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Abstract

We study optimal monetary policy in an analytically tractable New Key-
nesian DSGE-model with an emission externality. Empirically, emissions are
strongly pro-cyclical and output in the flexible price equilibrium overreacts
to productivity shocks, relative to the efficient allocation. At the same time,
output under-reacts relative to the flexible price allocation due to sticky
prices. Therefore, it is not optimal to simultaneously stabilize inflation and
to close the natural output gap, even though this would be feasible. Real
externalities affect the LQ-approximation to optimal monetary policy and
we extend the analysis of Benigno and Woodford (2005) to inefficient flexible
price equilibria. For central banks with a dual mandate, optimal monetary
policy places a larger weight on output stabilization and targets a non-zero
natural output gap, implying a higher optimal inflation volatility.
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1 Introduction

There is a broad consensus that the emission of greenhouse gases inflicts severe
damages on the wider economy through their contribution to climate change. Eco-
nomic theory suggests that Pigouvian emission taxes are the best instrument to
address such an externality and it is becoming increasingly clear that central banks
can play at most a supporting role in addressing externalities related to emissions.
First, conventional monetary policy instruments, such as short term interest rates
are naturally not well-suited to address long run issues such as climate change.
Second, even the unconventional central bank toolkit provides very limited poten-
tial to induce a sectoral re-allocation away from fossil fuels.1 However, it remains
an unanswered question how to adapt monetary policy to a world characterized
by climate change.

While climate change and socially harmful emissions affect the macroeconomy
in many ways, we focus on a dimension that is by definition relevant for macroeco-
nomic stabilization policies: emissions are highly pro-cyclical, both in the US and
in the euro area, see Figure 1 for the case of carbon dioxide. Doda (2014) and Khan
et al. (2019) provide additional evidence. Thus, a Pigouvian emission tax that ad-
dresses the emission externality in the long run but ignores the pro-cyclicality of
emission damages does not implement the efficient allocation. Instead, output in
the competitive equilibrium allocation under flexible prices overreacts to produc-
tivity shocks, relative to the efficient allocation.2

At business cycle frequencies, the relative overreaction of output in the flexible
price equilibrium interacts non-trivially with nominal rigidities. Consider a posi-
tive shock to total factor productivity. A price setting friction a la Calvo (1983)
prevents a fraction of firms from reducing prices, such that the economy expands
by less than it would do under flexible prices. Absent emission externalities, the
central bank aims at closing the gap between the sticky price and flexible price
output. We refer to this gap as the natural output gap. With pro-cyclical emis-
sions, closing the natural output gap does not implement the efficient allocation.
From a normative point of view, we refer to the difference between the output
reaction under sticky prices minus the output reaction in the efficient allocation
as the efficient output gap. Price stickiness attenuates the overreaction of the
competitive equilibrium vis-a-vis the efficient allocation. Therefore, the efficient
output gap is ambiguously affected by the emission externality: while it is gener-

1We refer to Giovanardi et al. (2023) for an assessment of preferential collateral haircuts for
green bonds and to Ferrari and Nispi Landi (2023) for green QE.

2Benmir, Jaccard, and Vermandel (2024) argue that household stochastic discount factors
that are consistent with macro-finance moments yield a strongly pro-cyclical social cost of carbon.
This strengthens our argument that relies on the overreaction of economic activity to productivity
shocks, relative to the planner solution.
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Figure 1: Carbon Emissions and GDP over Time
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Notes: Data at annual frequency, detrended using a one-sided HP-filter with smoothing param-
eter 6.25. The full-sample correlations are 0.78 for the US and 0.77 for the Euro Area.

ally larger than the natural output gap it can be positive or negative. This implies
that, in contrast to the standard New Keynesian model, the central bank is unable
to perfectly stabilize both inflation and the efficient output gap. Equivalently, the
central bank could perfectly stabilize inflation and natural output gap, but this
is not optimal. Divine coincidence as defined by Blanchard and Gali (2007) is
broken.3

We incorporate this insight into an otherwise standard New Keynesian model
with nominal rigidities (Calvo 1983) and socially harmful emissions, similar to

3Breaking divine coincidence in the presence of productivity shocks requires frictions that
go beyond nominal rigidities. For example, Faia (2009) shows that search frictions on the labor
market render the flexible price allocation infeasible. In contrast, the flexible price allocation
is implementable in our framework, but it is not optimal to do so. Adao, Correia, and Teles
(2003) demonstrate that in an economy with cash-in-advance constraints, it is not optimal to
fully stabilize prices and output gaps, which is conceptually similar to our results. Sims, Wu,
and Zhang (2023) discuss the role of financial shocks as inflation shifters in the New Keynesian
Phillips curve, which also break divine coincidence.
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the four-equation New Keynesian model analyzed by Sahuc, Smets, and Verman-
del (2024). As far as the over-reaction of output in the flexible price equilibrium
is concerned, we show that the four-equation model can be reasonably approx-
imated by a three-equation model where emission damages depend on the flow
of emissions. The reason for this approximate equivalence is that output slightly
over-reacts for many periods with persistent emissions, while it strongly but briefly
over-reacts in the three-equation model. The planner takes this time pattern of
the over-reaction into account, such that the discrepancy between efficient and
natural output reaction is approximately independent of the degree of emission
persistence.

As our main contribution, we present an analytical characterization of opti-
mal monetary policy in the three-equation model along the lines of Clarida, Gaĺı,
and Gertler (1999) and Woodford (2011). Our analysis is applicable for central
banks with a dual mandate. Conceptually, optimal monetary policy under cyclical
emissions is a second best solution to a utilitarian welfare-maximization problem.
With a time-invariant tax, optimal monetary policy addresses two dynamic fric-
tions with only one instrument - the nominal interest rate - and will not be able
to offset both inefficiencies at once. If appropriate cyclical adjustments to emis-
sion taxes were in place, optimal monetary policy could be conducted as usual.4

The presence of a second dynamic inefficiency affects the central bank’s objective
function, which is derived from first principles.

It is the derivation of the central bank loss function for an inefficient compet-
itive equilibrium where our key methodological innovation lies. As customary in
the literature, the loss function builds on a second order approximation to the
household utility function and uses equilibrium conditions to express this in terms
of output gap and inflation. It turns out to be essential to include an additional
condition that takes the effect of economic activity on emission damages into ac-
count. Without this additional condition, the central bank would simply take
emission damages as given and fail to internalize the negative emission externality.
Put differently, the resulting loss function would inherit the market failure from
the flexible price equilibrium and prescribe to close inflation and natural output
gap in all states.

The additional expression, which ensures that the loss function internalizes the
emission externality, introduces linear terms related to the level of emission dam-
ages into the loss function. In order to cleanly separate business cycle stabilization
objectives from expressions related to steady state inefficiencies, we eliminate those

4It appears rather implausible from an institutional background that central banks can di-
rectly address pro-cyclical emissions, for example by purchasing and selling emission permits.
Arguably, climate policy is usually conducted over long run horizons, while overreactions of out-
put to business cycle fluctuations typically belong to the domain of macroeconomic stabilization
policies.
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terms by a second order approximation of the relationship between economic ac-
tivity and emission damages. This step is in the spirit of Benigno and Woodford
(2005), who use a second order approximation of the Phillips curve for monopo-
listic distortions in steady state.5 The resulting loss function features a non-zero
target level for the natural output gap that reflects the over-reaction of output
in competitive equilibrium relative to the efficient allocation. The target level is
negative for a positive TFP shock and increasing in absolute terms in the severity
of the emission externality. In addition, optimal monetary policy places a higher
weight on output stabilization if the externality is more severe, but is independent
of the steady state distortion as in Benigno and Woodford (2005). This result
resonates with Clarida, Gaĺı, and Gertler (1999), who show that the weight on
inflation stabilization is higher if the output is below its efficient level due to mo-
nopolistic distortions. Here the opposite intuition applies, since output is above
the efficient level.

Equipped with the central bank loss function, the LQ-approach to optimal
monetary under discretion then simply minimizes the loss function subject to the
New Keynesian Phillips curve. Here, the central bank takes into account that the
Phillips curve steepens in the presence of socially harmful emissions: since emission
damages exert a general dampening effect on economic activity, output responds
by less for a given change in the price level. The solution to the LQ-problem
shows that the optimal natural output gap is a linear combination between its tar-
get level and zero, i.e. the flexible price allocation. The (optimal) natural output
gap is closer to its target level if the emission externality is large, both through
its effect on the weight and the slope of the Phillips curve. To dampen the output
reaction, the central bank cuts interest rates by less in absolute terms in response
to a positive TFP shock than it would to absent emission damages. Consequently,
the central bank allows for some dis-inflation after a positive productivity shock.
Optimal inflation volatility is larger in the presence of (pro-cyclical) emission ex-
ternalities.

Quantitatively, we find that, in response to a positive one standard deviation
TFP shock, the optimal interest rate cut is around 6 basis points smaller than the
natural rate decline. We show numerically that the adjustment term in the policy
rate is also remarkably similar in the four-equation model, even though the natural
rates of interest differ quite substantially. This shows again that our analysis of
optimal monetary policy is orthogonal to an analysis of the effects of climate change
and socially harmful emissions on the natural interest rate r∗. Furthermore, the
welfare gain of optimal monetary policy is smaller than in a counterfactual economy
without emissions, as the central bank addresses an additional friction with its only

5We also approximate the Phillips curve up to second order in order to allow for large steady
state discrepancies between efficient allocation and flexible price equilibrium, for example due to
the absence of carbon taxes.
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policy instrument, the nominal interest rate.
By providing a simple analytical framework, our analysis contributes to the

understanding welfare-relevant output gaps, which are not only relevant for mon-
etary policy frameworks in all jurisdictions that provide their central bank with
a dual mandate, but for all macroeconomic policies that take output gaps into
account. Whenever macroeconomic stabilization policies depend on output gaps,
one has to bear in mind that those output gaps need not be efficient from a wel-
fare perspective.6 In spirit of the analysis by Blanchard and Gali (2007), we have
shown how optimal monetary policy is affected by externalities originating in the
real sector, which do not have a direct effect on nominal rigidities. While the
flexible price allocation can be implemented in our model, it is not optimal to do
so.

Related Literature Our paper draws from the E-DSGE literature that studies
the macroeconomic effects of climate policies at business cycle frequencies, starting
with the contribution by Heutel (2012). Consequently, this model class is suitable
to study the relationship between environmental and monetary policies, see An-
nicchiarico et al. (2021) for a survey. Related to monetary policy, Annicchiarico
and Di Dio (2015) and Annicchiarico and Di Dio (2017) study the interplay of
nominal rigidities and different environmental policies, taking into account costly
emission abatement at the firm level. Faria, McAdam, and Viscolani (2022) dis-
cuss the neutrality of monetary policy under different monetary frictions, such as
cash-in-advance or money-in-the-utility function.

We contribute to a growing literature studying how monetary policy optimally
adapts to climate change. McKibbin et al. (2020) provide an overview about
potential interactions between climate policy and monetary policy. For a gen-
eral discussion of these interactions, we also refer to Hansen (2021). Using the
New-Keynesian framework, Muller (2023) proposes a concept for a real interest
rate that takes time-varying pollution intensities into account. By tracking such
a refined ”green interest rate”, monetary policy intertemporally re-allocates con-
sumption from periods with high pollution intensity to periods with a low pollution
intensity. Nakov and Thomas (2023) show that climate change, i.e. the long run
consequences of emissions, only has a limited impact on the conduct of monetary
policy. Economides and Xepapadeas (2025) study monetary policy numerically
in a larger E-DSGE model, where positive TFP shocks have negative side effects
through elevated damages from climate change. Our paper differs from these pa-

6On a conceptual level, our analysis also relates to the literature of optimal monetary policy in
the presence of hysteresis effects. If such effects are present, it is not optimal to close the natural
gap. In sharp contrast to a setting with emission externalities, however, optimal monetary policy
is more expansionary in response to a positive TFP shock than in the standard New Keynesian
model, see Cerra, Fatás, and Saxena (2023) and the references therein.
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pers by focusing on optimal monetary policy and the characterization of central
bank loss functions.

