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Non-technical summary 

Research Question 

Cash is the most frequently used means of payment at the point of sale in Germany. The 
Bundesbank operates a nationwide branch network to provide credit institutions and 
retailers with high-quality cash at all times. These customers’ lodgements and withdrawals 
constitute the stock of banknotes of the regional branches. A more accurate forecast of 
lodgements and withdrawals might allow for more efficient inventory management and 
transportation planning, thus ensuring cash availability at all times. The performance of 
different data driven methods is thereby dependent on the unique characteristics of the 
dataset. To provide guidelines on the choice of methods in application, we benchmark 
different forecasting methods that represent the state of research in forecasting and are 
used in industry practice. 

Contribution 

Up to now, the Deutsche Bundesbank does not employ formal data driven cash demand 
forecasting on branch and denomination granularity. We use the daily transactions by six 
regional branches to explore the accuracy and inventory performance of three statistical, and 
two machine learning based forecasting methods. We benchmark each against a seasonal 
naive forecast. For accuracy, we evaluate point forecasts and uncertainty forecasts. For 
inventory performance, we measure service level (i.e., out of stock periods) in relation to 
held stock for varying target service levels. 

Results 

DeepAR, a neural network, delivers the best results in terms of accuracy and inventory 
performance and ETS, a statistical method, ranks second. Employing one these methods in a 
formalized forecasting process should allow for efficiency gains in transport and inventory 
planning, as it allows for fewer held inventory at the same service level. Although the central 
bank’s objective function in the storage of cash differs from that of industrial enterprises due 
to a clear focus on the ability of the branch network to pay out at all times, this study offers 
an interesting starting point for improving processes in inventories and logistics. 
 
 



Nichttechnische Zusammenfassung 

Fragestellung 

Bargeld ist das meistverwendete Zahlungsmittel an der Ladenkasse in Deutschland. Dies 
erfordert seitens der Bundesbank ein flächendeckendes Filialnetz, um Kreditinstitute und 
Einzelhändler jederzeit mit hochwertigem Bargeld zu versorgen. Die Einzahlungen und 
Abhebungen der Kunden bilden dabei den Banknotenbestand der regionalen Filialen. Eine 
genauere Vorhersage dieser Beträge kann eine effizientere Lagerhaltungsplanung und 
Transportplanung ermöglichen. Die Leistung verschiedener Prognosemethoden hängt dabei von 
den Merkmalen des jeweiligen Datensatzes ab. Um Leitlinien für die Wahl der Methoden in der 
Anwendung zu geben, vergleichen wir verschiedene Prognosemethoden. 

Beitrag 

Bisher verwendet die Deutsche Bundesbank keine formale datengestützte Bargeldbedarfs-
prognose auf Filial- und Stückelungsgranularität. Wir benutzen die täglichen Transaktionen 
von sechs regionalen Filialen, um die Prognosegenauigkeit und die Auswirkungen auf das 
Lagerhaltungsmanagement von drei statistischen und zwei auf maschinellem Lernen 
basierenden Prognosemethoden zu untersuchen. Wir vergleichen jede Methode mit einer sai-
sonalen naiven Prognose in Bezug auf Genauigkeit und Bestandsleistung. Für die Genauigkeit 
bewerten wir Punkt- und Unsicherheitsprognosen. Für die Bestandsleistung messen wir das 
Serviceniveau (d. h. die Zeiten, in denen keine Ware vorrätig ist) im Verhältnis zum gehaltenen 
Bestand bei unterschiedlichen Ziel-Serviceniveaus. 

Ergebnisse 

DeepAR, ein neuronales Netz, liefert das beste Ergebnis in Bezug auf Genauigkeit und 
Auswirkungen auf das Lagerhaltungsmanagement, ETS, eine statistische Methode, liefert die 
zweitbesten Ergebnisse. Außerdem verbessern alle berücksichtigten Prognosemethoden die 
naive Prognose erheblich. Der Einsatz einer dieser Methoden in einem formalisierten 
Prognoseprozess sollte Effizienzgewinne bei der Transport- und Bestandsplanung ermöglichen, 
da bei gleicher Auszahlungsbereitschaft weniger Bestände vorgehalten werden können. Obwohl 
sich die Ziele von Zentralbanken bei der Lagerung von Bargeld von den Zielen von 
Industrieunternehmen unterscheiden, da der Fokus auf der Fähigkeit liegt, jederzeit 
Auszahlungen vorzunehmen, bietet diese Studie einen interessanten Ansatzpunkt für die 
Verbesserung der Prozesse in Lagerhaltung und Logistik. 
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Abstract

Among the most important tasks of central banks is to ensure the availability of
cash to credit institutions and retailers. Forecasting the demand for cash on a
granular level is crucial in the process to keep logistics costs low, while being re-
silient to demand or supply shocks. Whereas to date, cash forecasts with central
banks mostly comprise structural models to define banknote production for the com-
ing years, our contribution is to combine features of macro level forecasting with
more granular and short term regional forecasts methods. We show in an inventory
simulation, that elaborate forecasting methods on granular level can substantially
improve inventory performance for this use-case. To guide the implementation of
a forecasting process at the Bundesbank, we benchmark statistical and machine
learning methods on demand and supply of cash, using anonymized data on trans-
actions of six regional branches of Deutsche Bundesbank. We use a pseudo out of
sample predictive performance framework to evaluate the accuracy of our forecasts
and perform an inventory cost simulation. We find that (i) DeepAR outperforms the
other benchmarks substantially on all data sets. (ii) ETS, ARIMA, and DeepAR
clearly outperform the naive benchmark in terms of accuracy across all data sets,
and inventory performance.
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1 Introduction

