unobserved capacity utilisation dũj,t;

dsj,t = cj + βzdũj,t + νj,t, (B.2)

where cj is a sector fixed effect and νj,t a residual. To account for differences in the effect
of capacity utilisation across different areas of the economy, the economic sectors are
divided into two subgroups: manufacturing and non-manufacturing sectors. The panel
estimations are conducted separately for each group in each country. The coefficient βz
captures the impact of utilisation changes for sectors in group z. Thus, the estimated
utilisation-adjusted TFP growth for sector j in subgroup z, dâj,t, is given by the sum of
cj and νj,t.

Since changes in capacity utilisation can also be driven by exogenous changes in TFP,
an instrumental variables approach is needed for the estimation of equation (B.2) (Basu

20Comin et al. (2020) estimate TFP growth rates allowing for positive profits. For most countries in
their sample the estimated impact of profit shares is small.

21While using gross output would reduce our sample as the necessary data are missing for some sectors
it would, however, hardly affect our results (see Section B.5).
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et al., 2006). We use three structural shock series: an oil price shock, an international
financial market shock and a macroeconomic uncertainty shock.

B.2 Data and proxies for sectoral capacity utilisation

The growth accounting exercise uses data from the 2023 version of EU KLEMS, which
covers the period from 1997 to 2020. The sample comprises 21 sectors and covers the
non-farm, non-mining private market economy. The included sectors are displayed in
Table B.1 and Table B.2. To account for differences in the effect of capacity utilisation
across different areas of the economy, the economic sectors were divided into two groups:
manufacturing and non-manufacturing sectors. For the United States, Basu et al. (2006)
additionally separate durable and non-durable manufacturing. Because the European
data cover a shorter time period, we expand the panel dimension by considering only two
groups but each with more sectors. This increases the precision of the estimated coeffi-
cients and, additionally, raises the validity of the instruments used. The panel estimations
are conducted separately for each group in each country. For the United States the sector
structure slightly differs from Table 2 owing to missing data: the estimations include only
C20 rather than C20-21, and sectors D and E are combined.

We apply two different proxies to measure capacity utilisation in the sectors. For the
European countries we use survey answers about the level of factor utilisation from the
European Commission’s business and consumer surveys. In the survey, manufacturing
firms are asked “at what capacity is your company currently operating (as a percentage
of full capacity)?”, while service providers are asked “If the demand addressed to your
firm expanded, could you increase your volume of activity with your present resources?
If so, by how much?”. The data are available for manufacturing sectors at the NACE
two-digit level since 1980, for service sectors since 2011. As in Comin et al. (2020), we
prolong the latter series until 1997 using the growth rate of average capacity utilisation
in the manufacturing sectors. For some sectors, the survey does not provide data or
the data is not available for the majority of years. In these cases, we use the series for
average utilisation in manufacturing and services instead. Details are provided in Table
B.1 and Table B.2. The survey does not provide data for electricity (NACE D), water
supply and waste management (NACE E), trade (NACE G) or construction (NACE F).
For the German and French construction sector we use additional survey data on capacity
utilisation from the ifo institute and Insee. For the rest, changes in utilisation are proxied
by changes in average capacity utilisation in the domestic manufacturing sector. Moreover,
since data for the financial (NACE K) and recreational sectors (NACE R-S) are scarce
on the two-digit level, we use average utilisation in the services sectors in these branches.
The capacity series are aggregated at the NACE one-digit level and for sector groups
using value added shares. We use average value added shares over the years 2005-2020
(manufacturing) and 2011-2020 (services) to aggregate the utilisation series. The time
horizons vary owing to the availability of data on value added at the two-digit NACE
level. Manufacturing sectoral data for gross value added start in 2005. For the United
States, we follow Basu et al. (2006) and use the log change in average weekly hours per
worker as proxy for changes in utilisation, as provided by EU KLEMS. Figure B.1 shows
the estimated impact of utilisation changes on TFP growth for Germany, France and the
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United States. A comparison between the unadjusted and adjusted measures reveals that
capacity utilisation has an effect on the measurement of TFP mainly at business cycle
frequency. This is especially true for the years during the global financial and economic
crisis. A similar pattern can be seen for the start of the COVID-19 pandemic in 2020.
Temporary reductions in unadjusted TFP indicators can therefore often be explained by
changes in capacity utilisation and, consequently, do not necessarily represent efficiency
declines. The overall trend of TFP, however, is less affected by changes in utilisation as
can be seen from Figure 1 in the main text.

