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Abstract

Recent advances in Explainable AI (XAI) increased the demand for deployment of safe and inter-

pretable AI models in various industry sectors.Despite the latest success of deep neural networks

in a variety of domains, understanding the decision-making process of such complex models still

remains a challenging task for domain experts.Especially in the financial domain, merely pointing

to an anomaly composed of often hundreds of mixed type columns, has limited value for experts.

Hence, in this paper, we propose a framework for explaining anomalies using denoising autoen-

coders designed for mixed type tabular data. We specifically focus our technique on anomalies that

are erroneous observations. This is achieved by localizing individual sample columns (cells) with

potential errors and assigning corresponding confidence scores. In addition, the model provides

the expected cell value estimates to fix the errors.

We evaluate our approach based on three standard public tabular datasets (Credit Default, Adult,

IEEE Fraud) and one proprietary dataset (Holdings).We find that denoising autoencoders applied

to this task already outperform other approaches in the cell error detection rates as well as in

the expected value rates. Additionally, we analyze how a specialized loss designed for cell error

detection can further improve these metrics. Our framework is designed for a domain expert to

understand abnormal characteristics of an anomaly, as well as to improve in-house data quality

management processes.
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1 Introduction

Financial regulatory authorities and supervisory agencies play one of the most important roles in

the financial system of a country. The main objective of the authorities is to secure the financial

and monetary stability, supervision of national credit institutions as well as the management of

payment service mechanisms. To fulfill these objectives, national statistical offices of the regulatory

authorities need to collect monetary, financial and external sector statistical data. After the Global

Financial Crisis (GFC) of 2008 – 2009 the enhancement of the financial framework has become

compelling3). In addition to the stronger oversight of financial firms, the GFC led to the call for

strengthening and extension of the financial statistics4). Following the above-mentioned initiatives,

the demand for high quality financial microdata has appeared. To monitor the vulnerability of

the economy to shocks and identify systemic risks, collection of high-quality microdata plays a

vital role. For National Competent Authorities (NCA), the correctness and completeness of the

collected data has to be ensured. Moreover, given the large volumes of collected data today,

NCAs have to develop and deploy efficient data quality check (QC) procedures. Hence, typically

a set of handcrafted rules are developed as rudimentary hard-coded checks. However, these are

only able to detect already known reported errors and are not capable of identifying new types

of errors. Further, it is crucial to not only identify an anomalous observation, but also flag the

field(s) that contain reporting error(s). Therefore, explaining which values caused an irregularity is

essential for financial microdata.

Today, a number of deep learning based techniques are introduced for anomaly detection in tabular

data (Pang, Shen, Cao, and Hengel, 2021). However, in practice such tools are often insufficient

due to the lack of interpretation. The ability to explain anomaly characteristics is as important

as the quality of the trained model. For a domain expert, it is crucial to obtain a comprehensive

explanation that would build a connection between a high anomaly score and a set of features

affecting this score. Moreover, an inquiry to the reporting agent about the erroneous observation

can be made and help with the correction. Therefore, the utilization of the anomaly interpretation

features would significantly improve the applicability of such models in regulatory practice.

1. Row anomaly detection

numerical
attributes

categorical
attributes

Incoming data confidence2. Cell error detection 3. Expected values estimation

Traditional Anomaly Detection Explainable Anomaly Detection

Figure 1: A schematic process overview of explainable anomaly detection (AD) for mixed type tab-
ular data. In comparison to traditional AD which allows only row anomaly detection (1),
explainable AD supplies the detection of cells responsible for high anomaly score (2) as
well as the estimation of expected values for fixing an error (3). The coloring reflects the
error confidence of a particular cell entry.

In this work, we propose a practical framework using denoising autoencoder (DAE) neural net-

works that not only isolates anomalous data points, but also flags the fields that caused the ir-

regularity. The framework is designed for financial tabular data with categorical and numerical

3 https://ec.europa.eu/commission/presscorner/detail/de/MEMO_13_679
4 https://www.imf.org/external/np/g20/pdf/102909.pdf



Explaining Anomalies using Denoising Autoencoders for Financial Tabular Data
Technical Report 2023-01

5

(mixed) type. Figure 1 illustrates an example of traditional and explainable anomaly detection on

financial tabular data. Traditional anomaly detection techniques flag the entire record as an an-

omaly (step 1) providing only a single score for each observation. This information is not enough

to understand the cause of irregularity and only answers the question ”which samples are anom-

alies?”. Our framework extends it to explainable anomaly detection providing cell error detection

mechanism (step 2) which allows answering the question ”why is it an anomaly?”. In addition, the

model is capable of estimating the expected values, that should have been in place of the errors

(step 3). This property allows answering the question ”what should have been reported instead?”.

These steps are utilized as the explainability properties of the model and help the domain expert

to understand the anomalous characteristics of the detected anomalies.