A series of papers studies monetary policy when inflation is partially driven
by rising energy prices. In a New Keynesian model with an energy sector, Olovs-
son and Vestin (2023) show that targeting core inflation is welfare-optimal. The
literature also recognizes that monetary policy might be affected by potentially
inflationary effects of carbon taxation more generally. Konradt and Weder di
Mauro (2023) and Hensel, Mangiante, and Moretti (2024) provide empirical evi-
dence. Ferrari and Nispi Landi (2022), Del Negro, Di Giovanni, and Dogra (2023)
and Airaudo, Pappa, and Seoane (2024) study this channel through the lenses of
small- to medium-scale New Keynesian models, while Sahuc, Smets, and Verman-
del (2024) estimate a New Keynesian E-DSGE model to assess the macroeconomic
relevance of ”climateflation” and ”greenflation”.

Outline Our paper is structured as follows. Section 2 presents a four-equation
New Keynesian model, augmented by a law of motion for socially harmful emis-
sions. Section 3 demonstrates that the natural and welfare-relevant output gaps
can be reasonably approximated in a reduced three-equation version of the model
and then characterizes the competitive equilibrium, holding monetary policy con-
stant. In Section 4, we derive the central bank loss function and study optimal
monetary policy in closed form for the case i.i.d. productivity shocks. Section 5
provides a quantitative exploration of optimal monetary policy for the general case
of persistent shocks and slowly accumulating emissions. Section 6 concludes.

2 Model

We present the basic monetary policy trade-off in an otherwise standard New Key-
nesian model, augmented by socially harmful emissions. There is a representative
household, monopolistically competitive firms, a fiscal authority, and the central
bank. Emissions negatively affect the productivity of final good producers through
a damage function.7

Households The representative household saves using nominal deposits St that
pay the one-period gross interest rate rst , consumes the final consumption good ct,
and supplies labor nt at the nominal wage Wt. The household also owns firms and
receives their profits dfirms

t , expressed in real terms. The maximization problem

7Analytically similar results can be obtained by assuming that emissions exert a utility loss
on households. In this case, the competitive equilibrium under flexible prices also overreacts to
TFP shocks.
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is given by

max
{ct,nt,St}∞t=0

E0

[
∞∑
t=0

βt

(
c1−σ
t − 1

1− σ
− n1+φ

t

1 + φ

)]
s.t. Ptct + St = Wtnt + rst−1St−1 + Ptd

firms
t .

The parameters σ and φ determine the inverse of, respectively, the intertemporal
elasticity of substitution and the elasticity of labor supply. Solving this maximiza-
tion problem yields a standard Euler equation and an intra-temporal labor supply
condition

c−σ
t = βrstEt

[
c−σ
t+1

πt+1

]
, (1)

nφ
t = wtc

−σ
t . (2)

Here, Pt is the price level, wt ≡ Wt

Pt
is the real wage, and πt ≡ Pt

Pt−1
denotes gross

inflation.

Firms: Technology There is a mass-one continuum of monopolistic firms, in-
dexed by i. Firm i hires labor nt(i) to produce the intermediate good yt(i) with
the following technology:

yt(i) = ΛtAtnt(i) . (3)

During the production process, firms emit one unit of socially harmful emissions
per unit of output. The stock of atmospheric carbon dioxide Et evolves according
to

Et = yt + (1− δ)Et−1 , (4)

where δ > 0 is the depreciation rate of atmospheric carbon dioxide. Following the
literature, emissions endogenously reduce productivity

Λt = exp {−ΓEt} , (5)

where the parameter Γ governs the severity of damages associated with emissions.
Importantly, damages are an externality, because they depend on aggregate eco-
nomic activity yt, which individual firms take as given. Our analysis abstracts
from technological change or abatement effort at the firm level.

Production is taxed at the potentially time-varying rate τ ct . As we shall see,
optimal emission taxes are pro-cyclical in this setup. This resembles the result of
Golosov et al. (2014), who show that optimal emission taxes are proportional to
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GDP growth. Crucially, whenever emission taxes do not respond appropriately
to the business cycle, the model features a dynamic inefficiency that affects the
optimal conduct of monetary policy.8

Before introducing nominal rigidities, some remarks on emission damages are
in order. While our quantitative application focuses on the negative effects of car-
bon emissions through climate change, our analysis is also applicable to emission
damages beyond climate change. The environmental economics literature typically
views climate change as only a subset of the overall adverse effects that the emis-
sions exert on the wider economy. Other adverse effects include negative health
consequences through air quality losses, decreased timber and agriculture yields,
depreciation of materials, and reductions of recreation services. For details, we
refer to Muller, Mendelsohn, and Nordhaus (2011) and the references therein. In
contrast to climate change, these negative effects materialize very quickly in re-
sponse to a cyclical increase in economic activity, but also depreciate faster. More
generally, our analysis is also applicable to the pro-cyclical depletion of renew-
able resources and other real externalities, such as congestion, that are positively
associated with economic activity.

These alternative interpretations will of course have different quantitative im-
plications for the optimal conduct of monetary policy. Specifically, the elasticity
of emission damages with respect to current output, the depreciation rate of pol-
lutants, and the recovery rate of renewable resources has a large effect on the
natural rate in these different economies. Notably, emission damages drives a very
similar wedge between efficient and natural level of output, irrespective of their
persistence and their effect on current damages. This is because the planner takes
the present value of all future damages into account when deciding on the socially
optimal output expansion. If pollution damages depend on a slowly depreciating
stock of emissions, output expansions have only little effect on current damages,
but long-lasting effect on future damages. Conversely, if damages depend on the
flow, there is large negative effect on impact but now effect on household welfare in
future periods. In the next section, we show that the discrepancy between efficient
and natural output expansion are quantitatively small.

Nominal Rigidities The rest of the supply side coincides with the standard
New Keynesian model: monopolistic producers are not perfectly able to adjust
their prices due to nominal rigidities, modeled as in Calvo (1983), with θ being
the fraction of firms that is not allowed to change prices. The optimal price for a

8Note that our analysis is based on a stationary model. If climate policy is instead modeled
in terms of a transition towards higher taxes, optimal taxes should still be above (below) trend
during a boom (recession). As long as the carbon taxes do not deviate from their trend in
response to business cycle fluctuations, the dynamic inefficiency arises.
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firm that is able to adjust prices is given by

p∗t =
1

1− τ ct

ϵ

ϵ− 1

ξ1,t
ξ2,t

,

where

ξ1,t = mct yt + β θ Et

[
c−σ
t+1

c−σ
t

πϵ
t+1ξ1,t+1

]
and ξ2,t = yt + β θ Et

[
c−σ
t+1

c−σ
t

πϵ−1
t+1ξ2,t+1

]
.

Carbon taxes enter the model by increasing firms marginal cost, which implies
that the optimal price of an adjusting firm p∗t increases in the carbon tax τ ct .
The nominal friction implies that monopolistic producers face time-varying real
marginal costs, thus generating a relationship between inflation and real economic
activity summarized in the New-Keynesian Phillips Curve.9 Exogenous total factor
productivity At follows an AR(1) process in logs:

log(At) = ρA log(At−1) + σAϵt , where ϵt ∼ N(0, 1) .

The full list of equilibrium conditions is summarized in Appendix A.1, equations
(A.8)-(A.18).

Parameterization While all of our main results are obtained analytically, we
illustrate their quantitative relevance under a standard quarterly parameterization
following the New Keynesian DSGE literature. Households’ risk aversion and
discount factor are set to σ = 1 and β = 0.995. This discount factor implies an
annual real rate of 2%. Furthermore, we set φ = 4/3, following Chetty et al.
(2011).

Regarding the emission externality, we use a narrow interpretation as carbon
emissions and target recent estimates by Bilal and Kaenzig (2024), who identify
a long run productivity loss of 31% in an economy without climate policy. We
perform a change of variables and define the steady state output-adjusted damage
parameter γ ≡ Γ

E
. Crucially, E corresponds to steady state output in the economy

without carbon taxes. Setting γ = 0.37 yields a long run value of Λ = 0.69 in
the model. Under this parameterization, the optimal long run tax in the model
is given by τc = 0.37

1+0.37
≈ 0.27. Following Gibson and Heutel (2023), we set the

quarterly depreciation rate to δ = 0.0035, which implies a 50 year half-life for
atmospheric carbon dioxide.

The demand elasticity for final good varieties is fixed at ϵ = 6, implying a 20%
markup. As a benchmark, we set the Calvo parameter to θ = 0.8, corresponding

9Similar results can be obtained by imposing price adjustment costs instead of staggered
pricing.
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Table 1: Parameterization

Parameter Value Source/Target

Households

Household discount factor β 0.995 Standard
Consumption CRRA σ 1 Log-utility
Labor supply curvature φ 4/3 Chetty et al. (2011)

Technology

Calvo parameter θ 0.8 Price Duration 5 Quarters
Emission damage γ 0.37 Bilal and Kaenzig (2024)
Emission decay δ 0.0035 Gibson and Heutel (2023)

Shocks

Persistence TFP ρA 0.9 Standard
TFP shock st. dev. σA 0.01 Standard

to an expected price duration of five quarters. In a comparative statics exercise,
we decrease this parameter to θ = 0.6, implying an expected price duration of
2.5 quarters. The parameters governing exogenous TFP are set to ρA = 0.9 and
σA = 0.01. The parameterization is summarized in Table 1.

3 Exogenous Monetary Policy

Having described the model, we first discuss the positive properties of augmenting
an otherwise standard New Keynesian model with socially harmful emissions. To
do so, we keep the monetary policy reaction function constant. For the remainder
of this paper, we assume that the fiscal authority sets a constant labor subsidy,
τn = 1

ϵ
, which implies (1 − τn)µ = 1 and eliminates the steady state distortion

generated by monopolistic competition. Since emission externalities are the only
inefficiency in the flexible price equilibrium, we can cleanly distinguish between
natural and efficient (welfare-relevant) output gap. We then demonstrate that
the dynamics of both output gaps can be accurately approximated by assuming
that damages depend on current output rather than the stock of carbon dioxide
emissions. This will allow us to characterize optimal monetary policy and the
central bank loss function in closed form in the next section.

10



3.1 Efficient and Natural Output Gap

We begin by characterizing the efficient output yet and the natural output ynt ,
defined as the output consistent with perfectly flexible prices, as functions of total
factor productivity At.

Proposition 1. The natural ynt and efficient yet output levels can be written as a
function of the only state variable At:

(ynt )
σ+φ = (1− τ ct )(AtΛt)

1+φ . (6)

(yet )
−σ − (yet )

φ

(AtΛt)1+φ

(
1 + γ

yet
E

)
= β(1− δ)

(
(yet+1)

−σ −
(yet+1)

φ

(At+1Λt+1)1+φ

)
. (7)

Proof : see Appendix A.1.

