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Abstract

This online appendix provides results and descriptions that supplement our paper.
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I SPF data and measurements

This appendix provides further information about the survey data used in our paper and ob-

tained from the Survey of Professional Forecasters (SPF) for the US. In addition, this appendix

describes additional details about the mapping between the survey data and the model. Finally,

this appendix assesses potential inconsistencies between observed SPF forecasts for quarterly

and annual forecast targets and the potential for such inconsistencies to generate excessively

volatile imputations in our model’s term structure of expectation, when assuming that both

quarterly and annual forecasts are observed without error.

I(a) Data availability

As described in the paper, we use SPF forecasts for four variables: growth in real GDP, the

unemployment rate, and inflation in CPI and GDP prices. For these variables, the SPF provides

fairly long samples of data, albeit with differing availabilities of forecasts at different forecast

horizons. The availability of forecasts at different horizons for each of the four variables is listed

in Table A.1. All forecast data listed in the table is used for our analysis (of course, for our

out-of-sample analysis, the data is used only subject to real-time availability).

In principle, to track forecasts for up to three calendar years ahead, our model’s state vector

should need to track (latent) quarterly forecasts, Ftyt+h, for up to h = 15 quarters ahead.

However, as described in Section 4 of the paper, the paucity of quarterly forecast data at longer

horizons allows us to discipline our models by assuming that forecasts converge to a common

Table A.1: Availability of SPF point forecasts

Fixed-horizon Fixed-event calendar years

Variable Mnemonic Quarters 0 – 4 next 2-year 3-year

Real GDP RGDP 1968Q4 1981Q3 2009Q2 2009Q2
Unemployment rate UNRATE 1968Q4 1981Q3 2009Q2 2009Q2
GDP price index PGDP 1968Q4 1981Q3 NA NA
CPI inflation CPI 1981Q3 1981Q3 2005Q3 NA

Note: The table reports the first quarters in which SPF predictions become available in our data
set for the stated variables and horizons. NA stands for not available. Prior to 1992, RGDP
corresponds to real GNP, while PGDP corresponds to the GNP implicit deflator. The SPF’s
published data files include point forecasts for RGDP and PGDP in levels, which we convert
to continuously compounded growth rates. The SPF also provides current year predictions
that are, however, disregarded in our analysis due to overlap with the quarterly fixed-horizon
predictions.
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Table A.2: Choice of maximal H in term-structure vector Yt

Variable Samples H

RGDP prior 2009Q2 5
since 2009Q2 12

UNRATE prior 2009Q2 5
since 2009Q2 12

PGDP entire sample 5

CPI prior 2005Q4 5
since 2005Q4 8

trend level sooner than for 15 quarters ahead. We denote the maximal horizon for which we

track deviations from trend by H. We generally choose H such that when the forecast origin is

in Q1, H points to the first quarter of the farthest annual horizon covered by the SPF forecasts.

An exception is made for data covering only SPF forecasts up to the next year, where H is

set to 5 (instead of 4), since the observed fixed-horizon SPF forecasts already extend through

h = 4. As part of our out-of-sample forecast analysis, models are (re-)estimated over different

sub-samples of data, and we adjust H accordingly. Reflecting the availability of long-horizon

SPF data for different variables, we set H as listed in Table A.2. Note that, even though the

state vector ends with Ftyt+H and H is no larger than 12, our endpoint assumption indicated in

the paper allows us to simulate forecast densities arbitrarily far ahead, and we report densities

up to 16 quarters ahead for all variables throughout.
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I(b) Measurement equations

This subsection provides examples of the measurement vector and the loading matrix introduced

in Section 4.4 of the main paper, defined as

Zt =

Zq,t

Za,t

 , (A.1)

Ct =

Cq,t

Ca,t

 , (A.2)

respectively, where the subscripts (q and a) reflect the partition of the arrays according to the

quarterly or annual horizons, and the time index t highlights that these objects vary over time

as a function of the available measurements. In the following examples, we take t = 2024Q1

as the first forecast origin, and then illustrate how the corresponding elements change when

we move to the next quarter, t = 2024Q2. Before illustrating the measurement equations with

examples for each variable and at different forecasting origins, we review the data definitions

used throughout the paper for outcome variables and SPF data.

I(b.1) Data definitions

As indicated in the paper, the (quarterly) outcome variable yt refers to the following data

definitions for each variable:

RGDP: We measure GDP growth by the annualized quarterly growth rate (400 times the log

change) of real GDP.

UNRATE: The quarterly average level of the unemployment rate.

PGDP: We measure inflation in GDP prices by the annualized quarterly growth rate of the

GDP deflator (as with RGDP, calculated as 400 times the quarterly log change).

CPI: For CPI inflation, we take the annualized simple growth rate of quarterly CPI levels.

For each variable, we denote quarterly outcomes as defined above by yt.

Considering their treatment in the SPF, the variables listed above can broadly be categorized

into two groups: Variables from the national income and product accounts (NIPA) and non-

NIPA variables. The NIPA variables are GDP growth and GDP price inflation, while the

non-NIPA variables are the unemployment rate and CPI inflation.
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For the non-NIPA variables, the SPF provides forecasts for the data definitions stated above.

In addition, for the non-NIPA variables, annual forecasts can be represented as four-quarter av-

erages of yt over the calendar year, whose realization we denote by ȳt, as defined in equation (11)

of the paper:

ȳt =
1

4
·

3∑
j=0

yt−j . (11)

For the unemployment rate, the annual forecast targets are defined as annual average levels.

For CPI inflation the annual forecasts target Q4/Q4 growth, which we approximate by the

arithmetic four-quarter mean of quarterly growth rates (so as to avoid further transformations

of the SPF quarterly forecasts).

In contrast, for the NIPA variables, the SPF provides (in the publicly available data files)

forecasts in levels. We convert these to log growth rates.1 Moreover, SPF calendar-year forecasts

for NIPA variables reflect annual-average levels. Denoting the quarterly level of a NIPA variable

by It, growth in the annual-average level for the calendar year ending at quarter t is measured

in equation (12) of our paper as follows:

ŷt ≡ 100× log

(
It + It−1 + It−2 + It−3

It−4 + It−5 + It−6 + It−7

)
, (12)

Of course, the definition of ŷt is non-linear, and to capture annual forecasts for GDP growth

(and inflation in GDP prices) we employ a log-linear approximation involving 7 quarterly growth

rates. The approximation itself has been popularized by the work of Mariano and Murasawa

(2003) on nowcasting, and its accuracy has been favorably evaluated in the context of SPF

forecasts by (amongst others) Patton and Timmermann (2011). Moreover, the approximation

is commonly used in the related literature on SPF forecasts, with notable examples provided by

Aruoba (2020), Crump, et al. (2023), and Patton and Timmermann (2011). Specifically, this

is a log-linear approximation, around a steady-state of zero growth, It/It−j = 1 for all j, and

with yt ≡ 400 · log (It/It−1), and is equation (13) of the paper we get:

ŷt ≈
100

4
·
(
log

It
It−4

+ log
It−1

It−5
+ log

It−2

It−6
+ log

It−3

It−7

)
,

= 1/16 · (yt + 2 · yt−1 + 3 · yt−2 + 4 · yt−3 + 3 · yt−4 + 2 · yt−5 + yt−6) . (13)

1Similar transformations are also applied, for example, by Aruoba (2020) and others.
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The measurement equations of our model, described further below, use the approximation in

(13) to relate the annual SPF forecasts measured as in (12) to forecasts (or lagged realizations)

of yt.

To recap, the SPF provides forecasts for targets yt+h, ȳt+h (annual forecasts of non-NIPA

variables), and ŷt+h (annual forecasts of NIPA variables). To match forecasts of annual average

levels and their growth rates, t + h should, of course, correspond to a date in Q4, so that

ȳt+h and ŷt+h denote outcomes that are realized at the end of a calendar year. We denote

the corresponding SPF forecasts collected at forecast origin t by Ftyt+h, Ftȳt+h, and Ftŷt+h,

respectively. At time t, we match observed forecasts from the SPF with measurement equations

for Ftyt+h, Ftȳt+h, and/or Ftŷt+h, for different (but separate) values of h ≥ 0. We treat the

calendar-year forecasts of the unemployment rate and CPI inflation as readings of Ftȳt+h, while

treating annual forecasts for growth in real GDP and GDP prices as data on Ftŷt+h. The

remainder of this appendix describes the details of this matching with specific examples for

each variable.

I(b.2) Real GDP growth

In Zq,2024Q1, we have y2023Q4 (real GDP growth of 2023Q4) and quarterly SPF point forecasts

(as of 2024Q1) targeting 2024Q1, 2024Q2, 2024Q3, 2024Q4 and 2025Q1, formally:

Zq,2024Q1 =[
y2023Q4, F2024Q1y2024Q1, F2024Q1y2024Q2, F2024Q1y2024Q3, F2024Q1y2024Q4, F2024Q1y2025Q1

]′
.

(A.3)

In Za,2024Q1, we have annual real GDP forecasts targeting 2025, 2026 and 2027 (note that

annual forecasts are associated with the fourth quarter of the target year):

Za,2024Q1 =

[
F2024Q1ŷ2025Q4, F2024Q1ŷ2026Q4, F2024Q1ŷ2027Q4

]′
. (A.4)
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The loading matrix takes the following form:

C2024Q1 =

 Cq,2024Q1

Ca,2024Q1

 (A.5)

=



1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 1
16

2
16

3
16

4
16

3
16

2
16

1
16 0 0 0 0 0

0 0 0 0 0 0 1
16

2
16

3
16

4
16

3
16

2
16

1
16 0

0 0 0 0 0 0 0 0 0 0 1
16

2
16

3
16

4
16



, (A.6)

where the horizontal line marks the distinction between the mapping into quarterly (upper part)

and annual average (lower part) growth rates. Also, note that the loading matrix reflects the

assumption that the term structure of SPF-consistent forecasts is flat beyond H = 12. In other

words, the gaps Ỹt+H+j are assumed to be zero for all j > 0 (thus Ỹ2027Q2 = Ỹ2027Q3 = · · · = 0),

and at those horizons only the trend loading matters, hence the forecasts are set identical to

the trend, with zero gaps.

When we move to the next quarter, t = 2024Q2, in Zq,2024Q2 we have y2024Q1 (real GDP

growth of 2024Q1) and quarterly SPF point forecasts (as of 2024Q2) targeting 2024Q2, 2024Q3,

2024Q4, 2025Q1 and 2025Q2, formally:

Zq,2024Q2 =

[
y2024Q1, F2024Q2y2024Q2, F2024Q2y2024Q3, F2024Q2y2024Q4, F2024Q2y2025Q1, F2024Q2y2025Q2

]′
,

(A.7)

hence compared to equation (A.3) all quarterly forecast targets (and the lagged realization)

move ahead by one quarter.

In Za,2024Q2, we have annual real GDP forecasts targeting 2025, 2026 and 2027, as before,

but as annual forecasts are associated with the fourth quarter of the target year, the forecast

horizons shrink by one quarter relative to equation (A.4):

Za,2024Q2 =

[
F2024Q2ŷ2025Q4, F2024Q2ŷ2026Q4, F2024Q2ŷ2027Q4

]′
. (A.8)
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The loading matrix, C2024Q2, has the following components:

Cq,2024Q2 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0


, (A.9)

and

Ca,2024Q2 =


0 1

16
2
16

3
16

4
16

3
16

2
16

1
16 0 0 0 0 0 0

0 0 0 0 0 1
16

2
16

3
16

4
16

3
16

2
16

1
16 0 0

0 0 0 0 0 0 0 0 0 1
16

2
16

3
16

4
16

3
16

 . (A.10)

with

C2024Q2 =

 Cq,2024Q2

Ca,2024Q2

 . (A.11)

Compared to C2024Q1 in equation (A.6), in equation (A.9) we see that Cq,2024Q2 = Cq,2024Q1

(i.e., the loadings associated with the lagged realization and the fixed-horizon forecasts remain

unchanged), while the non-zero elements of the first two rows of Ca,2024Q1 in equation (A.10)

shift to the left, and so does the third row, with the weight 3
16 appearing as the last (bottom

right) entry (i.e., the loadings associated with the fixed-event forecasts change, in line with

shrinking forecast horizons).

In case of a forecast origin in Q3, the measurement vector and loadings can be constructed

analogously to the previous examples. However, when the forecast origin is in Q4, we need

to adapt the procedures, on account of the next-year growth rate being modeled as a linear

combination of growth rates in several quarters that also comprise the 2nd quarter of the current

year, i.e., yt−2, whereas the state vector comprises only yt−1, and Ftyt+h for h ≥ 0. In principle,

a measure of yt−2 is contained in the lagged state vector. However, in our measurements, the

lagged realization of GDP growth contained in Yt is informed by the first release data available

at the time t round of the SPF. Instead, when t is in Q4, the reading of yt−2 relevant for

A.7



constructing Ftŷt+4 should be provided by the time t vintage of GDP data. Thus, short of

tracking data revisions in our state space, we adjust the data construction and measurement

loading for Ftŷt+4, when t is in Q4. Specifically, we define:

FQ4
t+4ŷt+4 ≡

16

15
·
(
Ft+4ŷt+4 −

yt−2

16

)
(A.12)

=
1

15
(yt+4 + 2 · yt+3 + 3 · yt+2 + 4 · yt+1 + 3 · yt + 2 · yt−1) . (A.13)

Consider the example of t = 2023Q4.2 The measurement vector and associated loadings for

the SPF’s quarterly fixed-horizon forecasts remains unchanged relative to our earlier examples

for forecast origins in Q1 and Q2. However, considering the annual fixed-event forecasts, the

measurement vector becomes

Za,2023Q4 =

[
FQ4

2023Q4ŷ2024Q4, F2023Q4ŷ2025Q4, F2023Q4ŷ2026Q4

]′
, (A.14)

and the associated measurement loadings are as follows:

Ca,2023Q4 =


2
15

3
15

4
15

3
15

2
15

1
15 0 0 0 0 0 0 0 0

0 0 0 1
16

2
16

3
16

4
16

3
16

2
16

1
16 0 0 0 0

0 0 0 0 0 0 0 1
16

2
16

3
16

4
16

3
16

2
16

1
16

 . (A.15)

I(b.3) Unemployment rate

In Zq,2024Q1, we have y2023Q4 (unemployment rate in 2023Q4) and quarterly SPF point forecasts

(as of 2024Q1) targeting 2024Q1, 2024Q2, 2024Q3, 2024Q4 and 2025Q1, formally:

Zq,2024Q1 =[
y2023Q4, F2024Q1y2024Q1, F2024Q1y2024Q2, F2024Q1y2024Q3, F2024Q1y2024Q4, F2024Q1y2025Q1

]′
.

(A.16)

In Za,2024Q1, we have annual average unemployment rate forecasts targeting 2025, 2026 and

2027 (note that annual forecasts are associated with the fourth quarter of the target year):

Za,2024Q1 =

[
F2024Q1ȳ2025Q4, F2024Q1ȳ2026Q4, F2024Q1ȳ2027Q4

]′
. (A.17)

2At the time of writing, the SPF has released only forecast data through 2024Q2. However, we would expect
the same definitions to continue to apply also for the 2024Q4 release.
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The loading matrix takes the following form:

C2024Q1 =

 Cq,2024Q1

Ca,2024Q1

 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
4



, (A.18)

where the horizontal line marks the distinction between the mapping into quarterly (upper part)

and annual average (lower part) unemployment rates. Also, note that the loading matrix reflects

the assumption that the term structure of SPF-consistent forecasts is flat beyond H = 12. In

other words, the gaps Ỹt+H+j are assumed to be zero for all j > 0 (thus Ỹ2027Q2 = Ỹ2027Q3 =

· · · = 0), and at those horizons only the trend loading matters, hence the forecasts are set

identical to the trend, with zero gaps.