In summary, we present the following contributions:

– We demonstrate that denoising autoencoder neural networks can be utilized to explain the

cause of irregularity of a particular sample for mixed type tabular data.

– We show that such a model can successfully detect reporting errors on the attribute level (cell)

providing corresponding confidence scores, as well as proposing the expected estimates for

fixing the error.

– We propose an extension of the model with an enhanced loss and illustrate that such technique

outperforms traditional methods based on the selected metrics.

The remainder of this paper is structured as follows: section 2 provides an overview of the related

work. In section 3 we describe the autoencoder neural network model with its denoising extension

together with the proposed methodology for detecting the erroneous cells. Next, section 4 and

5 outline the experimental setup and results. We conclude the paper with a summary and future

research directions in section 6.
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2 Related Work

The literature survey hereafter focuses on (1) developed row and cell anomaly detection techniques

for financial tabular data, and (2) existing models designed for explainable anomaly detection.

2.1 Anomaly Detection in Financial Tabular Data

Anomaly detection has been an active research area in different domains, with a number of meth-

ods developed using deep learning (Pang et al., 2021). Especially, tabular data is becoming more

and more attractive for deep learning techniques (Borisov et al., 2021). Nowadays, autoencoders

have been widely used not only for representation learning but also for anomaly detection in vari-

ety types of financial data (Chalapathy and Chawla, 2019). Recently, a number of techniques

were developed using autoencoders to detect anomalies in large scale accounting data (Schreyer,

Sattarov, Borth, Dengel, and Reimer, 2018; Schreyer, Sattarov, Schulze, Reimer, and Borth, 2019;

Schultz and Tropmann-Frick, 2020), identify traces of money laundering and fraud [Paula, Ladeira,

Carvalho, and Marzagão (2016), 8324876} or learn behavioral fraud features (Wedge, Kanter,

Rubio, Perez, and Veeramachaneni, 2017). Besides this, Schreyer et al. (Schreyer, Sattarov, and

Borth, 2021) have demonstrated successful detection of accounting anomalies in a self-supervised

learning setup together with downstream audit tasks. Moreover, autoencoders are a popular

technique for detecting credit card fraud schemes (Kazemi and Zarrabi, 2017; Pumsirirat and Yan,

2018). In the context of financial fraud, a number of unsupervised and semi-supervised techniques

are gaining popularity (Hilal, Gadsden, and Yawney, 2022).

Recently, Nazabal et al. (Nazabal, Olmos, Ghahramani, and Valera, 2020) proposed a framework

to model variational autoencoders for fitting missing cells in the data. The technique includes

handling not only categorical and numerical data types but also ordinal, interval and count. Also,

similar to our approach, Eduardo et al. in (Eduardo, Nazábal, Williams, and Sutton, 2020) proposed

the robust version of the VAE for cell-wise outlier detection for mixed type data.

2.2 Explainable Anomaly Detection

The field of “Explainable AI” (XAI) is rapidly developing, enhancing variety of the models which help

the domain experts slightly open the “black-box” and understand the underlying decision-making

process of the complex algorithms (Das and Rad, 2020). Recently, there have been a number

of techniques introduced (Du, Liu, and Hu, 2018; Murdoch, Singh, Kumbier, Abbasi-Asl, and Yu,

2019) in the area of XAI. Such model agnostic methods like SHapley Additive exPlanations (SHAP)

(Lundberg and Lee, 2017), Local Interpretable Model-Agnostic Explanations (LIME) (Ribeiro, Singh,

and Guestrin, 2016) or DeepLIFT (Shrikumar, Greenside, and Kundaje, 2017) showed significant

success for their abilities to explain the output of almost any machine learning model. At the

same time, the usage of shapley values is becoming popular in explaining anomalies. Antwarg et

al. (Antwarg, Miller, Shapira, and Rokach, 2019) used the kernel SHAP to explain the anomalies

detected by the autoencoder neural network in an unsupervised scenario. Similarly, Takeshi et

al. (Takeishi, 2020) successfully used the power of shapley values in linear models such as PCA.

Nguyen et al. (M.-N. Nguyen and Vien, 2018) have proposed the combined version of the autoen-

coder and OC-SVM to explain the decision-making process of detected outliers in unsupervised
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anomaly detection tasks. Another unsupervised attempt was made by Chen et al. (Chen, Tian,

Pang, and Carneiro, 2021) to localize structural and non-structural anomalies in computer vision.

Previously, Bergmann et al. (Bergmann, Löwe, Fauser, Sattlegger, and Steger, 2019) proposed

the perceptual loss for autoencoders to identify inter-dependencies between local image regions.

Recently, Amarasinghe et al. (Amarasinghe, Kenney, and Manic, 2018) developed a framework

using deep neural networks to explain the cause of detected DoS attacks in a supervised manner.