Figure B.1: Estimated impact of utilisation changes on Solow residuals
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Notes: The estimated aggregate impact of utilisation is derived as the difference between the unadjusted

Solow residuals and the utilisation-adjusted series of TFP growth, both aggregated across sectors using

value added shares. See equation (B.2).

B.3 Shock series

We use three different shock series as instruments in the panel regressions: oil price
shocks, international financial market shocks, and macroeconomic uncertainty shocks.
The oil price shocks are taken from Känzig (2021). They rely on high-frequency data.
Specifically, the series is based on changes in oil future prices in a tight window around
OPEC production announcements. Financial market shocks reflect the unexpected part
of United States corporate credit risk premia and are provided by Gilchrist and Zakrajsek
(2012). The calculation of macroeconomic uncertainty shocks draws on work of Jurado,
Ludvigson, and Ng (2015) and Meinen and Röhe (2017). The shocks are generated in a
Bayesian VAR model for each country, identified by recursive ordering, with macroeco-
nomic uncertainty entering as the first variable. The uncertainty indicators are derived
from the conditional volatility of the unforecastable component of a broad set of macroe-
conomic variables. For the United States, we use macroeconomic uncertainty as generated
by Jurado et al. (2015). The European series are an updated version of the ones in Meinen
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Table B.1: Utilisation proxies used for European countries: Sectors C-E

Sector Utilisation proxy
Food, beverages, tobacco prod-
ucts (C10-C12)

Utilisation surveys of the European commission for C10, C11 and
C12, aggregated for C10-C12 using value added shares (average for
years 2005-2018). For Germany data for C12 is missing in most years
and we use C10-C11 instead.

Textiles, wearing apparel,
leather (C13-C15)

Utilisation surveys of the European commission for C13, C14 and
C15, aggregated for C13-C15 using value added shares (average for
years 2005-2018).

Wood, paper, printing (C16-
C18)

Utilisation surveys of the European commission for C16, C17 and
C18, aggregated for C16-C18 using value added shares (average for
years 2005-2018).

Chemicals, basic pharmaceuti-
cal products (C20-C21)

Utilisation surveys of the European commission for C20 and C21,
aggregated for C20-C21 using value added shares (average for years
2005-2018). For the US only data for C20 are available.

Rubber, plastic, non-metallic
mineral products (C22-C23)

Utilisation surveys of the European commission for C22 and C23,
aggregated for C22-C23 using value added shares (average for years
2005-2018).

Metal products (C24-C25) Utilisation surveys of the European commission for C24 and C25,
aggregated for C24-C25 using value added shares (average for years
2005-2018).

Computer, electronic, optical
products (C26-C27)

Utilisation surveys of the European commission for C26 and C27,
aggregated for C26-C27 using value added shares (average for years
2005-2018).

Machinery and equipment
n.e.c. (C28)

Utilisation surveys of the European commission for C28

Motor vehicles, trailers, other
transport equipment (C29-C30)

Utilisation surveys of the European commission for C29 and C30,
aggregated for C29-C30 using value added shares (average for years
2005-2018).

Furniture, jewellery, musical in-
struments, toys (C31-C33)

Utilisation surveys of the European commission for C31, C32 and
C33, aggregated for C31-C33 using value added shares (average for
years 2005-2018).