Cash payments at the point of sale are still the most important means of payments in
Germany (Bundesbank, 2022). Customers value cash payments owing to their simplicity,
finality, inclusiveness, independence of technical and data infrastructure, privacy and the
control over their expenses. The Bundesbank runs a nationwide network of 31 branches
to provide credit institutions and retailers with high quality banknotes at all times. Ac-
cordingly, in all of the Bundesbank branches, a substantial amount of inventory is held.
Together with customers’ cash demand, i.e. lodgements and processing capacities re-
duced by withdrawals, these constitute the stock of banknotes at the regional branches.
To ensure smooth and stable supply of banknotes for each denomination, transport and
inventory planning relies on forecasted regional cash demand.

The current planning process uses a weekly forecast of withdrawals and lodgements of
individual branches without a standardized forecasting process, where forecasts are done
implicitly manually. Based on these, the logistics centre for banknotes of the Bundesbank
plans the transports for filling or disposal. Thereby it takes into account various con-
straints such as deliveries from printing works, cross border and international transports
and the schedule of the accompanying regional police forces.

Improving the current forecast process by using formalized and accurate forecasting mod-
els might therefore help to improve on the ensurance of availability of cash, reduce inven-
tory, allocate resources, gain advance time for planning or save transports. Our central
contribution is to introduce this new forecasting use-case that is addressed by central
banks across the globe, but that is not dealt with in academic forecasting literature yet.
We offer insights on the value that state of the art forecasting methods can bring to it.
An apparent difference to forecasting in logistics for central banks compared to most in-
dustries is the absolute crucial availability of banknotes - i.e. a 100 percent service level
is required at the branches: ”Most obviously guardians of monetary stability must not
run out of their most trusted instrument“ (Hinge, 2022).

There are two other use-cases for cash demand forecasting that relate to the introduced
one: First, the issuers of legal tender currency make yearly or longer-term projections for
production requirements. These encompass break-downs for the denominational split of
the banknotes to be produced and incorporates replacement ratios for so called unfit ban-
knotes, i.e. torn and soiled banknotes which cannot be paid out any longer. For example
Miller (2017) and Bartzsch, Brandi, de Pastor, Devigne, Maddaloni, Restrepo, and Sene
(2023) use a broad range of structural time series models. Our use-case differs since we
forecast for cash management on operative level, which requires shorter forecast horizons
(21 days vs. several months), and spatially more granular forecasts (local branches vs.
whole countries).

Second, a strand of literature evolves around replenishment optimization problems for
ATMs. This has been the foundation of the NN5 competition (Crone, 2008), whose data
set is since used as a benchmark data set in several works (for example Ben Taieb, Bon-
tempi, Atiya, and Sorjamaa, 2012; Venkatesh, Ravi, Prinzie, and den van Poel, 2014).
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Also beyond the competition, the use-case has attracted forecasting researchers, for ex-
ample Riabykh, Suleimanov, Surzhko, Konovalikhin, and Ryazanov (2022) benchmarked
a Machine Learning pipeline against several statistical approaches on ATM data from
a large Russian bank, and Fallahtafti, Aghaaminiha, Akbarghanadian, and Weckman
(2022) analyze how the Covid19 pandemic influenced the ranking on prediction accuracy
for several methods on ATM data by a bank in Tehran. In our study we consider cash
demand for local central bank branches that deliver cash to commercial banks instead of
consumers. This introduces potentially different demand patterns and adds an additional
layer of forecast complexity compared to ATM-forecasting by incorporating features from
long term demand forecasting such as recycling and replacement ratio issues. Bundes-
bank branches might generate out-payable banknotes by processing paid-in banknotes on
the other day. The difference between processed banknotes and banknotes that must be
destroyed because of soil and stain issues, i. e. the replacement ratio, influences the stock
of out-payable banknotes and therefore delays replenishment.

To date in demand forecasting software applications, statistical and machine learning ap-
proaches are most commonly used. Models of both types can be trained by fitting one
model per time series, or a single model across multiple series. The former is referred
to as local or per series training and allows to focus on the very specific patterns of the
respective time series. The latter is commonly referred to as cross learning or global
learning and requires that a single model hast to learn the patterns of multiple time series
(Januschowski, Gasthaus, Wang, Salinas, Flunkert, Bohlke-Schneider, and Callot, 2020;
Smyl, 2020; Montero-Manso and Hyndman, 2021). Traditionally, the most prevalent sta-
tistical models, i.e. ETS and ARIMA, are trained locally (Hyndman and Athanasopoulos,
2018; O’Hara-Wild, Hyndman, and Wang, 2021). In contrast, Machine Learning models,
such as LightGbm and DeepAR blossomed specifically when trained globally, as these
require more available data to avoid excessive overfitting (Makridakis, Spiliotis, and Assi-
makopoulos, 2020; Salinas, Flunkert, Gasthaus, and Januschowski, 2020; Montero-Manso
and Hyndman, 2021; Kunz, Birr, Raslan, Ma, and Januschowski, 2023).

The data that we use in cash demand forecasting is small compared to large data sets
as they were for example used in the M5 competition (Makridakis et al., 2020), yet it is
relatively large in comparison to many macroeconomic studies. Therefore we benchmark
the accuracy of the local and global approaches on the data set of cash demand for
six regional branches with the Deutsche Bundesbank. As forecasting accuracy is only
opaquely connected with inventory performance (see for example Kourentzes, Trapero,
and Barrow, 2020), we further investigate the difference in inventory cost induced by the
various methods by a simulation approach.

