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Non-technical summary

Research Question

Vector Autoregressions (VARs) are a popular tool for forecasting and structural analysis

in applied macroeconomics. However, VARs are ill-suited to handle occasionally binding

constraints, like the effective lower bound (ELB) on nominal interest rates. How can

VARs be applied to macroeconomic time series that regularly include interest-rate data

affected by the ELB?

Contribution

We extend the VAR framework by modeling interest rates as censored observations of a

latent shadow-rate process, and propose an efficient sampler for Bayesian estimation of

such shadow-rate VARs. We analyze specifications where actual and shadow rates serve

as explanatory variables. Our structural analysis estimates economic responses to shocks

in financial conditions.

Results

In comparison to a standard VAR, shadow-rate VARs generate superior predictions for

short- and long-term interest rates, and deliver some gains for macroeconomic variables

in US data. Our structural analysis shows strong differences in the reaction of interest

rates to shocks in financial conditions depending on whether the ELB binds or not. After

an adverse shock, our shadow-rate VAR sees a stronger decline of economic activity at

the ELB rather than when not.



Nichttechnische Zusammenfassung

Fragestellung

Vektorautoregressive Modelle (VAR-Modelle) sind ein häufig genutztes Instrument, um

Prognosen und strukturelle Analysen für ökonomische Variablen abzuleiten. Konventio-

nelle VAR-Modelle sind jedoch ungeeignet, wenn die Daten gelegentlich an Grenzen wie

die effektive Zinsuntergrenze stoßen. Wie lassen sich Zinsdaten in VAR-Modelle integrie-

ren, wenn diese von der Zinsuntergrenze betroffen sind?

Beitrag

Wir erweitern konventionelle VAR-Modelle, indem wir Zinsen als zensierte Beobachtun-

gen einer Zeitreihe sogenannter Schattenzinsen modellieren. Wir entwickeln eine effizien-

te Bayesianische Simulationsmethode, um solche Schattenzins-VAR-Modelle zu schätzen

und analysieren Spezifikationen, welche tatsächliche Zinsen und Schattenzinsen beinhal-

ten. Unsere strukturelle Analyse betrachtet die ökonomische Reaktion auf Schocks in

Finanzierungsbedingungen.

Ergebnisse

Verglichen mit konventionellen VAR-Modellen erzeugen Schattenzins-VAR-Modelle bes-

sere Prognosen für kurz- und langfristige Zinsen sowie gewisse Verbesserungen für andere

makroökonomische Variablen in US-Daten. Unsere strukturelle Analyse ergibt, dass die

Reaktion von Zinsen auf Schocks in Finanzierungsbedingungen stark von der Nähe der

Zinsen zur Zinsuntergrenze abhängt. Zudem zeigt sich im Schattenzins-VAR, dass der

Rückgang der ökonomischen Aktivität infolge eines negativen Schocks ausgeprägter ist,

wenn die Zinsuntergrenze erreicht ist.
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1 Introduction

A popular class of models for forecasting and structural analysis is linear vector autore-

gressions (VARs) that typically include shorter- and longer-term interest rates due to their

importance for macroeconomic forecasting and structural analysis. However, in a number

of economies, shorter-term interest rates have been stuck for years at or near their effective

lower bound (ELB), with longer-term rates drifting toward the constraint as well. In such

an environment, linear econometric models that ignore the ELB constraint on nominal

interest rates can be problematic along various dimensions.

For concreteness, we consider the case of the US, where the Federal Open Market

Committee (FOMC) has set the target range for the federal funds rate no lower than 0-25

basis points. The Committee maintained this target range over the seven-year stretch from

December 2008 through December 2015, after the Great Recession, and again maintained

this target range from mid-2020 through mid-March 2022, in response to the recession

triggered by the COVID-19 pandemic. Considering other economies, the ELB may even

be a bit below zero, with several central banks pursuing so-called negative interest rate

policies (NIRP), albeit still at levels close to zero.1 Consistent with the existence of an

ELB (albeit some at a non-positive level), policy rates observed under NIRP appear so

far constrained to not fall much below zero; see, for example, estimates obtained for the

Euro area by Wu and Xia (2020).

In such an environment, a fundamental challenge for econometric models is to appro-

priately capture the existence of an ELB on interest rates and the resulting asymmetries

in predictive densities and impulse response functions not only for interest rates, but also

likely for other economic variables. At a mechanical level, the existence of an ELB calls

1For example, the Swiss National Bank targeted a level of −75 basis points for its policy rate until
mid-June 2022, while the European Central Bank maintained a deposit rate of −50 basis points from
September 2019 (which was the culmination of a series of steps starting in December 2011 to gradually
lower the rate from 25 basis points) through July 2022. The repo (now policy) rate of the Swedish
Riksbank was at or below 25 basis points from October 2014 through June 2022 (bottoming out at −50
basis points from February 2016 to January 2019, and remaining at 0 through late April 2022). One of
the most extensive episodes of monetary policy near the ELB has occurred in Japan, where policy rates
have been near zero since 2008, with the current policy rate at −10 basis points since 2016.
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for treating nominal interest rates as variables whose observations are constrained not to

fall below the lower bound.2

So far the literature has discussed a number of potential remedies to ELB compli-

cations. From a macroeconomic perspective, Swanson and Williams (2014) have argued

that it may be sufficient to track longer-term nominal interest rates, as long as their

dynamics have remained unaffected by a binding ELB on shorter-term rates, and this

has been done by, for example, Crump, Eusepi, Giannone, Qian, and Sbordone (2021),

Debortoli, Gali, and Gambetti (2019), and Rogers, Scotti, and Wright (2018). However,

by 2020, even 10-year US Treasury yields had fallen below 1 percent, with 5-year yields

hovering just above 25 basis points. In contrast, the finance literature has derived impor-

tant implications of the ELB for the entire term structure of interest rates. Following the

seminal work of Black (1995), the term structure literature views the ELB as a censoring

constraint on nominal interest rates (as we do), from which no-arbitrage restrictions are

derived for yields of all maturities (which we do not). The resulting restrictions are, how-

ever, non-trivial and have mostly been implemented for models with state dynamics that

are affine, homoskedastic, and time-invariant; see, for example, Bauer and Rudebusch

(2016), Christensen and Rudebusch (2012, 2015, 2016), Krippner (2015), and Wu and

Xia (2016).3

An upshot of the term structure literature is the availability of shadow-rate estimates,

such as those regularly updated by Krippner (2013, 2015) or Wu and Xia (2016), which

also led to a by now popular short-cut for applied work that avoids dealing with censor-

ing. Indeed, an easy choice is to plug in these shadow-rate estimates as data points for

the nominal short-term interest rate during an ELB episode. However, while convenient,

2For example, Bäurle, Kaufmann, Kaufmann, and Strachan (2020), Iwata and Wu (2006), and Naka-
jima (2011) have modeled the nominal interest rate as a censored (or bounded) variable in VAR systems
featuring only lagged actual (but not shadow) rates on the right-hand side of equations for interest rates
and other economic variables. Relatedly, Chan and Strachan (2014) model nominal rates as bounded
processes. Under either of these approaches, nominal interest rates and other variables respond to lags
of the actual interest rate but not the underlying (and unconstrained) shadow rate.

3Kim and Singleton (2012) also consider a quadratic-Gaussian specification with a shadow rate and
find that it fits data for Japan from 1995 to 2008 as well as a shadow-rate specification in the tradition
of Black (1995).
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this plug-in approach risks a generated regressor problem that could be substantial, as

documented by, for example, Krippner (2020). Mavroeidis (2021) notes that a plug-in

approach rules out consistent estimation and valid inference with a VAR, due to estima-

tion error in the shadow rate that is often highly autocorrelated and not asymptotically

negligible. Shadow-rate estimates are model-specific objects, fitted to best capture the

dynamics of observed data through the lens of the model, and can be quite sensitive to

model choices (Christensen and Rudebusch (2015); Krippner (2020)). An obvious remedy

to these considerations is to integrate the shadow-rate inference into the model used for

forecasting and structural analysis, as we do here.

In this paper, we develop shadow-rate approaches for accommodating the ELB in

commonly-used macroeconomic VARs. We illustrate the use of shadow-rate VARs for

structural analysis and assess their benefits in forecasting macroeconomic and financial

variables in US data. To handle the ELB on interest rates, we model observed rates

as censored observations of a latent shadow-rates process in an otherwise standard VAR

setup. The shadow rates are assumed to be equal to observed rates when above the

ELB. Motivated in part by other work in the literature described below, we consider

two specifications of the relationship of macroeconomic variables to interest rates or the

shadow rates. In a formulation we refer to as the “simple shadow-rate VAR,” the model

relates macroeconomic variables to lags of the shadow rates; in this case, the shadow

rates enter all of the VAR’s equations. The “hybrid shadow-rate VAR” instead relates

macroeconomic variables to lags of actual interest rates; the shadow rates enter just

the interest rate equations of the VAR. We prefer the hybrid specification for its richer

dynamics that allow constraints on interest rates to directly feed into macroeconomic

forecasts and generate some advantages in forecast accuracy. Our analysis takes the level

of the ELB as given, as it appears reasonable to abstract from uncertainty about its level

(or even drift therein) in the context of the US.4

4In our empirical application on US data, we consider the ELB to have a constant and known value
of 25 basis points, consistent with other studies, such as Bauer and Rudebusch (2016), Johannsen and
Mertens (2021), and Wu and Xia (2016). Considering the euro area, for example, Wu and Xia (2020)
model and estimate a stochastic downward drift in the ELB level. We conduct robustness checks with
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Our approach extends the unobserved components model of Johannsen and Mertens

(2021) to the general VAR setting, and we develop a computationally more efficient

shadow-rate sampling algorithm to be able to estimate larger models. In particular,

we use a Gibbs sampling procedure, which is embedded in a Markov chain Monte Carlo

(MCMC) sampler, to generate posterior draws from the latent shadow-rate process. Draw-

ing directly from the truncated posterior makes the procedure computationally efficient,

and using QR methods to construct positive definite second-moment matrices makes the

procedure numerically reliable. We apply our shadow-rate approaches to a medium-

scale Bayesian VAR (BVAR) for twenty US macroeconomic and financial variables, with

stochastic volatility, which has been shown to generate competitive forecasts when ignor-

ing the ELB (e.g., Carriero, Clark, and Marcellino (2019)).5 Critically, we also demon-

strate how to handle data in which the ELB binds for multiple interest rate instruments of

different maturities. Our baseline specification includes a set of interest rates, consisting

of not only the federal funds rate and 6-month Treasury bill rate but also yields for several

other bond maturities.6 The inclusion of term structure information (beyond a measure

of the short-term policy rate) turns out to importantly influence estimated shadow rates.

The inclusion of interest rates other than the federal funds rate generates less negative

shadow rates, representing less outsized expectations of monetary stimulus in response

to the Great Financial Crisis (GFC), which in turn leads to improved shadow rate-based

forecasts for macroeconomic and financial variables. Bond yields and other financial in-

dicators such as stock prices allow the shadow-rate VARs to capture the effects of asset

purchases and forward guidance regarding the path of policy rates.

In out-of-sample simulations for the US since 2009, interest rate forecasts obtained

from our shadow-rate VARs are clearly superior, in terms of both point and density ac-

values of 12.5 and 50 basis points and find our main findings to be robust to the choice.
5Other studies documenting the relevance of heteroskedasticity in VARs are Chan and Eisenstat

(2018), Clark (2011), Clark and Ravazzolo (2015), and D’Agostino, Gambetti, and Giannone (2013).
6Specifically, we include maturities ranging from the daily federal funds rate to 10-year Treasury

yields (as well as the yield on BAA-rated corporate bonds with maturities of at least 20 years). Other
empirical studies that use medium- and longer-term yields include Crump, et al. (2021), who omit the
federal funds rate to obviate the ELB problem, and Jones, Kulish, and Morley (2022) and Kulish, Morley,
and Robinson (2017), who consider yields of up to 5 years in their analysis.
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curacy, when compared to predictions from a standard VAR that ignores the ELB. For

measures of economic activity and inflation, forecasts from the simple shadow-rate VAR

are broadly on par with those from a standard VAR that ignores the ELB. Predictions

from the hybrid shadow-rate VAR even perform a little better than the standard model for

a few of the macroeconomic variables (and are otherwise on par). The close performance

of the (simple) shadow-rate VAR and the standard VAR reflects that, in both models,

forecasts of short-term interest rates that enter the forecasting equations of macroeco-

nomic variables can and do go negative (albeit to varying degrees) during ELB periods.

Moreover, as shown in our supplementary online appendix, when conditioned on interest

rates of shorter- and longer-term maturities, our shadow-rate VARs considerably improve

upon forecasts for macroeconomic variables obtained from a linear VAR that simply omits

short-term interest rates to avoid ELB issues.