These output responses serve as reference in the definition of the efficient
xet ≡ ŷt − ŷet and the natural output gap xnt ≡ ŷt − ŷnt , respectively. Here ŷt
is the output deviation from its steady state level for any given degree of nominal
rigidities and any given monetary policy. Without externalities (γ = 0), the flexi-
ble price competitive equilibrium coincides with the efficient allocation, such that
both output gaps coincide xet = xnt .

With externalities (γ > 0), an overreaction of the flexible price economy in
response to a positive TFP shock implies a positive efficient output gap, illustrated
in Figure 2. The solid red line in the left panel corresponds to the output expansion
in the flexible price equilibrium, which exceeds the efficient output expansion,
indicated by the solid green line. The output expansion with sticky prices is
smaller than in the flexible price case, as shown by the dashed blue line for a
Calvo parameter of θ = 0.6 and the dotted blue line for θ = 0.8. Consequently,
as the middle panel of Figure 3 shows, the natural output gap in response to a
positive TFP shock is negative.

The right panel shows that it depends on the relative strength of nominal
rigidities and the emission externality, whether the competitive equilibrium still
overreacts relative to the efficient allocation. For a large θ, nominal rigidities
dominate and the efficient output gap is also negative, albeit smaller. For smaller
values of θ, the overreaction of output with respect to the efficient allocation
dominates and the efficient output gap turns positive. In our parameterization,
this happens for a Calvo parameter between 0.6 and 0.8, i.e. for relevant parts of
the parameter space. It will turn out that the interaction of these two dynamic
inefficiencies, nominal rigidities and emission externalities, is non-trivial and bears
direct implications for the conduct of monetary policy.
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Figure 2: IRF to TFP-Shocks: Baseline Four Equation Model
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Notes: Impulse responses to a positive one standard deviation shock to TFP. Output change ŷt
is expressed in relative deviations from its steady state value.

3.2 Eliminating One Equation

Similar to the setup studied in Sahuc, Smets, and Vermandel (2024), the char-
acterization of this model is complicated by the presence of the law of motion
for emissions. While Sahuc, Smets, and Vermandel (2024) estimate such a four-
equation New Keynesian model, the lower panel of Figure 3 reveals that eliminating
the law of motion for emissions by setting δE = 1 delivers a reasonably good ap-
proximation of the efficient and natural output gap, respectively, which are the
main focus of our optimal monetary policy analysis. Notably, the output reaction
ŷt is smaller in the model with full depreciation, as damages Λt is more responsive
to current economic activity. However, the response of actual and efficient output
relative to the flexible price output reaction are remarkably similar. The reason
is that the social planner takes the present value of future damages into account
when computing the optimal output expansion.

Lemma 1. If δE = 1, the efficient output level yet reduces to:

(yet )
σ+φ =

(AtΛt)
1+φ

1 + γ
yet
y

, (8)

which immediately obtains from simplifying (7). Combining (8) with (6), the ratio
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Figure 3: IRF to TFP-Shocks: Simplified Three Equation Model
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Notes: Impulse responses to a positive one standard deviation shock to TFP. Output change ŷt
is expressed in relative deviations from its steady state value.

of natural and efficient output simplifies to(
ynt
yet

)σ+φ

=

(
1 + γ

yet
y

)
(1− τ ct ) . (9)

Lemma 1 is a straightforward simplification of Proposition 1. It follows from

equation (9) that a time-varying emission tax τ ct =
γ

yet
y

1+γ
yet
y

implements the efficient

allocation. In this case, the RHS of (9) collapses to one and natural and efficient
output coincide.

To facilitate an analysis of the optimal monetary policy problem, we then
express their responses ŷnt and ŷet to a technology shock at in deviations from
steady state.

Lemma 2. Their log-deviations around the deterministic steady state are given
by:

ŷnt =
1 + φ

ζ
at −

1

ζ

τ c

1− τ c
τ̂ ct (10)

ŷet =
1 + φ

ζ̃ + γ̃
at , (11)
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where

ζ ≡ φ+ γ(1 + φ) + σ, ζ̃ ≡ φ+ γ
ye

y
(1 + φ) + σ and γ̃ ≡ γ

1 + γ
. (12)

Proof : see Appendix A.2.

Lemma 2 demonstrates that, all else equal, positive TFP shocks increase output
while a positive carbon tax shock is recessionary. Furthermore, absent emission
taxes (τ ct = 0), the natural level of output generally exceeds its efficient level. No-
tably, the recessionary effect of the carbon tax precisely addresses over-production
in the competitive equilibrium.10 Combining (8) and (6), However, even with a
carbon tax implementing the efficient steady state output, emissions still gener-
ate a dynamic inefficiency. Specifically, with τ c = γ̃ and τ̂ ct = 0, output in the
competitive equilibrium ŷnt overreacts to technology shocks relative to the efficient

allocation ŷet . Indeed in this case ζ̃ = ζ, implying ŷet =
1+φ
ζ+γ̃

< 1+φ
ζ

= ŷnt . Since this
dynamic inefficiency is the key element of our analysis, we focus on the empirically
plausible case of constant carbon taxes (τ̂ c = 0) in the following characterization
of monetary policy.11

3.3 Characterization of the Three-Equation Model

As a next step, we flesh out the interactions between nominal rigidities and pro-
cyclical emissions for an exogenously given nominal interest rate rst in the three-
equation model. Proposition 2 shows that its equilibrium is characterized by a
dynamic IS curve and the New Keynesian Phillips curve.

Proposition 2. The equilibrium conditions for the economy with nominal rigidi-
ties simplify to the following two linear conditions in terms of log-deviations from
the steady-state:

xnt = Et[x
n
t+1]−

rst − Et[πt+1]

σ
+

1

ζ
Et

[
(1 + φ)(at+1 − at)−

τ c(τ̂ ct+1 − τ̂ ct )

1− τ c

]
︸ ︷︷ ︸

=rnt /σ

, (13)

πt = ζκxnt + βEt[πt+1] + β(1− θ)
τ c

1− τ c
(τ̂ ct − E[τ̂ ct+1]) . (14)

10The same outcome can also be achieved by a cap-and-trade policy. Since we assume that
one unit of production entails one unit of emissions, a policy that issues yet certificates each
period implements the efficient allocation. If the market for emission certificates is frictionless,
the permit price corresponds to the optimal carbon tax.

11In practice, carbon taxes or emission trading systems follow deterministic trends. As cus-
tomary in the (New Keynesian) business cycle literature, the data counterparts of our model
variables are trend deviations. Therefore, our results are relevant whenever climate policy does
not respond to trend deviations, just as the concept of pro-cyclical emissions in Figure 1 is based
on trend deviations of GDP and emissions.
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Proof : see Appendix A.3.

Equation (13) is a dynamic IS curve: the (natural) output gap xnt positively de-
pends on the expected output gap next period and negatively depends on the real
interest rate gap

rst−Et[πt+1]−rnt
σ

, defined as the real interest rate, rst −Et[πt+1], minus
the natural real interest rate, rnt . The natural interest rate is the real interest rate
consistent with the natural level of output, which is in turn defined as the level of
output consistent with flexible prices.12

The New Keynesian Phillips curve is given by equation (14). As usual, its slope

depends on nominal rigidities through the auxiliary parameter κ ≡ (1−θβ)(1−θ)
θ

. In
the presence of emission externalities, the slope is also affected by the auxiliary
parameter ζ as defined in equation (12). Since ζ is positively related to the severity
of the emission externality, we can easily asses how the emission externality affects
the Phillips curve (14). Since the Phillips curve relates the natural output gap to
inflation, it is helpful to discuss the effect of emissions on output gap and inflation
separately. On the one hand, the inflation response to a TFP shock is determined
by the share of firms that can reduce their price, which does not depend on the
emission externality. On the other hand, the emission externality dampens the
effects of a TFP shock on the output gap. This implies that, for a given output
gap, inflation responds more strongly to a TFP shock if γ > 0. Consequently,
pro-cyclical emissions steepen the Phillips curve.

Note that these inflationary pressures, sometimes referred to as climateflation,
do not imply that the emission externality is inflationary in equilibrium, as firms
take expected inflation in future periods into account when setting their prices
today. It is, therefore, necessary to iterate forward the Phillips curve when char-
acterizing the equilibrium effect of TFP shocks. Since expected inflation depends
on the central bank’s reaction to shocks, we close the model with a Taylor-type
rule for the nominal interest rate:

rst = rs · πϕ
t , (15)

where ϕ governs the response of the short term nominal interest rates to inflation
and rs = 1/β is the steady state real interest rate.

Proposition 3 characterizes how pro-cyclical emissions affect output and inflation
in the competitive equilibrium for the constant central bank reaction function (15).

12As a by-product of our analysis, equations (13) and (14) characterize the effects of carbon
taxes on inflation and output. Specifically, transitory carbon tax shocks, i.e. τ̂ ct > 0 and τ̂ ct+1 = 0,
are both inflationary and recessionary. This result is consistent with empirical findings in Kaenzig
(2023) and is related to the negative effect of carbon taxes on marginal costs, which implies that,
on aggregate, firms reduce their production and increase their prices.
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Proposition 3. Under time-invariant emission taxes, the policy functions for out-
put gap and inflation read

xnt =
σ

ζ
· (1 + φ)(1− βρa)

σ(1− βρa)(1− ρa) + ζκ(ϕ− ρa)
· (ρa − 1)at ≡ Θxaat , (16)

xet =γ̃
1 + φ

ζ(ζ + γ̃)
+ Θxaat , (17)

πt =σκ · 1 + φ

σ(1− βρa)(1− ρa) + ζκ(ϕ− ρa)
· (ρa − 1)at ≡ Θπaat . (18)

Moreover, the variances of output gap and inflation are given by:

V ar[xnt ] = Θ2
xaσ

2
A, V ar[πt] = Θ2

πaσ
2
A .

Proof : By the method of undetermined coefficients. Guess a linear policy func-
tion for xnt = Θxaat and πt = Θπaat, and impose equilibrium consistency in equa-
tion (13), equation (14), and equation (15), together with Et[at+1] = ρaat and
τ ct = 0 to get:

Θxaat = Θxaρaat −
ϕΘπaat −Θπaρaat

σ
+

1

ζ

[
(1 + φ)(ρaat − at)

]
,

Θπaat = ζκΘxaat + βΘπaρaat .

For the guess to be correct, the last two equations have to hold for each at ∈ R.
Hence, imposing at = 1 and solving the system of the two equations into the two
unknowns, Θπa and Θxa yields the coefficients of the policy functions:

Θxa =
σ

ζ
· (1 + φ)(1− βρa)

σ(1− βρa)(1− ρa) + ζκ(ϕ− ρa)
· (ρa − 1) , (19)

Θπa = σκ · 1 + φ

σ(1− βρa)(1− ρa) + ζκ(ϕ− ρa)
· (ρa − 1) . (20)

□

Figure 4 illustrates Proposition 3 graphically. The first row shows the impact
response of inflation and output gap to a positive technology shock as a function
of θ. The standard case without emission externalities is indicated by the dashed
yellow line. The output gap (inflation) is larger (smaller) in absolute terms as θ
increases, i.e. as prices become more rigid. For the case with emission externalities
we differentiate between the natural output gap xnt (red line) and the efficient
output gap xet (green line), which coincide for the standard model. Due to the
dampening effect of emissions on TFP, the inflation and natural output gap are
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Figure 4: Policy functions and variances as functions of θ and γ
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less responsive to productivity shocks in the model with emissions but always
negative. The response of the efficient output gap (17) is similar to the natural
output gap, but shifted by a positive intercept term. The efficient output gap
turns positive for θ < 0.78, consistent with Figure 3.