Electricity, gas, steam, air con-
ditioning supply (D)

Utilisation surveys of the European commission for aggregate man-
ufacturing. For the US, D and E are combined in one sector.

Water supply, sewerage, waste
(E)

Utilisation surveys of the European commission for aggregate man-
ufacturing. For the US, D and E are combined in one sector.

Notes: List of sectors included in the estimations with NACE codes in parentheses and the proxy used

for production factor utilisation in the estimations. Survey data on utilisation stem from the business

and consumer and surveys of the European Commission. There are no data for sectors D and E and we

use the average for the manufacturing sector instead. For the United States we use changes in average

weekly hours worked, provided by EU KLEMS, as a proxy for changes in capacity utilisation, following

Basu et al. (2006).

and Röhe (2017). Besides macroeconomic uncertainty the VAR models include a stock
price index,22 the shadow short rate of Krippner (2013), the CPI index, the unemploy-
ment rate and industrial production as dependent variables. Unless specified otherwise,,
the data are taken from Haver Analytics. The estimation frequency is monthly, with 12

22Here we choose the CDAX for Germany, the CAC for France, and the S&P 500 for the United States.
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Table B.2: Utilisation proxies for the included sectors: Sectors F-S

Sector Utilisation proxy
Construction (F) Utilisation surveys of the European commission for aggregate man-

ufacturing. For Germany and France separate data for utilisation in
the construction sector, taken from ifo and Insee.

Trade; repair of motor vehicles
(G)

Utilisation surveys of the European commission for aggregate man-
ufacturing

Transportation and storage (H) Utilisation surveys of the European commission for H49, H50, H51,
H52, and H53, aggregated to H using value added shares (average
for years 2011-2018), (before 2011: aggregate manufacturing). For
Germany, data for H50, H51, H52, for France data for H50 and H51
are missing.

Accommodation and food ser-
vice activities (I)

Utilisation surveys of the European commission for I55 and I56, ag-
gregated to I using value added shares (average for years 2011-2018),
(before 2011: aggregate manufacturing).

Information and communica-
tion (J)

Utilisation surveys of the European commission for J58, J59, J60,
J61, J62 and J63, aggregated to J using value added shares (average
for years 2011-2018), (before 2011: aggregate manufacturing). For
Germany, data for J58-J61 and J63 are missing.

Financial and insurance activi-
ties (K)

Utilisation surveys of the European commission for the aggregate
service sector (before 2011: aggregate manufacturing)

Professional, scientific and
technical activities (M)

Utilisation surveys of the European commission for M69, M70, M71,
M72, M73, and M74, aggregated to M using value added shares (av-
erage for years 2011-2018), (before 2011: aggregate manufacturing).
Data for M75 are missing.

Administrative and support
service activities (N)

Utilisation surveys of the European commission for N77, N78, N79,
N80, N81 and N82, aggregated to N using value added shares (av-
erage for years 2011-2018), (before 2011: aggregate manufacturing).
Data for N80 are missing in Germany.

Arts, entertainment, recre-
ation; other services (R-S)

Utilisation surveys of the European commission for the aggregate
service sector (before 2011: aggregate manufacturing)

Notes: List of sectors included in the estimations with NACE codes in parentheses and the proxy

used for capacity utilisation in the estimations. Survey data about utilisation stem from the business

and consumer and surveys of the European Commission. Utilisation data for service sectors are available

starting from 2011. Before 2011, the utilisation is calculated backward until 1997 using the growth rate of

capacity utilisation in the aggregate manufacturing sector. For sectors K and R-S, individual utilisation

data is missing for most countries in the majority of years. We use the series for average utilisation

in the service sectors instead. Moreover, the European Commission’s survey does not provide data for

construction (F) and trade (G) and we use the manufacturing sector’s aggregate series.

lags included, using a Minnesota normal Wishard prior. The uncertainty shock reflects
the median of the shock distribution (100,000 draws from posterior).