A gradient-based approach was utilized by Nguyen et al. (Q. P. Nguyen, Lim, Divakaran, Low,

and Chan, 2019) to develop a framework for detecting anomalies in a network traffic using vari-

ational autoencoder. Another attempts using attention learning mechanism were proposed by

Venkataramanan et al. (Venkataramanan, Peng, Singh, and Mahalanobis, 2019) and Xu et al. (Xu

et al., 2021). Also, an explainable recommendation system using autoencoder was developed by

Haghighi et al. (Haghighi, Seton, and Nasraoui, 2019). The model was designed to explain the

outputs of the recommender. Kauffmann et al. (Kauffmann, Müller, and Montavon, 2020) used

a deep Taylor decomposition to explain various anomaly types. Another practical application to

explain the output of black-box model was described by Ramamurthy et al. (Ramamurthy, Vin-

zamuri, Zhang, and Dhurandhar, 2020). They build a multilevel explanation tree that characterizes

the local and global explanations of the records. A number of attempts were also made to model

the detection of cell errors in medical and geoscience domains. Jan et al. (Walach, 2020) have

proposed a cell outlier diagnostics detection technique and evaluated it on three different medical

datasets. Similarly, the importance of multivariate outlier detection in the field of geosciences was

recently demonstrated in by Filzmoser et al. (Filzmoser and Gregorich, 2020).

According to the systematic review of Riyanul et al. (Islam, Ahmed, Barua, and Begum, 2022)

only 2% of the XIA research papers are focused on the finance domain. The literature survey

above also demonstrated the overall popularity of XAI techniques, but very limited application of

anomaly explanations for financial data, especially in combination with denoising autoencoder

neural networks.



Deutsche Bundesbank, Research Data and Service Centre
German Research Center for Artificial Intelligence (DFKI)

8

3 Methodology

In this section, we describe the autoencoder neural network, its denoising extension with the

proposed loss, as well as the specification of the framework for explaining anomalies.

3.1 Autoencoder Neural Network

Formally, we denote a set of instances x1, x2, ..., xN in a tabular dataset X. Every instance en-

compasses a set of attributes d ∈ {1, ...,D} with either numeric xdnumn ∈ R or categorical type

xdcatn ∈ {1, ..., C} where C is the total number of unique categories of the feature d.

An autoencoder (AE) neural network is a type of feed-forward network that aims to perform a lossy

data compression into a lower dimensional feature space and afterwards reconstruct it back to

the original data space with minimal loss. The encoder network fθ performs the data compression

and the decoder network gψ accomplishes the reconstruction. Upon the successful model training

with a set of parameters θ and ψ, the reconstruction error is often used to quantify the anomaly

degree of an instance. The reconstruction error reflects how good an instance fits into the general

patterns of the data. Hence, an inlier receives a relatively low reconstruction error, whereas an

outlier obtains a higher one, which attests its deviation from the common data structure. The

network is trained in an end-to-end unsupervised fashion by minimizing the reconstruction loss,

formally defined as follows:

argminθψ ∥X – gψ (fθ(X))∥

(1)

Due to the mixed type nature of the data, we define the reconstruction loss of every instance as

the sum of two losses. For each one-hot encoded representation of the categorical attribute the

(1) negative-log-likelihood loss is calculated and (2) the mean-squared loss used for the numerical

attributes, formally expressed by:

Lθ,ψ (xdn; x̂dn) =
∑Dcat

d=1 L
NLL
θ,ψ (x

d
n; x̂

d
n) +

∑Dnum
d=1 LMSE

θ,ψ (xdn; x̂
d
n)

(2)

where x̂dn denotes the n– th reconstructed sample and its attribute d. We have observed that such

loss design suits better for mixed data type as it leads to a faster overall model convergence.
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3.2 Denoising Autoencoder Neural Network

The denoising autoencoder (DAE) is an extension of the traditional autoencoder neural network

with the goal of removing noise from the signal. Such a model is trained by disrupting the input

data with random noise and reconstructing the clean data. At first, a corrupted instance x̃ is cre-

ated by adding random noise to the clean input instance x. Next, the encoder network fθ performs

the compression of the corrupted instance x̃, and the decoder network gψ accomplishes the re-

construction x̂ (noise removal). The training objective function is the same as in the Equation 1. In

the inference phase, the trained model is capable of transforming the noisy data into noiseless.

In addition to the denoising capabilities, such model modification improves the robustness of the

hidden layers (i.e., latent layer representation) (Vincent, Larochelle, Bengio, and Manzagol, 2008)

as well as reduces the risk of overfitting.
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Figure 2: A schematic overview of the training and inference phases of DAE for cell error detection
and estimation of expected values. In the corruption phase, random noise is added to a
sample. Next, the DAE is trained on the corrupted data with the goal to reconstruct the
clean data. In the inference phase, the cells that failed to reconstruct, are flagged as an
error, and the reconstructed value is used as an estimation of the expected value to fix
the error.