In the second row, we plot the responses of both output gaps and inflation for
different values for the emission externality. Differentiating the coefficients of the
policy functions (19) and (20) with respect to γ, we immediately obtain ∂Θxa

∂γ
> 0

and ∂Θπa

∂γ
> 0. The response of the natural output gap (16) and inflation (18) to a

TFP shock are smaller in absolute terms if the externality is more severe, see the
red lines in the lower panel of Figure 4. This decline in macroeconomic volatility
is associated with the dampening effect that the emission externality exerts on the
aggregate production function. The efficient output gap is increasing in γ, since
both the natural output gap and the intercept in equation (17) increase in γ. The
intercept term from (17) is reflected by the difference between the green and red
line. In the simplified three-equation model, the efficient output gap turns positive

17



for γ > 0.08.

4 Optimal Monetary Policy: LQ-Approach

Having discussed how pro-cyclical emissions affect the competitive equilibrium
allocation and the efficient allocation, we now analyze optimal monetary policy.
We derive the central bank objective analytically by extending the methodology
outlined in Benigno and Woodford (2005) for the case of inefficient competitive
equilibria under flexible prices. Since the loss function is available in closed form
and easily interpretable, we can take a linear-quadratic approach to analytically
show the optimal response of monetary policy to i.i.d. productivity shocks.

4.1 Central Bank Loss Function

The central bank objective function is derived from first principles, i.e. we max-
imize a utilitarian welfare maximization problem which is closely linked to the
distinction between the efficient and natural output gap described in Proposi-
tion 1. Since over-production in the competitive equilibrium allocation is at the
heart of the mechanism, we follow Benigno and Woodford (2005) and consider
the general case where the steady-state level of output and labor are above their
efficient levels.

Proposition 4. A second order approximation of the welfare function around the
distorted steady state yields the following quadratic loss function:

L = −E0

[ ∞∑
t=0

βtUt − U

UcC

]
≈ 1

2
E0

[
∞∑
t=0

βt

{
π2
t + ωx (x

n
t − x∗t )

2

}]
+ t.i.p. (21)

where x∗t is the target level of the natural output gap and ωx is the weight on
output stabilization:

ωx =
κ

ϵ
(ζ(1 + γ) + γ) , (22)

x∗t =
Ωxa

Ωx

at = −1 + φ

ζ

γ

ζ(1 + γ) + γ
at . (23)

Proof : see Appendix A.4.

The proof is an extension of Benigno and Woodford (2005) to the case of ineffi-
cient competitive equilibria under flexible prices. The planner solution takes this
inefficiency into account by internalizing the marginal effect of economic activity
on economic damages. It is essential that this enters the second order approxi-
mation of the household utility function as an additional variable. If the central

18



bank takes this relationship Λt = exp(−γyt) as given, the resulting loss function
prescribes to close inflation and natural output gap at all times. Put differently,
monetary policy goes along with the market failure in the flexible price allocation
and the loss function inherits the inefficiency. We relegate the analytical steps to
Appendix C.

Once this additional term enters the loss function, it introduces several linear
terms that have to be taken care of appropriately. In addition to a second order
approximation of the New Keynesian Phillips Curve that is necessary due to the
potentially distorted steady state, we show that it is also necessary to take a
second order approximation of the relationship between economic activity and
emission damages. In this case, it is possible to derive the loss function (21) that
completely separates business cycle stabilization objectives from distortions in the
steady state, analogously to Benigno and Woodford (2005).

To gain intuition behind Proposition 4, it is helpful to first consider the text-
book case absent the emission externality. In this case, the target level of the
output gap x∗t collapses to zero: efficient and natural output gap coincide and it
is optimal to close the output gap at all times. Furthermore, the weight on the
output gap ωx in the loss function reduces to the familiar expression

ωx =
κ

ϵ
(σ + φ) ,

where the auxiliary parameter κ = (1−θβ)(1−θ)
θ

decreases in the share θ of firms that
can not adjust prices. A high κ reflects mild nominal rigidities and comparatively
large inflation responses to shocks, such that the weight on output stabilization
increases in κ.

With γ > 0, the central bank places a higher weight on output stabilization if
the externality is more severe, which is indicated by the left panel of Figure 5. The
right panel of Figure 5 illustrates that the target level of the natural output gap
is negatively related to the externality parameter γ. The solid black line reflects
the baseline parameterization with log-utility and a labor disutility curvature of
φ = 4/3. Unsurprisingly, the weight on the output gap increases while its target
level declines in absolute terms if the gains of macroeconomic stabilization increase,
either by increasing risk aversion over consumption (σ = 2, dotted red line) or
by increasing the curvature of labor disutility (φ = 2, dashed blue line). Note
that, as in Benigno and Woodford (2005), the steady state wedge does not affect
the conduct of macroeconomic stabilization policy, which is solely concerned with
addressing the dynamic inefficiency associated with pro-cylical emissions.

Economically, the relationship between weight on the natural output gap ωx

and its target level x∗t follows directly from the dynamic inefficiency of the com-
petitive equilibrium induced by the emission externality. Production overreacts
to a technology shock, relative to the efficient allocation, and the degree of over-
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Figure 5: Target level and weight on xnt as functions of γ
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production is positively relate to severity of the emission externality. The central
bank then optimally takes this dynamic inefficiency into account by placing a
higher weight on output stabilization. This finding is conceptually related to the
case of inefficiently low output due to monopolistic distortions discussed in Clar-
ida, Gaĺı, and Gertler (1999). If efficient output exceeds its natural level, it is
optimal to place a higher weight on inflation. Since output is inefficiently high in
our analysis, the opposite result emerges.

4.2 Optimal Monetary Policy with i.i.d. Shocks

Next, we characterize optimal monetary policy with i.i.d. shocks to TFP. This
corresponds to minimizing the loss function derived in Proposition 4 subject to
the NKPC, which can be solved for in closed form.

Proposition 5. If TFP shocks are i.i.d. and carbon taxes are time-invariant
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(τ̂ ct = 0) optimal monetary policy is characterized by

πo
t =

ωxκζ

κ2ζ2 + ωx

x∗t = −1 + φ

ζ

γ

ζ(1 + γ) + γ

ωxκζ

κ2ζ2 + ωx

at , (24)

xot =
ωx

κ2ζ2 + ωx

x∗t = −1 + φ

ζ

γ

ζ(1 + γ) + γ

ωx

κ2ζ2 + ωx

at , (25)

rot = rnt − σωx

ζ2κ2 + ωx

x∗t = rnt +
1 + φ

ζ

γ

ζ(1 + γ) + γ

σωx

ζ2κ2 + ωx

at, (26)

where rnt is the natural rate of interest implicitly defined through (13).
Proof : The central bank chooses inflation and natural output gap to minimize

min
πt,xn

t

1

2
E0

[
π2
t + ωx(x

n
t − x∗t )

2

]
s.t. πt = ζκxnt + βEt[πt+1] . (27)

Taking FOCs and combining them we get the optimal monetary policy that sum-
marizes the trade-off between the natural output gap xnt and inflation πt:

πt = −ωx

ζκ
(xnt − x∗t ) . (28)

Under i.i.d. shocks, Et[πt+1] = Et[x
n
t+1] = 0, so that, plugging the monetary policy

rule equation (28) into the NK Phillips curve equation (27), we can re-arrange
for the optimal output reaction xot in equation (25). Using this together with the
optimal inflation reaction πo

t from (24) in the IS curve equation (13) and solving
for the optimal monetary policy rate rot , we get equation (26). □

Proposition 5 describes how the central bank optimally resolves the trade-off
between addressing overproduction and replicating the flexible price allocation over
the business cycle. Optimal inflation is negative in response to a positive TFP
shock, which can be seen directly from equation (24) and is shown graphically
in the left panel of Figure 6. It increases in absolute terms as the externality
becomes more severe. If the benefits of business cycle stabilization are increased,
either through higher consumption CRRA or higher curvature in labor disutility,
the optimal inflation response is muted, ceteris paribus. Equation (25) reveals that
the optimal (natural) output gap is a linear combination of the target level x∗t and
the flexible price allocation (xnt = 0).

As shown by equation (26), monetary policy does not track the natural interest
rate. Instead there is a positive emission adjustment term in equation (26) and
the central bank implements a smaller interest rate cut in response to a positive
TFP shock than in a model without emission externalities. The adjustment term
increases in γ, as suggested in the right panel of Figure 6.
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Figure 6: Optimal inflation and interest rate adjustment as functions of γ
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Figure 7 summarizes the effect of emission externalities in a Phillips curve -
monetary policy rule diagram. The dashed yellow line refers to the Phillips curve
in the textbook New Keynesian model. TFP shocks move the economy on the
Phillips curve, since marginal costs decrease after a positive productivity shocks.
Firms find it optimal to decrease prices, generating dis-inflationary pressure. Due
to the nominal rigidity, not all firms are able to reduce their prices, so that they
face a decreased demand for their goods. After a positive TFP shock, output then
increases by less than the natural and efficient level, which coincide in the standard
model. Consequently, there is downward pressure on the output gap xnt . Since it
is optimal (and feasible) to perfectly stabilize inflation and both output gaps, i.e.
the dashed black MPR crosses the origin, monetary policy can move the economy
back to the origin: divine coincidence holds.

The solid blue line refers to the Phillips curve in the case with γ > 0. From
(27), we have seen that the emission externality induces a steepening of the Phillips
curve. Holding monetary policy constant, the inflation response is still negative,
but larger, which follows directly from Proposition 3. The natural output gap
response under constant monetary is also still negative. Importantly, the Phillips
curve does cross the origin, so it would be feasible to close the natural output
gap and inflation simultaneously. However, the monetary policy rule (solid black
line) indicates that this is no longer optimal. The central bank trades off some
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Figure 7: Phillips Curve - Monetary Policy Rule Diagram
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dis-inflation against maintaining a negative output gap, represented by the point
Q. Since the monetary policy rule is also steeper than in the text book model,
due to the larger weight on output stabilization, optimal natural output gap and
inflation are even further away from zero.

5 Optimal Monetary Policy: Quantitative Re-

sults

In the previous section, we have taken a linear-quadratic approach to optimal mon-
etary policy under discretion and discussed how the severity of nominal rigidities
and emission externalities determines how close monetary policy comes to imple-
menting the efficient allocation. The analytical characterization of the optimal
interest rate response is only available for i.i.d. productivity shocks in the three-
equation model where pollution damages that depend on the flow of emissions. In
this section, we show numerically that these results carry over to the case of persis-
tent productivity shocks in the model with a fourth equation - the law of motion
for emissions. We also demonstrate that the optimal monetary policy response
in the four-equation model differs from the textbook model in a quantitatively
relevant way.

5.1 Impulse Response Functions

The left column of Figure 8 refers to the simplified three-equation model while
the right column represents the baseline four-equation model with persistent emis-
sions. In the standard model without emission externalities, output would increase
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by one percent in response to a positive one-standard deviation TFP shock. Com-
pared to this benchmark, the economy exhibits a much smaller expansion for the
three-equation case with δ = 1, due to the large effect of current output on con-
temporaneous damages. Output expands merely by around 0.75%. As the right
panel shows, the four-equation model behaves much more similar to the standard
model without emission externalities. The reason for this is that current emissions
have only a very small negative effect on current productivity. In contrast, natural
and efficient output gap have a remarkably similar shape in both cases.