Tests for weak instruments confirm that the chosen instruments are sufficiently cor-
related with changes in capacity utilisation. We report F-statistics (Montiel Olea and
Pflueger, 2013) in Table B.3. TFP growth is only adjusted for changes in utilisation if β
is statistically significant at the 10% level at least. The regression results are presented
in Table B.3. The coefficient is significant for all cases except for the non-manufacturing
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sectors in the United States, which is also the only regression in which statistical tests
reject the validity of the instruments.

Basu et al. (2006) use oil price shocks, government spending shocks and a monetary
policy shock series in their estimation for U.S. TFP growth. The oil price shocks reflect
lagged changes in the Brent oil price (calculated as the log difference between the current
quarters real price of oil minus the maximum price in the last 4 quarters, lagged by one
period and averaged to yearly means). The instruments in Comin et al. (2020) are an oil
price shock series (following the one in Basu et al. (2006)), an economic policy uncertainty
shock, financial shocks (GZ spread) and a monetary policy shock series. We also tested
alternative series. However, a measure of unexpected changes in government spending as
well as monetary policy shocks did not meet the criteria for valid instruments and were
excluded from the estimations. Using the oil price shock by Basu et al. (2006) instead
of the series by Känzig (2021) hardly changes the results. However, the relevance of
instruments is higher when we use the measure of Känzig (2021).
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B.4 Estimation results

Table B.3 shows the estimation results of the country-specific panel regressions of the
Solow residuals on changes in capacity utilisation, together with F-statistics for testing
for potential weak instruments. The panel estimations are conducted by country for two
groups of sectors: manufacturing sectors and non-manufacturing sectors.

Table B.3: Regression results

DE FR US
Utilisation
proxy: Surveys Surveys Average hours worked

Manuf. Other Manuf. Other Manuf. Other
Coefficient 0.68 0.26 0.46 0.27 2.59 0.62
Std. 0.14 0.06 0.12 0.09 0.60 1.13
P-val. 0.00 0.00 0.00 0.00 0.00 0.59
Obs. 288 216 288 216 253 207

F-KP 22.0 28.0 15.4 15.0 20.4 10.6
F-MP 28.5 37.4 19.0 25.8 23.9 15.1
Crit-MP5 27.7 26.7 24.8 26.0 17.6 23.3
Crit-MP10 17.0 16.4 15.0 16.0 11.1 14.4

Notes: Estimation results of regressing sectoral Solow residuals on a proxy for changes in sectoral capacity utilisation
(survey data for European countries; changes in average weekly hours worked for the United States) and sector-specific
fixed effects. Estimation is conducted for two subgroups (see Section 2 of the main text), manufacturing sectors (com-
prising NACE C sub-sectors, NACE D and E) and others (comprising NACE F to K, M, N, R-S), by two-stage-least
squares with three instruments: an oil price shock, a macroeconomic uncertainty shock, and a financial shock series (see
main text). Standard errors are robust. F-KP presents the first stage F-statistic of Kleibergen and Paap (2006). F-MP
shows the effective F-statistic by Montiel Olea and Pflueger (2013), which is robust for heteroskedasticity, autocorrela-
tion and clustering, with Crit-MP5, Crit-MP10 being the critical values at the 5% and 10% level, respectively.

39



B.5 Robustness: Alternative growth accounting

Figure B.2 contrasts our baseline measure of TFP, which is derived from real gross value
added growth, with a TFP measure that is calculated on basis of gross output growth.
For the latter, the Solow residual sgj,t is calculated as follows:

sgj,t = dygj,t − αl
j,tdlj,t − (αk

j,t)dkj,t − (1− αk
j,t − αl

j,t)dmj,t, (B.3)

where mj,t are real intermediate inputs in sector j in year t and αl
j,t (α

k
j,t) are calculated

by dividing the sectoral nominal compensation of labour (capital) by sectoral nominal
gross output. The utilisation adjustment is conducted in the same way as before. In
case of gross output, the sector TFP growth series are aggregated with Domar weights,
calculated as sectoral gross output over sectoral value added, whereas the TFP growth
series based on value added are aggregated with value added weights (see Hulten, 2010).