When the forecast origin moves to the next quarter, t = 2024Q2, in Zq,2024Q2 we have

y2024Q1 (unemployment rate in 2024Q1) and quarterly SPF point forecasts (as of 2024Q2)

targeting 2024Q2, 2024Q3, 2024Q4, 2025Q1 and 2025Q2, formally:

Zq,2024Q2 =[
y2024Q1, F2024Q2y2024Q2, F2024Q2y2024Q3, F2024Q2y2024Q4, F2024Q2y2025Q1, F2024Q2y2025Q2

]′
,

(A.19)

hence compared to equation (A.16) all quarterly forecast targets (and the lagged realization)

move ahead by one quarter. In Za,2024Q2, we have annual average unemployment rate forecasts

targeting 2025, 2026 and 2027 as before, but as annual forecasts are associated with the fourth

quarter of the target year, the forecast horizons shrink by one quarter relative to equation (A.17):

Za,2024Q2 =

[
F2024Q2ȳ2025Q4, F2024Q2ȳ2026Q4, F2024Q2ȳ2027Q4

]′
. (A.20)
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The loading matrix takes the following form:

C2024Q2 =

 Cq,2024Q2

Ca,2024Q2

 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
4

1
4



. (A.21)

Compared to C2024Q1 in equation (A.18), in equation (A.21) we see that Cq,2024Q2 = Cq,2024Q1

(i.e., the loadings associated with the lagged realization and the fixed-horizon forecasts remain

unchanged), while the non-zero elements of the first two rows of Ca,2024Q1 shift to the left,

and so does the third row, with the weight 1
4 appearing as the last (bottom right) entry (i.e.,

the loadings associated with the fixed-event forecasts change, in line with shrinking forecast

horizons).

I(b.4) GDP price inflation

In Zq,2024Q1, we have y2023Q4 (GDP price inflation of 2023Q4) and quarterly SPF point forecasts

(as of 2024Q1) targeting 2024Q1, 2024Q2, 2024Q3, 2024Q4 and 2025Q1, formally:

Zq,2024Q1 =[
y2023Q4, F2024Q1y2024Q1, F2024Q1y2024Q2, F2024Q1y2024Q3, F2024Q1y2024Q4, F2024Q1y2025Q1

]′
.

(A.22)

In Za,2024Q1, we have annual GDP price inflation forecasts targeting 2025 (note that the

annual forecast is associated with the fourth quarter of the target year):

Za,2024Q1 =

[
F2024Q1ŷ2025Q4

]′
. (A.23)
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The loading matrix takes the following form:

C2024Q1 =

 Cq,2024Q1

Ca,2024Q1

 =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 1
16

2
16

3
16

4
16

3
16



, (A.24)

where the horizontal line marks the distinction between the mapping into quarterly (upper

part) and annual average (lower part) GDP price inflation rates. Also, note that the loading

matrix reflects the assumption that the term structure of SPF-consistent forecasts is flat beyond

H = 5. In other words, the gaps Ỹt+H+j are assumed to be zero for all j > 0 (thus Ỹ2025Q3 =

Ỹ2025Q4 = · · · = 0), and at those horizons only the trend loading matters, hence the forecasts

are set identical to the trend, with zero gaps.

When the forecast origin moves to the next quarter, t = 2024Q2, in Zq,2024Q2 we have y2024Q1

(GDP price inflation of 2024Q1) and quarterly SPF point forecasts (as of 2024Q2) targeting

2024Q2, 2024Q3, 2024Q4, 2025Q1 and 2025Q2, formally:

Zq,2024Q2 =[
y2024Q1, F2024Q2y2024Q2, F2024Q2y2024Q3, F2024Q2y2024Q4, F2024Q2y2025Q1, F2024Q2y2025Q2

]′
,

(A.25)

hence compared to equation (A.22) all quarterly forecast targets (and the lagged realization)

move ahead by one quarter.

In Za,2024Q2, we have annual GDP price inflation forecast targeting 2025 as before, but as

annual forecasts are associated with the fourth quarter of the target year, the forecast horizon

shrinks by one quarter relative to equation (A.23):

Za,2024Q2 =

[
F2024Q2ŷ2025Q4

]′
. (A.26)
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The loading matrix takes the following form:

C2024Q2 =

 Cq,2024Q2

Ca,2024Q2

 =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 1
16

2
16

3
16

4
16

3
16

2
16



. (A.27)

Compared to C2024Q1 in equation (A.24), in equation (A.27) we see that Cq,2024Q2 = Cq,2024Q1

(i.e., the loadings associated with the lagged realization and the fixed-horizon forecasts remain

unchanged), while the non-zero elements of Ca,2024Q1 shift to the left, with the weight 2
16

appearing as the last (bottom right) entry (i.e., the loadings associated with the fixed-event

forecast change, in line with shrinking forecast horizon).

In case of a forecast origin in Q3, the measurement vector and loadings can be constructed

analogously to the previous examples. However, when the forecast origin is in Q4, such as

t = 2023Q4, we need to amend the data definition and measurement loadings as described above

in the case of RGDP, and the measurement loadings for the (sole) annual forecast becomes:

Ca,2023Q4 =

[
2
15

3
15

4
15

3
15

2
15

1
15 0

]
. (A.28)

I(b.5) CPI inflation

In Zq,2024Q1, we have y2023Q4 (CPI inflation of 2023Q4) and quarterly SPF point forecasts (as

of 2024Q1) targeting 2024Q1, 2024Q2, 2024Q3, 2024Q4 and 2025Q1, formally:

Zq,2024Q1 =[
y2023Q4, F2024Q1y2024Q1, F2024Q1y2024Q2, F2024Q1y2024Q3, F2024Q1y2024Q4, F2024Q1y2025Q1

]′
.

(A.29)

In Za,2024Q1, we have annual Q4/Q4 CPI inflation forecasts targeting 2025 and 2026:

Za,2024Q1 =

[
F2024Q1ȳ2025Q4, F2024Q1ȳ2026Q4

]′
. (A.30)
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The loading matrix takes the following form:

C2024Q1 =

 Cq,2024Q1

Ca,2024Q1

 =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1
4

1
4

1
4

1
4 0

0 0 0 0 0 0 0 0 0 1
4



, (A.31)

where the horizontal line marks the distinction between the mapping into quarterly (upper part)

and Q4/Q4 (lower part) CPI inflation rates. Also, note that the loading matrix reflects the

assumption that the term structure of SPF-consistent forecasts is flat beyond H = 8. In other

words, the gaps Ỹt+H+j are assumed to be zero for all j > 0 (thus Ỹ2026Q2 = Ỹ2026Q3 = · · · = 0),

and at those horizons only the trend loading matters, hence the forecasts are set identical to

the trend, with zero gaps.

When the forecast origin moves to the next quarter, t = 2024Q2, in Zq,2024Q2 we have

y2024Q1 (CPI inflation of 2024Q1) and quarterly SPF point forecasts (as of 2024Q2) targeting

2024Q2, 2024Q3, 2024Q4, 2025Q1 and 2025Q2, formally:

Zq,2024Q2 =[
y2024Q1, F2024Q2y2024Q2, F2024Q2y2024Q3, F2024Q2y2024Q4, F2024Q2y2025Q1, F2024Q2y2025Q2

]′
,

(A.32)

hence compared to equation (A.29) all quarterly forecast targets (and the lagged realization)

move ahead by one quarter.

In Za,2024Q2, we have annual Q4/Q4 CPI inflation forecasts targeting 2025 and 2026 as

before, but the forecast horizon shrinks by one quarter relative to equation (A.30):

Za,2024Q2 =

[
F2024Q2ȳ2025Q4, F2024Q2ȳ2026Q4

]′
. (A.33)
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The loading matrix, C2024Q2, has the following components:

Cq,2024Q2 =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0


, (A.34)

and

Ca,2024Q2 =

 0 0 0 0 1
4

1
4

1
4

1
4 0 0

0 0 0 0 0 0 0 0 1
4

1
4

 , (A.35)

with

C2024Q2 =

 Cq,2024Q2

Ca,2024Q2

 . (A.36)

Compared to C2024Q1 in equation (A.31), in equation (A.34) we see that Cq,2024Q2 = Cq,2024Q1

(i.e., the loadings associated with the lagged realization and the fixed-horizon forecasts remain

unchanged), while the non-zero elements of the first row of Ca,2024Q1 in equation (A.34) shift

to the left, and so does the second row, with the weight 1
4 appearing as the last (bottom right)

entry (i.e., the loadings associated with the fixed-event forecasts change, in line with shrinking

forecast horizons).

A.14



I(c) Measurement error in annual forecasts

This appendix serves to motivate our choice for modeling data on annual SPF forecasts with

measurement error. To preview the main arguments of this appendix:

• In general, the goal of this paper is to treat observed SPF data largely as is, and we

maintain the assumption that treats quarterly fixed-horizon forecasts from the SPF as

observed without error.

• However, when jointly using data on quarterly and annual forecasts from the SPF, overlap

in their respective forecast targets raises the question of whether both types of readings

are perfectly consistent with each other. In case of next-year forecasts collected in Q4,

there is perfect overlap with fixed-horizon forecasts collected for h = 1, 2, 3, 4, and it is

straightforward to check whether both readings are a perfect match. As illustrated below,

quarterly forecasts collected in Q4 are indeed often close to the corresponding next-year

forecast reported by the SPF. However, deviations have not been infrequent either, and

at times even quite sizable.

• Moreover, as argued below, even small inconsistencies can lead to outsized effects on

imputed quarterly forecasts at longer horizons, as quarterly forecasts for the near term

are taken as given from the SPF.

I(c.1) Observed inconsistencies in next-year forecasts collected in Q4

In Q4, the SPF reports a set of quarterly forecasts for h = 0, 1, 2, 3, 4 as well as an annual

forecast for the next year. Evidently, the quarterly forecasts perfectly overlap with the next-

year forecast. Here we assess how well the reported next-year forecasts match what is implied

by the observed quarterly SPF forecasts (and lagged data if necessary).

To match quarterly SPF forecasts with the next year forecast, recall that, in case of the

unemployment rate the annual forecast is directly defined as the arithmetic average of unem-

ployment over the four quarters of the year. In case of CPI, the same holds approximately

(since the annual forecast is to reflect Q4/Q4 inflation, measured as a simple growth rate). As

discussed above in Appendix I(b), for the NIPA variables (GDP growth and inflation in GDP

prices), the annual forecast reflects an (approximate) linear combination of growth in the four

quarters of the targeted year, as well as the last three quarters of the previous year. Thus,
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Figure A.1: Observed inconsistencies between quarterly and next-year forecasts collected in Q4

(a) Real GDP growth
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Notes: Difference between actual and implied SPF annual forecasts for next year collected in
Q4. Implied SPF forecasts constructed from available quarterly forecast for one to four-quarters
ahead, as well as lagged data (as needed for GDP growth and GDP price inflation). Only Q4
observations since 1981Q4. (The SPF began reporting next-year forecasts in 1981Q3.)

in the case of NIPA variables, when matching the next-year forecasts with quarterly forecasts

collected in Q4, we also need to utilize the nowcast, as well as two lags of data.

Figure A.1 plots the difference between next year forecasts collected in Q4, and what is

implied for the same forecast target by the SPF’s quarterly fixed-horizon forecast that were

collected jointly with the annual forecast. All data definitions follow the procedures employed

in our model estimates, as described in Appendix I(b) above. Formally, according to the data

definitions employed in our paper, annual forecast targets are linear combinations of quarterly
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values, and we can generically write:

ŷt =

J−1∑
j=0

wjyt−j , (A.37)

with J = 7 and w0 = 1/16, w1 = 2/16, w2 = 3/16, w3 = 4/16, w4 = 3/16, w5 = 2/16, and

w6 = 1/16 in case of GDP growth and GDP price inflation, and J = 4 and wj = 1/4 in case

of the unemployment rate and CPI inflation.3 Figure A.1 then plots the difference between the

actual next-year forecast, denoted F o
t ŷt+4, and the implied value constructed from the quarterly

forecasts, Ftŷt+4 ≡
∑J−1

j=0 wjF
o
t yt+4−j . The superscript “‘o” in F o

t denotes observed SPF data

(or, if needed, lagged realized data known by the SPF respondents in real time).4

Overall, Figure A.1 shows that there are indeed some differences between the actual next-

year forecast from the SPF and what is implied by the corresponding quarterly SPF predictions.

For many observations of all variables, the differences are quite small (less than 10 basis points

(bp) in absolute value), but there are also cases when the differences are much larger than

that. The occurrence of sizable differences varies across variables. For the unemployment rate,

differences are always well below 5bp. For CPI inflation, there are notable differences in the

1980s and 1990s, with two particularly large outliers in 1981 and 1990, of about 100 and 70

basis points, respectively. For GDP growth, and GDP price inflation, differences do not exceed

30bp in absolute value, but there are still some observations with differences of 20bp or more,

in particular prior to 1990. All in all, this suggests that there are some measurement issues

and that these are quite unevenly distributed across time and variables. As we will argue next,

even small inconsistencies can lead to outsized effects on imputed quarterly forecasts at longer

horizons, as quarterly forecasts for the near term are taken as given from the SPF.

Consider the case of a forecast origin in Q3, henceforth denoted t. In this case, there is

large overlap between the observed SPF forecast for next year, F o
t ŷt+5, and what is covered by

the equally observed quarterly forecasts, F o
t yt+h for h = 0, 1, 2, 3, 4. In fact, quarterly forecasts

for h ≤ 4 (and lagged data) account for every component of Ftŷt+5 except for the forecast

of Q4 next year, Ftyt+5. In this case, a measurement equation of the form in (A.37) already

determines the imputed value for Ftŷt+5 without any further need for modeling the stochastic
3The notation adopted here generalizes a little the more specific notation for ŷt and ȳt as adopted in the

paper. At slight abuse of our earlier notation, we denote here annual forecasts for all variables simply by ŷt,
without distinguishing further between ŷt and ȳt.

4Lagged realized data is needed to construct Ftŷt+4 in case of GDP growth and GDP price inflation, for
which we have J = 7. Real time vintages that correspond to SPF rounds are obtained from the Philadelphia
Fed.

A.17



evolution of data and SPF:

F̂tyt+5 =
1

w0
·

Ftŷ
o
t+5 −

J−1∑
j=1

wjF
o
t yt+5−j

 , when t in Q3 , (A.38)

where the “hat” in F̂t denotes an imputed value. If the assumption is correct that annual

SPF forecasts map into the SPF’s quarterly forecasts without error, an imputation as in (A.38)

should hold exactly. However, as we have seen in Figure A.1 for the case when t is in Q4, this

is not always the case, casting doubt over the applicability of (A.38) when t is in Q3.

Instead, consider the case where the observed annual forecast is measured only with some

(potentially) small error, while we maintain the assumption that quarterly forecasts are observed

without error (so that Ftyt+j = F o
t yt+j for j ≤ 4). In this case, we can write the measurement

equation for the annual forecast as follows:

F o
t ŷt+5 =

J−1∑
j=0

wjFtyt+5−j + nt. (A.39)

But, application of an imputation, as in (A.38), that assumes the absence of measurement error

distorts the imputed value by the measurement error:

⇒ F̂tyt+5 =
1

w0
·

Ftŷ
o
t+5 −

J−1∑
j=1

wjF
o
t yt+5−j

 , when t in Q3, (A.40)

= Ftyt+5 +
1

w0
nt . (A.41)

With 1/w0 = 16 (for GDP growth and GDP inflation) or 1/w0 = 4 (for the unemployment

rate and CPI inflation), even small measurement errors in the annual forecast can lead to large

distortions in the imputed value for the forecast made in Q3 this year (t) for the quarterly

outcome in Q4 next year.