Enhanced loss. We have noticed, that the selection of the right amount of injected noise during

training is quite challenging for mixed type tabular data. Too much noise leads the model to

focus mainly on the noise removal task, and the network fails to reconstruct clean data sufficiently

enough. On the contrary, too little noise decreases noise removal capabilities, which affects the

overall cell error detection rate. Therefore, we propose an extension to the loss function of the

DAE. Specifically, we introduce a parameter α = [0, 1] that allows us to weigh the noise removal

vs. clean data reconstruction within the batch. In practice, we found that selection of a fixed α is

challenging. Therefore, we propose to sample it from the Beta(0.5, 0.5) distribution. The random

sampling of α can be understood as a regularization technique (somewhat similar to dropout)

to optimize both of our goals (noise removal and reconstruction of clean data). The alternating

nature of α (i.e., being sampled close to the extremes of 0 or 1) seems to be beneficial to training

in many cases. The final loss has the following formulation:

Lθ,ψ (xdn; x̂dn) = α m⊙ Lθ,ψ (xdn; x̂dn) + (1 – α) �m⊙ Lθ,ψ (xdn; x̂dn)

(3)

where m is a binary mask vector m ∈ {0, 1}d that yields 1 at the entry with noise or 0 otherwise,
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�m is its complement, and ⊙ is the element-wise multiplication.

3.3 Anomaly Explainer

To explain the cause of an anomaly, we utilize the properties of the reconstruction error of each

separate attribute of the trained DAE. Such an approach is also quite common in practice using

traditional AE. Although this typically yields good performance on the detection of row anomalies,

it becomes less precise in identifying the exact cells that contain errors. Hence, the goal of the pro-

posed framework is to answer three questions by supplying the domain expert with the following

information:

– Which samples are anomalies? Row Anomalies: identify a subset of K row anomalies with

the highest reconstruction errors.

– Why is it an anomaly? Cell Errors: for every cell in K selected anomalies, compute the confid-

ence πdn that the value xdn contains an error.

– What should have been reported instead? Expected Values: for every cell in K selected

anomalies, collect the reconstructed value x̂dn.

Training. As depicted in Figure 2 the DAE is trained to reconstruct a clean (noiseless) instance xn
from its corrupted counterpart x̃n. During the training, the reconstruction error between the clean

instance xn and its reconstruction x̂n is minimized.

Inference. Once the DAE is trained, the reconstruction error x̂dn of each attribute value of the

test (unseen) data is calculated. Depending on the attribute type (either categorical or numerical)

two different functions are applied to obtain the error confidence πdn of this cell. For categor-

ical attributes, we compute the complement of the normalized reconstruction category c as the

following:

Cell: πdcatn = 1 – adcn

(4)

where a(·) is the softmax function adcn = softmax(x̂dn)
c calculated on the reconstructed represent-

ation of the attribute d. The superscript c identifies a particular category in that attribute. For

numerical attributes, we compute the complement of the negative exponential function between

the input value xdn and its reconstruction x̂dn as the following:

Cell: πdnumn = 1 – e–(x
d
n–x̂

d
n )
2

(5)

Correspondingly, the row anomaly score is computed as the sum of all categorical and numerical
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cell scores πdn :

Row: πn =
∑D

d=1 π
d
n

(6)

The expected values are obtained by collecting the reconstructed values x̂dn. For categorical attrib-

utes, we use the highest probability category argmaxc adcn of the softmax transformation adn.
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4 Experimental setup

In this section, we describe the details of the conducted experiments. We describe the datasets as

well as the noise injection procedure that was applied to these datasets, together with the metrics

used to evaluate the performance of the results. For training and evaluation of the neural network

models, the PyTorch v1.10.2 (Paszke et al., 2019) framework was used.

4.1 Datasets

We benchmark the developed technique with open-source and real world datasets. Three public

datasets and one proprietary dataset were selected to evaluate the performance of the proposed

framework. Below, we provide the description of each dataset:

– Credit Default 5): The dataset is taken from the UCI machine learning repository (Dua and Graff,

2017) and contains information on bill statements of credit card clients, their default payments,

history of payment as well as the demographic factors of the clients in Taiwan during the period

April 2005 to September 2005 (Yeh and Lien, 2009).

– IEEE Fraud6): The dataset consists of the electronic transactions from the e-commerce service

provider Vesta Corporation. The dataset was published to improve the efficiency of the fraud

detection alert system.

– Adult7): The dataset is taken from the UCI machine learning repository (Dua and Graff, 2017)

and consists of personal income records, where the task is to predict whether an income exceeds

$50k per year.

– Holdings8): This proprietary dataset consists of the individual holdings of the investment funds

issued by investment companies (Blaschke, Haupenthal, Schuck, and Yalcin, 2021). Each record

reflects the asset or liability value submitted by the reporting entity at the end of the month.