The efficient output response is indicated by the solid green line, which we have
already seen in Figure 3. The output expansion under optimal monetary policy for
the sticky price model with θ = 0.8 is shown by the dotted blue line. Furthermore,
the central bank does not optimally stabilize prices, such that inflation responds
negative to an expansionary TFP shock, shown in the second row of Figure 8. More
generally, for any θ, optimal monetary policy implements an output expansion
between natural and efficient level and never expands output by less than the
efficient allocation. This sharply contrasts with the case of exogenous monetary
policy display in Figure 3. Intuitively, consider a choice between increasing output
by 0.01 percentage points more or less than the efficient allocation, i.e. the green
line in the top panel of Figure 8. Loosely speaking, both choices imply the same
deviation from first best. However, increasing output by less than the efficient
allocation has a negative effect on price stabilization, as it implies a larger deviation
from the flexible price equilibrium.

Consequently, the third row of Figure 8 reveals that the efficient output gap is
always positive. Furthermore, the optimal interest rate cut is smaller, in absolute
terms, than what would be necessary to implement the flexible price equilibrium.
Comparing the baseline four-equation to the simplified three-equation model, it
turns out that both economies differ in their natural rate, but the discrepancy
between the natural rate and the optimal monetary policy rate (the adjustment
term in (26)) is quite similar at around 6 basis points. For large shock realizations,
the discrepancy between natural and optimal rate is quantitatively relevant, given
that the typical monetary policy rate notch is 25 basis points.

5.2 Macro and Welfare Effects

Lastly, we explore the quantitative implications of optimal monetary policy in
the presence of socially harmful emissions on macroeconomic aggregates and wel-
fare. We focus on the case without carbon taxes in the main text and show in
Appendix B that the results are very similar if the steady state tax is efficient. Ta-
ble 2 displays key macro moments under Ramsey optimal policy for different values
of the Calvo parameter θ in the textbook model (left two columns), the simplified
model where emission damages depend on the emission flow (middle columns) and
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Figure 8: IRF to TFP-Shock: Optimal Monetary Policy
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Notes: Impulse response to a positive one standard deviation shock to TFP, using a second
order approximation around the deterministic steady state. The left column refers to the three-
equation model where damages depend on the flow of emissions while the right column refers to
the four-equation model where damages depend on a persistent stock of emissions.

the baseline model where damages depend on the persistent emission stock (right
two columns). Welfare is defined recursively through

Vt = log(ct)−
n1+φ
t

1 + φ
+ βEt[Vt+1] . (29)

The left panel of Table 2 considers the counterfactual standard model without
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Table 2: Optimal Monetary Policy: Macro and Welfare Effects

γ = 0 γ = 0.37

δ = 1 δ = 0.0035

Calvo Parameter θ 0.6 0.8 0.6 0.8 0.6 0.8

Volatility

Output Dev. ŷt (%) 2.29 2.29 1.67 1.66 2.27 2.25
Eff. Output Gap xet (%) 0 0 0.08 0.07 0.13 0.11
Nat. Output Gap xnt (%) 0 0 0.01 0.03 0.01 0.03
Inflation (%) 0 0 0.05 0.03 0.04 0.02
Policy Rate (bps) 93 93 65 63 91 88

Welfare Effect (CE, %)

Gain of Optimal MP 0.03 0.08 <0.01 0.03 0.01 0.05

Notes: All moments are computed under optimal monetary policy in the presence of a constant
carbon tax that renders the deterministic steady state efficient. Inflation volatility is annualized
an expressed in percentage points, the policy rate is annualized and expressed in basis points. We
express the welfare gain of optimal monetary policy in consumption equivalents gainCE,opt ≡
exp{(1 − β)(V opt − V base)} − 1, where V base refers to welfare (29) in an economy where the
central bank follows a simple monetary policy rule (15) with inflation coefficient ϕ = 1.5.

the emission externality. Irrespective of the Calvo parameter, monetary policy
can implement the efficient allocation by tracking the natural rate of interest. The
associated volatility of the natural interest rate is 93 basis points. Inflation, effi-
cient and natural output gap are zero in all states and the volatility of output is
coinciding with a real business cycle model. The welfare gain relative to the case
where monetary policy follows a simple Taylor rule (15) with coefficient ϕ = 1.5 is
larger if nominal rigidities are more severe: it increases from 0.03% (in consump-
tion equivalents) to 0.08%. To put the small welfare effects of macroeconomic
stabilization policies into perspective, note that they are small in all representa-
tive agent models of the business cycle. For instance, the welfare cost of business
cycles are merely 0.004% in this model.

The middle panel considers the baseline case with emission damages being
proportional to current output, i.e. the case that we studied analytically in the
previous section. Macroeconomic volatility is considerably smaller, which we have
shown formally in Proposition 3: the standard deviation of output declines from
2.29% for θ = 0.6 to 1.67%. Since monetary policy can not implement the efficient
allocation, inflation and both output gaps exhibit a positive volatility. The central
bank achieves this by reacting less aggressively to TFP shocks, implying a smaller
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interest rate volatility of 65bps and 63bps for θ = 0.6 and 0.8, respectively. This
also represents the smaller volatility of the natural interest rate in this economy.
For damages depending on highly persistent emissions, the interest rate volatility
is also smaller (91bs and 88bps for θ = 0.6 and 0.8, respectively), but much closer
to the standard model.

Notably, the volatility of efficient output gap is smaller under a higher Calvo
parameter. As stressed in Proposition 5 for the case of i.i.d. shocks, more rigid
price enable the central bank to reduce the efficient output gap. Correspondingly,
the natural output gap is more volatile for θ = 0.8. The welfare gain of optimal
monetary policy relative to using a Taylor rule with ϕ = 1.5, is less than half the
size compared to the standard model, as the central bank addresses two dynamic
inefficiencies with one instrument.

6 Conclusion

In this paper, we explore the interactions between dynamic real externalities, such
as pro-cyclical greenhouse gas emissions and nominal rigidities in a New Keynesian
model and study its implications for optimal monetary policy. At the heart of our
analysis is the over-reaction of the flexible price equilibrium to productivity shocks
that counteracts the typical under-reaction of the sticky price equilibrium in the
New Keynesian model. We solve for optimal monetary policy as a second-best
solution to a welfare maximization problem. We demonstrate that an additional
condition is necessary to ensure that the central bank appropriately internalizes
the dynamic inefficiency. This condition requires an extra second order approxi-
mation in order to facilitate a clean separation between business cycle stabilization
objectives and steady state distortions. We thereby extend the analysis of Benigno
and Woodford (2005) to inefficient competitive equilibria.

Building on this methodological contribution, we uncover two main analytical
results. First, closing the natural output gap is not optimal from a utilitarian wel-
fare perspective, even though this would be feasible: divine coincidence is broken
even for TFP shocks. Second, to tackle this dynamic inefficiency, the central bank
optimally targets a non-zero natural output gap, which implies that the optimal
inflation volatility is unambiguously larger than in the absence of emission exter-
nalities. Quantitatively, the optimal monetary policy response differs by around
6 basis points from the optimal response in a counterfactual economy without
pro-cyclical emissions. These results also hold in a larger model with persistent
emissions and shocks.

There is evidence that socially harmful emissions also have a direct effect on
macroeconomic volatility and inflation through a disaster risk channel or through
commodity and energy price volatility, from which we abstract in our analysis.
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Furthermore, carbon taxation can also induce inflation by increasing energy prices,
which has been subject to recent discussions about targeting core and headline
inflation. Exploring the interactions between these additional channels, nominal
rigidities, and its implications for monetary policy is left for future research.
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A Proofs

This section contains all proofs omitted in the main text.

A.1 Proof of Proposition 1

The aggregate production function can be written as yt = AtΛtnt, while the goods
market clearing condition is given by yt = ct.

Efficient Allocation The planner problem is

max
ct,nt,yt,Λt,Et

∞∑
t=0

βt

[
c1−σ
t

1− σ
− n1+φ

t

1 + φ

]
s.t.

ct = yt , (λt)

yt = AtΛtnt , (µt)

Λt = exp

{
−γEt

E

}
, (νt)

Et = yt + (1− δ)Et−1 . (ψt)

Setting up the Lagrangian

max
ct,nt,yt,Λt,Et

∞∑
t=0

βt

[
c1−σ
t

1− σ
− n1+φ

t

1 + φ
+ λt

(
yt − ct

)
+ µt

(
AtΛtnt − yt

)
+

νt

(
exp

{
−γEt

E

}
− Λt

)
+ ψt

(
Et − yt − (1− δ)Et−1

)]
and taking FOCs yields

λt = c−σ
t (A.1)

µtAtΛt = nφ
t (A.2)

λt − µt − ψt = 0 (A.3)

µtAtnt = νt (A.4)

− νt
γ

E
Λt + ψt − β(1− δ)ψt+1 = 0 (A.5)

Combining (A.4) and (A.5):

ψt = β(1− δ)ψt+1 + µt
γ

E
yt

With (A.3):

λt = β(1− δ)
(
λt+1 − µt+1

)
+ µt

γ

E
yt + µt
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With δ = 1, we have E = y and this expression collapses to the expression for
MPN e that we have derived in the main text. With δ < 1, we can re-arrange to

λt − µt

(
1 +

γ

E
yt
)
= β(1− δ)

(
λt+1 − µt+1

)
Using (A.1) and (A.2):

c−σ
t − nφ

t

AtΛt

(
1 +

γ

E
yt
)
= β(1− δ)

(
c−σ
t+1 −

nφ
t+1

At+1Λt+1

)
(A.6)

Exploiting ct = yt = AtΛtnt, the efficient output is given by the solution yet to:

y−σ
t − yφt

(AtΛt)1+φ

(
1 +

γ

E
yt
)
= β(1− δ)

(
y−σ
t+1 −

yφt+1

(At+1Λt+1)1+φ

)
. (A.7)

Competitive Equilibrium Next, we derive the natural level of output consis-
tent with flexible prices. The relevant equilibrium conditions are:

- Euler equation and labor supply condition,

c−σ
t = βrstEt

[
c−σ
t+1

πt+1

]
, (A.8)

nφ
t = wtc

−σ
t . (A.9)

- emission damage function:

Λt = exp
(
− γ

Et

E

)
, (A.10)

- aggregate production function:

∆tyt = AtΛtnt , (A.11)

where ∆t is the price dispersion.

- labor demand:

(1− τn)wt = mctAtΛt , (A.12)

- good market clearing:

yt = ct . (A.13)
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- Optimal pricing

p∗t =
µ

1− τ ct

ξ1,t
ξ2,t

, (A.14)

where µ ≡ ϵ
ϵ−1

and

ξ1,t = mctyt + βθ
c−σ
t+1

c−σ
t

πϵ
t+1ξ1,t+1 , (A.15)

ξ2,t = yt + βθ
c−σ
t+1

c−σ
t

πϵ−1
t+1ξ2,t+1 . (A.16)

- Inflation:

1 = (1− θ)(p∗t )
1−ϵ + θπϵ−1

t . (A.17)

- Price dispersion:

∆t = (1− θ)(p∗t )
−ϵ + θπϵ

t∆t−1 . (A.18)

Equations (A.8) to (A.18) characterize the competitive equilibrium for the eleven
endogenous variables {∆t, yt,Λt, nt, wt,mct, ct, p

∗
t , ξ1,t, ξ2,t.πt}.