By a similar logic, observations in Q1 and Q2 for the SPF’s next-year and quarterly forecasts

directly restrict a weighted average of imputed values for the quarterly forecasts for the next

year. When the imputations are made based on an error-free measurement equation as in (A.37),

while the actual data is affected by measurement error, these restrictions on imputed values are

A.18



again distorted by measurement error:

When t in Q2: α̂t,5:6 ≡
1

w0
·

Ftŷ
o
t+6 −

J−1∑
j=2

wjF
o
t yt+6−j

 (A.42)

=
w0Ftyt+6 + w1Ftyt+5

w0 + w1
+

nt

w0 + w1
. (A.43)

And, when t in Q1: α̂t,5:7 =
1

w0
·

Ftŷ
o
t+7 −

J−1∑
j=3

wjF
o
t yt+7−j

 (A.44)

=
w0Ftyt+7 + w1Ftyt+6 + w2Ftyt+5

w0 + w1 + w2
+

nt

w0 + w1 + w2
. (A.45)

Notably, the weight on the measurement error in these calculations is increasing for imputations

made later in a given calendar year.

For simplicity, we call F̂tyt+5, α̂t,5:6, and α̂t,5:7 “naive” imputations. Figure A.2 plots these

naive imputations against data for realized outcomes and the observed next-year SPF. Overall,

the naive imputations appear to track (or predict) the data fairly well. Of note, α̂t,5:6, and α̂t,5:7

should reflect (weighted) averages of quarterly outcomes, which could be expected to be less

volatile than quarterly outcomes or forecasts thereof. Indeed, imputations made in Q3 (yellow

diamonds) tend to stand out more often than those made in Q1 and Q2 (orange squares and blue

circles, respectively). More importantly, Figure A.2 shows some patterns that are reminiscent

of what is shown in Figure A.1 for inconsistencies between observed and implied values for the

next-year forecast at Q4 origins (which are a direct reflection of measurement error): While the

naive imputations track the data particularly well for the unemployment rate and CPI inflation,

imputations made in Q3 for GDP growth and GDP inflation show notable outliers, which could

be indicative of the measurement error term in (A.41), and with decreasing effect for values

constructed in Q2 and Q1, as predicted by equations (A.43) and (A.45).

I(c.2) Excessively volatile imputations when treating annual forecasts without error

Of course, the arguments presented so far can only highlight the particular risk of distortions

in imputed values when annual forecasts are not perfectly consistent with quarterly forecasts.

And, the results shown in Figures A.1 and A.2 are at best indicative of the extent to which such

inconsistencies may be relevant in the data. At least for SPF rounds in Q4, the data suggests

that inconsistencies cannot always be neglected.

As such, we evaluated models that allow for measurement error in annual forecasts, as
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Figure A.2: Naive imputations of quarterly forecasts at longer horizons

(a) Real GDP growth
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Notes: “Naive” imputations, F̂tyt+5, α̂t,5:6, and α̂t,5:7, of quarterly forecasts at longer horizons
as defined in equations (A.41), (A.43), and (A.45), respectively. Imputations made in Q1, Q2,
and Q3 as indicated. Observations since 1981Q3, which is when the SPF reported its first
next-year forecast. For sake of readability of SPF information, COVID-19 outliers in realized
data are not shown.
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described in Section 4 of the paper, as well as versions that assume all SPF data are observed

without error. The latter case was also the basis for earlier versions of our manuscript. In light

of Figure A.1, we drop Q4 observations from the estimation data for models that assume annual

forecasts are observed without error.5

Strikingly, term structures of SPF-consistent forecasts that we imputed from models without

measurement error are notably more volatile than those imputed from models that allow for

measurement error in annual forecasts. This is particularly true for GDP growth and GDP price

inflation, where the volatility of imputed forecasts at longer horizons is much higher in models

that assume no measurement error in annual forecasts. Of course, these findings support the

argument that even small inconsistencies between quarterly and annual forecasts can lead to

outsized effects on imputed quarterly forecasts at longer horizons, as quarterly forecasts for the

near term are taken as given from the SPF. Moreover, in feedback received from forecasting

practitioners, the more “wiggly” imputations obtained from models that omit measurement

error were considered to be less credible. In a similar vein, Table A.3 shows that one-step ahead

forecasts of SPF data generated by a version of our model that assumes no measurement error

in annual forecasts are dramatically worse in predicting future survey data than our baseline

model which does assume measurement error (with results shown in Table 1 of the paper and

restated as Table A.4 below).

All told, these results lead us to prefer — and adopt in the revised paper — models that

allow for measurement error in observed annual SPF forecasts. Given the occasional nature

of inconsistencies that are directly detectable (Figure A.1) and related patterns in naive im-

putations made in different quarters of the year (Figure A.2), we chose (1) to specify separate

measurement error processes for data observed in different quarters of the year, and (2) to adopt

fat-tailed specifications for the measurement errors, which place much mass a priori on errors

being zero, while retaining the flexibility to fit occasionally sizable occurrences of errors. Details

of the measurement error specifications are described in Section 4 of the paper and Appendix II

below. Throughout, we maintain the specification that quarterly SPF forecasts are observed

without error, in keeping with the goal of this paper to treat observed SPF data largely as is.

Figures A.3 through A.6 report time series of estimates of the measurement noise in annual

forecasts — specifically, posterior medians in observed SPF forecasts for the next calendar year
5In results not shown, we also evaluated models that drop Q4 observations from the estimation data for

models that allow for measurement error in annual forecasts. The results were largely similar to those presented
in the paper.
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ahead up through three years ahead (for variables with forecasts at these horizons), for both

the MDS and VAR specifications. These estimates show that, in keeping with our choice of a

horseshoe specification of the shocks’ distributions, the noise shocks are usually small, but very

occasionally large. This pattern is especially stark for the next-year forecasts. The relatively

very large noise shocks in Figure A.3 tend to occur in the instances of large inconsistencies

between quarterly and next-year forecasts indicated in Figure A.1, which are primarily early in

the sample and to a lesser extent around the time of the outbreak of the COVID-19 pandemic.

However, in keeping with the logic described above with imputation issues, the size of the

noise shocks tends to be generally larger than the size of the inconsistencies; this naturally

stems from the large weights that some quarters of forecasts can get due to the weights of the

Mariano-Murasawa approximation of annual GDP growth and GDP price inflation. Another

evident pattern in the estimates is that, except in the case of the unemployment rate (for which

noise shocks are generally small) the noise shocks tend to be larger (in absolute value) at the

year-ahead horizon than longer horizons. To the extent that the measurement error is linked

to inconsistencies in annual and observed quarterly forecasts, this is to be expected, given that

quarterly forecasts are only observed at shorter horizons and therefore consistency is only an

issue for the year-ahead forecasts. Finally, the estimated shocks are similar for the MDS and

VAR specifications, most clearly and strongly for the year-ahead horizon.
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Figure A.3: Estimated noise in SPF next-year forecasts (MDS, 2024Q1)
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Notes: Posterior medians of noise levels in observed SPF forecasts for the next calendar year
ahead. Q4 observations marked by a diamond. Estimates from the MDS model using data
through 2024Q1.
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Figure A.4: Estimated noise in SPF next-year forecasts (VAR, 2024Q1)
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Notes: Posterior medians of noise levels in observed SPF forecasts for the next calendar year
ahead. Q4 observations marked by a diamond. Estimates from the VAR model using data
through 2024Q1.
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Figure A.5: Estimated noise in SPF two-years ahead forecasts (2024Q1)

MDS model

(a) Real GDP growth

2010
2012

2014
2016

2018
2020

2022
2024

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Q4

(b) Unemployment rate

2010
2012

2014
2016

2018
2020

2022
2024

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(c) CPI inflation

2007 2010 2012 2015 2017 2020 2022
-0.2

-0.1

0

0.1

0.2

VAR model

(d) Real GDP growth

2010
2012

2014
2016

2018
2020

2022
2024

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(e) Unemployment rate

2010
2012

2014
2016

2018
2020

2022
2024

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

(f) CPI inflation

2007 2010 2012 2015 2017 2020 2022
-0.4

-0.2

0

0.2

0.4

0.6

Notes: Posterior medians of noise levels in observed SPF forecasts for the next calendar year
ahead. Q4 observations marked by a diamond. Estimates based on data through 2024Q1.
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Figure A.6: Estimated noise in SPF three-years ahead forecasts (2024Q1)

MDS model
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Notes: Posterior medians of noise levels in observed SPF forecasts for the next calendar year
ahead. Q4 observations marked by a diamond. Estimates based on data through 2024Q1.
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I(c.3) Comparison of results from models with and without noise in annual forecasts

To show how including measurement error around published annual forecasts impacts our fore-

casts and results, Figures A.7 through A.10 report examples of term structures of (out-of-

sample) quarterly forecasts from models with and without measurement noise. Note that these

charts end with H as specified for each variable; to facilitate comparisons, we do not report

the forecasts out to 16 steps ahead (recall that the point forecasts for h = H + 1, . . . , 16 are

equal to the forecasts for h = H). In addition, by construction, without noise on short-horizon

forecasts, the forecasts for h = 0, . . . , 4 are the same across the noise and no-noise models.

Focusing first on results from MDS specifications, without noise, the quarterly forecasts

at longer horizons show more variation from quarter to quarter than do the forecasts from

the model with measurement noise in annual forecasts. In particular, the forecasts from the

model with noise avoid the tendency of the forecasts from the model without noise to change

one way early on and then snap in the opposite direction in the following few quarters. In

some instances — e.g., GDP price inflation in the 2024Q1 example and unemployment in the

2019Q4 example — the inclusion of noise in the model can impact the level of the longer-

horizon quarterly forecasts as compared to the model without noise. It is also evident that the

inclusion of measurement noise on annual forecasts can have some impact on the uncertainty

around the estimated quarterly forecast at longer horizons. This is evident in the case of

GDP price inflation, with greater uncertainty around the forecasts from the model without

noise than the model with noise. However, as noted in the paper, uncertainty around the latent

quarterly forecast estimates at longer horizons is small relative to the overall forecast uncertainty

reflected in the size of historical forecast errors. While not shown in the interest of brevity, the

inclusion of noise in the model does not have much impact on overall forecast uncertainty: The

widths of forecast confidence bands are comparable for the with-noise and without-noise model

specifications.

Patterns are very broadly similar in forecasts from VAR specifications that allow for bias in

SPF forecasts. However, the inclusion of noise around published annual forecasts has a smaller

impact with the VAR than the MDS specification. For example, the with-noise and without-

noise forecasts of GDP growth are quite similar in the VAR case; the with-noise forecasts are not

smoother than the without-noise forecasts as observed in the MDS case. In turn, the forecasts

of GDP growth from the VAR (in both the with-noise and without-noise estimates) show more

variability across quarters than do the forecasts from the MDS specification with noise.
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Figure A.7: Term structures estimated with and without noise (MDS, 2024Q1)
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Notes: Posterior medians (and 68% bands) of term structures of SPF-consistent expectations,
denoted Yt, obtained from the MDS model with or without noise in the observed SPF calendar-
year forecasts. For estimation of the mode without noise, we drop Q4 observations for the next-
year forecast (due to perfect overlap with the observed quarterly SPF forecasts.) Estimates
based on data through 2024Q1.
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Figure A.8: Term structures estimated with and without noise (VAR, 2024Q1)
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Notes: Posterior medians (and 68% bands) of term structures of SPF-consistent expectations,
denoted Yt, obtained from the VAR model with or without noise in the observed SPF calendar-
year forecasts. For estimation of the mode without noise, we drop Q4 observations for the next-
year forecast (due to perfect overlap with the observed quarterly SPF forecasts.) Estimates
based on data through 2024Q1.
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Figure A.9: Term structures estimated with and without noise (MDS, 2019Q4)
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Notes: Posterior medians (and 68% bands) of term structures of SPF-consistent expectations,
denoted Yt, obtained from the MDS model with or without noise in the observed SPF calendar-
year forecasts. For estimation of the mode without noise, we drop Q4 observations for the next-
year forecast (due to perfect overlap with the observed quarterly SPF forecasts.) Estimates
based on data through 2019Q4.

A.30



Figure A.10: Term structures estimated with and without noise (VAR, 2019Q4)
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Notes: Posterior medians (and 68% bands) of term structures of SPF-consistent expectations,
denoted Yt, obtained from the VAR model with or without noise in the observed SPF calendar-
year forecasts. For estimation of the mode without noise, we drop Q4 observations for the next-
year forecast (due to perfect overlap with the observed quarterly SPF forecasts.) Estimates
based on data through 2019Q4.
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Table A.3: Predictability of SPF point forecasts (noise-free model)

intercept slope

RGDP UNRATE PGDP CPI RGDP UNRATE PGDP CPI

Forecast MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR

h = 0 -1.52 −1.17 0.81 0.91 −0.04 0.06 −0.33 −0.36 1.41 1.35 0.86 0.85 0.99 0.96 1.15 1.21
(0.76) (0.73) (0.52) (0.58) (0.11) (0.13) (0.40) (0.39) (0.24) (0.26) (0.08) (0.09) (0.05) (0.06) (0.16) (0.16)

h = 1 −0.11 −0.06 0.55 0.73 −0.08 0.04 −0.07 −0.07 1.02 1.02 0.91 0.88 1.02 0.98 1.01 1.03
(0.28) (0.25) (0.43) (0.48) (0.09) (0.09) (0.15) (0.13) (0.09) (0.08) (0.06) (0.08) (0.04) (0.04) (0.07) (0.06)

h = 2 −0.14 0.05 0.38 0.58 0.11 0.15 0.10 0.16 1.02 0.97 0.94 0.90 0.94 0.99 0.94 0.93
(0.23) (0.23) (0.36) (0.39) (0.07) (0.09) (0.10) (0.09) (0.08) (0.08) (0.06) (0.06) (0.03) (0.04) (0.04) (0.04)

h = 3 0.13 1.70 0.26 0.30 0.15 1.27 0.15 0.61 0.94 0.37 0.96 0.96 0.92 0.37 0.92 0.75
(0.26) (0.18) (0.32) (0.38) (0.08) (0.08) (0.09) (0.17) (0.09) (0.06) (0.05) (0.06) (0.04) (0.03) (0.04) (0.07)

h = 4 1.67 1.69 0.20 0.44 1.25 0.24 0.50 0.49 0.39 0.40 0.97 0.93 0.47 0.89 0.80 0.82
(0.19) (0.16) (0.28) (0.28) (0.15) (0.08) (0.14) (0.11) (0.07) (0.05) (0.05) (0.05) (0.06) (0.04) (0.06) (0.04)

y = 1 0.23 0.47 0.23 0.36 0.14 0.41 0.12 0.38 0.91 0.83 0.96 0.94 0.94 0.80 0.94 0.86
(0.15) (0.14) (0.34) (0.38) (0.09) (0.10) (0.09) (0.15) (0.05) (0.05) (0.06) (0.06) (0.04) (0.05) (0.04) (0.06)

y = 2 0.30 0.68 0.01 0.32 — — 0.60 0.78 0.87 0.73 1.00 0.94 — — 0.74 0.66
(0.21) (0.32) (0.23) (0.22) (0.27) (0.27) (0.07) (0.11) (0.04) (0.03) (0.12) (0.12)

y = 3 0.33 1.08 0.22 0.29 — — — — 0.87 0.58 0.95 0.94 — — — —
(0.15) (0.35) (0.22) (0.21) (0.06) (0.14) (0.04) (0.04)