All datasets have mixed attribute types as described in Table 1. In the data preprocessing step, all

categorical attributes are encoded using the one-hot encoding technique. Numerical attributes

are standardized to have 0 mean and standard deviation 1. Afterwards, the one-hot encoded

representation is combined with standardized numerical attributes. The final number of encoded

attributes is reflected in the last column (“Encoded”) of the Table 1.

Table 1: Descriptive statistics of the selected datasets

Data Rows
Columns

Categ. Num. Encoded

Credit Default 30,000 10 13 160
IEEE Fraud 569,877 14 380 502
Adult 32,561 8 5 126
Holdings 118,569 7 129 203

5 The dataset is publicly available via: https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
6 The dataset is publicly available via https://www.kaggle.com/c/ieee-fraud-detection/overview
7 The dataset is publicly available via https://archive.ics.uci.edu/ml/datasets/adult
8 In compliance with strict data privacy regulations, neither content nor the descriptive statistics of the dataset can be
made publicly available.

https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://www.kaggle.com/c/ieee-fraud-detection/overview
https://archive.ics.uci.edu/ml/datasets/adult
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4.2 Corruption process

To the best of our knowledge, there is no publicly available dataset with labeled cell errors. There-

fore, it is a standard practice to artificially generate anomalies by randomly corrupting the clean

data (Krishnan, Wang, Wu, Franklin, and Goldberg, 2016; Redyuk, Schelter, Rukat, Markl, and

Biessmann, 2019). In our approach, we also follow a similar strategy and turn 3% of the inliers

into the outliers by randomly corrupting attribute values in both training and test sets. Selection of

the attributes for data corruption is also done at random. We corrupt at most 50% of the features

which are selected uniformly at random as following: c = Unif(1, cmax
2 ), where cmax is the total

number of features. Dataset Holdings already contains the real-world cell errors together with its

clean value.

To artificially corrupt the samples, we applied different techniques for both categorical and nu-

merical features.

Numerical features. The injection of noise for a numerical feature is performed using an additive

noise process, with the corrupted value obtained as: x̃dn = xdn +δ. Here δ is randomly sampled from

one of the Gaussian, Laplace, or Log-Normal distributions with µ = 0 and σ = σdγ. Selection of γ

follows uniform distribution γ = Unif(3, 5) and σd is the standard deviation of the original attribute.

The selection of the distribution at the corruption phase is also done uniformly at random.

Categorical features. Two alternatives are used to inject a noise into categorical attributes. With

the first alternative, the original entry is replaced by picking a categorical entry uniformly at random

from the distinct values of this attribute. The second option creates a new categorical entry by

performing character manipulations (insertion, flipping or deletion) with the original categorical

entry and ensuring a completely new entry is created. Such technique in practice imitates a typo

that can often appear during the data insertion process.

4.3 Evaluation metrics

To assess the quality of the proposed technique, we utilize the following three metrics and measure

the detection rate.

Precision at K (P@K). We utilized this metric for the traditional row anomaly detection to assess

overall model capabilities to detect anomalies. Hence, this metric is referred to our first question,

”which samples are anomalies?”. The metric is popular in recommendation system evaluation

tasks, where the user is interested only in the top K predictions. Similarly, in a regulatory reporting

environment, it is important that top K retrieved anomalies are indeed relevant, hence reducing

the false positive rate as well as human effort.

P@K(y, ŷ) = TP@K(y,̂y)
K

(7)
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where TP@K is the total number of true anomalies in the top K retrieved anomalies given the

vectors y and ŷ of true anomalies and row-wise reconstruction errors correspondingly. The value

of K in our case is selected as the total number of true anomalies in the test set.

Mean Average Precision (mAP). This metric reflects the performance of the model in answering

the second question, ”why is it an anomaly?”. Thus, it estimates the quality of cell error detection

across all attributes. The confidence of the cell error πd, described in subsection 3.3, is used as

the input to the function for computing the Average Precision (AP). The positive labels in this case

are the cells with noise. Formally, it is defined as:

AP(πd) =
∑N

i=1(Ri – Ri–1)Pi

(8)

where Ri(π
d) = TP/(TP + FN) denotes the detection recall and Pi(π

d) = TP/(TP + FN) denotes the

detection precision of the i – th anomaly score threshold. The mean Average Precision (mAP) is

computed as the average of the AP scores across all attributes mAP = 1
D
∑D

d=1 AP(π
d).

Mean Expected Value (mEV).With this metric, we evaluate the ability of the model to answer the

third question, ”what should have been reported instead?”. In order to assess the correctness of

the expected (or fixed) values, we compute the Standardized Mean Squared Error (SMSE) between

the original ground truth and its reconstruction.