In Section 2 we present an overview of the evaluated forecasting methods with a focus
on statistical versus machine learning methods. We then provide further insights on the
specific data challenges for cash distributions in Section 3. In Section 4.1 we outline
our evaluation framework for the accuracy benchmark, thereby pointing out the need
to evaluate pseudo out of sample predictive performance in comparison to in sample
evaluations which is the dominant evaluation scheme for many macroeconomic causal
studies. We present our results subsequently. In Section 4.2 we describe the inventory
performance evaluation framework, again followed by the results. We conclude with a
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summary of our main findings, limitations of the study and suggestions of future research
in Section 5.

2 Forecasting methods

The demand for cash on branch and denomination level varies strongly over time, as
illustrated in Section 3. In line with most forecasting tasks, the true data generating
process is unknown, i.e., we do not know the actual conditional distribution of cash de-
mand (Chatfield, 2000). Accordingly, we fit the forecast methods based on past observed
data. The evaluated forecasting methods thereby vary concerning their underlying as-
sumptions, ultimately leading to different forecasts. In the following, we describe the
evaluated forecasting methods.

2.1 Statistical versus Machine Learning forecasting

In statistical forecasting, there is an underlying assumption about the data generating
process, i.e., it is imposed that the time series follows some structure, including random-
ness, whose parameters are estimated based on data. Empirically for example exponential
smoothing and ARIMA models have been shown to be good local approximations of many
demand processes (Hyndman, 2008; Hyndman and Athanasopoulos, 2018). In practice
statistical models are usually combined with some model selection procedure. As we typ-
ically see a large amount of time series in business forecasting, doing this manually often
becomes cumbersome. Instead, the most used time series forecasting packages fit multiple
models from a model family and afterwards pick the one which minimizes an information
criteria, mostly AIC or BIC (see for example Hyndman and Khandakar, 2008).

By contrast, machine learning methods impose no, or few assumptions about the data
generating process (Hornik, Stinchcombe, and White, 1989; Schäfer and Zimmermann,
2006; Barker, 2020). This leads to challenges in the estimation efficiency, as the hypotheses
space becomes large (i.e., it can be chosen from a large amount of functions that fit the
data similar well), and hence the estimation can be more prone to overfitting than in
statistical forecasting. However, training in a global fashion, i.e., across many time series,
offers a remedy, as the method is forced to learn patterns that apply to the whole data
set. The most prevalent machine learning approaches are on one hand decision tree based
methods, such as Random Forests, XgBoost, and LightGBM (Makridakis et al., 2020;
Januschowski, Wang, Torkkola, Erkkilä, Hasson, and Gasthaus, 2022), on the other hand
various neural networks, with a dynamic development of new architectures are used (see
for example Smyl, 2020; Salinas et al., 2020).

Empirically, we see mixed result concerning the benefit of machine learning approaches
over statistical approaches: historically there was a broad consensus that simple (statisti-
cal) forecasting methods should be preferred over complex ones (Makridakis and Hibon,
2000). However especially in recent years evidence has intensified that machine learning
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models can improve accuracy over statistical approaches. Especially if machine learn-
ing models are trained in a global fashion, i.e., over multiple time series simultaneously,
thereby reducing overfitting (Makridakis et al., 2020; Makridakis, Spiliotis, Assimakopou-
los, Chen, Gaba, Tsetlin, and Winkler, 2020). Nevertheless, also if machine learning
models are globally applied, the benefit seems to lie in specific architectures. For example
Hewamalage, Bergmeir, and Bandara (2021) applied six commonly used recurrent neural
network architectures in combination with different preprocessing and training procedures
(in total 90 experiments), and found that none of the models significantly outperformed
the statistical benchmarks (ETS and ARIMA) on five out of six large datasets. See Goda-
hewa, Bergmeir, Webb, Hyndman, and Montero-Manso (2021) for a dynamically updated
overview of the performance of various models on multiple data sets.

The discussion shows that there is no forecasting model nor training-scheme that clearly
outperforms all other models/ training-schemes. Accordingly for our study, we select
some representative statistical and machine learning models that reflect upon the general
state of the art in forecasting research. These allow us to quantify the value of modern
forecasting approaches for the use-case at hand. Our goal is thereby the application and
evaluation on the specific use-case, not to draw conclusions about the general performance
of statistical versus machine learning models.

2.2 Benchmarked methods

In general, the performance of forecasting methods is highly dependent on the charac-
teristics of the data set on which they are evaluated, encouraging a “horses for courses”
approach, where the forecast method is chosen based on the specific data set (Petropou-
los, Makridakis, Assimakopoulos, and Nikolopoulos, 2014). Accordingly, in our study, we
evaluate various models on four data sets for physical cash distribution, to provide in-
sights which of these should be employed in practice and whether they can provide value
over simple benchmarks. Our data sets consist of 6 to 42 time series with smooth demand
on a daily frequency. That means they are small in comparison to most data sets where
global machine learning models dominated, and it does not exhibit mostly intermittent
time series which was the case for example in the M5 competition (Makridakis et al.,
2020). In the following, we provide a brief overview of the evaluated forecast methods.
For a detailed introduction we refer to the referenced literature.