Notes: Estimated slope coefficients of Mincer-Zarnowitz regressions for model-based predictions of next-quarter’s published values for SPF forecasts
at different forecast horizons. Heteroskedasticity-consistent standard errors in brackets. Bold font distinguishes coefficient estimates significantly
different from 0 (intercept) or 1 (slope) with a 10% confidence level. Evaluation window from 1990Q1 to 2023Q4 (and as far as data for SPF
forecasts at the different horizons is available).
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Table A.4: Predictability of SPF point forecasts (model w/noise)

intercept slope

RGDP UNRATE PGDP CPI RGDP UNRATE PGDP CPI

Forecast MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR

h = 0 -1.52 −1.09 0.81 1.02 −0.04 0.04 −0.33 −0.31 1.41 1.32 0.86 0.83 0.99 0.98 1.15 1.19
(0.76) (0.71) (0.52) (0.60) (0.11) (0.12) (0.40) (0.37) (0.24) (0.25) (0.08) (0.10) (0.05) (0.06) (0.16) (0.15)

h = 1 −0.11 −0.04 0.55 0.82 −0.08 0.08 −0.07 0.04 1.02 1.02 0.91 0.86 1.02 0.99 1.01 1.00
(0.28) (0.27) (0.43) (0.51) (0.09) (0.09) (0.15) (0.13) (0.09) (0.09) (0.06) (0.08) (0.04) (0.04) (0.07) (0.06)

h = 2 −0.14 0.02 0.38 0.59 0.11 0.27 0.10 0.14 1.02 0.97 0.94 0.90 0.94 0.85 0.94 0.95
(0.23) (0.23) (0.36) (0.42) (0.07) (0.08) (0.10) (0.11) (0.08) (0.08) (0.06) (0.07) (0.03) (0.03) (0.04) (0.05)

h = 3 0.13 0.50 0.26 0.52 0.15 0.25 0.15 0.21 0.94 0.80 0.96 0.91 0.92 0.86 0.92 0.92
(0.26) (0.26) (0.32) (0.36) (0.08) (0.08) (0.09) (0.09) (0.09) (0.09) (0.05) (0.06) (0.04) (0.03) (0.04) (0.04)

h = 4 0.37 1.25 0.20 0.48 0.20 0.24 0.13 0.25 0.87 0.57 0.97 0.93 0.91 0.90 0.94 0.89
(0.19) (0.26) (0.29) (0.35) (0.07) (0.08) (0.09) (0.09) (0.06) (0.09) (0.05) (0.06) (0.03) (0.04) (0.04) (0.03)

y = 1 0.09 0.20 0.25 0.41 0.12 0.18 0.02 0.10 0.94 0.91 0.96 0.93 0.93 0.91 0.98 0.96
(0.25) (0.21) (0.28) (0.33) (0.07) (0.07) (0.12) (0.11) (0.09) (0.07) (0.05) (0.06) (0.03) (0.03) (0.05) (0.05)

y = 2 0.16 0.13 0.36 0.26 — — 0.36 0.61 0.94 0.96 0.92 0.95 — — 0.85 0.74
(0.25) (0.27) (0.36) (0.24) (0.25) (0.21) (0.09) (0.10) (0.07) (0.04) (0.11) (0.09)

y = 3 0.11 0.99 1.03 0.18 — — — — 0.95 0.59 0.76 0.95 — — — —
(0.16) (0.59) (0.37) (0.19) (0.06) (0.24) (0.08) (0.04)

Notes: Estimated slope coefficients of Mincer-Zarnowitz regressions for model-based predictions of next-quarter’s published values for SPF forecasts
at different forecast horizons. Heteroskedasticity-consistent standard errors in brackets. Bold font distinguishes coefficient estimates significantly
different from 0 (intercept) or 1 (slope) with a 10% confidence level. Evaluation window from 1990Q1 to 2023Q4 (and as far as data for SPF
forecasts at the different horizons is available).
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To further assess the role of measurement noise in our models and results, Tables A.3

and A.4 provide the estimated intercepts and slopes of Mincer-Zarnowitz regressions of SPF

forecasts published in quarter t + 1 on SPF forecasts estimated from our model using SPF

forecasts up through quarter t. Table A.3 reports results from MDS and VAR specifications

without measurement noise; Table A.4 provides corresponding results from specifications with

measurement noise (the results also shown in the paper). In these results, the forecasts from

models without noise are somewhat less efficient predictions of future SPF forecasts, in particular

for annual SPF forecasts, as well as the four-quarters-ahead SPF. Overall, there are more

rejections of slope coefficients of unity in the no-noise forecasts than the with-noise forecasts.

Related, in some cases, the no-noise forecasts yield noticeably lower slope coefficients than the

with-noise forecasts, especially with the VAR and less so with the MDS specification. For

example, with GDP growth (PGDP inflation) at the four-quarters-ahead horizon (h = 4), the

slope coefficient estimate is 0.39 (0.47) in the noise-free MDS forecasts and 0.87 (0.91) in the

with-noise MDS forecasts. As another example, with GDP growth (PGDP inflation) at the

one-year-ahead horizon (y = 1 in the table), the slope coefficient estimate is 0.83 (0.80) in the

noise-free VAR forecasts and 0.91 (0.91) in the with-noise VAR forecasts.

While the specification with or without measurement error has some bearing on imputed

SPF-consistent expectations, and the model’s fit for SPF data, it has less effect on model-based

predictive densities for the outcome variable. To illustrate the latter, Figure A.11–A.14 plot the

probability integral transforms (PITs) of the forecasts of MDS and VAR models without noise

against those from our baseline models with noise. As these figures show, both model variants

generate fairly similar PITs. Likewise, the (realized) coverage rates for 68% and 90% predictive

intervals generated from the model without noise, as reported in Table A.5, are quite similar

to those from models with noise as reported in Tables A.11 and A.10 further below (as well as

Table 3 in the paper).

While the specification of measurement error notably affects the imputed term structures

of expectations (as shown in Figures A.7 through A.10), those effects change the imputed

expectations by just about 10-20 basis points. In contrast, the predictive densities for the

(quarterly) outcome variables are much wider; as reported in the paper, the width of their

68% bands regularly amounts to multiple percentage points. These differences in scales also

explain the relative similarity in predictive densities obtained from models with and without

noise, despite their differing impact on imputed term structures of expectations. All told, the
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Table A.5: Coverage rates (model w/o noise, full sample)

RGDP UNRATE PGDP CPI

h 68% 90% 68% 90% 68% 90% 68% 90%

PANEL A: MDS Model

0 48.53∗∗∗ 80.15∗∗∗ 87.50∗∗∗ 96.32∗∗∗ 58.09∗∗ 84.56 66.91 91.91
1 54.07∗∗∗ 77.78∗∗∗ 82.96∗∗∗ 96.30∗∗∗ 60.00∗ 85.19 59.26∗∗ 85.19
2 52.99∗∗∗ 79.10∗∗∗ 79.85∗∗ 94.78∗ 60.45 82.09∗ 58.21∗∗ 85.07
3 50.38∗∗∗ 78.20∗∗ 75.94 93.98 60.15 85.71 63.16 83.46
4 56.06∗∗ 81.82∗ 71.97 91.67 57.58∗∗ 84.85 65.15 84.85
5 54.96∗∗ 85.50 69.47 90.08 62.60 87.02 64.89 82.44
6 62.31 85.38 66.92 88.46 69.23 93.08 66.92 84.62
7 66.67 88.37 66.67 89.92 68.22 93.02 65.89 86.05
8 69.53 84.38 66.41 89.06 70.31 93.75 65.62 85.94
9 71.65 84.25 64.57 88.98 70.87 92.91 66.93 87.40
10 70.63 87.30 61.90 88.10 70.63 92.86 67.46 88.10
11 69.60 87.20 64.00 88.00 72.00 92.00 70.40 87.20
12 68.55 87.90 63.71 87.10 75.00 91.13 69.35 87.10
13 69.92 88.62 61.79 87.80 75.61 92.68 69.92 87.80
14 69.67 87.70 60.66 86.89 76.23 94.26 68.03 88.52
15 67.77 88.43 61.16 86.78 76.03 94.21 71.07 87.60
16 71.67 88.33 59.17 87.50 75.83 93.33 71.67 89.17

PANEL B: VAR Model

0 52.21∗∗∗ 82.35∗∗∗ 80.15∗∗∗ 94.12∗ 56.62∗∗∗ 84.56 67.65 91.18
1 56.30∗∗ 77.78∗∗∗ 82.22∗∗∗ 95.56∗∗ 62.96 82.96∗ 59.26∗ 85.93
2 56.72∗∗ 79.85∗∗∗ 79.10∗∗ 94.78∗ 67.16 85.82 63.43 83.58
3 54.89∗∗ 79.70∗∗ 78.95∗ 93.98 64.66 87.22 64.66 86.47
4 55.30∗∗ 84.85 72.73 91.67 64.39 86.36 67.42 87.88
5 58.78∗ 84.73 70.99 90.84 66.41 88.55 68.70 87.79
6 58.46∗ 84.62 67.69 90.00 66.15 90.00 66.15 86.92
7 58.14∗ 85.27 63.57 89.92 66.67 90.70 65.12 87.60
8 60.94 82.03 61.72 89.84 66.41 89.84 67.19 87.50
9 62.20 81.10 60.63 88.98 66.14 92.13 70.08 88.19
10 61.90 84.92 57.14 88.10 65.87 91.27 69.84 88.10
11 64.00 82.40 55.20∗∗ 88.00 68.00 89.60 68.00 89.60
12 66.13 84.68 54.84∗ 86.29 67.74 91.13 70.97 89.52
13 68.29 85.37 54.47∗ 84.55 66.67 91.06 73.17 89.43
14 66.39 84.43 53.28∗ 85.25 70.49 90.16 71.31 90.16
15 66.94 86.78 52.89∗ 85.12 73.55 90.91 73.55 89.26
16 66.67 87.50 53.33 85.83 74.17 91.67 72.50 90.00

Note: Coverage rates for uncertainty bands with nominal levels of 68% and 90% for out-of-sample
forecasts at quarterly forecast horizons, h. Evaluation window from 1990Q1 through 2023Q4 (and as
far as realized values are available). Reflecting the availability of annual SPF forecasts, forecasts for
inflation in CPI and GDP prices are evaluated only up to h = 12, and h = 8, respectively. Significance
assessed by Diebold-Mariano tests using Newey-West standard errors with h + 1 lags. ∗∗∗, ∗∗ and ∗

denote significance at the 1%, 5%, and 10% level, respectively.
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Figure A.11: GDP growth PITs with and without noise

MDS model
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Notes: Empirical cumulative distributions of probability integral transforms (PITs) for GDP
growth at selected quarterly forecast horizons. All forecasts are generated out of sample by our
MDS and VAR models (with and without noise in measurement equations for annual forecasts),
and evaluated over an evaluation window from 1990Q1 through 2023Q4 (and as far as realized
values are available). 95% confidence bands for tests of correct calibration from Rossi and
Sekhposyan (2019); computed separately for each model, but with nearly identical plot lines.

specification of measurement error for annual forecasts matters mainly for improving the model’s

fit for SPF data than for the outcome variable.
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Figure A.12: Unemployment rate PITs with and without noise

MDS model
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Notes: Empirical cumulative distributions of probability integral transforms (PITs) for Unem-
ployment rate at selected quarterly forecast horizons. All forecasts are generated out of sample
by our MDS and VAR models (with and without noise in measurement equations for annual
forecasts), and evaluated over an evaluation window from 1990Q1 through 2023Q4 (and as far
as realized values are available). 95% confidence bands for tests of correct calibration from
Rossi and Sekhposyan (2019); computed separately for each model, but with nearly identical
plot lines.
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Figure A.13: GDP price inflation PITs with and without noise

MDS model
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Notes: Empirical cumulative distributions of probability integral transforms (PITs) for GDP
price inflation at selected quarterly forecast horizons. All forecasts are generated out of sample
by our MDS and VAR models (with and without noise in measurement equations for annual
forecasts), and evaluated over an evaluation window from 1990Q1 through 2023Q4 (and as far
as realized values are available). 95% confidence bands for tests of correct calibration from
Rossi and Sekhposyan (2019); computed separately for each model, but with nearly identical
plot lines.
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Figure A.14: CPI inflation PITs with and without noise

MDS model

(a) h = 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

w/o Noise

Confidence band (w/o Noise)

w/Noise

Confidence band (w/Noise)

(b) h = 4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) h = 8

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

VAR model

(d) h = 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

w/o Noise

Confidence band (w/o Noise)

w/Noise

Confidence band (w/Noise)

(e) h = 4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(f) h = 8

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Notes: Empirical cumulative distributions of probability integral transforms (PITs) for CPI
inflation at selected quarterly forecast horizons. All forecasts are generated out of sample
by our MDS and VAR models (with and without noise in measurement equations for annual
forecasts), and evaluated over an evaluation window from 1990Q1 through 2023Q4 (and as far
as realized values are available). 95% confidence bands for tests of correct calibration from
Rossi and Sekhposyan (2019); computed separately for each model, but with nearly identical
plot lines.
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II Details on Bayesian MCMC sampler and priors

II(a) Model summary, priors and MCMC steps

Before turning to a description of priors and MCMC sampling steps, we begin by restating the

equations of our general model, with a VAR specification for forecast updates and unconditional

bias, as detailed in Section 4 of the paper.

States: The model tracks a term structure of SPF-implied quarterly forecasts, denoted Yt as

detailed in equation (1) of the paper:

Yt ≡
[
yt−1, Ftyt, Ftyt+1, . . . , Ftyt+h, . . . , Ftyt+H

]′
. (1)

The dynamics of Yt are characterized by the following trend-cycle decomposition:

Yt = Ỹt + 1y∗t , (A.46)

y∗t = y∗t−1 + w∗
t , w∗

t ∼ N (0, ω2
t ) . (A.47)

Section 4 of the paper, in equations (7), (9), and (10), derives the following law of motion for

the gap vector:

Ỹt =
(
I − Ψ̃

)
Ȳ + Ψ̃Ỹt−1 + η̃t , (7)

and η̃t = Π̃ η̃t−1 + ε̃t , with ε̃t ∼ N (0, Σ̃t), (9)

⇒ Ỹt =
(
I − Ψ̃

)(
I − Π̃

)
Ȳ +

(
Ψ̃+ Π̃

)
Ỹt−1 −

(
Ψ̃ Π̃

)
Ỹt−2 + ε̃t , (10)

where Ψ̃ is a matrix of zeros and ones as described in equation (8) of the paper, Π̃ a stable

matrix to be estimated, and Ȳ a vector of average gap values, also to be estimated.

As discussed in the paper, the MDS version of our model is nested in the above, with the

restrictions Ȳ = 0 and Π̃ = 0.

The measurement equations are:

Zt =

Zq,t

Za,t

 =

Cq,t

Ca,t

Yt +

 0

nt

 , ni,t ∼ N (0, σ2
i,t), (A.48)
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where Zq,t contains the lagged realized value yt−1 and observed quarterly fixed-horizon forecasts

from the SPF (all assumed to be measured without error) and Za,t consists of the observed fixed-

event annual predictions from the SPF. Further details on Zq,t, Za,t and their measurement

loadings Cq,t and Ca,t are described in Appendix I(b) above.

Shock distributions: Horseshoe models are applied to the time-varying variances of shocks

to trend and noise, ω2
t and σ2

i,t, as detailed further below in appendix II(b). As described

in Section 4.5 of the paper, the time-varying second moment matrices of the gap shocks are

modeled via the following two-block stochastic volatility (SV) process with fat tails. Restating

the equations from the paper, we have:

ε̃t =

ε̃1,t
ε̃2,t

 =

I K̃

0 I


ε∗1,t
ε∗2,t

 , with

ε∗1,t
ε∗2,t

 ∼ N


0
0

 ,

λ1,t · Σ̃11 0

0 λ2,t · Σ̃22


 , (15)

in which K̃ is a matrix (with dimension 4× (H − 2)) of coefficients to be estimated. This SV

structure yields the following time-varying variance-covariance matrix of the cyclical shocks:

Σ̃t =

I K̃

0 I


λ1,t · Σ̃11 0

0 λ2,t · Σ̃22


I K̃

0 I


′

. (16)

The scalar factors λ1,t and λ2,t impart time variation and fat tails to the shock vector ε̃t.