For numerical attributes, it is additionally normalized by the empirical variance of this attribute and

has the following form:

EV(xdnum ) = 1
N̂

∑N̂
n=1

(xdno–x̂
d
n )
2

σ2

(9)

where σ is the standard deviation and N̂ is the total number of corrupted cells in the attribute xd.

The subscript o in xdno denotes the ground truth original value (i.e., without error).

For categorical features, we utilize the Brier score (Brier, 1950) between the one-hot representation

of the ground truth value and the reconstructed softmax representation of this category and has

the following form:

EV(xdcat ) = 1
2N̂

∑N̂
n=1

∑C
c=1(x

dc
no – x̂dcn )2

(10)
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where xdcno is the one-hot encoded value of the category c. The factor 1
2 is used to normalize the

score to the range [0, 1].

The mean Expected Value (mEV) is computed as the average of Expected Values (EV) mEV =
1
D
∑D

d=1 EV(x
d) across all attributes.

4.4 Model training setup

We split every dataset into training and test sets by a fraction of 70 and 30 correspondingly.

According to the anomaly injection process described in section 3 the test set (and if necessary,

train set) is populated with noise. Once the model is trained, all evaluation metrics are collected

on the test set. The exact network architecture used for each dataset is described in Table 2.

Table 2: Selected architecture setup of the (denoising) autoencoder neural network used for each
dataset

Dataset Neurons per hidden layer

Credit Default 160-128-64-128-160
Adult 126-128-64-128-126
IEEE Fraud 502-512-256-512-502
Holdings 203-256-128-256-203

We train every model for a maximum of 5000 epochs with a mini-batch of size 128 and use the

Adam optimizer (Kingma and Ba, 2014) with β1 = 0.9, β2 = 0.999 in combination with a cosine

learning rate scheduler. The parameters of the encoder and decoder are randomly initiated as

described in (Glorot and Bengio, 2010).

Baseline models. To illustrate the practical applicability of the proposed technique, we compare

its performance against several methods where cell error detection is feasible. Therefore, we select

PCA (S., 1901), Marginal Distribution and traditional AE (Hinton and Salakhutdinov, 2006). For

Marginal Distribution, we follow the same approach described by Eduardo et al. (Eduardo et al.,

2020) and fit a Gaussian mixture model on every numeric attribute separately, using the negative

log-likelihood as the cell error. For categorical attributes, a normalized category frequency is used

for expected value estimation. For the AE, we evaluate two scenarios: the training set contains

anomalies (AE with anomalies) and the training set does not contain anomalies (AE no anomalies).

The first scenario imitates the case in industry when the AE is trained from scratch every time new

data arrives, without any knowledge about the historical data. The second scenario imitates the

case when the historical data with cell errors and their corrected values is available. Here it is

possible to train the model on a pure “clean” version of the historical data and evaluate on the

unseen data with anomalies.
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5 Experimental results

In this section, we describe the results of the conducted experiments. We demonstrate the prac-

tical applicability with qualitative assessment as well as the efficiency of the proposed technique,

providing the quantitative results.

5.1 Qualitative evaluation

To explain the cause of irregularity of a potential anomaly, the framework arms the domain expert

with a powerful visual inspection tool. Every potential anomaly can be quickly screened and the

question ”why is it an anomaly?” can be answered. This is achieved by flagging individual cells

with detected errors. Figure 3 depicts the interface of the cell error detection framework. Here, the

height of the bars reflects the model’s confidence about the reported errors of a new sample. Next,

to allow the domain expert to answer the question ”what should have been reported instead?”,

the framework proposes the expected sample. It gives an estimation of the expected values to

be reported. In addition to the cell scores, five similar data samples picked from the original

dataset are shown under the screened sample. This allows the domain expert to compare certain

entries of the screened sample with the entries of its closest neighbors. Selection of such samples

is computationally inexpensive, since the pairwise distances are computed on the transformed

representation of the bottleneck layer of the DAE. With this tool, the domain expert can pick any

data sample, produce such a graphic to quickly assess the nature of the reported errors and execute

necessary steps, if required. Such a compact form (1) provides more explanation capabilities about

the anomaly nature, (2) saves the screening time, and (3) reduces the human error during the

quality checks.