If prices are flexible, we normalize the price level such that ∆t = πt = p∗t = 1

and ξ1,t
ξ2,t

= mct. In this case, (A.14) simplifies to p∗t = µ
(1−τct )

mct. Marginal costs

are simply given by mct =
(1−τn)wt

AtΛt
. If the labor subsidy τn = 1

ϵ
corrects for the

steady state monopolistic distortion, using equations (A.12) and (A.9) gives:

1 =
µ

1− τ ct
mct =

1

1− τ ct
µ(1− τn)︸ ︷︷ ︸

=1

wt

AtΛt

=
nφ
t c

σ
t

(1− τ ct )AtΛt

. (A.19)

Using goods market clearing (A.13) and the production function (A.11) to elimi-
nate ct and nt, we obtain

1 =
yσ+φ
t

(1− τ ct )(AtΛt)1+φ
.

Solving for yt yields the natural output level (6). □
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A.2 Proof of Lemma 2

Log-linearizing the natural output level (6) around the deterministic steady state
gives

(σ + φ)ŷnt = (1 + φ)at − (1 + φ)γŷnt − τ c

1− τ c
τ̂ ct ,

where hats indicate log-deviations from steady state. Re-arranging for ŷnt yields
equation (10). Log-linearizing the efficient output level (8) and noticing that λ̂t =
−γŷt yields

(σ + φ)ŷet = (1 + φ)at − (1 + φ)γ
ye

y
ŷet −

γ

1 + γ
ŷet

⇔
[
σ + φ+ (1 + φ)γ

ye

y
+

γ

1 + γ

]
ŷet = (1 + φ)at . (A.20)

Re-arranging for ŷet , we arrive at equation (11). □

A.3 Proof of Proposition 2

The log-linearized equilibrium conditions in the simplified model (δ = 1) are given
by

- Euler equation (A.8):

σĉt = σĉt+1 − (r̂st − π̂t+1) . (A.21)

- Optimal labor supply (A.9):

ŵt = φn̂t + σĉt . (A.22)

- Emission damages (A.10):

Λ̂t = −γŷt . (A.23)

- Production function (A.11):

∆̂t + ŷt = at − γŷt + n̂t . (A.24)

- Labor demand (A.12):

ŵt = m̂ct + at − γŷt . (A.25)
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- Optimal pricing (A.14), (A.15), and (A.16):

p̂∗t =
τ c

1− τ c
τ̂ ct + ξ̂1t − ξ̂2t (A.26)

ξ̂1,t = (1− θβ)m̂ct + (1− θβ)ŷt − θβσĉt+1 + θβσĉt + ϵθβπ̂t+1 + θβξ̂1,t+1 (A.27)

ξ̂2,t = (1− θβ)ŷt − θβσĉt+1 + θβσĉt + (ϵ− 1)θβπ̂t+1 + θβξ̂2,t+1 , (A.28)

where we assumed no steady state inflation, π = 1.

- Inflation (A.17):

0 = (1− ϵ)(1− θ)p̂∗t + θ(ϵ− 1)π̂t ⇔ p̂∗t =
θ

1− θ
π̂t . (A.29)

- Price dispersion (A.18):

∆̂t = −ϵ(1− θ)p̂∗t + θϵπ̂t + θ∆̂t−1 ⇔ ∆̂t = θ∆̂t−1 ⇔ ∆̂t = 0 .

- Market clearing (A.13):

ĉt = ŷt . (A.30)

As before, we define the natural output gap as

xnt = ŷt − ŷnt = ŷt −
1

ζ

[
(1 + φ)at −

τ c

1− τ c
τ̂ ct

]
,

and efficient output gap:

xet = ŷt − ŷet = ŷt −
1

ζ̃ + γ̃

[
(1 + φ)at

]
.

We first derive the log-linearized NKPC. Subtracting the auxiliary terms in the
optimal pricing condition, (A.28) and (A.27), from each other, we have

ξ̂1t − ξ̂2t = (1− θβ)m̂ct + θβπt+1 + θβ(ξ̂1,t+1 − ξ̂2,t+1) .

Plugging this condition and the definition of inflation (A.29) into the expression
for the optimal price (A.26), we get an expression for marginal costs:

θ

1− θ
πt =

τ c

1− τ c
τ̂ ct + (1− θβ)m̂ct + θβ

(
πt+1 +

θ

1− θ
πt+1 −

τ c

1− τ c
τ̂ ct+1

)

⇔ πt =
(1− θβ)(1− θ)

θ︸ ︷︷ ︸
=κ

m̂ct + βπt+1 +
1− θ

θ

τ c

1− τ c

(
τ̂t − θβτ̂ ct+1

)
. (A.31)
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Combining labor supply (A.22), production function (A.24), and labor demand
(A.25), we get a second condition linking output to marginal costs:

m̂ct = ŵt − at + γŷt = φn̂t + σĉt − at + γŷt = φ(ŷt − at + γŷt) + σŷt − at − γŷt

= [σ + φ+ (1 + φ)γ︸ ︷︷ ︸
=ζ

]ŷt − (1 + φ)at .

Plugging this condition into equation (A.31):

πt = κζ

[
yt −

1 + φ

ζ
at +

1

ζ

τ c

1− τ c
τ̂ ct︸ ︷︷ ︸

=xn
t

−1

ζ

τ c

1− τ c
τ̂ ct

]
+ βπt+1 +

1− θ

θ

τ c

1− τ c

(
τ̂ ct − θβτ̂ ct+1

)

= κζxnt + βπt+1 − κ
τ c

1− τ c
τ̂ ct +

κ

1− θβ

τ c

1− τ c
τ̂ ct − (1− θ)β

τ c

1− τ c
τ̂ ct+1

= κζxnt + βπt+1 + (1− θ)β
τ c

1− τc
(τ̂ ct − τ̂ ct+1) ,

which is the NKPC (14) in Proposition 2.
To get the dynamic IS-equation (13), start from the linearized Euler equation
equation (A.21) and impose market clearing (A.30) to get:

ŷt = ŷt+1 −
1

σ
(rst − πt+1) ⇔

ŷt −
1

ζ

[
(1 + φ)at −

τ c

1− τ c
τ̂ ct

]
+

1

ζ

[
(1 + φ)at −

τ c

1− τ c
τ̂ ct

]
=

ŷt+1 −
1

ζ

[
(1 + φ)at+1 −

τ c

1− τ c
τ̂ ct+1

]
+

1

ζ

[
(1 + φ)at+1 −

τ c

1− τ c
τ̂ ct+1

]
− 1

σ
(rst − πt+1) ⇔

xnt +
1

ζ

[
(1 + φ)at −

τ c

1− τ c
τ̂ ct

]
= xnt+1 +

1

ζ

[
(1 + φ)at+1 −

τ c

1− τ c
τ̂ ct+1

]
− 1

σ
(rst − πt+1) ⇔

xnt = xnt+1 −
1

σ
(rst − πt+1) +

1

ζ

[
(1 + φ)(at+1 − at)−

τ c

1− τ c
(τ̂ ct+1 − τ̂ ct )

]

□

A.4 Proof of Proposition 4

As a first step, we take a second order approximation of the welfare objective,
i.e. households period utility function Ut:

Ut − U ≈ c1−σ

{
ct − c

c
− σ

2

(
ct − c

c

)2

− n1+φ

c1−σ

[
nt − n

n
+
φ

2

(
nt − n

n

)2]}
.
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Re-arranging yields

Ut − U

Ucc
=
Ut − U

c1−σ
≈ ct − c

c
− σ

2

(
ct − c

c

)2

− n1+φ

c1−σ

[
nt − n

n
+
φ

2

(
nt − n

n

)2]
.

For a generic variable x, up to second order, it holds that xt−x
x

= x̂t +
x̂2
t

2
with

x̂t ≡ log xt − log x. Also, from the steady state condition for natural output
equation (8) and market clearinig, the following condition holds:

n1+φ

c1−σ
= y1+φ yσ−1

(AΛ)1+φ
=

yσ+ϕ

(AΛ)1+φ
=

(1− τ c)(AΛ)1+φ

(AΛ)1+φ
= 1− τ c

Hence, we can re-write the second order approximation of the welfare function as:

Ut − U

c1−σ
≈ ĉt +

ĉ2t
2
− σ

2
ĉ2t − (1− τ c)

[
n̂t +

n̂2
t

2
+
φ

2
n̂2
t

]
.

In order to express the loss function in terms of the output gap xnt and
inflation πt, we first make use of the market clearing condition ĉt = ŷt and the
production function n̂t = ŷt + ∆̂t − at − Λ̂t:

Ut − U

c1−σ
≈ ŷt +

1− σ

2
ŷ2t − (1− τ)

[
ŷt + ∆̂t − at − Λ̂t +

1 + φ

2

(
ŷt + ∆̂t − at − Λ̂t

)2]
Define Φ ≡ (1− τ)(1 + γ)− 1, so that:

Ut − U

c1−σ
≈ ŷt +

1− σ

2
ŷ2t −

1 + Φ

1 + γ

[
ŷt + ∆̂t − at − Λ̂t +

1 + φ

2

(
ŷt + ∆̂t − at − Λ̂t

)2]
The newly defined parameter Φ is a measure of the steady state inefficiency: it
takes the maximum value γ if τ = 0 and it decreases to 0 as τ approaches the
efficient level γ

1+γ
. Throughout the proof, we consider the general case of a sub-

optimal steady state carbon tax, τ c ≤ γ̃, i.e. Φ ≥ 0. Eliminating all terms
independent of policy and of order higher than two, we then obtain:

Ut − U

c1−σ
≈ŷt +

1− σ

2
ŷ2t −

1 + Φ

1 + γ

[
ŷt + ∆̂t − Λ̂t +

1 + φ

2
ŷ2t +

1 + φ

2
Λ̂2
t

− (1 + φ)ŷtat − (1 + φ)ŷtΛ̂t + (1 + φ)Λ̂tat

]
+ t.i.p.

≈γ − Φ

1 + γ
ŷt +

1 + Φ

1 + γ
Λ̂t −

ŷ2t
2

[
−1 + σ +

1 + Φ

1 + γ
(1 + φ)

]
− 1 + Φ

1 + γ
∆̂t

− (1 + Φ)(1 + φ)

2(1 + γ)
Λ̂2
t +

1 + Φ

1 + γ
(1 + φ)(ŷtat + ŷtΛ̂t − Λ̂tat) + t.i.p.
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We are then ready to evaluate the loss function:

L ≡ −W ≈ E0

[ ∞∑
t=0

βt

{
1

2

{
−1 + σ +

1 + Φ

1 + γ
(1 + φ)

}
y2t +

1 + Φ

1 + γ
∆̂t +

(1 + Φ)(1 + φ)

2(1 + γ)
Λ2
t−

− 1 + Φ

1 + γ
(1 + φ)(ŷtat + ŷtΛ̂t − Λ̂tat) +

Φ− γ

1 + γ
ŷt −

1 + Φ

1 + γ
Λ̂t

}]
.