Building on, among others, Carriero, et al. (2022b), Chan (2020), and Jacquier, Polson, and

Rossi (2004), we model these factors as the products of iid inverse-gamma draws and persistent

stochastic volatility processes:

λi,t = φi,t · λ̃i,t , ∀ i = 1, 2 , (17)

with φi,t ∼ IG
(νi
2
,
νi
2

)
, log λ̃t ≡

log λ̃1,t

log λ̃2,t

 =

ρ1 0

0 ρ2

 log λ̃t−1 + ελt , (18)

and ελt ∼ N (0,Φ). The iid inverse-gamma draws add fat tails in the form of a multivariate

t distribution with νi degrees of freedom to each block. The vector SV process log λ̃t has

correlated shocks and is normalized to a mean of zero, obviating the need for normalizing

assumptions on the constant-coefficient matrices Σ̃11 and Σ̃22.
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Notation for state vectors, measurement vectors, and parameters: We collect all observed

measurements, {Zt}Tt=1 , in the measurement vector Z, and all values of {y∗t }Tt=0, {Ỹt}Tt=−1, and

Ȳ in the (linear) state vector Y , where t = T denotes the end of the sample, and t = −1, 0 points

to initial conditions.6 Conditional on values for the time-varying second moment parameters,

{Σ̃t}Tt=1, and {ω2
t }Tt=1, the equations above describe a Gaussian state space, with measurements

Z and state vector Y . In addition, we collect the latent SV and t-mixture-representation states,

λ̃i,t and φt,i, in the vectors λ̃, and φ, respectively, and collect the time-varying second moment

parameters for trend and noise shocks in the vectors ω2 and σ2. The remaining parameters

of the model are the VAR coefficient matrix, Π̃, fixed parameters of the block-SV model, K,

Σ̃11, and Σ̃22, the AR(1) coefficients of the cyclical SV processes, ρ = [ρ1, ρ2]
′, and associated

variance-covariance matrix of shocks to the SV processes, Φ, as well as the degrees of freedom

of the multivariate t distributions for cyclical shocks, ν = [ν1, ν2]
′.

In our description of the MCMC sampler below, we denote the sets of constant parameters

and time-varying second moment states as follows:

Θ ≡
{
Π̃,K, Σ̃11, Σ̃22,ρ,Φ,ν

}
, (A.49)

Ω =
{
λ̃,φ,ω2,σ2

}
. (A.50)

When referring to any of these sets while excluding one of its components, we simply refer to Θ†

or Ω†, where the excluded component shall be clear from the context. Moreover, we suppress

notation for mixture states involved in the estimation of the SV processes based on the methods

of Kim, Shephard, and Chib (1998) and Omori, et al. (2007), as well as mixture states used in

the horsehoe representations of the shocks to trend and noise (with further details provided in

Appendix II(b)).

We use the following priors for parameters and initial values of the states:

• y∗0 ∼ N
(
0, 1002

)
, which is an essentially diffuse prior for the initial value of the trend

level.

•

 Ỹ0

Ỹ−1

 ∼ N (0, 25 · I), which is a fairly wide prior for the initial gap levels.

6Our reference to Y as state vector is understood conditional on trajectories for the time-varying second
moment parameters, whose stochastic evolution is, of course, also needed to fully describe the state of the model.
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• Ȳ ∼ N (0,DY ) with DY a diagonal matrix with typical element Var (Ȳj) = 25/j so as

to imply shrinkage of (unconditional) bias towards zero that is increasing with forecast

horizon.

• vec (Π̃) ∼ N
(
0,DΠ̃

)
, where DΠ̃ is a diagonal matrix that implements the structure of

a typical Minnesota prior on the VAR coefficients, with overall shrinkage Var (Π̃i,i) = θ1

and cross-variable shrinkage Var (Π̃i,j) = θ1 · θ2 for i 6= j, and θ1 = .22 and θ2 = .52.

• log (λ̃j,0) ∼ N (0, 100) for j = 1, 2, which is a fairly uninformative prior for the initial

values of the SV factors.

• ρj ∼ N (0.8, 0.22) for j = 1, 2 as in Clark and Ravazzolo (2015) and other studies.

• νj ∼ U(3, 40) for j = 1, 2, and implemented over a grid of natural numbers as in Jacquier,

Polson, and Rossi (2004).

• Σ̃jj ∼ IW (Nj , 0.01 · I) for i = 1, 2, where Nj is the number of elements of the j block of

the SV model, so that the prior is relatively uninformative, and has no mean.

• vec (K) ∼ N (0, I).

• Φ ∼ IW (2, I), which is fairly uninformative since with as many degrees of freedom as

there are SV shocks, this prior has no mean.

Note that the initial levels of trend and mean bias, y∗0 and Ȳ , are not separately identifiable

and could be normalized, for example by setting y∗0 = 0. We choose to estimate both, but

report only statistics reflecting their joint effects, as the estimates with the normalization y∗0 = 0

displayed poorer convergence properties in our experiments.

Our MCMC sampler iterates over the following steps:

1. p
(
Y
∣∣Ω,Θ,Z

)
. Draws from the latent vector of term-structure expectations can be ob-

tained via standard sampling techniques for a linear Gaussian state space model. For

computational efficiency, we build on the precision-based sampler developed by Mertens

(2023), with details described below in Appendix II(c).

2. p
(
Π̃
∣∣Y ,Ω,Θ†,Z

)
. We draw from the posterior of the VAR coefficients using a Bayesian

updating with normal conjugate prior (and posteriors). Appendix II(d) provides details of
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an efficient implementation that accounts for the heteroskedasticity in the VAR residuals

while exploiting the two-block structure of the SV model. Rejection sampling is employed

to ensure that the VAR coefficients remain within the unit circle.

3. p
(
K
∣∣Y ,Ω,Θ†,Z

)
is a standard Bayesian vector regression with normal conjugate prior

(and posterior), performed by regressing draws of ε̃1,t on ε̃2,t after scaling each by λ1,t.

4. For j = 1, 2, draw p
(
Σ̃jj

∣∣Y ,Ω,Θ†,Z
)

, which are standard inverse-Wishart updates

based on draws of ε∗j,t/λj,t.

5. p
(
ν
∣∣Y ,Ω,Θ†,Z

)
the degrees of freedom for the multivariate student t distributions of

the cyclical shocks are sampled over a uniform grid of natural numbers, as described by

Jacquier, Polson, and Rossi (2004).

6. p
(
φ̃
∣∣Y ,Ω†,Θ,Z

)
which are the common inverse-gamma mixture states of the multivari-

ate t distributions for the cyclical shock blocks, and are drawn as described, for example,

by Chan (2020), exploiting the conjugacy of their (conditional) inverse Gamma priors.

7. p
(
λ̃
∣∣Y ,Ω†,Θ,Z

)
which are the common SV processes of the cyclical shock blocks, and

are drawn as described, for example, by Carriero, Clark, and Marcellino (2016) and Chan

(2020), using the mixture-state SV sampler of Kim, Shephard, and Chib (1998), with

a 10-point grid as recommended in Omori, et al. (2007), while following the advice of

Del Negro and Primiceri (2015), regarding the correct ordering of steps in the mixture

sampling.

8. p
(
ρ
∣∣Y ,Ω,Θ†,Z

)
is a seemingly-unrelated Bayesian system regression with normal con-

jugate prior (and posterior), using draws of λ̃j,t for j = 1, 2, and which is conducted using

rejection sampling to ensure that the AR(1) coefficients remain within the unit circle.

9. p
(
Φ
∣∣Y ,Ω,Θ†,Z

)
is a standard inverse-Wishart update based on draws of the shocks to

the (log-)SV processes.

10. p
(
ω2
∣∣Y ,Ω†,Θ,Z

)
and p

(
σ2
∣∣Y ,Ω†,Θ,Z

)
are independently sampled using the Gibbs

sampling steps described by Makalic and Schmidt (2016) for the horseshoe model. (See

also Appendix II(b)).

The MDS version of our model restricts Ȳ and Π̃ to be zero, so that when estimating the

model, we omit Ȳ from the state vector Y and drop the sampling step for Π̃. In addition, we

A.44



can omit Ỹ−1 from the set of initial conditions, since the gap dynamics are fully determined by

a VAR(1) (instead of a VAR(2)) in this case.

The remainder of this appendix describes details of the horseshoe specifications for the

shocks to trend and noise, the precision-based sampler for the state space, and the sampling of

VAR coefficients when heteroskedasticity in its residuals is described by a two-block SV model.

II(b) Horseshoe shock specifications

II(b.1) Horseshoe model for trend shocks

We model shocks to the trend and measurement errors via a horseshoe model. The horseshoe

model has originally been proposed by Carvalho, Polson, and Scott (2010) for modeling sparse

regressions, i.e. regressions with a priori potentially many regressors, many of whom are however

expected to be irrelevant, with only a few attracting substantial mass a posteriori. As such,

while the horseshoe prior places considerable mass on coefficient values of zero, it also has

particularly fat tails to generate (few) significantly-sized coefficient estimates.

In our application, we apply the horseshoe model to sequences of shocks (in this case:

the trend shocks), instead of regression coefficients where we suspect that most realizations

are close to zero while some can also be sizable. In a similar spirit, Prüser (2021) applies a

horseshoe model to the shocks of drifting coefficients in a VAR with time-varying parameters.

The horseshoe has a conditionally Gaussian representation for the shocks:

w∗
t ∼ N

(
0, ω2

t

)
(A.51)

and achieves its particular form with a hierarchical model for the conditional variance ω2
t :

⇒ ω2
t = τ2ω · ϑ2

w,t (A.52)

with τ2ω ∼ C+(0, 1) , and ϑ2
w,t ∼ C+(0, 1) , (A.53)

where C+(0, 1) denotes the half-Cauchy distribution. In this horseshoe model, τ2w denotes the

global shrinkage (applicable to shocks, w∗
t , at all t) and ϑ2

w,t denotes local shrinkage (that is

specific to the time-t realization of w∗
t ). For brevity, we denote the hierarchical model for ω2

t as
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follows:

ω2
t ∼ HS

(
τ2ω
)
. (A.54)

The horseshoe model can be represented via scale mixtures. Moreover, as shown by Makalic

and Schmidt (2016), Bayesian estimation via Gibbs sampling becomes straightforward when

auxiliary variables are used, and we follow their approach in sampling posterior values for ω2
t .

Estimated trend levels are reported in Appendix V further below.

II(b.2) Measurement error with horseshoe model

With similar motivation to the trend shocks, we apply (separate) horseshoe models to the

measurement errors attached to annual SPF forecasts. Moreover, since we suspect that the size

of measurement errors varies across quarters of the year, we apply separate horseshoe models

to forecasts collected in different quarters of the year. For this purpose, let q(t) ∈ {1, 2, 3, 4}

denote a function that maps a time index t into the corresponding quarter of the year.

As described, the measurement error in the annual forecast i at time t by ni,t has a con-

ditionally Gaussian distribution, and for each q(t) we apply separate horseshoe models to the

conditional variance of ni,t :

ni,t ∼ N (0, σ2
i,t) , σ2

i,t ∼ HS
(
τ2i,q(t)

)
(A.55)

⇒ σ2
i,t = τ2i,q(t) · ϑ

2
i,t , τ2i,q(t) ∼ C+(0, 1) ϑ2

i,t ∼ C+(0, 1) . (A.56)

Estimated noise levels are reported in Appendix I(c).
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II(c) Precision-based sampling from state space

Step 1 of the MCMC scheme outlined above involves drawing a vector of latent states, Y ,

conditional on observables, Z, and draws of model parameters (including time-varying second

moment parameters). This sampling step involves a Gaussian signal extraction, which is effi-

ciently implemented with a precision-based sampler, that extends methods detailed in Mertens

(2023), and that is described here.

For ease of notation, we drop dependence of the sampling problem on the various model

parameters. As before, Y , denotes a vector of all values for Yt for all t, stacked on top of each

other, and likewise for Z. In stacked form, the state space can be written as follows:

AY = Y0 +Bwt , w ∼ N (0, I) , (A.57)

Zq = CqY , (A.58)

Za = CaY +Dn , n ∼ N (0, I) , (A.59)

and Zq and Za collecting measurement equations for, respectively, quarterly fixed-horizon data

(without measurement error) and annual fixed-event data (with measurement error). Details of

the mapping between a dynamic representation, such as the one described in Section 4 of the

paper, and this stacked representation are illustrated, for example, in Mertens (2023).

Originally developed in Chib and Jeliazkov (2006) and then Chan and Jeliazkov (2009),

precision-based samplers offer a computationally efficient alternative to sample latent states

from linear Gaussian models as compared to recursive methods based on Kalman filtering and

smoothing, such as the simulation smoother of Durbin and Koopman (2002). Precision-based

samplers operate on the inverse variance of the state vector. However, in cases where the

measurement vector is assumed to be observed without measurement error, as in (A.58), we

face an ill-defined posterior precision:

Cq Var (Y |Zq) = 0 =⇒ |Var (Y |Zq)| = 0 , (A.60)

which cannot be directly handled by conventional precision-based samplers. Mertens (2023)

derives a precision-based sampler for the case when all measurement variables are observed

without error, thus corresponding to the state space consisting solely of (A.57) and (A.58).

The version of our model without error in all measurement equations is isomorphic to merely
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sampling from p (Y |Zq), but using Z in lieu of Zq, and, in this case, the sampling methods of

Mertens (2023) can be directly applied.

To sample from the space consisting of (A.57) and (A.58) and (A.59), where some measure-

ments, but not all, are observed without error, we build on the methods of Mertens (2023) as

follows:

• Consider the posterior moments of p (Y |Zq):

– From a QR decomposition of Cq, obtain the following:

Cq = RQ =

[
R1 0

]Q1

Q2

 , QQ′ = I , (A.61)

Y =

Y1

Y2

 ≡

Q1

Q2

 Y , ⇔ Y = Q′
1Y1 +Q′

2Y2 , (A.62)

where R1 is lower triangular, Y1 describes linear combinations of the state vector Y

that are perfectly described by Zq, and Y2 collects the remaining linear combinations.

Since Y is multivariate normal, so is also Y .

– With Y1 = R−1
1 Zq, the problem of describing p (Y |Zq) boils down to

p (Y2|Zq) ∼ N
(
µ2|1,P

−1
22|1

)
. (A.63)

Derivations for the posterior mean, µ2|1, and precision, P22|1, are detailed in Mertens

(2023).

• For p (Y2|Zq,Za), set up a conventional precision-based sampling problem with measure-

ment error.

– The problem is isomorphic to sampling from p (Y2|Za), while using µ2|1, and P22|1

as prior moments.

– The transformed measurement equation is:

Za = CaQ
′
1R

−1
1 Zq + CaQ

′
2Y2 +Dn (A.64)

⇒ Z̃a ≡ Za − CaQ
′
1R

−1
1 Zq (A.65)

= C̃aY2 +Dn (A.66)

A.48



with C̃a ≡ CaQ
′
2.

– Standard signal extraction formulas lead to the following posterior:

p (Y2|Zq,Za) ∼ N
(
µ2,P

−1
22

)
, (A.67)

with P22 = P22|1 + C̃′
a

(
DD′)−1 C̃a , (A.68)

and P22µ2 = P22|1µ2|1 + C̃′
a

(
DD′)−1

Z̃a . (A.69)

• Given a draw from p (Y2|Zq,Za) we can construct a draw from p (Y |Zq,Za) from

Y = Q′
1R

−1
1 Zq +Q′

2Y2 . (A.70)

II(d) Sampling of VAR coefficients with two-block SV model

Step 2 of the MCMC scheme outlined above involves drawing the VAR coefficients, Π̃, condi-

tional on the latent states, Y , and draws of model parameters (including time-varying second

moment parameters). As described in the paper, we employ a two-block SV model for the cycli-

cal shocks. In our VAR specification, these cyclical shocks drive the VAR in the detrended SPF

forecast updates, given by equation (9) of the paper (and restated above). Estimation of the

VAR coefficients for the updates to (detrended) forecasts requires us to account for this source

of heteroskedasticity. In general, estimation of VAR models with SV can be computationally

intensive, and Carriero, et al. (2022a) and Carriero, Clark, and Marcellino (2019) derive an

efficient Gibbs sampling procedure for this case. We build on their sampler, and we develop a

variant of it that exploits the specific two-block structure of the SV model. As such Step 2 of

the MCMC sampler described above involves multiple steps, which we detail here:

• We condition on draws for {η̃t}Tt=0, as well as K̃, Σ̃ii, {λi,t}Tt=1 ∀ i = 1, 2 and seek to

sample the slope coefficients Π̃ in the following regression, which restates the regressors

of (9) in terms of xt ≡ η̃t−1:

η̃t = Π̃xt + ε̃t, (A.71)

where ε̃t is the vector of cyclical shocks described in (15). With a multivariate normal

prior on Π̃ and since the shock vector, ε̃t is multivariate normal, the posterior for Π̃
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is multivariate normal as well.7 Thus, we can equivalently work with a linearly rotated

matrix of VAR slopes, which will be convenient to do, as will be shown in the following

steps.