SEX EDUC MARRI AGE PAY0 PAY2 PAY3 PAY4 PAY5 PAY6 BILL1 BILL2 BILL3 BILL4 BILL5 BILL6 AMT1 AMT2 AMT3 AMT4 AMT5 AMT6 LIMIT
new sample 1 1 2 40 -1 -1 -1 -1 6 -1 3457 1997 5115 3295 222. -142 2020 3635 3295 222. -114 2129 3600
expected sample 1 1 2 40 -1 -1 -1 -1 -1 -1 1149 1212 2186 9009 -417 -125 7310 2011 4741 -148 3611 3531 3259
1st closest neighbor 1 2 1 41 0 4 8 0 0 0 2167 7142 2371 2412 2468 2522 3400 2640 2792 1100 1100 1103 7000
2nd closest neighbor 1 2 2 35 1 -2 -1 0 0 -1 0.0 0.0 8167 4617 3308 2912 0.0 2202 7308 0.0 2912 0.0 2200
3rd closest neighbor 1 2 2 28 0 0 0 0 0 6 3910 4014 7314 7560 4301 4386 -17. 1675 1655 1710 1719 1616 9945
4th closest neighbor 1 1 1 38 0 0 0 0 0 0 8242 -142 1536 1553 1552 1608 5526 2259 5504 5655 9471 5269 4700
5th closest neighbor 2 2 1 41 -2 -1 -1 -1 -2 -2 852. 1738 1866 5517 2660 1480 1746 1874 5517 2660 1480 0.0 2400

0.0
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ce

TRUE ERROR TRUE ERROR TRUE ERROR TRUE ERROR
Anomaly Explainer: Cell error detection and estimation of the expected values

Figure 3: Anomaly explainer dashboard that illustrates the outcome yield by the model trained on
the Credit Default dataset. A random anomaly (”new sample”) is picked from the test
set. Potential cell errors are colored with red gradient and corresponding confidence is
reflected in bar graphs. The red arrows point to the position of the true errors. The
second row contains the expected values estimated by the model, and the remaining
rows are the 5 closest original data instances based on the transformed low dimensional
latent representation.

Latent space. Sampling of the anomalies for screening can also be done using latent data repres-

entation produced by the model. This is another powerful property of the framework that allows

the domain expert to visually inspect the groups of observations. AEs possess this capability as they

are able to learn expressive low dimensional representations of the data in the latent space. Albeit

tree based models have the ability to plot the decision tree hierarchy, which makes them indeed

preferable tool in industry, they lack the ability to provide the learned data representation with
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Figure 4: UMAP embedding of the latent representation z between the denoising autoencoder
(left) and autoencoder (right) neural networks. The embedding is done on the Credit
Default dataset and is projected from 64 to 2 dimensional space of the converged model
after 5000 training epochs.

relative similarities between the observations. An example of such data representation is depicted

on Figure 4. Here we plot the latent representation of the trained DAE and AE. The former provides

a better isolation of anomalies from the regular data points by grouping them into a single cluster.

In addition, the DAE seems to provide a more compact form of grouping the regular data points

with similar characteristics. In contrast, the AE yields a sparse form of the data representation and

anomalies also scattered across the whole latent space. Such representation becomes less valuable

for the domain expert who expects to have more compact data representation with more or less

clear group separations. This property is especially important in industry because it allows to “walk

in the data” and quickly sample the data for screening. The domain expert can sample any data

point and produce the anomaly explainer dashboard like on Figure 3. This gives an opportunity

to quickly audit (financial) entities with similar underlying characteristics (1) as well as the entities

that change their cluster assignment (2) which could lead to behavioral changes.

5.2 Quantitative evaluation

We are interested in the precise localization of errors in cells, as this explains the characteristics of

an anomaly. As described earlier, we assess the quality of the proposed technique using different

metrics, datasets and baseline models. Table 3 contains the scores collected from the conducted

experiments. Based on these, the DAE outperforms the baseline AEs on almost all metrics and

datasets. We believe that this is due to the fact that the traditional AE yields high reconstruction

errors not only on the corrupted cells, but on other (neighboring) cells as well, which produces

lots of false positives. Instead, the DAE due to its training nature, reconstructs each cell more

precisely and hence, produces less false positives. In the cases where it concedes (mAP of numerical

attributes of Adult and IEEE Fraud), we believe the reason lies in the uninformativeness of certain

attributes (Grinsztajn, Oyallon, and Varoquaux, 2022). We have noticed, that for such scenarios,

the Marginal model yields better results.

In addition, the AE trained only on clean data without anomalies (AE clean) almost always out-

performs its counterpart trained on the data with anomalies (AE). We believe, that this happens

because the AE trained with anomalies at some point during training shifts its focus towards learn-

ing the anomalies since they are responsible for the highest reconstruction errors. As a result, in

the inference phase, the anomalies are getting lower reconstruction errors. That implies that in
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Dataset Model P@K ↑ mAP ↑ mEV ↓
categorical numerical categorical numerical (log)

PCA 0.584 ± 0.004 0.709 ± 0.013 0.211 ± 0.001 0.446 ± 0.001 2.750 ± 0.001
Marginals 0.577 ± 0.013 0.539 ± 0.000 0.444 ± 0.002 0.343 ± 0.000 1.975 ± 0.022

Credit AE 0.651 ± 0.022 0.350 ± 0.029 0.238 ± 0.012 0.821 ± 0.011 2.846 ± 0.016
Default AE clean 0.814 ± 0.008 0.615 ± 0.034 0.476 ± 0.009 0.633 ± 0.024 2.177 ± 0.028