We also apply our hybrid shadow-rate VAR to structural analysis, examining the

impacts of shocks to financial conditions. Generally defined, impulse responses measure

a change in forecasts prompted by a specific shock. Thus, a good forecasting model is

needed to properly measure impulse responses, and with interest rates affected by the

ELB constraint, our shadow-rate VARs are promising candidates for this analysis. When

the economy is near the ELB, the constraint on interest rates can affect the responses of

macroeconomic variables to the identified shock, as interest rates will decline less than

they would in the absence of the constraint, which in turn feeds into the macroeconomic

projections of our hybrid shadow-rate VAR. We use the generalized impulse response

approach of Koop, Pesaran, and Potter (1996), so that the estimated responses reflect

any endogenous changes in the extent to which the ELB constraint binds due to the

identified shock. The financial conditions shock is measured by the excess bond premium

(EBP) of Gilchrist and Zakraǰsek (2012), which is incorporated as an additional variable

in our hybrid shadow-rate VAR. We compare responses for a shock origin of January

2007, when interest rates were far away from the ELB, to responses for a shock origin

of December 2012, when short-term rates were at the ELB. According to our estimates,
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ELB constraints temper the decline of interest rates that normally occurs when the ELB

does not bind, in turn yielding a sharper decline of economic activity and stock prices.

A similar pattern is obtained when comparing estimated responses from a model entirely

ignoring the ELB to those from our model accounting for the ELB binding when the

shock hits. And the effects on yields and macro variables of a financial uncertainty shock,

obtained by replacing the excess bond premium with a measure of financial uncertainty

(based on the VXO index of options-implied volatility in stock returns), are qualitatively

similar to those of the EBP shock, across periods and model specifications.

Overall, our shadow-rate specifications successfully address the ELB, which drasti-

cally improves interest rate forecasts (compared to a model that ignores the ELB), while

preserving (and even marginally improving upon) the standard VAR’s ability to forecast

a range of other variables. In this respect, our proposed approaches could be seen as

helpful tools for preserving the practical value of VARs for forecasting in the presence

of the ELB. In practical settings, presented with forecasts from standard VARs in which

interest rates fall below the ELB, consumers of forecasts could question the reliability or

plausibility of the forecasts of the other variables of interest. To these consumers, fore-

casts of macroeconomic variables from shadow-rate VARs that obey the ELB could be

seen as more coherent and therefore practically useful even if their historical accuracy was

no greater than that achieved by a standard VAR ignoring the ELB. Our specifications

can also be used for structural analysis, to capture, for example, the effects of shocks

to financial conditions or uncertainty while ensuring the estimated responses obey lower

bound constraints on interest rates.

The remainder of this paper is structured as follows. Section 2 relates our paper to

other contributions regarding the modeling of the ELB and its consequences. Section 3

describes the modeling and estimation of our shadow-rate VARs. Section 4 details the

data used in our empirical application. Section 5 presents shadow rate estimates and re-

sulting interest rate projections. Section 6 provides the forecast evaluation, and Section 7

illustrates the use of our hybrid model for structural analysis. Section 8 concludes.
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2 Related Literature

In this section we relate our approach to other shadow-rate work. There is a term structure

literature on shadow-rate models, with which we share the approach of modeling nominal

interest rates as censored variables. But we do not enforce any specific no-arbitrage (or

other structural) restrictions. As such, our approach is part of the literature that uses

VARs to derive forecasts and expectational errors of financial and economic variables

without imposing the restrictions of a specific structural model (such as an affine term

structure or DSGE model). Should the data satisfy such restrictions, they will also be

embodied in estimates derived from a more generic reduced-form model. The potential

loss in the efficiency of forecasts that do not explicitly enforce such restrictions can be

offset by a gain in robustness obtained from not imposing restrictions that are false. In

fact, as argued by Joslin, Le, and Singleton (2013), the possible gains for forecasting

from imposing restrictions from the true term structure model may be small. Moreover,

as in Johannsen and Mertens (2021), economic forecasters may be interested in using

time series models that allow for features, such as time-varying parameters and stochastic

volatilities, that may be harder to embed in a formal no-arbitrage model.7 While the VAR

framework shuns restrictions specific to a particular structural model, it is, of course, well

suited to inference on the economic responses to structurally identified shocks. In this

vein, we also extend our shadow-rate approach to structural VAR analysis as discussed

below.

In the context of DSGE models, Sims and Wu (2021) show that asset purchase pro-

grams can be analogous to large reductions in the federal funds rate, and that asset

purchases provided about as much stimulus during the Great Recession as a decline in

the policy rate commensurate with the fall in shadow rate estimates such as in Wu and

7Johannsen and Mertens (2021) provide an out-of-sample forecast evaluation for short- and long-term
nominal interest rates in a model smaller than our VARs, and find their unobserved components shadow-
rate model to be competitive with the no-arbitrage model of Wu and Xia (2016), but do not consider
forecasts of other variables. Gonzalez-Astudillo and Laforte (2020) embed a shadow-rate model in an
unobserved components model and report improved point forecasts for economic and financial variables
from the shadow-rate approach.
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Xia (2016). In particular, Wu and Zhang (2019) derive conditions in which alternative

policies can circumvent the ELB such that the economy retains a linear representation

with a shadow rate capturing the effects of policy. Moreover, Wu and Zhang (2019)

provide references to empirical work that has concluded that conventional and uncon-

ventional monetary policies work in a similar fashion. Other DSGE models formulate

monetary policy in terms of censored prescriptions from a policy rule for shadow rates as

in Aruoba, Cuba-Borda, Higa-Flores, Schorfheide, and Villalvazo (2021), Gust, Herbst,

López-Salido, and Smith (2017), Jones, Kulish, and Morley (2022), and Kulish, Morley,

and Robinson (2017).8

Mavroeidis (2021) discusses various specification choices for the underlying VARmodel,

similar to some that we also evaluate.9 Our simple shadow-rate VAR assumes that only

shadow rates, not actual rates, matter as explanatory variables in linear forecasting equa-

tions. As detailed in Section 3.4, the simple shadow-rate VAR corresponds in reduced

form to the “censored” model of Mavroeidis (2021). In contrast, our hybrid shadow-rate

VAR combines actual and shadow interest rates in its state dynamics, in a reduced form

that combines elements of the “censored” and “kinked” VAR of Mavroeidis (2021).10

Since actual and shadow rates are perfectly collinear when above the ELB, their joint

inclusion in a VAR can create challenges in identification and estimation, in particular for

the purpose of generating reliable out-of-sample forecasts based on the (yet) still limited

experience with ELB data. Hence, our hybrid shadow-rate VAR proceeds selectively: We

include shadow rates as VAR regressors only in forecasting equations for other (shadow)

8The shadow-rate estimates of Aruoba, Mlikota, Schorfheide, and Villalvazo (2022), Gust, et al.
(2017), Jones, Kulish, and Morley (2022), and Kulish, Morley, and Robinson (2017) reflect data on real
activity, inflation, and short- and (in case of Jones, Kulish, and Morley (2022) and Kulish, Morley, and
Robinson (2017)) medium-term interest rates.

9Goncalves, Herrera, Kilian, and Pesavento (2021) study local projections for nonlinearly transformed
variables, including the case of censoring.

10All our shadow-rate specifications assign a role to lagged shadow (as opposed to actual) rates to
serve as predictors of future outcomes, which is also in keeping with some of the policy-rule specifications
in DSGE models such as Gust, et al. (2017). In contrast, Aruoba, et al. (2022) limit attention to settings
where VAR forecasts depend on lagged actual rates, but not lagged shadow rates. In Aruoba, et al. (2022),
the shadow rate arises only contemporaneously when the VAR vector is shocked. Similarly, Berg (2017),
Chan and Strachan (2014), and Iwata and Wu (2006) consider only censoring of the VAR’s left-hand side
variables, without tracking the underlying, uncensored shadow rate as a potential predictor.
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term structure variables, while including actual rates (and not shadow rates) as explana-

tory variables in the VAR equations of macroeconomic variables and other measures of

financial conditions. While maintaining a well-identified VAR system, the hybrid allows

for potentially relevant non-linearities through the joint effects of actual and shadow rates

on future outcomes in all variables.11

In the context of structural VAR models (SVARs), Aruoba, et al. (2022) and Mavroei-

dis (2021) consider shadow-rate approaches to identify and estimate impulse responses

to monetary policy shocks. We differ from these SVAR studies in focusing on the imple-

mentation of shadow-rate approaches in a medium-scale Bayesian VAR (with stochastic

volatility), and we evaluate its application to forecasting and structural analysis. Our

structural analysis conditions on the proximity of interest rates of different maturities to

the ELB with the generalized impulse response approach of Koop, Pesaran, and Potter

(1996), which can capture relevant state dependencies in the economic responses to struc-

tural shocks. Moreover, our structural analysis considers shocks to financial conditions, as

measured by the excess bond premium of Gilchrist and Zakraǰsek (2012), and the results

are consistent with the model-based predictions of Gilchrist, Schoenle, Sim, and Zakraǰsek

(2017). Importantly, in common with Aruoba, et al. (2022) and Mavroeidis (2021), we

jointly estimate latent shadow rates and structural impulses within one coherent model.

Krippner (2020) provides a critical review of plug-in approaches that estimate conven-

tional impulse responses from VARs that condition on external shadow-rate estimates as

data inputs.

3 Shadow-Rate VARs

This section contrasts our shadow-rate approaches with a standard VAR. Throughout,

we take the value of the lower bound, denoted ELB, as a given and known constant. Our

model considers a vector of interest rates to which the ELB applies. For brevity, we use

11At least indirectly, through effects on other economic and financial variables, both actual and shadow
rates eventually influence forecasts of all variables in this hybrid VAR system.
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the singular to refer to “the” nominal interest rate, it, and its associated shadow rate, st,

while both it and st will generally be vectors of length Ni = Ns. A central element of our

approach is to relate actual and shadow rates via a censoring equation known from Black

(1995):

it = max (ELB, st), (1)

where the censoring of the shadow-rate vector st is element-wise. As in the no-arbitrage

literature on the term structure of interest rates (surveyed in Section 1), the censoring

function (1) implies that the shadow rate is observed and equal to the actual interest rate

when the latter is above the ELB.12 When the ELB is binding, so that it = ELB, the

shadow rate is a latent variable that can only take values below (or equal to) ELB, which

will inform our inference about st. In the data, at a given point in time, the ELB may, of

course, be binding for none, some, or all interest rate measures included in it.

In principle, our model pairs each interest rate measure with a separate shadow rate.

However, the distinction between actual and shadow rates matters only for those measures

for which the ELB has actually been binding in the data.13 In the baseline specification of

our empirical application, we include a total of Ni = 6 interest rates, covering shorter- and

longer-term maturities, out of which the ELB has been binding for up to three measures

in our data set.14 In another specification we consider, the model includes only the federal

funds rate (and a single shadow rate).15 In principle, in the event of aggressive forward

guidance or yield curve control, the ELB could bind for additional, longer maturities,

which could also be handled by our model.

12The property that the shadow rate is identical to the actual rate when above the ELB makes our
approach based on Black (1995) distinct from others, like Lombardi and Zhu (2018), that defines the
shadow rate more broadly as a common factor of interest rates and possibly other variables intended to
capture the stance of monetary policy.

13For a given data set, the implementation of our model may thus allow for Ns ≤ Ni with Ns reflecting
the number of elements in the Ni-dimensional vector it for which the ELB has been binding in the sample.

14In our data set, with an ELB value of 25 basis points, the constraint has been binding for the federal
funds rate, the 6-month Treasury bill rate, and the 1-year yield. In addition, our baseline specification
includes yields on 1-year, 5-year, and 10-year Treasuries as well as Moody’s BAA yield on bonds with
maturities of 20 years and above.

15Moreover, the supplementary online appendix provides further details about the effects of adding
specific yields, ranging from 6-month to 20-year maturities, on estimated shadow rates and average
forecast accuracy.
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3.1 Standard linear VAR

Before turning to our VAR-based specification of a process for st, we first describe the

standard VAR approach. A standard VAR is a linear model for the evolution of a vector

of observed data, yt. Omitting intercepts, we have the following system of Ny equations

for a VAR with p lags:

yt =

p∑
j=1

Cj yt−j + vt , with vt ∼ N(0,Σt) , and Et−1vt = 0 . (2)

Anticipating our subsequent application, we assume time-invariant transition matrices,

Cj, but allow for time-varying shock volatilities, Σt, as in Clark (2011), among others.16

Critically, VAR errors are typically assumed to have a symmetric distribution with un-

bounded support. When yt includes the nominal interest rate, it, the resulting predictive

densities will fail to incorporate the effects of the effective lower bound, with particularly

detrimental effects when it is close to ELB. As a special case of (2), consider a random

walk process for the nominal interest rate, it = it−1 + vt. When it = ELB, the k-period-

ahead point forecast still satisfies the ELB, since Etit+k = ELB. But the associated

density forecasts have 50 percent of their mass below ELB as the linear model ignores

the ELB constraint.