• Following the two-block structure of the SV specification, we partition the vector regression

into two sets of equations:

η̃1,t

η̃2,t

 =

Π̃1

Π̃2

xt +

I K̃

0 I


ε∗1,t
ε∗2,t

 , (A.72)

where ε∗i,t ∼ N (0, λi,t · Σ̃ii) for i = 1, 2 (as in (15)).

• When K̃ 6= 0, the VAR shocks are correlated across blocks and it is convenient to rotate

the system into a decoupled form:

Let

η∗
1,t

η∗
2,t

 ≡

I K̃

0 I


−1 η̃1,t

η̃2,t

 , and

Π∗
1

Π∗
2

 ≡

I K̃

0 I


−1 Π̃1

Π̃2

 (A.73)

and we obtain

η∗
1,t

η∗
2,t

 =

Π∗
1

Π∗
2

xt +

ε∗1,t
ε∗2,t

 . (A.74)

Since

I K̃

0 I


−1

=

I −K̃

0 I

 , (A.75)

we have ε∗2,t = ε̃2,t, ε∗1,t = η̃1,t − K̃η̃2,t, Π∗
2 = Π̃2, Π∗

1 = Π̃1 − K̃Π̃2.

• If the priors for Π∗
1 and Π∗

2 are independent, both blocks of the decoupled VAR system

in (A.74) could be separately estimated. However, this is generally not the case. In fact,

in a typical application (including ours), a researcher might specify independent priors for

Π̃1 and Π̃2. In that case, and with K̃ 6= 0, the priors for the rotated slopes, Π∗
1 and Π∗

2,

will generally be correlated.

• Below, we derive a two-step Gibbs algorithm with the following steps:
7The shock vector is multivariate normal conditional on K, Σ̃ii, {λi,t}Tt=1 ∀ i = 1, 2.
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1. p
(
Π∗

1|Π∗
2,I

)
with prior p

(
Π∗

1|Π∗
2

)
2. p

(
Π∗

2|Π∗
1,I

)
with prior p

(
Π∗

2|Π∗
1

)
,

where I = {{η̃t}t=0}Tt=1, K̃, Σ̃ii, {λi,t}Tt=1 ∀ i = 1, 2}. These Gibbs steps are similar to

the triangular algorithm of Carriero, et al. (2022a), but specialized to the two-block case,

and they proceed by operating on the rotated slopes (and their priors), rather than by

adjusting the VAR equations with additional regressors (as in Carriero, et al. (2022a)).

Of course, for full estimation of our state space model, these two Gibbs steps are to be

wrapped into a larger Gibbs sampler with additional steps for inference on the latent

states, SV processes, etc. and as described elsewhere in our paper (or its appendix).

• In the general case, with K̃ 6= 0, we generally have p
(
Π∗

1|Π∗
2

)
6= p

(
Π∗

1

)
and p

(
Π∗

2|Π∗
1

)
6=

p
(
Π∗

2

)
and these conditional priors are reevaluated at each step of the Gibbs sampler as

described further below.8

• Apart from deriving p
(
Π∗

i ,Π
∗
j 6=i|I

)
∀ i, j = 1, 2, each of the two Gibbs steps amounts

to a standard Gaussian vector regression subject to a scalar SV factor, λi,t, and can be

efficiently sampled with standard methods.

• A given set of draws for Π∗
1 and Π∗

2 can then swiftly be transformed into draws for Π̃1

and Π̃2 by using (A.73). The joint draw for Π̃1 and Π̃2 is accepted only if the resulting

transition matrix for the VAR, Π̃, is stable.

Derivation of priors for the rotated slopes: To derive the conditional priors, p
(
Π∗

i ,Π
∗
j 6=i|I

)
,

we begin with the (given) prior for the original VAR slopes, Π̃. Since Π̃ is a matrix (its sub-

blocks Π̃1 and Π̃2 are also matrices), we consider priors for their vectorized forms. To keep

better track of the system’s block structure, it is convenient to express the prior in terms of

vectorizing the transposed slopes matrix, Π̃′:9

vec
(
Π̃

′)
=

vec
(
Π̃1

′)
vec
(
Π̃2

′)
 . (A.76)

8Note: For the case of K̃ = 0, we have p (Π∗
1|Π∗

2) = p (Π∗
1) and p (Π∗

2|Π∗
1) = p (Π∗

2), and the system is
perfectly decoupled. A single iteration over both steps generates a direct draw from the joint distribution of
p (Π∗

1,Π
∗
2|I).

9Expressing the slopes’ prior in terms of Π̃
′ also corresponds to much of the general literature on VAR

systems, including Kadiyala and Karlsson (1997), and Carriero, Clark, and Marcellino (2019).
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Throughout, we assume a Gaussian prior for vec
(
Π̃

′) that is mean zero and has a (block-)

diagonal variance-covariance matrix. Expressed in terms of precision matrices (i.e. inverse

variance-covariance matrices), the prior has the following form:10

vec
(
Π̃1

′)
vec
(
Π̃2

′)
 ∼ N


0
0

 ,

P−1
11 0

0 P−1
22


 . (A.77)

The vector of rotated slopes is related to the vector of the original slopes as follows:11

vec
(
Π∗′) =


I −K̃

0 I

⊗ I

 vec
(
Π̃

′) (A.78)

=

I −K

0 I

 vec
(
Π̃

′)
, with K ≡ K̃ ⊗ I (A.79)

⇒ vec
(
Π∗

1
′) = vec

(
Π̃1

′)−K vec
(
Π̃2

′)
, vec

(
Π∗

2
′) = vec

(
Π̃2

′)
. (A.80)

The joint prior for Π∗
1 and Π∗

2 can then be expressed (and again using precision matrices) as

vec (Π∗
1
′)

vec
(
Π∗

2
′)
 ∼ N


0
0

 ,

P ∗
11 P ∗

12

P ∗
21 P ∗

22


−1 , (A.81)

where

P ∗
11 P ∗

12

P ∗
21 P ∗

22

 =

I K

0 I


′ P11 0

0 P22


I K

0 I

 (A.82)

=

 P11 P11K

K′P11 K′P11K+ P22

 , (A.83)

and, using standard signal-extraction formulas, the conditional priors then follow as:

vec (Π∗
1
′)
∣∣ vec (Π∗

2
′) ∼ N

(
−K vec

(
Π∗

2
′),P−1

11

)
, (A.84)

vec (Π∗
2
′)
∣∣ vec (Π∗

1
′) ∼ N

(
−P−1

22 K′P11 vec
(
Π∗

1
′), (K′P11K+ P22

)−1
)
. (A.85)

For MCMC estimation, an additional step is added to the sampler described above for the
10Typical Minnesota-style priors, like the one used in our application, have diagonal variance-covariance ma-

trices, thus also diagonal precision matrices P11 and P22. The extension to non-diagonal priors and variance-
covariance matrices is straightforward.

11Throughout, each use of I denotes an identity matrix of conformable size, so that repeated uses of I need
not refer to identically-sized identity matrices.
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MDS version of the SV model. Between steps 1 and 2 of the sampler, we draw from

p
(
Π̃
∣∣Z,Y ,λ, σ2

∗, Σ̃, σ2
ν

)
= p

(
Π̃
∣∣Y ,λ, Σ̃

)
,

which is a standard conjugate-normal Bayesian regression update. (Furthermore, Π̃ is added

to the conditioning sets of the other steps).

III Coibion-Gorodnichenko slopes implied by VAR model

This appendix describes our calculations of model-implied slopes for regressions testing the

efficiency of SPF forecasts known from the work of Coibion and Gorodnichenko (2015). We

derive these slopes within our VAR model for forecast updates. To restate relevant parts of

the model, we denote the vector of forecast updates (including the lagged nowcast error, and

change in long-run forecast) by ηt, and the VAR model with SV specifies the following:

ηt ≡ Ft



yt−1

yt

yt+1

...

yt+H−1

yt+H


− Ft−1



yt−1

yt

yt+1

...

yt+H−1

yt+H−1


(A.86)

= η̃t + 1w∗
t + η̄ , (A.87)

with η̃t = Π̃ η̃t−1 + ε̃t , (A.88)

and ε̃t ∼ N(0, Σ̃t) , (A.89)

w∗
t ∼ N(0, ω2

t ) . (A.90)

Since the SPF is assumed to know the lagged realized value, we have Ftyt−1 = yt−1, and the

top element of ηt is identical to et−1 = yt−1 − Ft−1yt−1. The VAR’s transition matrix, Π̃, is

required to be stable (i.e. all eigenvalues inside the unit circle).

For each MCMC draw of the model parameters, we derive regression slopes from the pop-

ulation moments of the model. For the time-varying variance parameters, Σ̃t and ω2
t , we use

fixed values (per MCMC draw) as follows: For the trend shocks, that are generated from a
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horseshoe model, ω2
t ∼ HS(τ2w), we use the global scale parameter τ2w. This choice is motivated

by the notion that the local scale parameter represents occasional shifts in trend levels that are

ignored for sake of computing CG slopes. In lieu of Σ̃t, at a given MCMC draw, we use the me-

dian values over the sampled (time-series) paths for λ1,t and λ2,t to construct the corresponding

(constant) value for Σ̃.

III(a) CG regressions in population

Given values for Σ̃, ω2, and Π̃, we can solve for the variance of the unconditional (or steady-

state) variance of ηt as follows:

Var (ηt) ≡ Γ = Γ̃+ 11′ω , with Γ̃ = Π̃ Γ̃ Π̃
′
+ Σ̃ , (A.91)

where the second equation is a standard Lyapunov equation. Given a (positive definite) solution

for Γ̃, autocovariances of ηt follow as Cov (ηt+h,ηt) = Π̃
h
Γ̃ ∀h > 0.12

Based on the population variances Var (ηt) and autocovariances Cov (ηt+h,ηt), we want

to compute regression slopes, bh, for the following “CG” regression known from Coibion and

Gorodnichenko (2015):

(1− Ft)yt+h = ah + bh · (Ft − Ft−1)yt+h + et+h (A.92)

for horizons h = 0, 1, 2, . . . etc., with

bh =
Cov ((1− Ft)yt+h, (Ft − Ft−1)yt+h)

Var ((Ft − Ft−1)yt+h)
. (A.93)

The regressor of the CG regression represents a sum of forecast updates at different points in

time:13

(1− Ft)yt+h =
h∑

k=0

(Ft+k+1 − Ft+k)yt+h . (A.94)

Let e(k) denote a selection vector, defined for k = −1, 0, 1 . . . , H, that selects the (k + 2)th
12Equation (A.91) is a standard Lyapunov equation and can be solved analytically. The solution exists since

Π̃ is stable, and it is positive definite since Σ̃ is.
13Recall that Ft+h+1yt+h = yt+h.
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element of a vector of length H + 2 so that (Ft − Ft−1)yt+k = e(k)′ ηt (∀ k < H), and we get:

Cov ((1− Ft)yt+h, (Ft − Ft−1)yt+h) =
h∑

k=0

Cov (Ft+k+1 − Ft+k)yt+h, (Ft − Ft−1)yt+h) (A.95)

=

(
h∑

k=0

e(h− k − 1)′Π̃
k+1

)
Γ̃ e(h) , (A.96)

and Var ((Ft − Ft−1)yt+h) = e(h)′ Γ e(h) (A.97)

= e(h)′ Γ̃ e(h) + ω2 (A.98)

and the CG slope can be computed as follows:

bh =

(∑h
k=0 e(h− k − 1)′Π̃

k+1
)
Γ̃ e(h)

e(h)′ Γ̃ e(h) + ω2
. (A.99)

When pooling the CG slopes across j = 0, 2, . . . , h, the pooled slope is:14

b̄0:h =

∑h
j=1

[(∑j
k=0 e(h− k − 1)′Π̃

k+1
)
Γ̃ e(j)

]
∑h

j=1

[
e(j)′ Γ̃ e(j)

]
+ h · ω2

. (A.100)

Since the common trend is a martingale (and thus an efficient forecast), the CG coefficients will

be smaller the larger the trend-shock variance, ω2.

III(b) Estimated CG slopes

Table A.6 reports the slopes of Coibion-Gorodnichenko regressions for each variable implied by

our VAR specifications fit to SPF forecasts. We compute the population slopes, as described

above, for each draw of model parameters obtained from Bayesian MCMC estimation of the

VAR model and report the posterior moments of the pooled slopes, b̄0:h, for h = 3. The horizons

considered correspond to what is available in terms of observed SPF fixed-horizon forecasts, and

thus commonly used in empirical work.15

These estimates are generally in line with the literature that finds positive coefficients of

small-to-modest magnitudes, indicating some departures from full rationality in professional

forecasts. For the sample of forecasts through 2023Q4, across variables the posterior medians

range from 0.11 (RGDP) to 0.24 (CPI inflation), with 90 percent credible sets that do not
14See, for example, Chapter 4 of Hayashi (2000).
15Note that the right-hand side of (A.92) involves a forecast for h+1 steps ahead, so that computation of b̄0:3

involves all observable fixed-horizon forecasts.
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Table A.6: Slopes of Coibion-Gorodnichenko regressions

2019Q4 2023Q4

Variable 5% 50% 95% 5% 50% 95%

RGDP 0.01 0.11 0.22 0.02 0.12 0.23
UNRATE 0.08 0.18 0.30 0.06 0.15 0.27
PGDP 0.00 0.13 0.29 0.04 0.18 0.35
CPI 0.11 0.22 0.33 0.14 0.25 0.36

Notes: Posterior moments of model-implied slopes, bh, in predictability regressions of Coibion
and Gorodnichenko (2015), (1− Ft)yt+h = bh · (Ft − Ft−1)yt+h + et+h, pooled for h = 0, 1, 2, 3.
Estimated from our VAR model, using full-sample data through 2019Q4 and 2023Q4, respec-
tively.

include 0, except in the case of the unemployment rate. Quantitatively, our estimates are

broadly comparable to those in surveys such as Angeletos, Huo, and Sastry (2021).16 Based on

this evidence, it appears that our VAR model of SPF forecasts can capture reasonably well the

empirical extent of non-rationality emphasized by Coibion and Gorodnichenko and subsequent

studies.

16For example, for a sample of (SPF) unemployment and inflation forecasts for 1984-2017 at a horizon of h =
3, these authors report a coefficient of 0.292 (their Table 1).
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IV Model-implied IMA representation for outcome process

Our state space model embeds a process for the outcome variable, yt, that is driven by multiple

shocks, most of which represent expectational updates at various horizons. As described in

Clark, McCracken, and Mertens (2020), such a representation can emerge from a wide class of

models with multiple drivers, including DSGE models, that have a (conditionally linear) state-

space representation. For ease of reference, we can also describe the model-implied process for

yt in terms of a univariate representation driven by innovations defined relative to the history

of yt alone:

εt ≡ yt − E(yt|yt−1) , with yt−1 ≡ {yt−1, yt−2, . . .} . (A.101)

Here we show that our MDS model implies a univariate IMA(1,H) process for yt, which

can be derived from the innovations representation of our state space model. Further below, we

also show that, due to the added persistence in its forecast updates, the VAR model implies a

univariate IMA(1,∞) representation.