Seasonal Naive: the forecasted value is the last observed value on the respective seasonal
period. For example the forecasted value for the next H Tuesdays would be the last
observed value of a Tuesday. We include this as benchmark, as it imposes no model
assumptions, besides daily seasonality, which is very apparent in our datasets.

ETS encompasses a family of models, which relies on decomposing a time series in a level,
trend, and seasonality component. Depending on the data, only some of the components
are included, requiring model selection beforehand, which is in our case done by selecting
the model that minimizes the in sample AIC (Hyndman and Khandakar, 2008). If only the
level component is included, ETS reduces for example to simple exponential smoothing,
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given by ŷt = αyt+(1−α)ŷt−1, with the smoothing parameter α, the actual observations yt,
with t ∈ 1, ..., T , and its forecast ŷ. α is thereby estimated for a specific time series, using
only data of this time series. The trend and/ or the seasonality component are smoothed
in a similar fashion if included, and accordingly the relation between the parameters and
the forecast remains linear in all cases, facilitating quick estimations that are proven
optimal, for the DGP assumption imposed by the model.

ARIMA as well encompasses a family of models, consisting of autoregressive terms (i.e.,
the lagged actual observations of the time series), smoothing terms (i.e., the lagged previ-
ous forecast errors by the model), and n-th order differencing of the original time series, to
obtain stationarity (Hyndman and Athanasopoulos, 2018). Similar to ETS, not all com-
ponents are necessarily included, and model selection has to be done as well in similar
fashion. An ARMA forecast method with a lag-one autoregressive term, a lag-one moving
average term, and an intercept is then for example given as ŷt = c+ϕ1yt−1+θ1(yt−1−ŷt−1),
where the parameters c, ϕ1, and θ1 need to be estimated. Again, the models remain linear
in their coefficients in all cases and are trained per single time series.

As both, ARIMA and ETS, rely on an assumption about the data generating process,
prediction intervals can be calculated based on analytic formulae and the one step ahead
prediction errors for the additive ETS models and most ARIMA models. The seasonal
naive forecast can be seen as a special case of ARIMA model, where as well an analytic
formula for prediction intervals is available. In our experiments, we rely on the fable
package by O’Hara-Wild et al. (2021), which uses these when available for the chosen
model and otherwise relies on simulated future paths (Hyndman and Athanasopoulos,
2018). If not otherwise noted we use the standard settings of the package. Svetunkov
(2023, chapter 18.1) describes how simulation paths for uncertainty estimates with ETS
can be obtained. For a more extensive introduction into ETS and ARIMA, see Hyndman
(2008); Hyndman and Athanasopoulos (2018); Svetunkov (2023). Specifically Hyndman
and Athanasopoulos (2018, chapters 8.4 and 9) provide the equations, model selection
and parameter estimation methods that we use for the ETS, and ARIMA models.

DeepAR combines distributional assumptions with a neural network, usually trained in
a global fashion (Salinas et al., 2020). Instead of forecasting the expectation of a time
series, as ETS and ARIMA do, the parameters of an assumed distribution are forecasted.
Accordingly, the loss function corresponds to the likelihood of the forecasted distribu-
tional parameters, given the training data. For an assumed normal distribution, the loss

would be for example calculated as l(yt|µt, σt) = Nµt,σt(yt) =
1

σt

√
2π

exp
(

(−(yt−µt)2)

2σ2
t

)
, with

the conditional expectation µt and the conditional variance σ2, both output by the final
nodes. Accordingly, by default, we can obtain prediction intervals, quantiles or any other
form of uncertainty estimation from the models trained with this loss and final node. We
combine it with a recurrent network, as originally proposed by Salinas et al. (2020) and a
simple feed forward network, as implemented in the gluonts package (Alexandrov, Beni-
dis, Bohlke-Schneider, Flunkert, Gasthaus, Januschowski, Maddix, Rangapuram, Salinas,
Schulz, Stella, Türkmen, and Wang, 2020). In the following we refer to the former as
DeepAR, and the latter as Multi Layer Perceptron (MLP).
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MLPs are the simplest form of neural networks. They consist of stacked linear and non-
linear functions that transform a feature vector (the independent variables) into an output
vector (the dependent variable). Thereby the output of one layer serves as input for the
next layer and finally the prediction. A layer usually consists of several nodes. If we
consider a single layer perceptron with a single node, the input of the node is given by
a weighted sum of the features, in our case lagged variables yt−i, i ∈ 1, ..., K and some
constant: Z = w1,0+

∑
i=1 Kw1,iyt−i. This is then transformed by a non-linear activation

function, for example a sigmoid function, and another linear weight to form the output:
yt = w2,0

exp (Z)
1+exp (Z)

. The weights wj,i are fitted based on data during training. As the
weights are embedded in a non-linear function, the model has non-linear coefficients,
preventing an optimal closed form solution (Hyndman and Athanasopoulos, 2018).

Recurrent neural networks also embed linear and non-linear functions, but in addition
they use a state vector which models the dynamics of the time series over time. Such,
they can be seen as a non-linear adaptation of state space models such as the introduced
ETS models. In our study we consider a sequence-to-sequence recurrent neural network
with LSTM cells, as originally proposed by Salinas et al. (2020). See as well Hewamalage
et al. (2021) for an introduction. In our experiments, we rely on the mxnet implementation
in Alexandrov et al. (2020) for the neural networks. For both neural networks, we form
an ensemble of ten independently initialized models, as this can improve accuracy and
desensitizes the results against performance differences due to random initialization. We
train DeepAR and the MLP globally per data set. The other two methods, ARIMA and
ETS are trained locally. Table 5 in the Appendix summarizes the hyper parameters for
the two machine learning models.