That being said, a standard linear VAR could yield plausible macroeconomic forecasts

even in settings when monetary policy is constrained by the ELB. With short-term rates

included, a conventional VAR may forecast at least adequately because, at any given

forecast origin, projections of future short-term interest rates can turn negative.17 To

the extent that the historical behavior of monetary policy implies the central bank would

have set the policy rate negative in an ELB episode but could not and took other steps

to provide policy accommodation, the simple linear VAR’s forecasts could be helped

16In our empirical application, we follow Carriero, Clark, and Marcellino (2019) and assume that
vt = A−1Λ0.5

t εt, where A is a lower unit-triangular matrix, Λt is a diagonal matrix, and the vector of its
diagonal elements is denoted λt, with log λt = log λt−1 + ηt, ηt ∼ N(0,Φ), and εt ∼ iid N(0, I). Other
forms of heteroskedasticity could also be specified.

17As discussed below, Figures 4 and 5 provide forecasts to show that this is empirically the case for
the US.
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by being allowed to project negative rates over the forecast horizon. The accuracy of

macroeconomic forecasts may also be helped by the inclusion of long-term bond yields

and other financial indicators such as stock prices; these indicators reflect the effects of

asset purchases and forward guidance from the central bank regarding the path of policy

rates. Indeed, Crump, et al. (2021) develop a large VAR intended to be useful for a range

of forecasting questions faced by a central bank. Their model omits short-term interest

rates out of ELB considerations, instead using the 2-year Treasury yield as an indicator

of the stance of policy, with several other yields and financial indicators also included in

the model.

3.2 Simple shadow-rate VAR

The simple shadow-rate approach posits a VAR for a hypothetical data vector, zt, that is

identical to yt except for replacing it with st, and derives actual rates, it, from shadow rates

st via the censoring constraint (1). Without loss of generality, partition yt in a vector of

Nx = Ny−Ns other variables, xt, that have unbounded support, and the nominal interest

rate it, with xt ordered on top:

yt =

xt

it

 and let zt =

xt

st

 with it = max (ELB, st) . (3)

In the simple shadow-rate VAR approach, we posit VAR dynamics for the partially latent

vector zt. Analogously to (2) we have:

zt =

p∑
j=1

Cj zt−j + vt , with vt ∼ N(0,Σt) , and Et−1vt = 0 . (4)

The simple shadow-rate VAR system is a non-linear state space model that consists of the

kinked measurement equation (3) and the linear state evolution described by the VAR
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in (4).18 The purely linear state evolution of the simple shadow-rate VAR also occurs

in affine term structure models with shadow rates. Note that, although our specification

assumes Gaussianity, this Gaussianity is in the shadow-rate system and innovations to

the shadow rate, not innovations to interest rates constrained by the ELB. (The censor-

ing equation implies that observed actual rates above the ELB are identical to shadow

rates, which gives us observations for realizations from the linear Gaussian process for the

shadow rates.)

3.3 Hybrid shadow-rate VAR

In our simple shadow-rate VAR, forecasts depend on lagged shadow rates, not actual inter-

est rates; shadow rates are assumed to be the relevant interest rate measure for predicting

all variables. However, while shadow rates may indeed capture effects of unconventional

monetary policies (such as forward guidance or asset purchases), it is actual rates that

are paid (earned) by borrowers (lenders). In this vein, we consider a hybrid model in

which actual interest rates, not shadow rates, predict future macroeconomic variables,

while nominal interest rates are still modeled as censored processes. Since actual and

shadow rates are perfectly collinear when above the ELB, their joint inclusion in a VAR

can create challenges in identification and estimation, in particular for the purpose of

generating reliable out-of-sample forecasts based on the (yet) still limited experience with

ELB data. Hence, our hybrid shadow-rate VAR includes shadow rates as VAR regressors

only in forecasting equations for other (shadow) term structure variables, while using

actual rates (and not shadow rates) as explanatory variables in the VAR equations of

macroeconomic variables and other measures of financial conditions, collected in xt. This

18In addition, the simple shadow-rate VAR system includes any state equations needed to track pa-
rameter drift, such as the time-varying volatilities embedded in Σt in the case of our application.
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hybrid model takes the form:

xt =

p∑
j=1

Cxx,j xt−j +

p∑
j=1

Cxi,j it−j + vx,t , (5)

and st =

p∑
j=1

Csx,j xt−j +

p∑
j=1

Css,j st−j + vs,t. (6)

In this specification, all coefficients are identifiable from sample periods not constrained

by the ELB. The model can be seen as capturing the dynamics of short-term rates that

are implied by the historical behavior of monetary policy which would have prescribed

pushing rates below the ELB (if possible) while modeling actual economic outcomes as a

function of actual interest rates, not the shadow rates.19

Compared to this hybrid model, the simple shadow-rate VAR has the advantage of

simplicity, in that its state dynamics are entirely linear (see equation (4)), and censoring

affects only its measurement equation in (3). Such a structure would be consistent with

work discussed in Sections 1 and 2 (and further below in Section 3.5) that sees unconven-

tional monetary policies as having been capable of entirely offsetting the ELB on policy

rates. In contrast, in the hybrid system of equation (6) the censored values of (lagged)

actual interest rates are state variables that influence the evolution of all variables. Such

a specification could be seen as advantageous since the decisions of households and firms

are based on the actual (and not shadow) levels of interest rates, so that their levels

should serve as predictors in the VAR system. Of course, the distinction is lessened when

longer-term rates (for which the ELB has not been binding so far) are included in the

vector it, as we consider in our empirical application. While longer-term rates may in-

deed be relevant for certain spending and investment categories, some lending rates (e.g.,

car loans) may be more tied to short-term interest rates than 5- or 10-year bond yields.

19We also investigated the use of a VAR featuring lagged actual and shadow rates in all equations,
that is a VAR of the form zt =

∑
j (Cj zt−j + Fj it−j) + vt. However, since in post-war data prior to

2009, the ELB has never been binding, we have it = st, leading to perfectly collinear regressors. Only
ELB data can be used to identify separate slope coefficients on lagged actual and shadow rates in this
case (and only with still considerable uncertainty, due to the short sample available and the large number
of parameters to be estimated). To evaluate out-of-sample forecasts, such a specification is thus of (yet)
limited use.
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In addition, deposit rates earned by some savers will also be more tied to short-term

rates, making actual short-term rates relevant for macroeconomic forecasting even when

long-term rates are included in the analysis.

3.4 Relationship to Mavroeidis (2021)

In this section, we sketch the relationship of our reduced-form shadow-rate and hybrid

VARs to the specifications of Mavroeidis (2021). Adapted to our notation, the general

“censored and kinked” model of Mavroeidis (2021) (CKSVAR, see his equation (20)) takes

the form

A11 A∗
12 A12

A21 A∗
22 A22



xt

st

it

 = BXt +B∗X∗
t + εt, (7)

where Xt contains the relevant lags of all variables in the model (including the policy

rate), and X∗
t contains the relevant lags of the shadow rate that may enter the right-

hand side of the VAR. As discussed by Mavroeidis (2021), the general specification in (7)

has time-invariant parameters, but leads to a reduced form with some time variation in

parameters due to the effects of the censoring constraint on nominal interest rates.

Our shadow-rate VARs contain elements of the “censored” and “kinked” specifications

of Mavroeidis (2021). In particular, both of our shadow-rate VARs imply the impact

matrix restrictions A12 = 0 and A22 = 0 in (7). With those restrictions added to the

Mavroeidis model, we obtain the following time-invariant reduced-form representation

for (7):

xt

st

 =

Ā11 Ā∗
12

Ā21 Ā∗
22

 BXt +

Ā11 Ā∗
12

Ā21 Ā∗
22

 B∗X∗
t +

Ā11 Ā∗
12

Ā21 Ā∗
22

 εt , (8)
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with Ā =

Ā11 Ā∗
12

Ā21 Ā∗
22

 ≡

A11 A∗
12

A21 A∗
22


−1

= A−1. (9)

The simple shadow-rate VAR corresponds in reduced form to the “censored” SVAR spec-

ification (CSVAR) in Mavroeidis (2021). The CSVAR assumes the absence of effects from

(lagged or current) actual policy rates on outcomes, so that the last p columns of the

B matrix, which are associated with coefficients on lags of the actual policy rate in the

regressor vector Xt, are zero. Furthermore, the CSVAR has A12 = 0 and A22 = 0, as

assumed above.20

Our hybrid model combines elements of the “censored” and “kinked” SVARs of Mavroei-

dis (2021) in a reduced-form setting. With the regressors blocked as in the Mavroeidis

formulation (so lags of the policy rate are the last elements in Xt), our hybrid VAR can

be expressed as

xt

st

 =

C11 C12

C21 0

Xt +

 0

C∗
2

X∗
t +

Ā11 Ā12

Ā21 Ā∗
22

 εt. (10)

Multiplying through by A = Ā−1 and collecting terms yields the following structural

representation:

A11 A12

A21 A∗
22


xt

st

 =

A11C11 + A12C21 A11C12

A21C11 + A∗
22C21 A21C12

Xt +

A12C
∗
2

A∗
22C

∗
2

X∗
t + εt. (11)

It follows that our hybrid specification has a number of the elements included in the

general CKSVAR model of Mavroeidis. Both feature the same regressors on the right-

hand side. However, our specification restricts the general model of Mavroeidis (2021) by

20From our setting, the restrictions A12 = 0 and A22 = 0 lead to the coefficient values κ = 1 and β̃ = 0
in the setup of Mavroeidis (2021). Mavroeidis directly indicates that, in the CSVAR, the term κ defined in
his equation (22) equals 1, and the term β̃ defined in his equation (28) equals 0. Mavroeidis also comments
(p. 2864) that the CSVAR imposes restrictions such that A12 = 0 and “the elements of B corresponding
to (the) lagged” policy rate are equal to 0 (the latter implying that A22 = 0). Moreover, with β̃ = 0, the
VAR’s coefficients do not change with the ELB (see his equation (24)), as in our shadow-rate VAR.
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setting A12 = 0 and A22 = 0, which makes the model’s parameters constant over time

and omits dependence of xt and st on it.

3.5 Shadow rate interpretation and constant-parameter assump-

tions

Considering a standard VAR, Bernanke and Blinder (1992) proposed interpreting the

policy rate equation of the VAR as a feedback rule that describes monetary policy. In

a similar spirit, the shadow-rate equation of the VAR model in (4) can be thought of

as embedding a monetary policy reaction function that relates the shadow rate to the

variables included in the VAR (4).21 The actual policy rate follows the same reaction

function, except that the actual rate is constrained to not fall below the ELB. As a

result, the model’s prescriptions for the federal funds rate — evident in our out-of-sample

forecasts — obey the ELB on actual policy rates, even as the shadow rate will be below

zero during the ELB episodes. In contrast, the reaction function implied by a standard

VAR ignores the ELB and can be prone to prescribing policy rates that violate the ELB

during severe downturns as seen in the last two decades.

During the Great Recession, the FOMC’s Bluebook or Tealbook regularly included

forecast and policy simulations treating the federal funds rate as unconstrained and al-

lowed to fall below the ELB, either in simple prescriptions from benchmark Taylor-type

rules or simulations of optimal policy conducted with the FRB/US model. Text in the

March 2008 Bluebook explicitly suggested a negative funds rate prescription could mea-

sure the effect of balance sheet policies or forward guidance and reflect the overall stance

of policy: “The additional monetary easing associated with the counterfactual uncon-

strained optimal policy can provide a useful benchmark in judging the stimulus provided

by nontraditional policy actions . . . . . . (S)ome of the benefits of such an unconstrained

policy can likely be attained by a policy of large-scale purchases of long-term Treasury

21Using a smaller model in an unobserved components form, Johannsen and Mertens (2021) identify
monetary policy shocks from surprises to the shadow rate, using short-run restrictions.
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securities and agency MBS.”22

In the spirit of this work, monetary policy may be partially or fully effective at the

ELB, and shadow rates may or may not completely reflect the stance (however defined) of

monetary policy at the ELB. In either case, our VAR estimates map observed economic

and financial indicators into shadow rate measures that reflect the historical relation-

ships between interest rates and other economic and financial indicators. As such, the

shadow-rate estimates are designed to be state variables useful for modeling the evolution

of interest rates and other economic variables (within otherwise linear VAR systems).