We first substitute the price dispersion term by an expression related to the NKPC

via inflation. The discounted sum of log price dispersions is given by
∑∞

t=0 β
t∆̂t ≈

ϵ
2κ

∑∞
t=0 β

tπ2
t , with the auxiliary parameter κ = (1−θ)(1−θβ)

θ
governing the slope of

the NKPC. Therefore, the loss function is given by

L ≡ −W ≈ E0

[ ∞∑
t=0

βt

{
1

2

{
−1 + σ +

1 + Φ

1 + γ
(1 + φ)

}
ŷ2t +

1 + Φ

1 + γ

ϵ

2κ
π2t +

(1 + Φ)(1 + φ)

2(1 + γ)
Λ̂2
t

− 1 + Φ

1 + γ
(1 + φ)(ŷtat + ŷtΛ̂t − Λ̂tat) +

Φ− γ

1 + γ
ŷt −

1 + Φ

1 + γ
Λ̂t

}]
. (A.32)

As next step, we eliminate the linear terms Φ−γ
1+γ

ŷt and
1+Φ
1+γ

Λ̂t in (A.32). To do
so, we take a second order approximation of both the optimal pricing condition
(A.14) and of the relationship between pollution and economic activity (A.10).
Starting from the latter, the second order approximation of eq. (A.10) reads:

Λ̂t +
1

2
Λ̂2

t = −γŷt −
1

2
γ(1− γ)ŷ2t ⇔ Λ̂t = −γŷt −

1

2
γ(1− γ)ŷ2t −

1

2
Λ̂2

t . (A.33)

Plugging this into (A.32), we get:

L ≡ −W ≈ E0

[
∞∑
t=0

βt

{
1

2

{
−1 + σ +

1 + Φ

1 + γ
(1 + φ+ γ(1− γ)

}
ŷ2t +

1 + Φ

1 + γ

ϵ

2κ
π2
t

+
(1 + Φ)(2 + φ)

2(1 + γ)
Λ̂2

t −
1 + Φ

1 + γ
(1 + φ)(ŷtat + ŷtΛ̂t − Λ̂tat) + Φŷt

}]
. (A.34)

For what concerns the pricing condition, to eliminate the linear term Φyt, we
exploit that a second order approximation of eq. (A.14) leads to the following
(extended) NKPC:

πt +
ϵ− 1

2(1− θ)
π2
t +

1− θβ

2
Gtπt =κ

[
ξ̂1t − ξ̂2t +

1

2
(ξ̂21t − ξ̂22t)

]
+ βπt+1 (A.35)

+ β
1− θβ

2
Gt+1πt+1 + β

ϵ− 1

2(1− θ)
π2
t+1 + β

ϵ

2
π2
t+1 .
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Here, the log-linearized Calvo terms are given by ξ̂1t ≡ mct − σĉt + ŷt and ξ̂2t ≡
ŷt − σĉt and the auxiliary term Gt is defined as the present value of future Calvo
terms

Gt ≡
∞∑
τ=t

(θβ)τ−t(ξ̂1,t,τ + ξ̂2,t,τ ) ,

where ξ̂1,t,τ ≡ ξ̂1τ + ϵ
∑τ

s=t+1 πs and ξ̂1,t,τ ≡ ξ1τ + (ϵ − 1)
∑τ

s=t+1 πs. Defining

Ht ≡ πt +
ϵ−1

2(1−θ)
π2
t +

1−θβ
2
Gtπt +

ϵ
2
π2
t , the extended NKPC (A.35) can be rewritten

as:

Ht = κ

[
ξ̂1t − ξ̂2t +

1

2
(ξ̂21t − ξ̂22t)

]
+ β

ϵ

2
π2
t + βHt+1 .

Iterating forward:

H0 = κE0

[ ∞∑
t=0

βt

{
ξ̂1t − ξ̂2t +

1

2
(ξ̂21t − ξ̂22t)

}]
+
ϵ

2

∞∑
t=0

βtπ2
t . (A.36)

Now, using market clearing (A.30) and production function (A.24):

ξ̂1t =m̂ct + ŷt − σĉt = ŵt − at − Λ̂t + ŷt − σŷt = φn̂t − at − Λ̂t + ŷt

=φ(∆̂t + ŷt − at − Λ̂t)− at − Λ̂t + ŷt = (1 + φ)ŷt − (1 + φ)at − (1 + φ)Λ̂t + φ∆̂t ,

Hence, the difference between the Calvo terms reduces to:

ξ̂1t − ξ̂2t ≈ (σ + φ)ŷt − (1 + φ)Λ̂t + φ∆̂t .

The difference between the squared Calvo terms, ignoring terms of order higher
than two and terms irrelevant for policy, simplifies to:

ξ̂21t − ξ̂22t =[(1 + φ)ŷt − (1 + φ)at − (1 + φ)Λt + φ∆̂t]
2 − (1− σ)2ŷ2t

≈(σ + φ)(2 + φ− σ)ŷ2t + (1 + φ)2[Λ̂2
t − 2ŷtat − 2ŷtΛ̂t + 2atΛ̂t] .

Hence, we can then rewrite the discounted sum H0 as

H0 ≈κE0

[ ∞∑
t=0

βt
{
(σ + φ)ŷt + φ∆̂t − (1 + φ)Λ̂t +

1

2
(σ + φ)(2 + φ− σ)ŷ2t +

(1 + φ)2

2
Λ̂2
t−

− (1 + φ)2[ŷtat + ŷtΛ̂t − atΛ̂t] +
ϵ

2κ
π2t

}]
.
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We plug in the second-order approximation of emission damages (A.33):

H0 ≈κE0

[ ∞∑
t=0

βt

{
ζyt + φ∆t +

1

2
[(σ + φ)(2 + φ− σ) + (1 + φ)γ(1− γ)]ŷ2t

+ (2 + φ)
1 + φ

2
Λ̂2

t − (1 + φ)2[ŷtat + ŷtΛ̂t − atΛ̂t] +
ϵ

2κ
π2
t

}]
.

Since H0 is given and the present value of price dispersions is linked to the present
value of squared inflation

∑
βt∆t =

ϵ
2κ

∑
βtπ2

t , we then have:

κζE0

[ ∞∑
t=0

βtŷt

]
≈− κ

2
E0

[ ∞∑
t=0

βt
{
ϵ(1 + φ)

κ
π2t + [(σ + φ)(2 + φ− σ) + (1 + φ)γ(1− γ)]ŷ2t+

+ (2 + φ)(1 + φ)Λ̂2
t − 2(1 + φ)2[ŷtat + ŷtΛ̂t − atΛ̂t]

}]
.

Expressing in terms of the discounted sum of output:

E0

[ ∞∑
t=0

βtŷt

]
≈ 1

2ζ
E0

[ ∞∑
t=0

βt
{
−ϵ(1 + φ)

κ
π2t − [(σ + φ)(2 + φ− σ) + (1 + φ)γ(1− γ)]ŷ2t−

− (2 + φ)(1 + φ)Λ̂2
t + 2(1 + φ)2[ŷtat + ŷtΛ̂t − atΛ̂t]

}]
.

Having expressed the linear terms in the loss function by quadratic terms, we
plug these quadratic terms back into the loss function that still contains the
linear terms (A.34) to arrive at a loss function in terms of second order terms for
inflation, output, and emission damages:

L ≈ 1

2
E0

[ ∞∑
t=0

βt

{
Ωππ

2
t +Ωy(ŷt)

2+ΩΛΛ̂
2
t −2Ωyaŷtat−2ΩyΛŷtΛ̂t−2ΩaΛΛ̂tat

}]
, (A.37)
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with auxiliary parameters

Ωπ =
ϵ

κ

[
1 + Φ

1 + γ
− Φ

1 + φ

ζ

]
Ωy = −1 + σ +

1 + Φ

1 + γ
[1 + φ+ γ(1− γ)]− Φ

(σ + φ)(2 + φ− σ) + (1 + φ)γ(1− γ)

ζ

= γ(1− γ)

[
1 + Φ

1 + γ
− Φ

1 + φ

ζ

]
− 1 + σ +

1 + Φ

1 + γ
(1 + φ)− Φ

ζ
[(1 + φ)− (1− σ)][1 + φ+ 1− σ]

= γ(1− γ)

[
1 + Φ

1 + γ
− Φ

1 + φ

ζ

]
− 1 + σ +

1 + Φ

1 + γ
(1 + φ)− Φ

ζ
[(1 + φ)2 − (1− σ)2]

= [γ(1− γ) + 1 + φ]

[
1 + Φ

1 + γ
− Φ

1 + φ

ζ

]
− (1− σ)

(
1− Φ

ζ
(1− σ)

)
= [γ(1− γ) + 1 + φ]

[
1 + Φ

1 + γ
− Φ

1 + φ

ζ

]
− (1− σ)

(
1− Φ

ζ
(1 + φ+ γ(1 + φ)− ζ)

)
= [γ(1− γ) + 1 + φ− (1− σ)(1 + γ)]

[
1 + Φ

1 + γ
− Φ

1 + φ

ζ

]
ΩΛ = (2 + φ)

[
1 + Φ

1 + γ
− Φ

1 + φ

ζ

]
Ωya = (1 + φ)

[
1 + Φ

1 + γ
− Φ

1 + φ

ζ

]
ΩyΛ = (1 + φ)

[
1 + Φ

1 + γ
− Φ

1 + φ

ζ

]
ΩaΛ = −(1 + φ)

[
1 + Φ

1 + γ
− Φ

1 + φ

ζ

]
Eliminating the linear terms in (A.37) using Λ̂t = −γŷt − 1

2
γ(1 − γ)ŷ2t − 1

2
Λ̂2

t , we
get:

L ≈ 1

2
E0

[
∞∑
t=0

βt

{
Ωππ

2
t + Ω̃yŷ

2
t − 2Ω̃yaŷtat

}]
, (A.38)

with two composite auxiliary parameters associated with the squared output re-
sponse ŷ2t and the interaction term ŷtat:

Ω̃y = Ωy + γ2 · ΩΛ + 2γΩyΛ =

[
1 + Φ

1 + γ
− Φ

1 + φ

ζ

]
[ζ(1 + γ) + γ] ,

Ω̃ya = Ωya − γΩaΛ =

[
1 + Φ

1 + γ
− Φ

1 + φ

ζ

]
(1 + φ)(1 + γ) .

To ease interpretation, we substitute the definition of the natural output gap
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ŷt = xnt + ŷnt = xnt +
1+φ
ζ
at:

L ≈ 1

2
E0

[
∞∑
t=0

βt

{
Ωππ

2
t + Ωx(x

n
t )

2 − 2Ωxax
n
t at

}]

=
1

2
E0

[
∞∑
t=0

βt

{
Ωππ

2
t + Ωx

(
(xnt )

2 − 2
Ωxa

Ωx

xnt at

)}]
, (A.39)

with auxiliary parameters

Ωx = Ω̃y and Ωxa = Ω̃ya −
1 + φ

ζ
Ω̃y .

We can exploit that the expression
[
1+Φ
1+γ

− Φ1+φ
ζ

]
cancels out when normalizing

the weight on inflation in the loss function to one. Adding and subtracting Ω2
xa

Ω2
x

delivers an expression for the loss function in terms of squared inflation and natural
output deviations from a target level x∗t :

L ≈ 1

2
E0

[
∞∑
t=0

βt

{
π2
t + ωx (xt − x∗t )

2

}]
, (A.40)

with ωx = Ωx

Ωπ
= κ

ϵ
(ζ(1 + γ) + γ) and x∗t =

Ωxa

Ωx
at = −1+φ

ζ
γ

ζ(1+γ)+γ
at. □
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B Additional Numerical Results: Efficient Long

Run Tax

In the main text, we have focused on the case where the efficient carbon tax is
set to zero, i.e. there is a distorted deterministic steady state. In this section, we
show numerically that our characterization of monetary policy does not depend on
this assumption. Table B.1 displays key macro moments under Ramsey optimal
policy for different values of the Calvo parameter θ in the textbook model (left
two columns), the simplified model where emission damages depend on the emis-
sion flow (middle columns) and the baseline model where damages depend on the
persistent emission stock (right two columns).