2.3 Feature engineering

Many of the considered time series exhibit apparent seasonality on a daily level, around
holidays and during christmas season. Further, domain experts suggested yearly and
monthly seasonality. Accordingly, we encode the following features: (i) dummy variables
per weekday, (ii) per month, (iii) for public holidays at which no cash is distributed, (iv)
for the week before Christmas, the days between 26th of December, the first of January,
and the first 5 workdays in a year, and (v) triangular variables (sinus and cosinus) for
the day per month, and the week per year. We add the features for each forecasting
model that can by default use these (MLP, ARIMAX, DeepAR). We did not include the
features for ETS, as in its standard implementation it is univariate. Additionally, we add
a univariate ARIMA as benchmark.

3 Data

To facilitate inventory management and transportation planning, a forecast of the net
demand for banknotes per denomination and branch is required. We cannot observe
this directly, instead it results from the difference between withdrawals and reissuable
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lodgements per denomination and branch:

net demand = withdrawals− reissuable lodgements.

For withdrawals, historical data of cash orders is readily available as professional cash
handlers are required to submit their orders per branch and in number of notes per
denomination, and we forecast it with an horizon of 7 days. There is no required lead
time on cash orders. Reissuable lodgements on the other hand need to be calculated based
on different forecasts, as we first observe the overall value of lodged notes, and only after
these are processed, the denomination and whether they are reissuable becomes known.
However, between lodgement and processing there is a time lag of up to two weeks,
depending on the current local workload. Accordingly, in line with the domain experts,
we forecast per branch: (i) the value of deposits with an horizon of 7 days; (ii) the share
of the respective denomination with an horizon of 21 days; (iii) the share of reissuable
banknotes per denomination with an horizon of 21 days; and (iv) the cash demand per
denomination with an horizon of 7 days. From the first three forecasts, a forecast for the
lodged reissuable number of notes per denomination and branch can be calculated, and
then from the cash demand forecast also the net demand per denomination and branch.
In the following we focus our experiments on the four mentioned forecasts, and evaluate
them independently. Table 1 provides an overview of the used data.

Table 1: Data characteristics

dataset granularity interval from - to # time
series

points per se-
ries

cash orders daily [0,∞) 02.01.2017 -
19.05.2022

36 1964

lodgements
overall value

daily [0,∞) 02.01.2017 -
19.05.2022

6 1964

lodgements share
per denomination

daily [0, 1]
(ratio)

02.01.2017 -
19.05.2022

42 1964

lodgements share
reissuable

daily [0, 1]
(ratio)

02.01.2017 -
19.05.2022

36 1964

The time series in all considered data sets vary over time and exhibit apparent daily
seasonality. Figure 1 shows exemplary the distribution of daily cash orders per weekday
for Villing-Schwenningen and the 20 Euro denomination. The demand for cash correlates
highly between different branches and different banknotes. Tables 2 and 3 shows exem-
plary the correlation matrix for the different notes in a single branch, and the correlation
matrix between branches for the five Euro denomination, respectively. This high correla-
tion suggests that learning across series might be beneficial, as the demand patterns seem
to be very similar across the different time series.
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Figure 1: Distribution of cash orders for 20 Euro notes per weekday in Villing-
Schwenningen

Table 2: Pearson correlation between cash demand of different denominations in one
branch

denomination five ten twenty fifty hundred two hundred

five 1.00 0.97 0.95 0.96 0.87 0.40
ten 0.97 1.00 0.99 0.99 0.92 0.46
twenty 0.95 0.99 1.00 0.99 0.91 0.46
fifty 0.96 0.99 0.99 1.00 0.93 0.50
hundred 0.87 0.92 0.91 0.93 1.00 0.62
two hundred 0.40 0.46 0.46 0.50 0.62 1.00

Table 3: Pearson correlation between cash demand of five euro notes across branches

Branch 1 Branch 2 Branch 3 Branch 4 Branch 5 Branch 6

Branch 1 1.00 0.76 0.84 0.83 0.77 0.84
Branch 2 0.76 1.00 0.79 0.79 0.73 0.75
Branch 3 0.84 0.79 1.00 0.93 0.93 0.91
Branch 4 0.83 0.79 0.93 1.00 0.91 0.91
Branch 5 0.77 0.73 0.93 0.91 1.00 0.91
Branch 6 0.84 0.75 0.91 0.91 0.91 1.00

Note that it is also common practice to send unprocessed banknotes to other branches
to make better use of spare processing capacity, which can further extend the mentioned
time lag, and more importantly, blur the traceability of the deposits to their original
branches. We do not consider this in our forecast or evaluation scheme. Further, 500
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Euro notes are only considered for the share of of notes per lodgement, as these are not
issued any more, and are thus not relevant for the other data sets.

4 Evaluation set up and empirical findings

We are interested in finding the forecast method that minimizes the cost for physical cash
distribution while allowing for a high service level, when planned upon it. Accordingly, we
are not primarily interested in finding causal relationships but instead focus on forecast
accuracy and cost of decisions, given the forecast of the respective method. A full end
to end simulation of forecasts and overall planning (including transportation scheduling,
routing, and inventory management) is not possible due to data confidentiality reasons.
Instead we provide (i) an accuracy benchmark over various metrics and (ii) an inventory
simulation assuming a simplified inventory policy, as forecast accuracy is only loosely
connected with inventory performance and we believe this to be a better proxy for the
overall process than only accuracy (Kourentzes et al., 2020). For both approaches, we
evaluate over rolling origins, i.e., we split the data set iteratively in training and test set,
thereby desensitizing the evaluation of special time periods (Tashman, 2000). Further
we evaluate over all time series in the four data sets, to obtain a representative result.
The required horizons per data set are dictated by the business processes, (see Section 3)
and we average across them for the accuracy metrics. For the inventory simulation the
respective cumulative lead time demand quantile is the input for the inventory policy. In
the following, we describe both evaluation procedures.