When the ELB is binding and the Federal Reserve is using balance sheet policies or for-

ward guidance on the future funds rate to provide policy accommodation, the shadow

rate becomes latent and can fall below the actual interest rate to capture the effects of

these policies. Other studies, including Billi (2020), Gust, et al. (2017), and Reifschneider

and Williams (2000), have suggested that the inclusion of lagged shadow rates as VAR

predictors could track make-up policies at the ELB. For all these reasons, we expect that

the shadow rate of our VAR specifications broadly captures the overall stance of mone-

tary policy when the ELB binds and monetary policy counters by using asset purchases

and forward guidance on future rates to provide stimulus, but we cannot claim that it

necessarily entirely captures these alternative policies.

A number of studies have developed structural models that have implications for the

measurement of the stance of policy and the specifications of VARs. Sims and Wu (2021)

develop a DSGE framework that shows that asset purchase programs can be analogous

to large reductions in the federal funds rate and that asset purchases account for much

of the fall in shadow-rate estimates such as Wu and Xia (2016) during the Great Reces-

sion. Motivated by various empirical studies that have concluded that conventional and

unconventional monetary policies work in a similar fashion, Wu and Zhang (2019) derive

22See p.30 of the March 2009 Bluebook. The Bluebook or Tealbook continued for sev-
eral years to report unconstrained funds rate measures that were negative; as a later exam-
ple, see the Tealbook Book B from January 2013. Both references are available at https://

www.federalreserve.gov/monetarypolicy/files/FOMC20090318bluebook20090313.pdf and https:

//www.federalreserve.gov/monetarypolicy/files/FOMC20130130tealbookb20130124.pdf.
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a DSGE model in which alternative policy tools circumvent the ELB. In their setup, the

stance of monetary policy can be summarized with a shadow rate, and a linear model can

represent the economy — without an ELB-induced structural break. Consistent with this

reasoning, Francis, Jackson, and Owyang (2020) find that linear VARs estimated with

shadow-rate estimates from Krippner (2013, 2015) and Wu and Xia (2016) as a measure

of monetary policy (unlike models that instead use the federal funds rate) pass tests of

parameter stability and yield stable impulse response estimates – as predicted by Wu and

Zhang (2019).

On the other hand, as discussed in Aruoba, et al. (2022), various studies using DSGE

models have established that occasionally binding ELB constraints result in non-linear de-

cision rules for consumption and prices with respect to the underlying state variables. Re-

lated, in recent work with structural VARs, including Aruoba, et al. (2022) and Mavroei-

dis (2021), a binding ELB constraint leads to a regime shift in coefficients, implying

reduced-form models with time-varying parameters. The results of Mavroeidis (2021) for

a small-scale SVAR in inflation, unemployment, and the federal funds rate suggest that

unconventional policy is “only partially effective” in mitigating the ELB. Relatedly, the

models of Kulish, Morley, and Robinson (2017) and Mavroeidis (2021) also distinguish

between reduced-form shadow rates (which drive the censoring of actual interest rates)

and structural shadow rates, which reflect the stance of monetary policy.

To allow for potential time variation in parameters of the reduced-form VAR, our

shadow rate models could be represented more generally as time-varying parameter VARs

with stochastic volatility in the tradition of Cogley and Sargent (2005), Cogley, Primiceri,

and Sargent (2010), and Primiceri (2005). However, these methods are commonly applied

with small models and difficult to use with variable sets as large as ours. In addition,

identification of time-varying slope coefficients may become an issue since the shadow-

rate components of zt are latent when the ELB binds, in particular for the purpose of

producing reliable out-of-sample forecasts while ELB data is yet scarce. In our forecast-

ing results, to entertain ELB-driven parameter change while constraining its extent to

19



make estimation and forecasting feasible, we consider a version of the hybrid VAR ex-

tended to allow the impact matrix A to change at the ELB. However, in out-of-sample

forecasting results, presented in the supplementary online appendix for brevity, the model

accommodating parameter change in this way performs poorly compared to our baseline

constant-parameter models with a shadow rate. Empirical evidence of time variation in

the parameters controlling the shadow-rate VAR dynamics, also reported in the supple-

mentary online appendix, is rather limited as well.

Overall, our baseline assumption of constant parameters can be seen as having jus-

tification in the data, perhaps due to the rather large size of our VARs. Moreover, the

constant-parameter version of our shadow-rate VAR in equation (4) can be seen as con-

sistent with previous work in the literature that has concluded that monetary policy was

unconstrained by the ELB (for example, through the use of unconventional policies) so

that economic dynamics remain unaffected by the ELB. In addition to the studies noted

above, this work includes empirical analysis of the response of bond yields to economic

news by Swanson and Williams (2014) and evidence on the stability of macroeconomic

volatility and responses to shocks, along with consistency with a DSGE model specifica-

tion, in Debortoli, Gali, and Gambetti (2019).

3.6 Estimation, forecasting, and impulse response computation

All of our models are estimated with an MCMC sampler that builds on the methods of Car-

riero, Clark, and Marcellino (2019) for large BVAR-SV models (as corrected in Carriero,

Chan, Clark, and Marcellino (2022a) and with details provided therein) and extended to

handle the ELB. As in their work, we use a Minnesota prior for the VAR coefficients Cj

and follow their other choices for priors as far as applicable, too.23 Throughout, we use

23All VAR coefficients, Cj , have independent normal priors; all are centered around means of zero,
except for the first-order own lags of certain variables as listed in Table 1. As usual, different degrees
of shrinkage are applied to own- and cross-lag coefficients. Prior variances of the jth-order own lag are
set to θ1/j

θ4 . The cross-lag of the coefficient on variable m in equation n has prior variance equal to
θ1/j

θ4 · θ2 · σ̂2
n/σ̂

2
m. The intercept of equation n has prior variance θ3 · σ̂2

n. In all of these settings, σ̂2
n is

the OLS estimate of the residual variance of variable n in an AR(1) estimated over the entire sample.
The shrinkage parameters are θ1 = 0.05, θ2 = 0.5, θ3 = 100, θ4 = 2, and θ5 = 1.
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p = 12 lags in a monthly data set, which is described in further detail in Section 4. Here

we briefly explain the specifics of the sampler that pertain to handling the shadow rate

as a latent process whose posterior is truncated from above when the ELB binds. Further

details of the sampling procedures are provided in Appendix A. For ease of illustration, we

focus here on the simple shadow-rate VAR. As described in Appendix A.4, the extension

to the hybrid shadow-rate VAR proceeds with minimal adjustments.

Provided that data on st and thus zt were always observed, the simple shadow-rate

VAR in (4) would be straightforward to estimate with existing Bayesian MCMC methods

for VARs. However, when the data include observations for which the ELB is binding,

not only does st become a latent variable, but also it is subject to the constraint that

st ≤ ELB when it = ELB.

The simple shadow-rate VAR system consisting of (3) and (4) belongs to a class of

conditionally Gaussian unobserved components models, for which Johannsen and Mertens

(2021) have derived a generic shadow-rate sampling approach that can be nested inside

an otherwise standard MCMC sampler for the VAR estimation. The Johannsen-Mertens

approach employs the conditionally linear, Gaussian structure of the model to derive

a truncated normal posterior for the vector of unobserved shadow rates in the system,

given draws of other model parameters, such as the VAR coefficients Cj, and the stochas-

tic volatilities captured by Σt.
24 Crucially, this truncated normal posterior pertains to

the entire trajectory of unobserved shadow rates (or the ensemble of trajectories in the

case of multiple ELB periods), necessitating draws from a multivariate truncated normal.

Johannsen and Mertens (2021) successfully employ rejection sampling to generate joint

draws from this multivariate shadow-rate posterior. However, in more general applica-

tions, rejection sampling can become computationally tedious and highly inefficient.25

24For the remainder of this section, references to the shadow-rate posterior are understood as pointing
to the posterior distribution of shadow rates conditional on other model parameters and other latent
states, such as the sequence of the time-varying variance of covariance matrices for the residuals, {Σt}Tt=1.

25For example, in an application like ours with monthly data for the US covering the years 2009 through
2015, the shadow-rate posterior is a multivariate truncated normal with 85 elements, necessitating a
rejection whenever a single element out of these 85 should lie above the ELB. For illustrative purposes,
consider the case where the shadow rate draws were iid with an individual probability of being below ELB
of 0.95. The probability of all 85 draws lying below the ELB is then merely 0.9585 = 0.01. Of course,
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Specifically, consider the following setup for the simple shadow-rate VAR given by (3)

and (4): Values for the VAR coefficients {Cj}pj=1 and error variances {Σt}Tt=1 are given

and the data for {xt}Tt=1 are known. We further assume that at t = 1, p lags of the data

for xt are known, and that the initial p lags of the shadow-rate vector, s0, s−1, . . ., s−p+1,

are known.

The shadow-rate st is unknown at least for some t. For ease of notation, we normalize

time subscripts so that the first time the ELB is binding occurs at t = 1. In addition,

denote the last ELB observation by T ∗ ≤ T (where T is the length of the data sample), so

that st is unknown for 1 ≤ t ≤ T ∗. For simplicity we refer to the entire sequence {st}T
∗

t=1

as “unobserved,” which corresponds to the case of a single ELB episode. However, the

procedures described below also apply when multiple ELB episodes occur between t = 1

and T ∗, so that only some, but not all, values of st in this window are unobserved. In

addition, we define the vector ȳt that contains the observed data except for observations

of the actual interest rate at the ELB; we have ȳt = xt when the ELB is binding, and

ȳt = [x′
t s

′
t]
′ otherwise. As noted above, the vector of all observed variables is yt.

For ease of reference, we collect all unobserved shadow rates in a vector S and all

observations of ȳt in a vector Ȳ , and observations of yt in a vector Y :26

S =



sT ∗

sT ∗−1

...

s2

s1


, and Ȳ =



ȳT

ȳT−1

...

ȳ0

ȳ−p+1


, and Y =



yT

yT−1

...

y0

y−p+1


. (12)

The task of the shadow-rate sampler is then to sample S |Y , which includes the infor-

mation that S ≤ ELB (where the inequality is element-wise). Following Johannsen and

positive serial correlation among adjacent shadow rates would generate an acceptance rate somewhat
above 0.01.

26The vector S is intended to capture only unobserved shadow rates. In the case of a single ELB
episode lasting from t = 1 through T ∗, S consists of the entire sequence {st}T

∗

t=1. In the case of multiple
ELB episodes, observations where st = it > ELB are excluded from entering S.
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Mertens (2021), the shadow-rate sampler builds on solving the “missing value” problem of

characterizing S | Ȳ .27 The missing-value problem does not condition on information that

the ELB has been binding for certain observations, and thus does not impose S ≤ ELB.

As shown in Johannsen and Mertens (2021), the linear structure of the model and its

Gaussian error distribution results in a posterior of the missing-value problem that is a

multivariate normal, and truncation of the missing-value posterior at the ELB leads to

the solution of the shadow-rate sampler:28

S | Ȳ ∼ N (µ,Ω) (13)

⇒ S |Y ∼ TN (µ,Ω,−∞, ELB) . (14)

The moments µ and Ω can be recursively computed using a standard Kalman smoother,

and draws can be generated via a corresponding smoothing sampler. Our paper extends

the Johannsen-Mertens approach to a generic VAR with details provided in Appendix A.

A further contribution of our paper is the implementation of the shadow-rate sampler

via Gibbs sampling, following Geweke (1991) and Park, Genton, and Ghosh (2007), and

adapted to the variance-covariance structure of the VAR(p) case, rather than the rejection

sampling employed by Johannsen and Mertens (2021). Depending on parameter values,

a (well-known) issue with rejection sampling from the truncated normal is a possibly low

acceptance rate. In our case, the acceptance probability in sampling from (14) critically

depends on VAR parameters and the observed data for macroeconomic and financial

variables (other than short-term interest rates). As reported further below, when VAR

parameters are drawn from the eventual posterior of our shadow-rate VAR, the acceptance

probability that draws from the missing-value problem will lie below the ELB is fairly

high. However, this need not be the case in general, and does not hold, for example, when

27As described in Appendix A.4, the approach is easily extended to the case of a hybrid shadow-rate
VAR, by including actual-rate values at the ELB as exogenous VAR regressors in the conditioning set of
the missing value problem.

28The notation S ∼ TN(µ,Ω, a, b) denotes a truncated multivariate normal distribution for the ran-
dom vector S, with typical elements sj , where a ≤ sj ≤ b ∀ j, and where µ and Ω are the mean vector
and variance-covariance matrix of the underlying normal distribution.
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our VAR is estimated while treating observations for short-term interest rates as missing

(rather than censored) data when the ELB binds. Our adaptation of the Gibbs sampling

approach of Geweke (1991) to the VAR(p) case, with details described in Appendix A,

provides a more efficient solution to the shadow-rate sampling problem. Moreover, our

methods prove to be numerically robust due to the use of QR decomposition methods

that assure positive definiteness in computation of second-moment matrices.