Figure B.2: TFP in digital sectors using gross output growth
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Notes: Figure contrasts indices for utilisation-adjusted TFP in the digital sectors (NACE C26-C27 and

NACE J) from 1996 to 2020 (1996=100) based on gross output growth with those derived from gross

value added growth.

As shown in Figure B.2 TFP in the digital sectors is hardly affected by the choice
of the output measure. In this paper, we use the TFP measure derived from data on
gross value added as it is available for a larger set of sectors. In particular, price indices
and hence price-adjusted data for intermediate goods are missing for some sectors in the
United States.
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Appendix C: Robustness and additional results

C.1 Labour productivity growth: Model vs. data

We also explore the model’s ability to capture fluctuations in labour productivity around
the trend. Figure C.1 shows labour productivity growth rates simulated by the benchmark
model, their empirical counterparts, and average annual growth rate in each country
(horizontal lines).

Figure C.1: Model-implied and actual labour productivity growth
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Notes: The figure plots the model-implied aggregate labour productivity growth (straight blue line) and

its empirical counterpart (dashed orange line). The horizontal lines indicate the average annual growth

rate over the period from 1996 to 2020 for Germany, France, and the United States.

As expected from the results presented in section 5, the average annual growth rates
of the benchmark simulation and the empirical counterparts are relatively close, with the
model simulations slightly underestimating the average growth rates in the data.

Interestingly, the model captures the variation in labour productivity around the trend
relatively well in the United States and in France, as reflected by correlation coefficients
of 0.78 and 0.5, respectively. In Germany, by contrast, the correlation is considerably
lower at a value of 0.05. Further analyses (which are available upon request) indicate that
this low correlation is driven by the utilisation adjustment. Using unadjusted TFP data
results in a correlation coefficient of 0.5 as well.
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C.2 Gross value added and hours worked: Model vs.

data

To further dissect the development of labour productivity, Figure C.2 shows the model-
implied paths for real gross value added and hours worked in Germany, France, and the
United States in period from 1996 to 2020 period and compares them to their empirical
counterparts. Overall, the model fits the data reasonably well, especially in the United
States.

Figure C.2: Model-implied and empirical components of labour productivity, real gross
value added and labour
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Notes: The figure plots model-implied real gross value added and and hours worked as well as its

empirical counterparts. Data span the period from 1996 to 2020 for Germany, France, and the United

States.

C.3 Relative prices

In the literature, the inverse of the relative price of investment goods has frequently been
used as measure of (investment-specific) technological progress.23 Since our benchmark

23See, e.g., Justiniano, Primiceri, and Tambalotti (2011).
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results are conditional on TFP sequences for the complete set of sectors, we take the con-
verse route and compare the model-implied relative gross output prices with its empirical
counterpart (see Figures C.3 and C.4). According to Figure C.3, the model captures the
relative prices over time reasonably well, although the relative price decline of digital
goods are slightly underestimated, especially in France. In all countries, the largest rela-
tive price decreases are observed in the digital sector, while prices in the other two sectors
decrease only moderately.

Figure C.3: Model-implied and empirical relative gross output prices for the manufactur-
ing sector, the trade and transport sector, and the digital sector.
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dividing them by the PCE deflator.
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Figure C.4: Model-implied and empirical relative gross output prices.
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C.4 Alternative parameterisations of the elasticity of

substitution

Figures C.5 to C.7 show the sensitivity of our benchmark simulation to the use of different
values of the elasticity of substitution. For the two selected scenarios, we repeat the
two counterfactual simulations from the main text. The results appear quite intuitive.
The higher the elasticity of substitution, the higher the cumulative growth in labour
productivity over time, since goods produced more efficiently (and thus sold at a lower
price) can more easily substitute for consumption, investment and intermediate goods
from other sectors.