4.1 Accuracy evaluation

Table 4 gives an overview over the dimensions of evaluation. We evaluate each time series
across thirty equally spaced rolling origins: O = {01.03.2021, 13.03.2021, 26.03.2021, ...,
28.02.2021}. Together with the different forecast horizon and number of time series, we
accordingly evaluate 6 ∗ 30 ∗ 7 = 1.260 errors on the smallest, and 42 ∗ 30 ∗ 21 = 26.460
errors on the biggest data set, which we assume statistically suffice for evaluating the
six models under consideration. The different error metrics account for different central
tendencies of the predictive distribution: The mean squared error (MSE) accounts for
the mean, the mean absolute error (MAE) accounts for the median, and the pinball loss
(PIN) for the respective quantile (Gneiting and Raftery, 2007; Kolassa, 2020). Further
we evaluate forecast bias, i.e. systematic over- or underforecasting with the mean error
(ME). All the evaluated forecast methods assume a normal distribution, where the mean
estimate equals the median estimate, and accordingly we use the mean forecast for both,
the MAE and the MSE evaluation. To account for the different scales of time series, and
facilitate comparison across time series, we scale each metric by the respective accuracy
of the seasonal naive forecast per series. In the following we provide the equation for each
of the used error metrics. We denote the expectation forecast at origin t with forecast
horizon h for yt+h by ŷt,h, and the γ-quantile forecast as q̂

[γ]
t,h. H is the set of evaluated
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origins and horizons respectively:

AME =

∣∣∣∣∣ 1

|O|
1

|H|
∑

t∈O,h∈H

yt+h − ŷt,h

∣∣∣∣∣ relAME =
AMEm

AMEseasonal naive

MSE =
1

|O|
1

|H|
∑

t∈O,h∈H

(yt+h − ŷt,h)
2 relMSE =

MSEm

MSEseasonal naive

MAE =
1

|O|
1

|H|
∑

t∈O,h∈H

|yt+h − ŷt,h| relMAE =
MAEm

MAEseasonal naive

mPIN[γ] =
1

|O|
1

|H|
∑

t∈O,h∈H

PIN(yt+h, q̂
[γ]
t,h) relPIN =

PIN[γ]
m

PIN
[γ]
seasonal naive

PIN =

{
(yt+h − q̂

[γ]
t,h)γ, if yt+h ≥ q̂

[γ]
t,h

(q̂
[γ]
t,h − yt+h)(1− γ), if yt+h < q̂

[γ]
t,h

Table 4: Summary of evaluation setup

dataset origins horizons metrics # time series

cash orders 30 origins, uniformly
between 01.03.2021
and 28.02.2022

1-7 rMSE, rMAE,
rAME, rPIN

36

lodgements
overall value

30 origins, uniformly
between 01.03.2021
and 28.02.2022

1-7 rMSE, rMAE,
rAME, rPIN

6

lodgements
share per note

30 origins, uniformly
between 01.03.2021
and 28.02.2022

1-21 rMSE, rMAE,
rAME, rPIN

42

logdements
share reissuable

30 origins, uniformly
between 01.03.2021
and 28.02.2022

1-21 rMSE, rMAE,
rAME, rPIN

36

Figures 2, 3, 4, and 5 summarize the results of the accuracy benchmark study. Further,
we provide the respective number in Tables 6, 7, 8, and 9 in the Appendix. We find
that in most cases, most elaborated forecast methods outperform the naive benchmark.
Further we find:

• DeepAR is across all four datasets the most accurate method in terms of bias, mean
forecasts, and the 90 % quantile forecast. ETS performs similar to ARIMA across
data sets.

• Counter intuitively, even though a logistic distribution should fit the lodgements,
share reissuable and lodgements, share denominations datasets better, DeepAR with
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Figure 2: Accuracy per method and metric for withdrawals

an assumed normal distribution outperforms DeepAR with an assumed logistic dis-
tribution on lodgements, share denominations.

• ARIMAX performs worse than the naive forecast on lodgements, overall value, and
substantially worse than the other methods on withdrawals. It performs similar to
ETS and ARIMA on lodgements, share denominations and outperforms these on
lodgements, share reissuable.

4.2 Inventory simulation

Forecast accuracy and inventory performance of forecast methods are not linearly related
with each other (Kourentzes et al., 2020), and accordingly the evaluated accuracy met-
rics only provide a limited proxy for the evaluation of forecast methods. Therefore, we
additionally benchmark the value of the different forecasts with an inventory simulation
study. Thereby we predict in a rolling fashion along a test set and simulate the inventory
decisions, given that forecast. We do so for each denomination and branch. This allows
us to calculate the achieved service level, along with the overall inventory, and compare
these across methods. We assume an order up to policy with backorders and continous
review. See Axsäter (2015) for an introduction.
In the considered policy, in each period the forecasted cumulative lead time demand is
calculated. For each of the considered methods, we obtain N samples of the predictive
distributions per period ŷt,s, and we calculate sample paths of the lead time cumulative

distribution for lead time T by L̂s,t =
∑T

t=1 ŷt,s . To achieve the required service level γ, we

need to plan on the respective quantile of this distribution St = Q(L̂s, s = {1, ..., N}, γ),
with Q(·) being the quantile function (Axsäter, 2015, pages 77 and 81). As estimation
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Figure 3: Accuracy per method and metric for lodgements, overall value
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Figure 4: Accuracy per method and metric for lodgements, share reissuable
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Figure 5: Accuracy per method and metric for lodgements, share denominations

of quantiles becomes inefficient on high probabilities (Taylor, 2021), we assume a condi-
tionally normal distributed demand and estimate it by the empirical mean and standard
deviation of the cumulative lead time demand. Then the quantiles can be calculated
analytically.