Our approach also builds on the work of Chib (1992) and Chib and Greenberg (1998)

for Tobit and Probit models, respectively, which also relied on algorithms featuring data

augmentation.29

Notably, non-linearities that arise from the censoring of actual rates do not impede

shadow-rate inference based on Gaussian signal extraction methods. In the simple shadow-

rate VAR, the dynamics of latent shadow-rate variables are described by a Gaussian

VAR, which gives rise to a missing value problem with a (conditionally) normal posterior

distribution. The moments of the Gaussian posterior for the missing value problem can

be obtained from standard Kalman filtering and smoothing. Similarly, in the hybrid

shadow-rate VAR, censored actual-rate values enter only as lagged explanatory variables

(and only in non-shadow-rate equations), retaining the conditionally Gaussian structure

of the missing value problem.

In out-of-sample forecasting, for every model considered, we generate draws from the

predictive density of yt+k at forecast origin t by recursive simulations. In each case,

to generate draws from the h-step-ahead density, VAR residuals, vt+k, are drawn for

k = 1, 2 . . . , h.30 In the case of the standard VAR, conditional on current and lagged data

for yt, the simulation is standard and iterates over (2). In contrast, for the simple shadow-

rate VAR, simulation of the predictive densities jumps off MCMC draws for st, st−1,

29When the ELB binds, the censoring constraint on actual rates bounds the posterior distribution for
the shadow rate. The censored shadow-rate problem is related, but different from settings where state
variables have bounded support under the prior, as studied, for example, by Chan, Koop, and Potter
(2013) and Koop and Potter (2011).

30As described in, for example, Carriero, Clark, and Marcellino (2019), draws from vt+k ∼ N(0,Σt+k)
are conditioned on an MCMC draw of the underlying model parameters and SV states and involve forward
simulation of the SV processes.
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. . . st−p+1 that are used to initialize recursions over (4). Censoring of predicted interest

rates is applied only at the level of the measurement equation (1), while uncensored

draws of lagged shadow rates are fed into the VAR equation (4) to simulate subsequent

predictions of yt+k.

Our development of an efficient Gibbs sampler for Bayesian estimation of shadow-rate

VARs — to obtain both shadow rate estimates and out-of-sample forecasts — represents

another contribution of the paper. Mavroeidis (2021) instead uses particle filtering to

obtain maximum likelihood estimates of a structural VAR in the face of ELB constraints.

Aruoba, et al. (2022) develop a sequential Monte Carlo sampler for Bayesian estima-

tion of a structural VAR with an occasionally-binding constraint that leads to shifts in

coefficients.

To estimate the responses of the economy to shocks, rather than computing standard

impulse response functions conditional on whether the ELB binds, we rely on the general-

ized impulse response approach of Koop, Pesaran, and Potter (1996), in order to allow for

the possibility that the shock effects lead to a change in whether the ELB binds. In these

computations, we start with posterior distributions for VAR coefficients, shadow-rate val-

ues, and volatilities estimated with the full sample of data. At a given forecast origin

t, we simulate a predictive density that conditions on a specific realization of the shock

at t + 1 and compare its predictive mean against the average of a baseline prediction,

made at t but otherwise unconditional. To illustrate the working of this procedure in our

empirical application, we fix the size of the shock, denoted by σ, equal to the time-series

average of the stochastic volatility estimates for 2005-2006, the two years preceding the

Great Recession.31 We then estimate the responses to a specific shock of size σ that oc-

curs at t+1.32 Building on our earlier notation, let vt = A−1εt denote the vector of VAR

residuals, with εt ∼ N(0,Λt), A a unit-lower-triangular matrix, and Λt a diagonal matrix

31Estimated values of the EBP shock’s stochastic volatility are given by its posterior median path,
which averaged at a value of 0.11 over the years 2005-2006.

32As robustness checks, our supplementary online appendix also reports results for different shock
sizes k× σ, where k = 1,5,10, as well as shocks that lead to a decrease in EBP (or VXO) rather than an
increase as used here.
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of stochastic variance values. With EBP ordered first in the VAR, ε1,t denotes the (scalar)

shock to EBP at time t. Our density simulations take MCMC draws of parameters, as

well as values for shadow rates and stochastic volatilities at time t as given, and then

simulate forward shocks to log volatility for period t + 1 through t + H (with H = 48

months), as well as the standardized VAR residuals εt+h. For the baseline simulation, all

shocks are drawn freely. For the alternative simulation, we set the shock to EBP at time

t + 1 equal to a value of σ while residuals to all other variables are drawn conditional

on that value. At each MCMC node m we generate J = 1000 draws of the predictive

densities under the baseline and the alternative, and denote their means for outcomes h

steps ahead by E
(m)
t (yt+h) and E

(m)
t (yt+h|ε1,t = σ). To compute the generalized impulse

functions (GIRFs), we integrate over all MCMC draws, and obtain

Ψt,h(σ) =
∑
m

Ψ
(m)
t,h (σ) , (15)

with Ψ
(m)
t,h (σ) ≡ E

(m)
t

(
yt+h

∣∣ ε1,t = σ
)
− E

(m)
t (yt+h) . (16)

Uncertainty bands for the GIRF reflect the distribution of Ψ
(m)
t,h across MCMC nodes m

in (16).

4 Data

Our data set consists of monthly observations for either 15 or 20 macroeconomic and

financial variables for the sample 1959:03 to 2022:08, taken from the September 2022

vintage of the FRED-MD database maintained by the Federal Reserve Bank of St. Louis.

The baseline model’s variables and their transformations to logs or log-differences are

listed in Table 1. Reflecting the raw sample, transformations, and lag specification, the

sample for model estimation always begins with 1960:04. Critically, the data set includes

the federal funds rate, which was constrained by the ELB from late 2008 through late 2015

and from March 2020 through February 2022. In our main results using 20 variables, the
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Figure 1: Interest rate data

(a) Full data sample
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Note: All interest rates quoted as annualized percentage rates. Data obtained from FRED-MD

as listed in Table 1.

data set includes the federal funds rate and five additional interest rates: two other rates

constrained by the ELB, the 6-month Treasury bill rate and the yield on 1-year Treasuries,

as well as three longer-maturity bond yields, including 5- and 10-year Treasuries and

Moody’s Seasoned BAA corporate bond yield. For comparability to some other work in

the literature, we also provide shadow-rate VAR estimates for a 15-variable subset of the

data listed in Table 1 in which the federal funds rate is the only interest rate measure;

specifically, this subset omits the five yield measures listed at the bottom of the table. For

the paper’s application to structural analysis, we use the excess bond premium measure of

Gilchrist and Zakraǰsek (2012) from January 1973 to 2022:08, obtained from the website

of the Federal Reserve Board of Governors.33

Data for short-term rates and longer-maturity Treasury yields (with some omissions

for chart readability) are shown in Figure 1. During and following the Great Recession,

while short-term interest rates were constrained by the ELB, longer-term bond yields

remained solidly or well above the ELB. The 10-year (5-year) Treasury yield declined

from 2.4 percent (1.5 percent) in December 2008 to a low of 1.5 percent (0.6 percent) in

33The data are available at https://www.federalreserve.gov/econresdata/notes/feds-notes/

2016/files/ebp_csv.csv.
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Table 1: List of variables

Variable FRED-MD code Transformation Minnesota prior

Real Income RPI ∆ log(xt) · 1200 0
Real Consumption DPCERA3M086SBEA ∆ log(xt) · 1200 0
IP INDPRO ∆ log(xt) · 1200 0
Capacity Utilization CUMFNS 1
Unemployment UNRATE 1
Nonfarm Payrolls PAYEMS ∆ log(xt) · 1200 0
Hours CES0600000007 0
Hourly Earnings CES0600000008 ∆ log(xt) · 1200 0
PPI (Fin. Goods) WPSFD49207 ∆ log(xt) · 1200 1
PPI (Metals) PPICMM ∆ log(xt) · 1200 1
PCE Prices PCEPI ∆ log(xt) · 1200 1
Federal Funds Rate FEDFUNDS 1
Housing Starts HOUST log(xt) 1
S&P 500 SP500 ∆ log(xt) · 1200 0
USD / GBP FX Rate EXUSUKx ∆ log(xt) · 1200 0
6-Month Tbill TB6MS 1
1-Year Yield GS1 1
5-Year Yield GS5 1
10-Year Yield GS10 1
BAA Yield BAA 1

Note: Data obtained from the 2022-09 vintage of FRED-MD. Monthly observations from
1959:03 to 2022:08. Entries in the column “Minnesota prior” report the prior mean on
the first own-lag coefficient of the corresponding variable in each BVAR. Prior means on
all other VAR coefficients are set to zero.

July 2012 and then moved higher. Following the COVID-19 outbreak and the FOMC’s

quick and substantial easing of monetary policy, bond yields were lower and much closer

to the ELB than they were following the Great Recession. From April through December

2020, the 10-year (5-year) Treasury yield averaged 0.7 (0.3) percent. In 2021, the 10-year

(5-year) Treasury yield averaged 1.4 (0.9) percent. In January 2022, the FOMC signaled

its inclination to raise the federal funds rate off the ELB at its next meeting in March,

after which bond yields moved higher.

In our application with US postwar data, the value of ELB is set to 25 basis points,

which was the upper end of the FOMC’s target range for the federal funds rate between

late 2008 and 2015, and was again from mid-March 2020 through mid-March 2022. We
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treat a given interest rate — at any maturity — as unconstrained unless it reaches the

ELB. As a matter of consistency with this convention, we set readings for the federal

funds rate, 6-month T-bill rate, and 1-year Treasury yield to 25 basis points when estimat-

ing shadow-rate VARs (not when including these rates in a standard VAR that ignores

the lower bound constraint). Treasury yields with maturities of five years and longer and

corporate bond yields stayed above 25 basis points in the data and can thus be treated

as part of the vector xt, defined in Section 3, for the purpose of model estimation.34 The

supplementary online appendix shows that our main results are robust to instead setting

the value of the ELB to 12.5 or 50 basis points. Admittedly, while some might argue that,

even if longer-term bond yields did not actually hit the ELB, they were at least some-

what constrained when short-term rates hit the ELB, such a constraint falls outside our

shadow-rate VAR framework. But a couple of considerations could be seen as supporting

our approach: First, the hybrid model allows for changes in the predictive densities of all

variables, when interest rates are above but close to the ELB (relative to the case when

all rates were so high that the prospect of a binding ELB were negligible). The reason is

that actual (and not shadow) rates matter in the forecasting equations for non-interest-

rate variables (which in turn also affect projections for future shadow and actual rates).

These mechanics are present, and show some effect, in our forecasting results, but also our

structural analysis based on generalized impulse responses. Second, a more generic, or

even a more structural, approach could have been chosen to model interest-rate dynamics

near (but above) the ELB, but both approaches have their drawbacks as well. A purely

empirical approach, based on generic time variation in parameters, comes with its own

issues regarding scalability and identification (as shadow rates are latent at the ELB). In

contrast, a more structural approach could derive tighter restrictions on such behavior,

but at the cost of having to impose more specific assumptions on economic structures.35

34The lower bound constraint is an issue when simulating the predictive density for these yields, but
it is not relevant for estimating the VAR.

35For example, a no-arbitrage shadow-rate model in finance, would commonly assume linear and time-
invariant state dynamics, and a specific set of pricing factors. Moreover, for our purposes, such pure
finance model would still be silent on specific sensitivities of macroeconomic variables when interest rates
are near the ELB, as captured by our hybrid VAR.
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Figure 2: Shadow-rate estimates

(a) Simple shadow-rate VAR (w/yields)
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(b) Simple shadow-rate VAR (w/o yields)
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(c) Hybrid shadow-rate VAR (w/yields)

2010 2012 2014 2016 2018 2020 2022
-12

-10

-8

-6

-4

-2

0

2

4

full sample

quasi-real time

25 bp

(d) Simple shadow-rate VAR and other esti-
mates
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Note: Panel (a) compares smoothed and quasi-real time shadow-rate estimates from our simple

shadow-rate VAR, while Panel (b) provides corresponding estimates from the simple shadow-

rate VAR when data on interest rates other than the federal funds rate are omitted. Panel (c)

depicts estimates from the hybrid shadow-rate VAR (using all twenty variables listed in Table 1

in the estimation). Panel (d) compares the smoothed shadow-rate estimates from the simple

shadow-rate VAR (estimated with yields, also shown in Panel (a)) against updated estimates

obtained from Krippner (2013, 2015) and Wu and Xia (2016). The quasi-real-time estimates are

the end-of-sample estimates produced by recursive estimation of the model starting in January

2009. Each estimation conditions on available data since 1959:03, but the figure omits the period

prior to 2008 during which the ELB did not bind. Posterior medians are shown as thick lines;

grey shaded areas and thin lines depict 90 percent uncertainty bands.
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5 Shadow-Rate Estimates

We start our empirical analysis with an examination of the shadow-rate estimates, in order

to understand the roles of the ELB and the various yields in the model and subsequently

help interpreting the forecasting results presented in the next section.