In this context, the conditional expectations operator, E(·|yt−1), is understood to condition

also on given values for the model’s parameters (like Σ̃11, Σ̃22, K̃, and τ2w, or Π̃ in the case

of the VAR model). For simplicity, we derive a time-invariant process of yt that abstracts from

variations in stochastic volatility. To do so, and similar to our derivation of CG slopes in Ap-

pendix III(b), we work with a time-invariant representation of our state space model, obtained

by holding fixed the time-varying second moments of the model, Σ̃t and ω2
t . All computations

are performed draw-by-draw from the model’s MCMC output. As in Appendix III(b), at ev-

ery MCMC draw, we employ a fixed value for Σ̃t that is constructed using the median values

over the sampled (time-series) paths for λ1,t and λ2,t, and we replace ω2
t ∼ HS(τ2w) by the

corresponding draw of the global scale parameter τ2w.
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IV(a) Univariate process for yt implied by MDS model

The MDS model is characterized by the following state equations (and assuming constant vari-

ances, as discussed above):

Ỹt = Ψ̃Ỹt−1 + η̃t , η̃t ∼ N (0, Σ̃) , (A.102)

y∗t = y∗t−1 + w∗
t , w∗

t ∼ N (0, τ2w) . (A.103)

We derive an innovations representation based on the following univariate measurement equa-

tion:

yt = e1Ỹt+1 + y∗t+1 , (A.104)

where e1 is a row vector that selects the first element of Ỹt+1.17 To derive the innovations

process for yt, we need to define the projections of state variables onto yt:

Ỹt+1|t ≡ E
(
Ỹt+1

∣∣ yt) = Ψ̃Ỹt|t−1 + κ̃ εt , (A.105)

=
(
I − Ψ̃L

)−1
κ̃ εt , (A.106)

and y∗t+1|t ≡ E
(
y∗t+1

∣∣ yt) = y∗t|t−1 + κ∗ εt , (A.107)

⇔ (1− L) y∗t+1|t = κ∗ εt , (A.108)

where κ̃ and κ∗ are steady-state Kalman gains for each component of the state vector. The lag

operator L is understood to shift both the timing and conditioning sets of the projections, as

in L · Ỹt|t = Ỹt−1|t−1 and analogously for y∗t|t and εt. To derive the steady-state Kalman gains,

consider the following state space:

St+1 =

Ỹt+1

y∗t+1

 = ASt +Bwt+1 , wt ∼ N (0, I) , (A.109)

yt = CSt+1 , (A.110)

17Reflecting the timing assumptions in our state space model, yt is captured only by t + 1 state variables.
These assumption reflect the data flow of economic data releases relative to the SPF at time t+ 1.
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with

A =

Ψ̃ 0

0 1

 , B =

Σ̃1/2
0

0 τw

 , C =

[
e1 1

]
. (A.111)

And the Kalman gains are obtained as follows:

κ =

 κ̃

κ∗

 = V C′ (C V C′)−1
, (A.112)

where V solves the following Riccati equation:

V = A
(
V − V C′ (C V C′)−1 C V

)
A′ +BB′ . (A.113)

To derive the univariate innovations process for yt, note that the state equations imply

Ỹt+1|t = Ψ̃Ỹt|t−1 and y∗t+1|t = y∗t|t−1. With yt = εt + e1 Ψ̃ Ỹt|t−1 + y∗t|t−1, we obtain:

(1− L)yt =

(
1− (1− κ∗) L+ (1− L) e1Ψ̃

(
I − Ψ̃L

)−1
κ̃L

)
εt . (A.114)

To determine the number of MA lags on the right-hand side of (A.114), it is useful to note that

for Ψ̃ as defined in equation (8) of the paper, we have Ψ̃
H+1+j

= 0 for all j > 0:18

(
I − Ψ̃L

)−1
=

H+1∑
j=0

(Ψ̃L)i ⇒ Ψ̃
(
I − Ψ̃L

)−1
L =

H+1∑
j=1

Ψ̃
j
Lj . (A.115)

In total, it follows that there are H + 2 MA lags on the right-hand side of (A.114), and the

process of yt is an integrated moving-average (IMA) process with integration order of one and

H MA lags, or, in short, IMA(1,H + 2). As discussed above, there is some choice in selecting

the length, H, of the cyclical state vector, Ỹt, used to track the term structure of SPF consistent

forecasts. As shown here, this choice of H is reflected in the number of MA lags in the model-

implied univariate process for yt.

Moreover, it is straightforward to verify that for all j < H +2 we have e1Ψ̃
j
= ej+1, where

ej is an H + 2 dimensional row vector that selects the jth row.19 Denoting the jth element of
18Recall that Yt contains not only forecasts for horizons h = 1, 2, . . . , H but also the nowcast and the lagged

realized value, yt−1, so that Yt has H+2 elements, and the transition matrix Ψ̃ is of dimension (H+2)×(H+2).
19Reflecting differences in context, the definitions of selection vectors ej here and e(h) in Section III(b) are

similar, but differ in that e(h) is a column vector selecting the (k + 2)th element.
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the Kalman gain vector κ̃ by κ̃j ≡ ejκ̃, the IMA representation simplifies as follows:

(1− L)yt =

1− (1− κ∗) · L+

H+1∑
j=1

e1 Ψ̃
j
κ̃ · (Lj − Lj+1)

 · εt (A.116)

=

1− (1− κ∗) · L+

H+1∑
j=1

κ̃j+1 · (Lj − Lj+1)

 · εt . (A.117)

In the MDS model, the moving average coefficients in the IMA representation of yt thus

correspond to the Kalman gains involved in forming projections of trend and cyclical states

that track SPF-consistent expectations at different forecast horizons. When the trend gain, κ∗,

is close to zero, the unit-root factor (1− L) nearly cancels on both sides of (A.117). Of course,

the case of κ∗ ≈ 0 corresponds to situations where the trend shock variance is negligible relative

to the variability of cyclical shocks in the model, and yt is essentially a stationary variable, and

its process is close to an MA(H − 1). In terms of the level of yt we can also write:

yt =

1 +

H+1∑
j=1

κ̃j+1 · Lj

 · εt + y∗t−1|t−1 , (A.118)

with y∗t|t = κ∗ ·
∞∑
j=0

εt−j . (A.119)

IV(b) Univariate process for yt implied by VAR model

The derivation of a univariate innovations representation for yt in the VAR model is similar to

the steps described above for the MDS case. The main difference is that (ignoring constants)

the gap process for Ỹt has a richer VMA representation:

Ỹt = Φ̃(L)−1 ε̃t , with Φ̃(L) =
(
I − Π̃L

)(
I − Ψ̃L

)
. (A.120)

The roots of Φ̃(L) are the union of the roots of (I − Π̃L) and (I − Ψ̃L), and the former are

generally non-zero so that the VMA lags of Φ̃(L)−1 vanish only asymptotically. Nevertheless,

the derivation of the process for yt is isomorphic for the MDS case and results in the following

IMA(1,∞) representation:20

20To derive the Kalman gains for the VAR model, we use the following augmented state space matrices:

A =

Ψ̃+ Π̃ −Ψ̃ Π̃ 0
I 0 0
0 0 1

 , B =

Σ̃1/2
0

0 0
0 τw

 , C =
[
e1 0 1

]
. (A.121)
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(1− L)yt =
(
1− (1− κ∗) L+ (1− L) e1

(
Π̃+ Ψ̃

)
Φ̃(L)−1κ̃L

)
εt . (A.122)

yt =
(
1 + e1

(
Π̃+ Ψ̃

)
Φ̃(L)−1κ̃L

)
· εt + y∗t|t−1 . (A.123)
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IV(c) Estimates of the IMA process for yt

To illustrate estimates of the IMA process for yt, we compute impulse responses of yt in re-

sponse to an innovation of the IMA process (denoted εt in the derivations above). Figures A.15

through A.18 report these impulse responses for each variable, based on estimates from MDS

and VAR models and using data through 2019Q4 or 2024Q1. The estimates differ mainly

across variables, and are fairly unchanged when including or excluding data since the onset of

the COVID-19 pandemic. The general contours of the estimated impulse responses for each

variable are also quite similar using the MDS or VAR models.

By construction, all responses are equal to 1 on impact. For GDP growth and CPI and

GDP price inflation, the estimated responses then return within a couple of quarters to the

(new) steady state, which is barely changed for GDP growth and GDP price inflation. Even for

CPI inflation, a unit surprise in the realized data raises the endpoint of the term structure of

expectations by no more than 10 basis points. Of course, all three of these variables measure

rates of change, and the relatively low persistence embodied in their estimated impulse responses

is consistent with that. In contrast, the unemployment is a more persistent variable, which is

also borne out by the estimated hump shape in its impulse responses. In both the MDS and

VAR models, the unemployment rate response peaks about three quarters after impact and at

responses that exceed the impact value by about one to two fifths. For the MDS model, the

peak of its hump-shaped response is followed by a relatively gradual decline, that declines below

0.6 after only about 8 quarters. In contrast, the VAR model generates a sharper peak in the

unemployment rate response followed by a swifter decline (reaching the new steady state after

about 8 quarters).
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Figure A.15: Univariate process for yt (MDS, 2019Q4)
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Notes: Impulse responses of univariate innovations representation for yt implied by our state
space for the MDS model. Posterior median and 68% uncertainty bands obtained from data
through 2019Q4. The dashed (orange) line depicts the shift in endpoint induced by an innovation
to yt.
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Figure A.16: Univariate process for yt (MDS, 2024Q1)

(a) Real GDP growth
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Notes: Impulse responses of univariate innovations representation for yt implied by our state
space for the MDS model. Posterior median and 68% uncertainty bands obtained from data
through 2024Q1. The dashed (orange) line depicts the shift in endpoint induced by an innovation
to yt.
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Figure A.17: Univariate process for yt (VAR, 2019Q4)

(a) Real GDP growth
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Notes: Impulse responses of univariate innovations representation for yt implied by our state
space for the MDS model. Posterior median and 68% uncertainty bands obtained from data
through 2019Q4. The dashed (orange) line depicts the shift in endpoint induced by an innovation
to yt.
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Figure A.18: Univariate process for yt (VAR, 2024Q1)

(a) Real GDP growth
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Notes: Impulse responses of univariate innovations representation for yt implied by our state
space for the MDS model. Posterior median and 68% uncertainty bands obtained from data
through 2024Q1. The dashed (orange) line depicts the shift in endpoint induced by an innovation
to yt.
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V Additional results

This section provides additional results, covering additional variables and further details that

were not shown in the paper for the sake of brevity. These include: tables of results for a

sample ending in 2019Q4, rather than the paper’s sample end of 2023Q4, for Mincer-Zarnowitz

predictability regressions (Tables A.7 and A.8, for models with and without noise), the relative

accuracy of forecasts from the MDS and VAR models (Table A.9), and coverage rates (Ta-

ble A.10). Those results are fairly similar to what is reported in the paper and above for data

including the pandemic sample. In addition, Table A.11 complements the results for the VAR

model reported in the paper (for the sample ending in 2023Q4), with similar results from the

MDS model.

The results also include additional figures testing the uniformity of the empirical CDFs of

PITs for forecasts of CPI and PGDP inflation (Figures A.19 and A.20) and comparing cumula-

tive log scores — i.e., marginal likelihoods — of the MDS and VAR specifications (Figure A.21).

In addition, Figure A.22 reports end-of-sample estimates, obtained from recursive out-of-sample

forecast simulations, of the MDS model’s shifting endpoints, y∗t , for each variable, that track

closely observed long-run forecasts from the SPF (these are 10-years-ahead average forecasts

available for GDP growth and CPI inflation). Figure A.23 reports similar estimates generated

from the VAR model.
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Table A.7: Predictability of SPF point forecasts (pre COVID)

intercept slope

RGDP UNRATE PGDP CPI RGDP UNRATE PGDP CPI

Forecast MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR

h = 0 −0.66 −0.49 −0.03 −0.08 0.04 0.13 −0.11 −0.11 1.17 1.16 1.00 1.02 0.94 0.92 1.03 1.08
(0.43) (0.39) (0.07) (0.08) (0.11) (0.11) (0.44) (0.43) (0.16) (0.15) (0.01) (0.01) (0.05) (0.05) (0.18) (0.18)

h = 1 −0.49 −0.15 −0.07 −0.01 −0.02 0.13 −0.01 0.09 1.14 1.03 1.01 1.00 0.98 0.95 0.97 0.96
(0.35) (0.33) (0.09) (0.09) (0.08) (0.08) (0.16) (0.14) (0.12) (0.12) (0.02) (0.02) (0.03) (0.04) (0.07) (0.06)

h = 2 −0.09 0.21 −0.10 −0.05 0.13 0.26 0.12 0.16 1.00 0.90 1.02 1.01 0.92 0.84 0.92 0.94
(0.23) (0.21) (0.10) (0.10) (0.06) (0.07) (0.10) (0.12) (0.08) (0.07) (0.02) (0.02) (0.03) (0.03) (0.04) (0.05)

h = 3 0.14 0.31 −0.13 −0.08 0.11 0.22 0.15 0.21 0.94 0.86 1.03 1.02 0.93 0.86 0.91 0.91
(0.14) (0.12) (0.11) (0.12) (0.07) (0.08) (0.09) (0.09) (0.05) (0.04) (0.02) (0.02) (0.03) (0.03) (0.04) (0.04)

h = 4 0.29 0.94 −0.18 −0.08 0.16 0.22 0.12 0.23 0.89 0.68 1.04 1.02 0.92 0.91 0.94 0.89
(0.12) (0.19) (0.11) (0.17) (0.07) (0.08) (0.09) (0.09) (0.04) (0.07) (0.02) (0.03) (0.03) (0.04) (0.04) (0.03)

y = 1 −0.24 −0.15 −0.17 −0.12 0.16 0.22 0.01 0.10 1.06 1.04 1.03 1.03 0.90 0.88 0.98 0.95
(0.30) (0.28) (0.09) (0.11) (0.07) (0.07) (0.12) (0.12) (0.10) (0.10) (0.02) (0.02) (0.03) (0.03) (0.05) (0.05)

y = 2 −0.19 −0.19 -0.27 −0.08 — — 0.64 0.94 1.07 1.07 1.03 1.00 — — 0.73 0.59
(0.13) (0.15) (0.11) (0.12) (0.36) (0.23) (0.05) (0.06) (0.02) (0.02) (0.16) (0.10)

y = 3 0.02 −0.10 0.52 −0.06 — — — — 0.99 1.04 0.86 0.99 — — — —
(0.19) (0.20) (0.16) (0.20) (0.07) (0.08) (0.03) (0.04)