We account further for the current stock on hand li in period i and the previous orders
which arrive during the lead time

∑i−1
t=i−T ot. The ordered quantity in i, which will arrive

in i+ T is then calculated as:

ot = max(St − lt −
i−1∑

t=i−T

ot, 0),

We simulate the placed order for all types of currently used notes, all six considered
branches, and for each day from 30.07.2021 to 30.04.2022. To facilitate evaluation, we
only consider cash orders and omit cash deposits. We evaluate the achieved service level
and the on average held stock. The achieved service level is calculated by the share of
out of stock periods, i.e., the periods where the available stock was smaller than the
actual demand. Our aim is to match or exceed the target service level, while holding few
average stock as this induces inventory holding cost. We can rank the different forecasting
approaches accordingly. For each forecast method, we evaluate six target service levels
(0.5, 0.7, 0.8, 0.9, 0.95, 0.99) and we consider three different lead times (7 days, 14 days,
21 days).

Figures 6, 7, and 8 summarize the findings of the inventory study. Each solid coloured
line corresponds to one forecasting method and shows the relation between held average
stock and the achieved service level. The farther left top a method is, the better is the
respective inventory performance, as with the same held inventory a higher service level
is reached. The black, dotted vertical lines show the deviation between achieved service
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level and target service level. If they are below the respective line, the target service level
is exceeded, if they are above, the method fails to reach the target service level.

Similar to the accuracy ranking, DeepAR outperforms the the other methods. Notably,
ARIMAX ranks second across lead times at inventory performance, even though it ranked
relatively bad with respect to forecast accuracy. Further we find:

• Only DeepAR does not reach the target service level, as it seems to underestimate
the forecast uncertainty. This might be due to over-fitting, as the whole forecast
distribution is learned on the training-set. Such, if DeepAR is used for the discussed
use-case, some recalibration of the uncertainty estimate based on a hold-out set, or
choosing a broader distribution might be helpful. In its standard form it is not
suitable for our use-case, as central banks require reliably very high service levels.
All other methods almost always exceed the required service level, apart from the
50 % service level.

• All elaborate methods improve substantially over the naive benchmark.

• With increasing lead time, the required inventory to satisfy the target service level
increases substantially.
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Figure 6: Inventory performance curves for lead time 7
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Figure 7: Inventory performance curves for lead time 14
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Figure 8: Inventory performance curves for lead time 21
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5 Conclusion

We conducted a benchmark study on forecasting cash demand across all denominations in
six regional branches of the Bundesbank using four daily data sets on withdrawals, lodge-
ments and processed fit banknotes running from January 2017 to May 2022. We evaluated
ARIMA, ARIMAX, ETS, MLP, and DeepAR against the seasonal naive benchmark in
terms of forecast accuracy and inventory performance. We find that DeepAR outperforms
the other methods substantially with regard to accuracy of the mean forecast, the 90 %
quantile forecast, and out of sample bias. ARIMA and ETS perform similiar across data
sets, ARIMAX performs similar or worse than these in terms of accuracy on three out of
four data sets. All benchmarked methods, apart from ARIMAX and the MLP outper-
form the seasonal naive benchmark across all data sets and metrics. The improvement in
forecast accuracy translates also into better inventory performance, where DeepAR shows
the best inventory performance, however systematically does not reach the target service
level. In contrast to the accuracy study, ARIMAX ranks second best. All benchmarked
methods thereby exceed the required service level, apart from DeepAR, which falls short
of it, however at a substantially lower amount of held inventory. Accordingly we argue
that data driven forecasting, using neural networks can benefit the planning processes of
physical cash distribution by ensuring a higher service level at the same held inventory,
or vice versa.

Future work should focus on robust estimation of very high cumulative lead time demand
quantiles, as these are required to ensure the availability of cash even under demand
or supply shocks. Further, we suggest to evaluate the different forecasting methods in
combination with the inventory routing problem, that includes not only the inventory
management in the branches but also the required transports, as costs induced by these are
substantial due to the high security requirements with further restrictions like availability
of accompanying regional police forces. To improve acceptance of the evaluated Machine
Learning methods, we further suggest to investigate explainable versions of these.