Figure 2 reports our shadow-rate estimates associated with the federal funds rate, along

with comparisons to some other estimates. Panel (a) of the figure compares full-sample

estimates from the simple shadow-rate VAR using data through August 2022 (black line

with the credible set indicated by gray shading) to quasi-real-time estimates (solid red

line with the credible set indicated by dotted lines).36 The quasi-real-time estimates are

the end-of-sample estimates produced by recursive estimation of the model starting in

January 2009. Panel (b) shows full-sample and quasi-real-time estimates obtained from a

simple shadow-rate VAR that omits bond yields and includes only the federal funds rate

as an interest rate measure in its data vector. Panel (c) provides estimates obtained from

the hybrid shadow-rate VAR discussed in Section 3.3. Finally, Panel (d) compares our

full-sample estimate (posterior median shown as black line with the 90 percent credible

set indicated by gray shading) to the shadow-rate measures from Krippner (2013, 2015)

and Wu and Xia (2016) based on affine term structure models.

Our baseline full-sample estimates from the simple shadow-rate VAR show the shadow

rate dropping sharply starting in 2009, reaching a nadir of −2.1 percent in mid-2013. The

rate then gradually rose and crossed the ELB in early 2016, following the Federal Reserve’s

first increase in the federal funds rate in December 2015 (when the FOMC raised the target

range from 0-25 basis points to 25-50 basis points). The rate dropped precipitously in

the spring of 2020, with the posterior median reaching −2.7 percent in May 2020. The

rate moved gradually higher starting in April 2021 and crossed the ELB in April 2022,

following the FOMC’s first increase in the federal funds rate in March 2022. As might be

expected, the quasi-real-time estimates have more time variability than do the full sample

36To be clear, in the full sample case, the model is estimated with data for 1960:04 through 2022:08,
but the figure omits the period of 1960-2008 during which the ELB did not bind.
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estimates, but follow a quite similar contour. As might also be expected, the quasi-real-

time estimates are less precise, with credible sets wider than those of the full sample

estimate. The supplementary online appendix provides full-sample and quasi-real-time

estimates of shadow rates for the 6-month and 1-year Treasury maturities. The contours

of these estimates follow those shown for the federal funds rate.

Panel (b) reports the shadow-rate estimate obtained from a VAR in which the only

interest rate is the federal funds rate, which can be directly compared to the baseline

estimate provided with the same chart scaling in Panel (a). Without bond yields, the

simple shadow-rate VAR generates a much more negative estimate of the shadow rate,

particularly in the 2009-2013 period that corresponds more closely to the recovery in real

activity and again during the first year of the COVID-19 pandemic. The contours of our

shadow-rate estimates generated from macroeconomic and financial variables while ex-

cluding term structure data also resemble more closely estimates from Ikeda, Li, Mavroei-

dis, and Zanetti (2021), also obtained from macroeconomic data alone, or unconstrained

Taylor-rule prescriptions calculated for the Great Recession years by Eberly, Stock, and

Wright (2020). It is also notable that, in our model, the exclusion of bond yields makes

the quasi-real-time estimate of the shadow rate more variable from quarter to quarter.

With bond yields included, Panel (c) shows that estimates based on the hybrid shadow-

rate VAR are rather similar to estimates from the simple shadow-rate VAR. As the main

difference in the two VARs is in the specifications of the macro equations, this finding

confirms that the shadow rate estimates are mainly informed by the interest rate equa-

tions.

Finally, although our shadow-rate VARs do not impose the restrictions of an affine

term structure model, our shadow-rate estimates have some similarities to the Krippner

and Wu-Xia measures based on affine term structure models. As indicated in Panel (d) of

Figure 2, our simple shadow-rate VAR estimate and the Wu-Xia series move together from

2009 through 2013. Over the remainder of the ELB episode following the Great Recession,

as our estimate gradually rose to the ELB over the course of 2014 and 2015, the Wu-Xia
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series fell and then rose sharply. Compared to the other estimates, the Krippner measure

fell more sharply in 2012-2013 and then bounced back more quickly in 2014-2015. For the

period from 2009 through 2015, our simple shadow-rate VAR estimate can be seen as akin

to a measure one would obtain by averaging the Krippner and Wu-Xia measures. From

2020 through mid-2022, our shadow-rate VAR estimate is more similar to the Krippner

measure than the Wu-Xia estimate in the period of falling rates but a little more similar

to the Wu-Xia measure than the Krippner estimate in the period of rising (but still below

the ELB) shadow rates.

Figure 3 provides some comparisons to assess the effects of shadow-rate modeling and

enforcement of the ELB in model estimation. Focusing on the federal funds rate and its

shadow rate, Panel (a) compares shadow-rate (black) and missing-data (red) draws for

the shadow rate st obtained from the posterior of our simple shadow-rate VAR. Shadow-

rate draws are obtained from the truncated posterior for st that satisfies the ELB, and

described by the problem of drawing from S|Y in (14). Missing-data draws are obtained

from the underlying (and untruncated) posterior of the missing data problem, which ig-

nores the ELB, and correspond to draws from S|Ȳ in (13). As the chart comparison

indicates, the posteriors obtained from these alternatives are very similar.37 The sup-

plementary online appendix shows similar results obtained from the hybrid shadow-rate

VAR.

These results might suggest that an approach that treats observed policy rates at the

ELB as missing values might be a close alternative to shadow-rate sampling that explicitly

accounts for the ELB.38 However, such a conclusion would neglect the effects of enforcing

the ELB as part of the shadow-rate sampling on inference for other VAR parameters and

state variables (like SV). As discussed by Waggoner and Zha (1999) in the context of

conditional forecasting, conditioning estimates on information when the ELB was binding

37Late in the Great Recession episode and in the early months of the COVID-19 episode, using a
missing data approach without fully enforcing the ELB led to draws of interest rates above the ELB,
whereas with the full shadow-rate treatment, the interest rate distributions remained at or below 25 basis
points.

38Such a missing data approach has been used by, for example, Del Negro, Giannone, Giannoni, and
Tambalotti (2017).
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Figure 3: Effect of imposing ELB on shadow-rate estimates

Simple shadow-rate VAR estimates from data including yields
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(c) Missing-data and shadow-rate draws
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(d) Missing-data draws w/and w/o shadow-
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Note: Panel (a) compares shadow-rate (black) and missing-data (red) draws for st obtained

from the posterior of our simple shadow-rate VAR. Shadow-rate draws are obtained from the

truncated posterior for st that satisfies the ELB. Missing-data draws are obtained from the

underlying (and untruncated) posterior of the missing data problem that ignores the ELB.

Panel (b) displays missing-data posteriors obtained from two sets of simple shadow-rate VAR

estimates: In the baseline (red), parameter and SV draws reflect shadow-rate sampling. In

the alternative version (blue), parameters and SV are drawn while treating the policy rate at

the ELB as missing data and without requiring that missing data draws lie below the ELB.

Panels (c) and (d) provide corresponding estimates from a VAR that omits all interest rate data

except for the federal funds rate. Each panel shows reports medians (thick lines) and 90 percent

uncertainty bands (grey shaded areas or thin lines).
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could (and should) embody non-trivial information about the relevant parameters of the

VAR.

To illustrate these effects, Panel (b) compares missing-data posteriors from two sets of

estimates obtained from simple shadow-rate VARs: In the baseline (red), parameter and

SV draws reflect shadow-rate sampling (as also shown in Panel (a)). In the alternative

version (blue), parameters and SV are drawn while treating the policy rate at the ELB

as missing data and without requiring that missing data draws lie below the ELB. The

comparison highlights the non-negligible effects of shadow-rate sampling, which takes into

account observations of interest rates at the ELB, on model estimates of parameters and

SV. Without forcing the draws of missing interest rate observations to lie at or below the

ELB, the upper bound of the posterior credible set rises above the ELB in 2014-2015 and

again in 2020-2021, which contradicts observations of the federal funds rate that were at

the ELB during those times. In contrast, the use of shadow-rate sampling, as opposed

to a missing-data approach, leads to estimates of parameters and SV that increase the

odds of obtaining missing-data draws for the shadow rate that lay below the ELB (for

observations when the ELB binds).

A similar pattern is observed when the estimation excludes all data on yields (except

for the federal funds rate), as shown in Panels (c) and (d) of the figure. With the federal

funds rate the only interest rate in the model, when the draws of missing interest rate

observations are not forced to lie at or below the ELB, the upper bound of the posterior

credible set shows an even longer period above the ELB, from about 2012 through 2015 and

again in 2020. With or without additional yields in the model, we find that shadow-rate

sampling (as opposed to missing data sampling) increases the odds of drawing shadow-rate

values below the ELB by adjusting the SV path for shocks to the shadow-rate equation,

with only minor effects on the VARs’ transition coefficients; details are provided in the

supplementary online appendix.
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6 Forecast Evaluation

We conduct an out-of-sample forecast evaluation in quasi-real time, where we simulate

forecasts made from January 2009 through December 2017. For every forecast origin,

each model is re-estimated based on growing samples of data that start in 1959:03. We

stop forecasting in December 2017 to be sure the unusual volatility of the COVID-19

pandemic does not distort forecast comparisons; with a maximum forecast horizon of 24

months, the last outcome date in the evaluation sample is December 2019, so that our

evaluation sample does not include any realizations from 2020 or later. However, as shown

in the supplementary appendix, ending the evaluation sample in mid-2022 yields similar

results. Of course, the evaluation window in our main results is relatively short and largely

informed by a single ELB episode. Forecasts made prior to 2009 are not considered, due

to the absence of observed interest rates at the ELB in postwar US data. All data are

taken from the September 2022 vintage of FRED-MD; we abstract from issues related to

real-time data collection. For sake of comparability, forecasts from linear and shadow-rate

VARs are compared against realized interest-rate values that are censored at the ELB.

6.1 Average performance 2009–2017

Comparing various model specifications discussed below, Tables 2 and 3 provide results

on point and density forecast accuracy, measured by root mean squared error (RMSE,

computed around mean forecasts), mean absolute error (MAE, computed around median

forecasts), and continuous ranked probability score (CRPS), respectively. We provide the

MAE results in light of the concerns of Bauer and Rudebusch (2016) with the use of mean

forecasts for interest rates near the ELB constraint. The reported forecast horizons are h

= 3, 6, 12, and 24 months. For those variables that enter the model in monthly growth

rates (e.g., real income and nonfarm payrolls), at horizons h greater than 1 month, the

h-step forecasts are transformed to average growth rates over h periods.39

39Specifically, for a variable that enters the model as 1200∆log(xt), at each forecast origin t and

multi-step horizon h, we average the forecasts of monthly growth rates as (1200/h)
∑s=h

s=1 ∆log(xt+s).