Notes: Estimated slope coefficients of Mincer-Zarnowitz regressions for model-based predictions of next-quarter’s published values for SPF forecasts
at different forecast horizons. Heteroskedasticity-consistent standard errors in brackets. Bold font distinguishes coefficient estimates significantly
different from 0 (intercept) or 1 (slope) with a 10% confidence level. Evaluation window from 1990Q1 to 2019Q4 (and as far as data for SPF
forecasts at the different horizons is available).
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Table A.8: Predictability of SPF point forecasts (pre COVID, noise-free model)

intercept slope

RGDP UNRATE PGDP CPI RGDP UNRATE PGDP CPI

Forecast MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR

h = 0 −0.66 −0.46 −0.03 −0.13 0.04 0.15 −0.11 −0.12 1.17 1.15 1.00 1.02 0.94 0.90 1.03 1.08
(0.43) (0.39) (0.07) (0.08) (0.11) (0.11) (0.44) (0.45) (0.16) (0.15) (0.01) (0.01) (0.05) (0.05) (0.18) (0.19)

h = 1 −0.49 −0.12 −0.07 −0.05 −0.02 0.09 −0.01 −0.01 1.14 1.02 1.01 1.01 0.98 0.94 0.97 0.99
(0.35) (0.32) (0.09) (0.09) (0.08) (0.09) (0.16) (0.14) (0.12) (0.11) (0.02) (0.02) (0.03) (0.04) (0.07) (0.06)

h = 2 −0.09 0.15 −0.10 0.00 0.13 0.12 0.12 0.17 1.00 0.93 1.02 1.00 0.92 1.01 0.92 0.92
(0.23) (0.22) (0.10) (0.13) (0.06) (0.10) (0.10) (0.10) (0.08) (0.08) (0.02) (0.02) (0.03) (0.05) (0.04) (0.04)

h = 3 0.14 1.74 −0.13 −0.16 0.11 1.10 0.15 0.61 0.94 0.35 1.03 1.04 0.93 0.41 0.91 0.75
(0.14) (0.15) (0.11) (0.24) (0.07) (0.07) (0.09) (0.18) (0.05) (0.06) (0.02) (0.05) (0.03) (0.02) (0.04) (0.07)

h = 4 1.65 1.76 −0.13 0.07 1.13 0.18 0.48 0.49 0.39 0.38 1.03 0.99 0.52 0.90 0.80 0.82
(0.19) (0.14) (0.12) (0.17) (0.16) (0.08) (0.15) (0.11) (0.07) (0.05) (0.02) (0.03) (0.07) (0.04) (0.06) (0.05)

y = 1 0.42 0.51 −0.16 −0.18 0.17 0.42 0.12 0.38 0.83 0.81 1.03 1.03 0.92 0.78 0.94 0.85
(0.17) (0.13) (0.13) (0.16) (0.08) (0.09) (0.09) (0.15) (0.06) (0.05) (0.03) (0.03) (0.04) (0.04) (0.04) (0.06)

y = 2 0.13 0.29 -0.33 −0.03 — — 0.98 1.20 0.94 0.89 1.05 0.99 — — 0.57 0.48
(0.10) (0.24) (0.08) (0.09) (0.32) (0.30) (0.04) (0.09) (0.02) (0.02) (0.14) (0.13)

y = 3 0.13 0.35 0.06 0.11 — — — — 0.94 0.87 0.97 0.97 — — — —
(0.16) (0.31) (0.22) (0.20) (0.06) (0.12) (0.04) (0.04)

Notes: Estimated slope coefficients of Mincer-Zarnowitz regressions for model-based predictions of next-quarter’s published values for SPF forecasts
at different forecast horizons. Heteroskedasticity-consistent standard errors in brackets. Bold font distinguishes coefficient estimates significantly
different from 0 (intercept) or 1 (slope) with a 10% confidence level. Evaluation window from 1990Q1 to 2019Q4 (and as far as data for SPF
forecasts at the different horizons is available).
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Table A.9: Relative Forecast Accuracy of MDS vs VAR models (pre COVID)

RMSE CRPS

h RGDP UNRATE PGDP CPI RGDP UNRATE PGDP CPI

0 1.00 1.16 1.02 0.92∗ 1.00 0.96 1.01 0.94∗∗∗

1 1.00 1.06 1.00 1.01 1.00 0.96 0.99 1.01
2 0.99 1.01 0.98 1.01 0.99 0.96 0.97 1.01
3 1.00 0.99 0.98 1.00 1.01 0.96 0.97 1.01
4 1.00 0.99 0.99 0.99 1.00 0.97 0.98 1.01
5 1.01 1.00 1.00 0.99 1.02 0.99 0.99 1.00
6 1.01 1.01 1.01 0.99 1.02 1.00 1.00 1.00
7 1.01 1.01 1.00 0.98 1.01 1.01 0.99 1.00
8 1.01 1.02 1.00 0.98 1.01 1.02 0.99 0.99
9 1.00 1.02 1.01 0.98 1.01 1.02 1.00 0.99
10 1.00 1.02 1.01 0.99 1.00 1.02 1.00 1.00
11 1.01 1.01 1.00 0.98 1.00 1.01 0.99 1.00
12 1.01 1.01 1.01 0.98 1.01 1.01 1.00 0.99
13 1.01 1.00 1.01 0.98 1.01 1.00 1.00 0.99
14 1.01 1.00 1.01 0.98 1.01 0.99 1.00 0.99
15 1.01 0.99 1.01 0.97 1.02 0.99 1.00 0.99
16 1.02 0.99 1.01 0.97 1.03∗ 0.98 0.99 0.99

Note: Relative RMSE and CRPS of VAR model (with MDS in denominator). Quarterly forecast
horizons, h. Evaluation window from 1990Q1 through 2019Q4 (and as far as realized values are
available). Significance assessed by Diebold-Mariano tests using Newey-West standard errors
with h+ 1 lags. ∗∗∗, ∗∗ and ∗ denote significance at the 1%, 5%, and 10% level, respectively.
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Table A.10: Coverage rates (pre COVID)

RGDP UNRATE PGDP CPI

h 68% 90% 68% 90% 68% 90% 68% 90%

PANEL A: MDS Model

0 47.50∗∗∗ 77.50∗∗∗ 88.33∗∗∗ 98.33∗∗∗ 57.50∗∗ 87.50 66.67 90.83
1 52.94∗∗∗ 78.15∗∗∗ 84.03∗∗∗ 98.32∗∗∗ 62.18 88.24 60.50∗ 87.39
2 52.54∗∗∗ 80.51∗∗ 82.20∗∗∗ 96.61∗∗∗ 62.71 88.14 62.71 88.14
3 49.57∗∗∗ 81.20∗ 77.78 94.87 64.10 90.60 64.10 88.03
4 56.90∗∗ 84.48 71.55 93.10 61.21 89.66 70.69 89.66
5 58.26∗ 87.83 70.43 93.04 60.87 91.30 69.57 89.57
6 57.02∗∗ 86.84 71.05 93.86 61.40 90.35 70.18 89.47
7 59.29∗ 88.50 68.14 92.92 61.06 94.69∗∗ 69.91 91.15
8 62.50 86.61 62.50 91.96 64.29 95.54∗∗∗ 71.43 91.96
9 61.26 87.39 57.66 91.89 66.67 94.59∗∗ 73.87 91.89
10 61.82 87.27 56.36 90.91 65.45 98.18∗∗∗ 74.55 91.82
11 63.30 87.16 55.96 90.83 68.81 98.17∗∗∗ 75.23 92.66
12 68.52 90.74 58.33 89.81 71.30 97.22∗∗∗ 74.07 92.59
13 67.29 88.79 57.94 88.79 74.77 98.13∗∗∗ 76.64 93.46
14 66.04 90.57 58.49 88.68 78.30∗∗ 98.11∗∗∗ 77.36 93.40
15 67.62 89.52 56.19 86.67 79.05∗∗ 98.10∗∗∗ 77.14 94.29
16 69.23 91.35 58.65 87.50 77.88∗ 99.04∗∗∗ 78.85 94.23

PANEL B: VAR Model

0 50.00∗∗∗ 81.67∗∗∗ 76.67∗ 96.67∗∗∗ 58.33∗∗ 87.50 66.67 92.50
1 56.30∗∗ 80.67∗∗∗ 79.83∗∗∗ 94.12 63.87 85.71 62.18 87.39
2 58.47∗ 83.90∗ 78.81∗∗ 95.76∗ 67.80 90.68 66.10 88.14
3 52.99∗∗∗ 82.91∗ 78.63∗ 94.02 67.52 91.45 67.52 90.60
4 57.76∗ 87.93 69.83 93.97 66.38 91.38 67.24 87.93
5 60.87 88.70 66.96 93.04 69.57 93.91 73.04 92.17
6 60.53 88.60 64.91 92.98 69.30 93.86 70.18 92.98
7 66.37 89.38 63.72 92.92 69.03 95.58∗∗ 70.80 92.92
8 64.29 88.39 60.71 91.07 71.43 94.64 74.11 91.96
9 64.86 87.39 56.76 90.99 72.97 92.79 72.07 92.79
10 65.45 89.09 56.36 89.09 71.82 96.36∗∗∗ 72.73 91.82
11 69.72 87.16 51.38∗∗ 87.16 76.15 97.25∗∗∗ 77.98 92.66
12 66.67 88.89 49.07∗∗ 86.11 75.93∗ 98.15∗∗∗ 75.93 93.52
13 72.90 88.79 47.66∗∗ 86.92 73.83 98.13∗∗∗ 76.64 92.52
14 70.75 91.51 48.11∗∗ 85.85 76.42 98.11∗∗∗ 76.42 93.40
15 68.57 91.43 46.67∗∗ 84.76 76.19 98.10∗∗∗ 76.19 94.29
16 71.15 91.35 46.15∗ 83.65 78.85∗ 99.04∗∗∗ 78.85 94.23

Note: Coverage rates for uncertainty bands with nominal levels of 68% and 90% for out-of-sample
forecasts at quarterly forecast horizons, h. Evaluation window from 1990Q1 through 2019Q4 (and as
far as realized values are available). Reflecting the availability of annual SPF forecasts, forecasts for
inflation in CPI and GDP prices are evaluated only up to h = 12, and h = 8, respectively. Significance
assessed by Diebold-Mariano tests using Newey-West standard errors with h + 1 lags. ∗∗∗, ∗∗ and ∗

denote significance at the 1%, 5%, and 10% level, respectively.
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Table A.11: Coverage rates (full sample)

RGDP UNRATE PGDP CPI

h 68% 90% 68% 90% 68% 90% 68% 90%

PANEL A: MDS Model

0 48.53∗∗∗ 78.68∗∗∗ 86.76∗∗∗ 96.32∗∗∗ 55.15∗∗∗ 83.09∗ 66.18 88.97
1 52.59∗∗∗ 77.04∗∗∗ 82.22∗∗∗ 97.04∗∗∗ 60.00∗ 83.70 59.26∗∗ 84.44
2 52.99∗∗∗ 80.60∗∗∗ 79.85∗∗ 94.78∗ 60.45 83.58 60.45 84.33
3 50.38∗∗∗ 81.20∗ 75.94 92.48 61.65 85.71 61.65 84.21
4 56.82∗∗ 82.58 71.21 90.15 59.09∗∗ 84.85 67.42 85.61
5 58.02∗∗ 84.73 69.47 89.31 57.25∗∗ 86.26 65.65 84.73
6 56.15∗∗ 84.62 69.23 89.23 56.92∗ 85.38 65.38 85.38
7 57.36∗∗ 83.72 66.67 88.37 56.59∗∗ 89.15 65.89 86.82
8 60.16 82.03 61.72 88.28 60.16 90.62 66.41 86.72
9 58.27∗∗ 82.68 57.48 88.19 62.20 88.98 68.50 87.40
10 59.52∗ 82.54 56.35 87.30 60.32 92.06 69.05 87.30
11 60.80∗ 82.40 56.00 87.20 63.20 90.40 69.60 88.00
12 65.32 86.29 57.26 86.29 65.32 89.52 68.55 87.90
13 63.41 84.55 57.72 86.18 68.29 90.24 70.73 88.62
14 62.30 85.25 58.20 86.07 71.31 90.16 71.31 88.52
15 62.81 85.12 57.85 84.30 71.90 90.91 71.07 89.26
16 65.00 86.67 60.00 86.67 70.83 90.83 72.50 89.17

PANEL B: VAR Model

0 50.00∗∗∗ 81.62∗∗∗ 76.47∗ 94.85∗∗ 55.88∗∗∗ 84.56∗ 66.18 91.18
1 55.56∗∗∗ 79.26∗∗∗ 77.78∗∗ 93.33 62.22 82.22∗∗ 60.74 84.44
2 58.21∗∗ 82.84∗∗ 77.61∗ 94.03 65.67 85.82 63.43 84.33
3 53.38∗∗∗ 82.71∗ 78.20∗ 91.73 64.66 86.47 64.66 86.47
4 56.06∗∗ 85.61 68.94 90.91 62.88 86.36 64.39 84.09
5 59.54 86.26 66.41 89.31 64.89 87.79 68.70 87.02
6 58.46∗∗ 86.15 63.85 88.46 64.62 87.69 66.15 88.46
7 64.34 86.05 62.02 88.37 64.34 89.92 65.89 87.60
8 62.50 84.38 60.16 87.50 65.62 88.28 68.75 86.72
9 62.20 83.46 56.69∗ 86.61 66.93 86.61 66.14 88.19
10 62.70 84.92 56.35∗ 85.71 65.87 89.68 67.46 87.30
11 66.40 83.20 52.00∗∗ 83.20 69.60 88.80 72.00 88.00
12 63.71 84.68 50.00∗∗ 82.26 69.35 89.52 70.16 87.90
13 69.11 84.55 48.78∗∗ 82.93 67.48 90.24 70.73 87.80
14 66.39 86.89 49.18∗∗ 82.79 69.67 89.34 69.67 88.52
15 64.46 86.78 48.76∗∗ 82.64 69.42 88.43 69.42 89.26
16 66.67 87.50 48.33∗ 81.67 71.67 90.00 71.67 89.17

Note: Coverage rates for uncertainty bands with nominal levels of 68% and 90% for out-of-sample
forecasts at quarterly forecast horizons, h. Evaluation window from 1990Q1 through 2023Q4 (and as
far as realized values are available). Reflecting the availability of annual SPF forecasts, forecasts for
inflation in CPI and GDP prices are evaluated only up to h = 12, and h = 8, respectively. Significance
assessed by Diebold-Mariano tests using Newey-West standard errors with h + 1 lags. ∗∗∗, ∗∗ and ∗

denote significance at the 1%, 5%, and 10% level, respectively.
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Figure A.19: GDP price inflation PITs
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Notes: Empirical cumulative distributions of probability integral transforms (PITs) for inflation
in the GDP price index at selected quarterly forecast horizons. All forecasts are generated out
of sample by our MDS and VAR models, and evaluated over an evaluation window from 1990Q1
through 2023Q4 (and as far as realized values are available). 95% confidence bands for tests
of correct calibration from Rossi and Sekhposyan (2019); computed separately for each model,
but with nearly identical plot lines.
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Figure A.20: CPI inflation PITs
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Notes: Empirical cumulative distributions of probability integral transforms (PITs) for CPI
inflation at selected quarterly forecast horizons. All forecasts are generated out of sample by
our MDS and VAR models, and evaluated over an evaluation window from 1990Q1 through
2023Q4 (and as far as realized values are available). 95% confidence bands for tests of correct
calibration from Rossi and Sekhposyan (2019); computed separately for each model, but with
nearly identical plot lines.
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Figure A.21: Log scores

(a) Real GDP growth
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Notes: Figures show recursive means (across time) of the differences in 1-step-ahead log pre-
dictive scores for the MDS less the VAR model (negative entries mean the MDS model has the
better score). These score differences are closely related to differences in log marginal likeli-
hoods; the likelihoods equal sums of 1-step-ahead log predictive scores. Shaded areas depict
NBER recessions.
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Figure A.22: Endpoint estimates (MDS)
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Notes: End-of-sample estimates of endpoints, y∗t , for the MDS model. Estimates reflect posterior
means and 68% bands, obtained from MCMC model estimates over growing samples (all using
data since 1968Q4), as used in our out-of-sample forecast simulations. For GDP growth and
CPI, corresponding long-run forecasts from the SPF (for 10-year ahead average growth) are
shown as well.
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Figure A.23: Endpoint estimates (VAR)
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Notes: End-of-sample estimates of endpoints, y∗t , for the VAR model. Estimates reflect posterior
means and 68% bands, obtained from MCMC model estimates over growing samples (all using
data since 1968Q4), as used in our out-of-sample forecast simulations. For GDP growth and
CPI, corresponding long-run forecasts from the SPF (for 10-year ahead average growth) are
shown as well.
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