Figure C.5: Robustness analysis of the elasticity of substitution - Germany
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Figure C.6: Robustness analysis of the elasticity of substitution - France
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Figure C.7: Robustness analysis of the elasticity of substitution - United States
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C.5 Sectoral aggregation

Figure C.8 shows the sensitivity of the benchmark simulations to different specifications
of the number of economic sectors. Specifically, the figure contrasts the evolution of
aggregate labour productivity of the eight-sector benchmark model with a 19 and 20-
sector model. The 20-sector model is the most granular disaggregation level possible
given the availability of TFP data. The difference between the 19 and 20-sector models is
that the NACE divisions C26-C27 and section J are merged in the former variant, but not
in the latter. In all countries, the simulated labour productivity tends to increase as the
number of sectors decreases, although this effect is relatively small. The reason for this
is that the elasticities of substitution in the more disaggregated model versions are set to
the same values as in the benchmark model, but the heterogeneity in TFP development
tends to increase as more sectors are specified.

Figure C.8: Simulations of labour productivity using different numbers of sectors
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C.6 Centrality in the 20-sector model

Figure C.9: Centrality and average sectoral TFP growth across countries
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C.7 Isolating the role of the input-output matrix

Figure C.10: Effects of replacing the United States input-output matrix
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Appendix D: Model setup and equilibrium conditions

This Appendix contains further details on the baseline model. Section D.1 provides the
derivation of the model equations. Section D.2 summarises the nonlinear equilibrium
conditions. Section A.2 depicts the evolution of the labour share of value added from EU
KLEMS as well as the labour and intermediate input share from WIOD over time.

D.1 Model derivation

� Households:
The representative household chooses {Ct, It, Kt, Nt}∞t=0 to maximise utility

E0

∞∑
t=0

βt

(
C1−σ

t

1− σ
− κN

N1+ζ
t

1 + ζ

)

subject to the budget constraint

Ct + P I
t It = wtNt + rktKt−1

and the law of motion for capital

Kt = (1− δ)Kt−1 + It.

Hence, the Lagrangian can be written as

Λ = E0

∞∑
t=0

{
βt

(
C1−σ

t

1− σ
− κN

N1+ζ
t

1 + ζ

)

− βtλt

[
Ct + P I

t [Kt − (1− δ)Kt−1]

− wtNt − rktKt−1

]}
.

The first-order conditions corresponding to this problem are

ΛC = C−σ
t − λt = 0,

ΛN = κNN
ζ
t − λtwt = 0,

ΛK = λt − βEt

[
λt+1

rkt+1 + (1− δ)P I
t+1

P I
t

]
= 0

and
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Λλ = Ct + P I
t [Kt − (1− δ)Kt−1]

− wtNt − rktKt−1 = 0.

Finally, we impose a standard transversality condition to guarantee that capital
does not grow too quickly:

lim
t→∞

βtλtKt = 0.

� Consumption-goods, investment-goods and intermediate-goods retailers:

The representative consumption-goods retailer optimisation problem is given by

max
Cs,t

Ct −
S∑

s=1

Ps,tCs,t,

subject to the technology constraint

Ct =

(
S∑

s=1

ψ1−σC
C,s CσC

s,t

) 1
σC

.

Therefore, the retailer’s optimization problem can be written as

max
Cs,t

(
S∑

s=1

ψ1−σC
C,s CσC

s,t

) 1
σC

−
S∑

s=1

Ps,tCs,t,

which leads to the following first-order condition characterising the demand for
consumption goods:

Cs,t = ψC,sP
− 1

(1−σC )

s,t Ct.

By plugging this expression into the constant elasticity of substitution aggregator
of consumption goods it can be shown that

PC
t =

[
S∑

s=1

ψC,sP̃
− σC
(1−σC)

s,t

]− (1−σC)
σC

,

with Ps,t = P̃s,t/P
C
t .