We hope that this study can amalgamate features of longer term forecasting for banknote
production within central banks and replenishment optimization problems for ATM within
the industry and deliver a starting point for a more formalized and data driven forecast
for physical cash distribution at the Deutsche Bundesbank and other central banks.
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A Time series visualizations
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Figure 9: Time series for cash orders five (left) and ten (right) euro denominations in
Villing-Schwenningen
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Figure 10: Time series for logdements, overall value in the branches Villing-Schwenningen
(left) and Reutlingen (right)
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Figure 11: Time series for logdements, share per note, in the branches Villing-
Schwenningen (left) and Reutlingen (right)
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Figure 12: Time series for logdements, share per note, in the branches Villing-
Schwenningen and Reutlingen
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Figure 13: Time series for logdements, share reissuable, 5 Euro notes and 10 Euro notes
in the branch Villing-Schwenningen
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B Hyper parameter settings DeepAR and MLP

Table 5: Hyper parameters

parameter MLP DeepAR

no. of lags (context length) 2 ∗ prediction length 2 ∗ prediction length
hidden layers [40, 40, 40] [40, 40]
learning rate 1e-3 1e-3
maximum number of epochs 500 500
batches per epoch 100 100
batch size 32 32
weight decay 1e−8 1e−8

weight initialization xavier xavier
clip gradient 10.0 10.0
cell type - LSTM

C Tables with accuracy benchmark results

Table 6: Accuracy benchmark for withdrawals

Method rAME rMSE rMAE rPIN (0.9) rPIN (0.99)

seasonal naive 1.00 1.00 1.00 1.00 1.00
MLP 0.87 0.64 0.89 0.65 0.66
DeepAR 0.88 0.41 0.64 0.48 0.99
ARIMA 0.93 0.59 0.84 0.72 0.69
ARIMAX 0.96 0.73 1.06 0.74 1.15
ETS 0.93 0.55 0.83 0.70 0.67

Table 7: Accuracy benchmark for lodgements, overall value

Method rAME rMSE rMAE rPIN (0.9) rPIN (0.99)

seasonal naive 1 1 1 1 1
MLP 0.78 0.47 0.79 0.55 0.61
DeepAR 0.79 0.36 0.66 0.43 0.64
ARIMA 0.79 0.51 0.8 0.67 0.61
ARIMAX 2.13 1.19 1.49 1.11 0.96
ETS 0.76 0.5 0.82 0.66 0.59
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Table 8: Accuracy benchmark for lodgements, share reissuable

Method rAME rMSE rMAE rPIN (0.9) rPIN (0.99)

seasonal naive 1.00 1.00 1.00 1.00 1.00
MLP normal 0.62 0.46 0.83 0.48 0.60
DeepAR normal 0.40 0.19 0.41 0.23 0.59
DeepAR logit 0.42 0.20 0.37 0.19 0.58
ARIMA 0.78 0.52 0.97 0.54 0.48
ARIMAX 0.73 0.33 0.81 0.48 0.75
ETS 0.82 0.52 1.04 0.53 0.47

Table 9: Accuracy benchmark for lodgements, share denominations

Method rAME rMSE rMAE rPIN (0.9) rPIN (0.99)

seasonal naive 1.00 1.00 1.00 1.00 1.00
MLP normal 1.16 0.84 1.04 1.32 1.37
DeepAR normal 0.70 0.45 0.65 0.44 0.81
DeepAR logit 0.74 0.82 0.71 0.56 1.30
ARIMA 0.85 0.67 0.96 0.67 0.75
ARIMAX 0.93 0.63 1.00 0.65 0.94
ETS 0.87 0.67 0.98 0.65 0.75
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Schäfer, A. M. and H. G. Zimmermann (2006). Recurrent neural networks are universal
approximators. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern,
J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Ter-
zopoulos, D. Tygar, M. Y. Vardi, G. Weikum, S. D. Kollias, A. Stafylopatis, W. Duch,
and E. Oja (Eds.), Artificial Neural Networks – ICANN 2006, Volume 4131 of Lecture
Notes in Computer Science, pp. 632–640. Berlin, Heidelberg: Springer Berlin Heidel-
berg.

Smyl, S. (2020). A hybrid method of exponential smoothing and recurrent neural networks
for time series forecasting. International Journal of Forecasting 36 (1), 75–85.

Svetunkov, I. (2023). Forecasting and Analytics with the Augmented Dynamic Adaptive
Model (ADAM). Chapman and Hall/CRC.

Tashman, L. J. (2000). Out-of-sample tests of forecasting accuracy: an analysis and
review. International Journal of Forecasting 16 (4), 437–450.

Taylor, J. W. (2021). Evaluating quantile-bounded and expectile-bounded interval fore-
casts. International Journal of Forecasting 37 (2), 800–811.

21



Venkatesh, K., V. Ravi, A. Prinzie, and D. den van Poel (2014). Cash demand fore-
casting in atms by clustering and neural networks. European Journal of Operational
Research 232 (2), 383–392.

22


	Non-technical summary
	Nichttechnische Zusammenfassung
	1 Introduction
	2 Forecasting methods
	2.1 Statistical versus Machine Learning forecasting
	2.2 Benchmarked methods
	2.3 Feature engineering

	3 Data
	4 Evaluation set up and empirical findings
	4.1 Accuracy evaluation
	4.2 Inventory simulation

	5 Conclusion
	A Time series visualizations
	B Hyper parameter settings DeepAR and MLP
	C Tables with accuracy benchmark results
	References
	Abstract_39.2024.pdf
	Non-technical summary
	Nichttechnische Zusammenfassung
	1 Introduction
	2 Forecasting methods
	2.1 Statistical versus Machine Learning forecasting
	2.2 Benchmarked methods
	2.3 Feature engineering

	3 Data
	4 Evaluation set up and empirical findings
	4.1 Accuracy evaluation
	4.2 Inventory simulation

	5 Conclusion
	A Time series visualizations
	B Hyper parameter settings DeepAR and MLP
	C Tables with accuracy benchmark results
	References