Table B.1: Macro and Welfare Effects with Efficient Steady State Tax

γ = 0 γ = 0.37

δ = 1 δ = 0.0035

Calvo Parameter θ 0.6 0.8 0.6 0.8 0.6 0.8

Volatility

Output Dev. ŷt (%) 2.29 2.29 1.67 1.65 2.27 2.25
Eff. Output Gap xet (%) 0 0 0.12 0.11 0.13 0.12
Nat. Output Gap xnt (%) 0 0 0.01 0.03 0.01 0.03
Inflation (%) 0 0 0.05 0.03 0.04 0.03
Policy Rate (bps) 93 93 65 63 91 88

Welfare Effect (CE, %)

Gain of Optimal MP 0.03 0.08 0.007 0.024 0.011 0.049

Notes: All moments are computed under optimal monetary policy in the presence of a constant
carbon tax that renders the deterministic steady state efficient. Inflation volatility is annualized
an expressed in percentage points, the policy rate is annualized and expressed in basis points. We
express the welfare gain of optimal monetary policy in consumption equivalents gainCE,opt ≡
exp{(1 − β)(V opt − V base)} − 1, where V base refers to welfare (29) in an economy where the
central bank follows a simple monetary policy rule (15) with inflation coefficient ϕ = 1.5.

The right panel of Figure B.1 shows impulse response to a TFP shock for the
case of persistent emissions.
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Figure B.1: IRF to TFP-Shock: Optimal Monetary Policy

1 2 3 4 5 6

0.4

0.6

0.8

1 2 3 4 5 6

0.6

0.8

1

1 2 3 4 5 6

-0.02

-0.01

0

1 2 3 4 5 6

-20

-10

0

10
-3

1 2 3 4 5 6

0

0.02

0.04

1 2 3 4 5 6

0

0.05

1 2 3 4 5 6

-30

-25

-20

1 2 3 4 5 6

-40

-30

-20

Notes: Impulse response to a positive one standard deviation shock to TFP, using a second
order approximation around the deterministic steady state. The left column refers to the three-
equation model where damages depend on the flow of emissions while the right column refers to
the four-equation model where damages depend on a persistent stock of emissions.

C Central Bank Loss Function

In this section, we derive the central bank loss function that does not take into
account that output expansions affect economic damages from emissions. In this
case, approximating household utility and the NKPC up to second order and com-
bining it with the production function and market clearing condition (Benigno
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and Woodford 2005) yields a loss function that inherits the inefficiency of the flex-
ible price equilibrium. Consequently, this loss function prescribes to close natural
output gap and inflation gap to zero in all states, which is feasible in our model.
Notably, this loss function takes the presence of climate change into account in so
far as it affects the natural rate of interest, i.e. it is climate conscious (Nakov and
Thomas 2023). However, such a loss function is not consistent with an utilitarian
welfare criterion.

The second order approximation of the welfare objective, i.e. households
period utility function Ut, remains unchanged:

Ut − U

c1−σ
≈ ĉt +

ĉ2t
2
− σ

2
ĉ2t − (1− τ c)

[
n̂t +

n̂2
t

2
+
φ

2
n̂2
t

]
.

As in the main text, in order to express the loss function in terms of the natural
output gap xnt and inflation πt, we make use of the market clearing condition
ĉt = ŷt. Different to before, we directly exploit (A.23) to re-write the production

function as n̂t = ŷt + ∆̂t − at − Λ̂t = (1 + γ)ŷt + ∆̂t − at:

Ut − U

c1−σ
≈ ŷt+

1− σ

2
ŷ2t−(1−τ)(1+γ)

[
ŷt+

∆̂t

1 + γ
− at
1 + γ

+
1 + φ

2(1 + γ)

(
(1+γ)ŷt+∆̂t−at

)2]
,

such that Λ̂t does not enter the objective function. Eliminating all terms indepen-
dent of policy and of order higher than two, we then obtain:

Ut − U

c1−σ
≈ ŷt +

1− σ

2
ŷ2t − (1 + Φ)

[
ŷt + ∆̂t

1

1 + γ
+

1 + φ

2
(1 + γ)ŷ2t − (1 + φ)ytat

)2]
+ t.i.p.

≈ −Φŷt −
ŷ2t
2

[−1 + σ + (1 + Φ)(1 + φ)(1 + γ)]− 1 + Φ

1 + γ
∆̂t + (1 + Φ)(1 + φ)ŷtat + t.i.p.

≈ −Φŷt −
ŷ2t
2

[ζ(1 + Φ) + Φ(1− σ)]− 1 + Φ

1 + γ
∆̂t + (1 + Φ)(1 + φ)ŷtat + t.i.p.

Using the definition of the natural output level (10) and of the natural output gap
ŷt = xnt + ŷnt = xnt + 1+φ

ζ
at and eliminating all terms independent of policy, we

arrive at:

Ut − U

c1−σ
≈ −Φxnt −

ζ(1 + Φ) + Φ(1− σ)

2

(
(xnt )

2 + 2
1 + φ

ζ
xnt at

)
− 1 + Φ

1 + γ
∆̂t+

+ (1 + Φ)(1 + φ)xnt at + t.i.p.

≈ −Φxnt −
1

2

{
ζ(1 + Φ) + Φ(1− σ)

}
(xnt )

2 − 1 + Φ

1 + γΦ̃
∆̂t −

Φ

ζ
(1− σ)(1 + φ)xnt at + t.i.p.
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We are then ready to evaluate the loss function:

L ≡ −W ≈ E0

[
∞∑
t=0

βt

{
1

2

(
ζ(1 + Φ) + Φ(1− σ)

)
(xnt )

2 +
1 + Φ

1 + γ
∆̂t+

+ Φ
(1 + φ)

ζ
(1− σ)xnt at + Φxnt

}]
.

The discounted sum of log price dispersions is given by
∑∞

t=0 β
t∆̂t ≈ ϵ

2κ

∑∞
t=0 β

tπ2
t ,

with the auxiliary parameter κ = (1−θ)(1−θβ)
θ

governing the slope of the NKPC.
Therefore, the loss function is given by

L ≈ E0

[
∞∑
t=0

βt

{
1

2

(
ζ(1 + Φ) + Φ(1− σ)

)
(xnt )

2 +
1 + Φ

1 + γ

ϵ

2κ
∆̂t

+ Φ
(1 + φ)

ζ
(1− σ)xnt at + Φxnt

}]
. (C.1)

Eliminating Linear Terms. There is only one linear term Φxnt in this expression
and we exploit that the same (extended) NKPC (A.35), which can be iterated
forward to:

H0 = κE0

[ ∞∑
t=0

βt

{
ξ̂1t − ξ̂2t +

1

2
(ξ̂21t − ξ̂22t)

}]
+
ϵ

2

∞∑
t=0

βtπ2
t . (C.2)

Now, using market clearing (A.30) and the re-written production function n̂t =

(1+γ)ŷt+∆̂t−at, we can write the Calvo terms without taking the terms related

to Λ̂t into account:

ξ̂1t =m̂ct + ŷt − σĉt = ŵt − at + γŷt + ŷt − σŷt = φn̂t − at + (1 + γ)ŷt

=φ(∆̂t + ŷt − at + γŷt)− at + (1 + γ)ŷt = (1 + ζ − σ)ŷt − (1 + φ)at + φ∆̂t ,

Hence, the difference between the Calvo terms reduces to:

ξ̂1t − ξ̂2t =(1 + ζ)ŷt − (1 + φ)at + φ∆̂t − ŷt = ζŷt − (1 + φ)at + φ∆̂t ≈ ζŷt + φ∆̂t .

The difference between the squared Calvo terms, ignoring terms of order higher
than two and terms irrelevant for policy, simplifies to:

ξ̂21t − ξ̂22t =[(1 + ζ − σ)ŷt − (1 + φ)at + φ∆̂t]
2 − (1− σ)2ŷ2t

=[(1 + ζ − σ)2 − 1]ŷ2t − 2(1 + ζ − σ)(1 + φ)ŷtat

=ζ(ζ + 2− 2σ)ŷ2t − 2(1 + ζ − σ)(1 + φ)ŷtat .
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Hence, we can then rewrite the discounted sum H0 as

H0 ≈ κE0

[ ∞∑
t=0

βt

{
ζyt + φ∆t +

1

2
ζ(ζ + 2− 2σ)ŷ2t − (1 + ζ − σ)(1 + φ)ŷtat +

ϵ

2κ
π2
t

}
.

(C.3)

Since H0 is given and the price dispersion terms can be expressed in terms of
inflation

∑
βt∆t = ϵ

2κ

∑
βtπ2

t , we then can rearrange (C.3) for the discounted
sum of output deviations:

E0

[ ∞∑
t=0

βtŷt

]
≈ 1

2ζ
E0

[ ∞∑
t=0

βt

{
−ϵ(1 + φ)

κ
π2
t − ζ(ζ + 2− 2σ)ŷ2t + 2(1 + ζ − σ)(1 + φ)ŷtat

}
.

Rewriting in terms of the natural output gap ŷt = xnt + ŷnt = xnt + 1+φ
ζ
at, and

ignoring terms of order higher than two and irrelevant for policy, we get:

E0

[ ∞∑
t=0

βtxnt

]
≈ E0

2ζ

[ ∞∑
t=0

βt

{
− ϵ(1 + φ)

κ
π2t − ζ(ζ + 2− 2σ)

(
(xnt )

2 + 2
1 + φ

ζ
xnt at

)
+ 2(1 + ζ − σ)(1 + φ)xnt at

}]
,

which implies that we can express the present value of natural output gaps as

E0

[ ∞∑
t=0

βtxnt

]
≈ E0

[ ∞∑
t=0

βt

(
1

2
X1π

2
t +

1

2
X2(x

n
t )

2 +X3x
n
t at

)]
, (C.4)

where the auxiliary terms are defined as

X1 = − ϵ

κ

1 + φ

ζ
, X2 = −(ζ + 2− 2σ), X3 = −(1 + φ)

1− σ

ζ
.

Having expressed the linear terms in the loss function by quadratic terms, we plug
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these quadratic terms back into (C.1):

L ≈ E0

[
∞∑
t=0

βt

{
1

2

(
ζ + Φ(ζ + 1− σ)

)
(xnt )

2 +
1 + Φ

1 + γ

ϵ

2κ
π2
t

+ Φ
1 + φ

ζ
(1− σ)xnt at + Φxnt

}]

≈ E0

[
∞∑
t=0

βt

{
1

2

(
ζ + Φ(ζ + 1− σ) + ΦX2

)
(xnt )

2 +
1

2

(
1 + Φ

1 + γ

ϵ

κ
+ ΦX1

)
π2
t

+

(
1 + φ

ζ

[
Φ(1− σ)

]
+ ΦX3

)
xnt at

}]

≈ E0

[
∞∑
t=0

βt

{
1

2

ϵ

κ

ζ − Φ(1− σ)

ζ(1 + γ)
π2
t +

1

2

(
ζ − Φ(1− σ)

)
(xnt )

2

}]

≈ 1

2
E0

[
∞∑
t=0

βt

{
Ωππ

2
t + Ωx(x

n
t )

2

}]
, (C.5)

with auxiliary parameters

Ωπ =
ϵ

κ

ζ − Φ(1− σ)

ζ(1 + γ)
, Ωx = ζ − Φ(1− σ) .

As a last step, we get:

L ≈ 1

2
E0

[
∞∑
t=0

βt

{
π2
t + ωx (x

n
t )

2

}]
, (C.6)

where ωx = Ωx

Ωπ
= κ

ϵ
ζ(1 + γ). □

Different to the loss function in the main text, (C.6) does not include a target
level for the natural output gap. While the weight on output stabilization is still
positively related to the externality, divine coincidence still holds: a central bank
that chooses not to internalize the effect of output expansions on economic damages
associated with emission externalities can and should perfectly close inflation and
natural output gap.
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