Hence, CPI inflation, πCPI
t = PC

t /P
C
t−1, can be expressed as

πCPI
t =

[
S∑

s=1

ψC,s(π
PPI
s,t Ps,t−1)

− (σC)
1−σC

]− (1−σC)
σC

,
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with πPPI
s,t = P̃s,t/P̃s,t−1.

Analogously, the optimisation problem of the representative investment goods re-
tailer is given by

max
Is,t

P I
t It −

S∑
s=1

Ps,tIs,t,

subject to the technology constraint

It =

(
S∑

s=1

ψ1−σI
I,s IσI

s,t

) 1
σI

.

Therefore, the retailer’s optimisation problem can be written as

max
Is,t

P I
t

(
S∑

s=1

ψ1−σI
I,s IσI

s,t

) 1
σI

−
S∑

s=1

Ps,tIs,t.

The first-order conditions corresponding to this problem is

Is,t = ψI,s

[
Ps,t

P I
t

]−(
1

1−σI

)
It,

while the price index is given by

P I
t =

[
S∑

s=1

ψI,s(Ps,t)
− σI
(1−σI)

]− (1−σI)
σI

.

Finally, the optimisation problem of the representative intermediate goods retailer
can be expressed as

max
Hs,j,t

PH
s,tHs,t −

S∑
j=1

Pj,tHs,j,t,

subject to the technology constraint

Hs,t =

[
S∑

j=1

ψ
1−σH,s

H,s,j H
σH,s

s,j,t

] 1
σH,s

.

Hence, the retailer solves

max
Hs,j,t

PH
s,t

[
S∑

j=1

ψ
1−σH,s

H,s,j H
σH,s

s,j,t

] 1
σH,s

−
S∑

j=1

Pj,tHs,j,t,
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which leads to the first-order condition

Hs,j,t = ψH,s,j

(
Pj,t

PH
s,t

)− 1

(1−σH,s)
Hs,t

while the price index is given by

PH
s,t =

[
S∑

j=1

ψH,s,j (Pj,t)
−

σH,s

(1−σH,s)

]−(1−σH,s)
σH,s

.

� Labour and capital supply

The optimisation problem with respect to labour supply can be written as

max
Ns,t

ws,tNs,t − wtNt,

subject to the technology constraint

Nt =

(
S∑

s=1

ω1−νN
N,s NνN

s,t

) 1
νN

or more succinctly

max
Ns,t

ws,tNs,t − wt

(
S∑

s=1

ω1−νN
N,s N νN

s,t

) 1
νN

,

which leads to the following first-order condition characterising the sector-specific
demand for labour types:

Ns,t = ωN,s

(
ws,t

wt

)− 1

(1−νN )
Nt ∀s ∈ S.

By plugging this expression into the CES aggregator of labour goods, we get the
aggregate wage index:

wt =

[
S∑

s=1

ωN,sw
− νN
(1−νN )

s,t

]− (1−νN )
νN

.

Similarly, the optimisation problem related to the supply of capital can be written
as

max
Ks,t−1

rKs,tKs,t−1 − rKt Kt−1,
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subject to the technology constraint

Kt =

(
S∑

s=1

ω1−νK
K,s KνK

s,t

) 1
νK

.

Hence, the agency’s optimisation problem can be expressed as

max
Ks,t−1

rKs,tKs,t−1 − rKt

(
S∑

s=1

ω1−νK
K,s KνK

s,t−1

) 1
νK

,

which leads to the following first-order condition characterising the demand for
capital:

Ks,t = ωK,s

(
rKs,t+1

rKt+1

)− 1

(1−νK)

Kt ∀s ∈ S.

By plugging this expression into the CES aggregator of capital goods, we get:

rKt =

[
S∑

s=1

ωK,s(r
K
s,t)

− νK
(1−νK)

]− (1−νK)
νK

.