36



Table 2: Forecast performance of standard vs. simple shadow-rate VAR

RMSE MAE CRPS

Variable / Horizon 3 6 12 24 3 6 12 24 3 6 12 24

Real Income 1.00 1.00 0.99 0.88 0.98∗∗ 0.98 1.00 0.98 0.99∗ 0.99∗ 1.00 1.00
Real Consumption 1.00 1.00 1.02 0.98 1.00 1.00 1.03 0.99 1.00 1.00 1.01 1.00
IP 1.02 1.01 1.05∗∗∗ 1.00 1.03∗∗ 1.02 1.05∗∗∗ 1.01 1.02 1.02 1.04∗∗∗ 1.01∗∗

Capacity Utilization 1.03∗ 1.05 1.09∗∗ 1.10∗∗ 1.06∗∗∗ 1.08∗ 1.15∗∗∗ 1.11∗ 1.03∗∗ 1.05∗∗ 1.09∗∗∗ 1.09∗∗∗

Unemployment 1.00 1.00 1.01 1.00 1.00 0.99 0.96 0.96 1.00 1.00 1.01 1.00
Nonfarm Payrolls 0.98 0.99 1.04 1.04 1.00 1.02 1.08 1.01 1.00 1.02 1.05 1.02
Hours 1.00 1.01 1.00 1.03 1.00 1.00 1.01 1.04 1.01 1.00 1.01 1.02
Hourly Earnings 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01∗∗ 1.00 1.00 0.99 1.00
PPI (Fin. Goods) 1.00 0.99 1.00 0.99 0.99 0.98∗∗ 1.00 1.01 0.99 0.99∗ 1.00 1.00
PPI (Metals) 1.00 1.00 1.00 1.02 0.99 1.00 1.00 1.01∗∗ 1.00 1.00 1.00 1.01∗

PCE Prices 1.00 1.00 1.01 1.01 1.01 1.00 1.01 1.02∗ 1.00 1.00 1.00 1.01∗

Federal Funds Rate 0.22∗∗ 0.24 0.31 0.55 0.13∗∗∗ 0.22∗∗ 0.30∗ 0.40∗∗ 0.15∗∗∗ 0.20∗∗ 0.27∗ 0.44∗∗

Housing Starts 1.01 0.99 0.95 0.90 1.00 0.98 0.98 0.92 1.01 0.99 0.96 0.92
S&P 500 0.99 1.00 1.01 1.04 0.98 0.99 0.99 1.00 0.99 1.00 1.00 1.01∗

USD / GBP FX Rate 0.99∗ 0.99∗ 0.99∗ 0.97∗∗∗ 0.98∗ 0.99 0.98∗ 0.97∗∗ 0.99∗∗ 0.99∗ 0.99∗ 0.99∗∗∗

6-Month Tbill 0.37∗ 0.43 0.55 0.77 0.24∗∗∗ 0.32∗∗ 0.40∗ 0.56∗∗ 0.27∗∗∗ 0.33∗∗ 0.45∗∗ 0.58∗∗∗

1-Year Yield 0.66 0.66 0.72 0.87 0.52∗∗∗ 0.48∗∗∗ 0.54∗∗ 0.67∗∗ 0.54∗∗∗ 0.54∗∗∗ 0.59∗∗ 0.64∗∗∗

5-Year Yield 0.93∗ 0.90∗∗∗ 0.85∗∗∗ 0.84 0.94∗ 0.91∗∗ 0.89∗∗∗ 0.90∗∗∗ 0.97 0.94∗ 0.90∗∗∗ 0.86∗∗∗

10-Year Yield 0.96 0.93∗∗ 0.88∗∗∗ 0.82∗∗ 0.95 0.95 0.89∗∗ 0.91∗ 0.98 0.96 0.93∗ 0.94
BAA Yield 0.98 0.99 1.02 0.93 1.00 0.99 1.03 0.98 1.00 1.01 1.02 1.04

Note: Comparison of “standard linear VAR” (baseline, in denominator) against “simple shadow-rate VAR.” Values below 1 indicate
improvement over baseline. Evaluation window with forecast origins from 2009:01 through 2017:12 (and outcome data as far as
available). Significance assessed by Diebold-Mariano-West test using Newey-West standard errors with h + 1 lags. Performance
differences of 5 percent and more (relative to baseline) are indicated by bold face numbers.
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Table 2 compares the accuracy of forecasts from our simple shadow-rate VAR to those

from a standard VAR that simply takes the forecasts as given and does nothing to obey

ELB constraints. To facilitate comparisons, we report RMSE, MAE, and CRPS results

for the simple shadow-rate model as relative to the standard VAR, so that entries of less

(more) than 1 mean the shadow rate model’s forecast is more (less) accurate than the

baseline. To roughly gauge the significance of differences with respect to the baseline, we

use t-tests as in Diebold and Mariano (1995) and West (1996), denoting significance in

the tables with asterisks.

Overall, the results in Table 2 indicate that our simple shadow-rate VAR specification

for accommodating the ELB performs better in forecasting than does a standard VAR.

The shadow-rate specification significantly improves forecasts of not only the federal funds

rate (FFR) but also most other interest rates, without harming the forecasts of indicators

of economic activity, measures of inflation, and other financial indicators. RMSE ratios

for federal funds rate forecasts for h = 3, 6, 12, and 24 range from 0.22 to 0.55, the

MAE ratios range from 0.13 to 0.40, and the CRPS ratios range from 0.15 to 0.44, with

statistical significance of all of the MAE and CRPS gains and one-fourth of the RMSE

gains. For Treasury rates from 6 months through 10 years, the shadow-rate specification

also typically improves forecast accuracy, with gains greater at short maturities than at

long maturities. For the 6-month T-bill yield, RMSE (MAE) ratios range from 0.37 to

0.77 (0.24 to 0.56); CRPS ratios are between 0.27 and 0.58, pointing to larger and more

statistically significant density gains as compared to RMSE gains. Forecast improvements

at the 1-year maturity are modestly smaller but can still be sizable; for example, in

this case, CRPS ratios range from 0.54 to 0.64. At the 5- and 10-year maturities, the

simple shadow-rate VAR consistently improves on the forecast accuracy of a standard

VAR, but by smaller, less significant magnitudes. For instance, the CRPS ratios for the

5-year Treasury yield range from 0.86 to 0.97. Finally, for the indicators of economic

activity, stock price returns, the BAA yield, and the exchange rate, the treatment of the

ELB on interest rates does not seem to bear consistently and importantly on forecast
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accuracy. RMSE, MAE, and CRPS ratios for the standard VAR and simple shadow-rate

specifications are often near 1, particularly at the 3- and 6-month forecast horizons. At

longer horizons, forecasts from the simple shadow-rate VAR tend to be slightly more

accurate than those from the standard VAR for housing starts and modestly less accurate

for other indicators of economic activity.

Table 3 compares the accuracy of forecasts from the hybrid shadow-rate specifica-

tion to the standard VAR. As explained above, the hybrid specification departs from

the simple shadow-rate VAR by relating the macroeconomic indicators to actual interest

rates rather than shadow rates. Over the full sample, the shadow-rate estimates ob-

tained with the hybrid specification are quite similar to the estimates shown earlier for

the baseline shadow-rate VAR. Of course, it could nonetheless be the case that predicting

macroeconomic outcomes with actual interest rates instead of shadow rates could make

a difference in forecast accuracy. Overall, compared to the benchmark standard VAR,

the hybrid shadow-rate VAR is comparable to the simple shadow-rate VAR in forecast

accuracy, but with some advantages. The RMSE, MAE, and CRPS ratios in Table 3

show that the hybrid specification significantly improves forecasts of interest rates (rela-

tive to the standard VAR), with results very similar to those for the simple shadow-rate

VAR. For example, for the 6-month T-bill yield, CRPS ratios are between 0.26 and 0.50,

compared to ratios between 0.27 and 0.58 with the simple shadow-rate VAR. For macroe-

conomic variables, the hybrid specification improves on the longer-horizon accuracy of the

standard VAR for some variables (e.g., IP, capacity utilization, and unemployment) and

reduces longer-horizon accuracy for some other economic activity indicators (e.g., hours

worked). If the hybrid and shadow-rate VAR forecasts are compared directly (results in

the supplementary online appendix for brevity), the hybrid forecasts are modestly better

for most economic activity indicators (e.g., IP, capacity utilization, and unemployment)

at longer horizons and modestly worse only for a few indicators (e.g., hourly earnings and

PCE prices), so that overall we prefer the hybrid over the simple shadow-rate VAR as a

forecasting model in the presence of the ELB.
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Table 3: Forecast performance of standard vs. hybrid shadow-rate VAR

RMSE MAE CRPS

Variable / Horizon 3 6 12 24 3 6 12 24 3 6 12 24

Real Income 1.00 1.00 1.00 1.00 0.99 0.99 1.01 0.96 1.00 1.00 1.01 0.99
Real Consumption 1.00 1.01 1.00 0.90∗∗ 0.99 1.02 1.03 0.90∗ 1.00 1.01∗ 1.00 0.97∗

IP 1.01 0.99 1.01 0.98 1.02∗∗ 0.99 1.00 0.97 1.01 1.00 1.00 1.00
Capacity Utilization 1.00 0.98 0.99 0.93∗∗ 1.00 0.98 0.98 0.93 1.00 0.99 0.99 0.96∗

Unemployment 1.00 1.00 0.99 0.91∗∗∗ 1.00 1.00 0.99 0.91∗∗ 1.00 1.00 0.99 0.94∗∗∗

Nonfarm Payrolls 0.98∗∗∗ 0.99 1.04 0.98 0.98∗∗∗ 0.99 1.00 0.92 0.99∗∗∗ 0.99 1.00 0.97
Hours 1.01 1.02∗ 1.02 1.04 1.00 1.01 1.02 1.03 1.01∗∗ 1.01 1.02 1.01
Hourly Earnings 1.01 1.01 1.01 1.05∗∗∗ 1.00 1.01 1.01 1.03∗∗∗ 1.01 1.01 1.00 1.02∗∗∗

PPI (Fin. Goods) 1.00 0.98 0.97 0.99 1.00 0.99 0.98 1.00 1.00 0.99 0.99 1.00
PPI (Metals) 0.99∗ 1.00 0.99∗ 1.01 0.99 0.99 0.99 1.00 1.00 0.99 0.99 1.00
PCE Prices 1.00 0.98 0.97 1.06∗∗ 1.00 0.98∗ 0.99 1.08∗∗∗ 1.00 0.99 0.99 1.05∗∗∗

Federal Funds Rate 0.22∗∗ 0.24 0.29 0.51 0.13∗∗∗ 0.20∗∗ 0.28∗ 0.39∗∗ 0.15∗∗∗ 0.19∗∗ 0.25∗∗ 0.39∗∗∗

Housing Starts 1.00 0.98 0.90 0.91 1.00 0.97 0.91 0.90 1.00 0.99 0.94 0.94
S&P 500 1.00 1.00 1.01 1.05 0.99 0.99 1.01 1.01 1.00 1.01 1.01 1.01∗∗

USD / GBP FX Rate 1.01 1.01 1.00 1.01 1.01 1.01 1.01 1.04 1.01 1.00 1.00 1.01
6-Month Tbill 0.37∗ 0.41 0.52 0.69 0.24∗∗∗ 0.30∗∗ 0.36∗∗ 0.48∗∗∗ 0.26∗∗∗ 0.31∗∗ 0.41∗∗ 0.50∗∗∗

1-Year Yield 0.64 0.63 0.67 0.78 0.52∗∗∗ 0.44∗∗∗ 0.45∗∗∗ 0.56∗∗∗ 0.53∗∗∗ 0.50∗∗∗ 0.53∗∗∗ 0.56∗∗∗

5-Year Yield 0.95 0.90∗∗∗ 0.81∗∗∗ 0.75∗ 0.96 0.94 0.89 0.86∗ 0.98 0.94 0.88∗∗ 0.81∗∗∗

10-Year Yield 0.97 0.94 0.87∗∗ 0.77∗∗∗ 0.97 0.97 0.88∗ 0.91 0.98 0.96 0.92 0.93
BAA Yield 0.97 0.98 1.01 0.97 0.99 0.97 1.03 1.07 0.99 1.00 1.02 1.06

Note: Comparison of “standard linear VAR” (baseline, in denominator) against “hybrid shadow-rate VAR.” Values below 1 indicate
improvement over baseline. Evaluation window with forecast origins from 2009:01 through 2017:12 (and outcome data as far as
available). Significance assessed by Diebold-Mariano-West test using Newey-West standard errors with h + 1 lags. Performance
differences of 5 percent and more (relative to baseline) are indicated by bold face numbers.
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In addition, we compare point and density forecasts from our shadow-rate VARs

against those obtained from a plug-in approach, where external shadow-rate estimates,

specifically updated estimates from Krippner (2013, 2015) and Wu and Xia (2016), are

used as “data,” in place of the actual short-term interest rate, in an otherwise standard

VAR. Following the spirit of the shadow-rate literature, forecasts from the plug-in VAR are

simulated without censoring the resulting (shadow) interest rate projections. Similar to

the case of our simple shadow-rate VAR, forecasts for nominal interest rates are censored

only after the dynamic simulations for all variables (and all horizons) have been done.

For brevity, detailed results obtained from such plug-in VARs are tabulated only in the

supplementary online appendix. Using shadow-rate “data” either from Krippner or Wu

and Xia, we find notable benefits for point and density forecasting from our shadow-rate

and hybrid VARs. Forecasts obtained from the plug-in VAR are based on the latest vin-

tages of full-sample estimates for the shadow rates from Krippner and Wu-Xia, so that the

shadow-rate estimates abstract from one-sided filtering challenges (and other revisions).

Thus, the results reported in the supplementary online appendix likely understate the

gains that could be achieved in (quasi-)real-time forecasting from our simple shadow-rate

VAR when compared to a plug-in approach.