DAE 0.826 ± 0.005 0.818 ± 0.007 0.617 ± 0.005 0.245 ± 0.004 0.428 ± 0.037
DAE∗ 0.835 ± 0.007 0.821 ± 0.006 0.635 ± 0.015 0.243 ± 0.004 0.415 ± 0.035

Adult

PCA 0.328 ± 0.000 0.135 ± 0.001 0.228 ± 0.001 0.422 ± 0.000 2.069 ± 0.001
Marginals 0.620 ± 0.004 0.192 ± 0.000 0.626 ± 0.008 0.299 ± 0.000 1.988 ± 0.061
AE 0.478 ± 0.007 0.144 ± 0.013 0.294 ± 0.011 0.953 ± 0.005 2.966 ± 0.012
AE clean 0.634 ± 0.014 0.262 ± 0.009 0.493 ± 0.006 0.867 ± 0.012 2.536 ± 0.005
DAE 0.636 ± 0.015 0.544 ± 0.013 0.528 ± 0.013 0.451 ± 0.020 1.572 ± 0.043
DAE∗ 0.638 ± 0.003 0.532 ± 0.010 0.538 ± 0.007 0.440 ± 0.006 1.725 ± 0.035

PCA 0.906 ± 0.001 0.622 ± 0.006 0.352 ± 0.001 0.487 ± 0.001 4.554 ± 0.001
Marginals 0.972 ± 0.001 0.325 ± 0.000 0.819 ± 0.001 0.293 ± 0.000 4.474 ± 0.001

IEEE AE 0.802 ± 0.008 0.531 ± 0.005 0.265 ± 0.006 0.787 ± 0.012 4.587 ± 0.032
Fraud AE clean 0.975 ± 0.001 0.445 ± 0.014 0.510 ± 0.008 0.555 ± 0.021 4.412 ± 0.102

DAE 0.975 ± 0.004 0.766 ± 0.020 0.784 ± 0.011 0.228 ± 0.004 4.005 ± 0.003
DAE∗ 0.974 ± 0.001 0.765 ± 0.014 0.786 ± 0.006 0.227 ± 0.006 4.015 ± 0.125

Holdings

PCA 0.200 ± 0.007 0.005 ± 0.001 0.042 ± 0.003 0.500 ± 0.001 13.325 ± 0.001
Marginals 0.092 ± 0.002 0.001 ± 0.000 0.083 ± 0.001 0.535 ± 0.000 11.610 ± 0.001
AE 0.163 ± 0.017 0.010 ± 0.010 0.040 ± 0.004 0.974 ± 0.028 13.177 ± 0.100
AE clean 0.157 ± 0.019 0.012 ± 0.006 0.039 ± 0.003 0.942 ± 0.077 13.169 ± 0.115
DAE 0.206 ± 0.005 0.045 ± 0.010 0.098 ± 0.009 0.736 ± 0.035 11.576 ± 0.018
DAE∗ 0.201 ± 0.007 0.030 ± 0.002 0.081 ± 0.006 0.709 ± 0.066 11.632 ± 0.034

Table 3: Comparative performance evaluation of the proposed model against the baselines on
all datasets using three metrics. The model marked with asterisk was trained using the
enhanced loss described in subsection 3.2. Every score reflects the mean and standard
deviation from 5 experiments with varying initialization seeds. We can see that DAE out-
performs its counterparts on average by 5%-30%.

practice it’s better to deploy the model trained on the “clean” data (if available) rather than to re-

train an AE on new (potentially noisy) data from scratch. Even more efficient is to use the historical

anomalies and let the model learn from this.

The results on the real world dataset Holdings attest this. Since the dataset Holdings contained

the clean and noise versions, we were also able to compare the performance of the DAE with

various noise types. Three models were trained using only artificial noise (1), only real world noise

(2) and real world + artificial noise (3). Based on the collected scores, using both (3) boosts the

performance notably. This is expected, as it allows the DAE (unlike the AE) to also learn from the

distribution of real world noise during training.
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6 Conclusion and Future work

In this work, we proposed a framework for explaining detected anomalies using denoising au-

toencoder neural networks for mixed type tabular data. To explain the cause of an anomaly, the

framework produces confidence scores of potential errors for every cell entry, as well as proposes

corresponding estimated values to fix the errors. In addition, we propose the enhanced extension

using the extended loss specifically designed for cell error detection.

We evaluated the proposed approach on three publicly available datasets and one proprietary fin-

ancial dataset with mixed type attributes. The produced results are compared against the baseline

and underpin the practical applicability of the proposed technique.

We believe that such a framework can become a helpful toolbox for data quality experts in their

daily tasks and can be easily integrated into the corresponding procedural pipeline. We believe

the technique can also be applied in a variety of other domains outside the financial field in the

future.
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