� Production

First, the representative firm in each sector s minimises its costs

ws,tNs,t + rks,tKs,t−1 + PH
s,tHs,t

subject to the constant returns to scale production technology

ys,t =
(
εV A
s,t K

1−αN,s

s,t−1 N
αN,s

s,t

)αH,s

(Hs,t)
1−αH,s .

Therefore, the optimisation problem can be written as

min
Ns,t,Ks,t−1,Hs,t

ws,tNs,t + rks,tKs,t−1 + PH
s,tHs,t

+mcs,t

[
ys,t −

(
εV A
s,t K

1−αN,s

s,t−1 N
αN,s

s,t

)αH,s

(Hs,t)
1−αH,s

]
.

The first-order conditions corresponding to this problem are:

ws,t = αH,sαN,smcs,t
ys,t
Ns,t

,

rks,t = αH,s(1− αN,s)mcs,t
ys,t
Ks,t−1

,

PH
s,t = (1− αH,s)mcs,t

ys,t
Hs, t

.
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Second, the representative firm chooses ys,t to maximise its profits

max
yst

Πs,t = Ps,tys,t −mcs,tys,t

The first-order condition of the problem is

Ps,t = mcs,t.

� Market clearing

In each sector s product market clearing implies

ys,t = Cs,t + Is,t +
S∑

j=1

Hj,s,t.

At the aggregate level, CPI-deflated sectoral value added is defined as

Y va
t = Ct + P I

t It.

D.2 Representing the equilibrium

The baseline model is characterised by the following nonlinear difference equations:

λt = C−σ
t , (D.1)

κNN
ζ
t = λtwt (D.2)

λt = βEt

[
λt+1

rkt+1 + (1− δ)P I
t+1

P I
t

]
, (D.3)

Ct + P I
t It = wtNt + rktKt−1, (D.4)

Kt = (1− δ)Kt−1 + It, (D.5)

Cs,t = ψC,sP
− 1

(1−σC )

s,t Ct, (D.6)

1 =

[
S∑

s=1

ψC,sP
− σC
(1−σC)

s,t

]− (1−σC)
σC

, (D.7)

Is,t = ψI,s

(
Ps,t

P I
t

)− 1

(1−σI)
It, (D.8)
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P I
t =

[
S∑

s=1

ψI,s(Ps,t)
− σI
(1−σI)

]− (1−σI)
σI

, (D.9)

Hs,j,t = ψH,s,j

(
Pj,t

PH
s,t

)− 1

(1−σH,s)
Hs,t, (D.10)

PH
s,t =

[
S∑

j=1

ψH,s,j (Pj,t)
−

σH,s

(1−σH,s)

]−(1−σH,s)
σH,s

, (D.11)

Ns,t = ωN,s

(
ws,t

wt

)− 1

(1−νN )
Nt, (D.12)

wt =

[
S∑

s=1

ωN,sw
− νN
(1−νN )

s,t

]− (1−νN )
νN

, (D.13)

Ks,t = ωK,s

(
rKs,t+1

rKt+1

)− 1

(1−νK)

Kt, (D.14)

rKt =

[
S∑

s=1

ωK,s(r
K
s,t)

− νK
(1−νK)

]− (1−νK)
νK

, (D.15)

ys,t =
(
εV A
s,t K

1−αN,s

s,t−1 N
αN,s

s,t

)αH,s

(Hs,t)
1−αH,s , (D.16)

ws,t = αH,sαN,smcs,t
ys,t
Ns,t

, (D.17)

rks,t = αH,s(1− αN,s)mcs,t
ys,t
Ks,t−1

, (D.18)

PH
s,t = (1− αH,s)mcs,t

ys,t
Hs, t

, (D.19)

Ps,t = m̃cs,t, (D.20)

ys,t = Cs,t + Is,t +
S∑

j=1

Hj,s,t (D.21)

and

Y va
t = Ct + P I

t It. (D.22)
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