Our supplementary online appendix reports various robustness checks, with fairly

similar results to those reported here. In particular, when extending the evaluation period

to end in August 2022, it turns out that while the economic effects of the pandemic left a

heavy mark on readings of macroeconomic and financial variables in 2020 and 2021 — see,

for example, our companion work in Carriero, Clark, Marcellino, and Mertens (2022b)

— they did not materially affect the relative comparisons reported here. Moreover, we

consider the effects of assuming either a lower (12.5 basis points) or higher (50 basis

points) ELB value. Overall, contours of the estimated shadow rates, and relative forecast

performance of the simple shadow-rate VAR are broadly similar to our baseline results,

indicating robustness to the alternative choice in ELB value. The hybrid shadow-rate

VAR continues to forecast well relative to the linear case, when the ELB value is lowered
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to by 12.5 basis points. Not surprisingly, however, the choice of a higher value for the

censoring constraint on actual rates affects forecast simulations from the hybrid VAR more

noticeably, since forecasts of macroeconomic variables are now conditioned on actual rates

that are assumed to not fall below 50 basis points (instead of 25 basis points). For good

parts of our evaluation window, this choice conditions macroeconomic forecasts on policy

rate projections that are about 25 basis points higher than they otherwise would have

been, with negative impacts for longer-horizon forecasts.

6.2 Expected policy rates and forecasts of macroeconomic vari-

ables

The key differences between the VAR specifications considered here (standard/simple

shadow-rate/hybrid shadow-rate) is the treatment of nominal interest rates near the ELB

and the resulting forecasts for other, mainly macroeconomic, variables.40 In each VAR,

interest rate forecasts are not only an object of interest by themselves, but also serve

as conditioning variables in the dynamic equations of other variables.41 A discussion of

forecasts for the actual interest rate in their own right is relegated to Section 6.3. Instead,

here we highlight the differences in the predicted paths of the short-term policy rate used

by each VAR to construct forecasts for macroeconomic variables; for brevity we also refer

to these as “forecast-relevant” policy rates. Specifically, in the simple shadow-rate VAR,

the forecast-relevant policy path used to generate macro forecasts is based on uncensored

predictions of future shadow rates. In contrast, the hybrid shadow-rate model uses actual

interest rates, which cannot fall below the ELB, as right-hand side variables for its VAR

40Formally, using notation introduced in Section 3, by “other” variables we mean data contained in
the partition xt of the VAR vector in (3). For brevity, we refer to these henceforth as “macroeconomic”
variables, while noting that our application also includes some financial variables, like stock returns, but
not term structure data, within xt.

41As throughout this paper, we are concerned with dynamic simulations of so-called unconditional
forecasts, E(yt+h|yt), where yt denotes the history of available data at the forecast origin t, as opposed to
conditional forecasts that take a fixed path for, say, future policy rates as given, such as E(yt+h|yt, it+h),
as discussed by, among others, Antoĺın-Dı́az, Petrella, and Rubio-Ramı́rez (2021), Jarocinski (2010), and
Waggoner and Zha (1999). Instead, our present discussion is concerned with the (averages of) policy path
expectations that are simulated by each model alongside its (unconditional) macroeconomic forecasts.
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Figure 4: Expected averages of forecast-relevant policy rates (12-months ahead)

(a) Generated from data with yields
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(b) Generated from data excluding yields
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Note: 12-month ahead expected averages of federal funds rates (actual or shadow), generated

out-of-sample at forecast origins 2009:01 – 2017:12. For each VAR model, the interest rate mea-

sures shown correspond to the forecast-relevant policy rate variables used in the model equations

for macroeconomic variables, xt: For the simple shadow-rate VAR, shadow-rate expectations are

shown. For the hybrid shadow-rate VAR, predictions of actual rates are reported, and for the

standard VAR, which ignores the ELB, (uncensored) federal funds rate predictions are shown.

equations of xt in (6).42 Critically, the standard linear VAR does not distinguish between

actual and shadow rates. Ignoring the ELB in forming predictions of future interest rates,

the linear VAR uses its uncensored interest rate forecasts in forming predictions of other

variables.

To illustrate salient differences in the forecast-relevant policy rates that underlay pre-

dictions of macroeconomic (and other non-interest rate) variables, Figure 4 compares

12-month ahead averages of the forecast-relevant policy rates expected by each model out

of sample. The left panel of the figure shows policy predictions generated from our full

20-variable system including yields, and the right panel shows corresponding predictions

obtained when yields other than the federal funds rate are omitted from the VARs.

Using either data set, the three VARs differ notably in their forecasts of policy rates

that enter as inputs in forecasts of macroeconomic conditions. By construction, the rel-

42The actual-rate values used in dynamic forecast simulations of the hybrid shadow-rate VAR reflect
draws from the model’s censored density for shadow-rate predictions; for an illustration see Section 6.3.
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evant policy rates of the hybrid shadow-rate VAR are constrained not to fall below the

ELB, and turn out to hover closely above it for most of the post-GFC period. In contrast,

the simple shadow-rate VAR jumps off the (largely) negative shadow-rate posteriors dis-

cussed above in Section 5 and predicts forecast-relevant policy rates to also remain fairly

negative over the 12-months-ahead (time-averaged) horizon. The standard linear VAR

borrows some negative rate outlook from the shadow-rate VAR early in the GFC, but with

its forecasts jumping off actual-rate data remaining at the ELB, the standard model sees

forecast-relevant policy rates hovering near the ELB for most of the post-2010 recovery.43

Taken at face value in this reduced-form setting, the more negative rate forecasts of the

simple shadow-rate VAR imply the most monetary policy stimulus, the positive forecasts

of the hybrid shadow-rate VAR imply the least, and the standard linear VAR’s interest

rate projections fall in between.

While the inclusion of term structure data does not change the qualitative patterns

in the forecast-relevant policy rate forecasts generated by the different models, the right

panel of Figure 4 displays important quantitative differences. When the federal funds rate

is the only interest rate included, both the linear and the simple shadow-rate VARs expect

short rates to run almost twice as low during the ELB period as in the baseline models with

additional interest rates included (this pattern is consistent with the historical estimates

of shadow rates presented earlier). In the smaller specifications with the FFR as the only

interest rate, this pattern in interest rate forecasts leads the simple shadow-rate VAR to

over-predict the strength of the recovery. Consequently, as reported in the supplementary

online appendix, a simple shadow-rate VAR without term structure data performs worse

in average forecasting than a standard linear VAR.

In contrast, the hybrid shadow-rate VAR specification relates predictions of macro

variables to lags of predicted actual interest rates (not shadow rates), which obey the

ELB by construction. As shown in Figure 4, for most of the post-GFC recovery, the year-

ahead averages of the policy rates relevant for forecasting macro variables were expected

43Corresponding figures for the 6-month and 1-year yields, reported in the supplementary online
appendix, are very similar.
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to stay very close to the ELB, and mostly quite a bit higher than in the simple shadow-rate

VAR. As a result, even when term structure data is omitted in estimation, macro forecasts

from the hybrid model are on par with a linear VAR (and thus more accurate than those

from the simple shadow-rate VAR); details are provided in the supplementary online

appendix. One possible interpretation of this pattern is that a shadow-rate VAR without

term structure information may overstate the amount of monetary accommodation (either

in quantity or efficacy) that was actually provided, at least during the ELB episode

prompted by the GFC, which in turn harms the accuracy of forecasts made around ELB

periods.

Our preferred models do include information about the term structure of interest rates,

and add rates or yields from maturities of 6 months through 10 years. Although we omit

direct comparisons in the interest of brevity, macro forecasts from these larger models

are more accurate than those from the corresponding specifications in which the federal

funds rate is the only interest rate. When term structure data is included, forecasts from

(simple and hybrid) shadow-rate VARs improve in an absolute sense as well as relative to

the linear VAR. In addition, shadow-rate estimates and FFR forecasts informed by term

structure data become less negative around the 2009-2015 ELB episode and during the

first year or so of the COVID-19 pandemic. One interpretation is that, by adding yields to

the VAR vector, the shadow-rate specifications are less prone to over-estimating stimulus

from unconventional monetary policy (at least during the initial ELB episode prompted

by the GFC).

Overall, these comparisons suggest two broad takeaways about capturing the effects

of monetary policy in reduced-form VARs for forecasting. First, for forecasting macro

variables, it is helpful to include a range of interest rates and not just the federal funds

rate. In particular, as shown in the supplementary online appendix, our shadow-rate VARs

(using all yields) considerably improve upon forecasts for macro variables obtained from

a linear VAR that simply omits short-term interest rates to avoid ELB issues. Second,

a shadow-rate specification provides an internally consistent forecasting model (whereas
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the standard does not). Moreover, the shadow-rate VARs ensure interest rates obey the

ELB, which improves the accuracy of their interest rate forecasts. In addition, shadow-

rate VARs that distinguish between effects from actual and shadow rates as predictors

for economic outcomes, improve the accuracy of some macro forecasts, while remaining

otherwise comparable to a linear VAR.

6.3 Interest rate forecasts made since the outbreak of COVID-

19

The period following the outbreak of the COVID-19 pandemic in the US and the aggressive

easing of monetary policy by the FOMC provides an opportunity for a case study of

predicted interest rate dynamics from our shadow-rate VARs as compared to a standard

VAR that ignores the ELB. In these comparisons, we focus here on the simple shadow-

rate VAR as compared to a standard VAR; the supplementary online appendix provides

similar results for a comparison between the hybrid shadow-rate VAR and the standard

VAR, as well as estimates generated from data that excludes all interest rate measures

except for the federal funds rate. Figure 5 shows the evolution of federal funds rate

forecasts over selected origins between March 2020 and the end of our sample in August

2022.44 With data available through March 2020, as the outbreak of COVID-19 hit the US

economy, the point forecast from a standard VAR put the funds rate well below the ELB

for the entire forecast horizon, with substantial probability mass on very negative rates.

As of September 2020, the point forecast was close to the ELB for several months, but

throughout the forecast horizon substantial mass in the predictive distribution remained

in negative territory.

At the March 2020 forecast origin, past data for the US economy was still well above

the ELB, and the predictive density for the shadow rate generated from the simple shadow-

rate VAR was essentially identical to the (uncensored) actual rate distribution obtained

44Forecasts generated at a given forecast origin, say March 2020, reflect model estimates based on
data up to and including the month of the forecast origin.
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Figure 5: Predictive densities for actual and shadow values of the federal funds rate
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Note: Predictive density for the actual and shadow values of the federal funds rate, simulated

out of sample at different jump-off dates. Dashed-dotted (black) lines depict the predictive

density for the actual rate as generated from the standard VAR. The shaded (light blue) area

with dashed (white) lines represent the simple shadow-rate VAR’s predictive density of the

shadow rate, while solid lines (dark blue) reflect the corresponding censored density for the

actual interest rate. Posterior medians and 68 percent bands.

from the standard VAR, as shown in Panel (a) of the figure. However, things changed

as the economy stayed at the ELB in subsequent months. As previously described in

Section 5, the rapid deterioration in economic conditions led to a decline in the (median)

shadow rate which stabilized around −2 percent by the second half of 2020. As shown in

Panel (b), as of September 2020, negative levels of the shadow rate at the forecast origin
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pulled down the predictive densities for the shadow rate.45 As a result, until the first half

of 2021 (detailed results omitted in the interest of brevity), the shadow rate was expected

to cross above the ELB quite a bit later than implied by uncensored federal funds rate

predictions generated from the standard VAR.

Jumping forward to March 2022, when the FOMC raised the funds rate off the ELB,

the predictive densities of the funds rate from both the standard and shadow-rate VARs

were solidly above the ELB throughout the forecast horizon. The median projections were

similar, with the funds rate rising steadily to about 3.5 percent over about 18 months,

but with the projection from the shadow-rate VAR slightly higher than the standard

VAR’s forecast over most of the period. At the end of our sample, in August 2022, the

median forecasts from the two approaches (standard and simple shadow-rate VAR) were

also similar, with the standard VAR’s forecast slightly higher; in both forecasts, the funds

rate rises from about 3 percent to nearly 5 percent before gradually declining.

Forecasts of the federal funds rate from the simple shadow-rate VARs reflect the

predicted evolution of the shadow rate. As noted before, shadow rates reflect the uncon-

strained policy rate prescriptions of the feedback rule for monetary policy that is implied

by the VAR in (4). From an economic perspective, shadow-rate VARs can capture lower-

for-longer or make-up elements of the Federal Reserve’s monetary policy strategy through

the dependence of predicted interest rates on lagged notional rates as suggested by, for

example, the models of Billi (2020), Gust, et al. (2017), and Reifschneider and Williams

(2000). Moreover, the shadow-rate estimates are informed by observed data on longer-

term yields and economic conditions, which enables the estimates to pick up on the effects

of unconventional policies, such as forward guidance and asset purchases, through these

channels.

As a reference point, the Federal Reserve Bank of Cleveland regularly publishes a set

of policy path prescriptions obtained from monetary policy rules in the tradition of Taylor

45The shadow-rate VARs’ predictive densities integrated over the entire posterior distribution of
shadow-rate values, as depicted, for example, in Figure 2, instead of jumping off any specific estimate for
current and past values of the shadow rate.
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(1993). Prescriptions are derived from seven different rules and for three alternative sets

of forecasts for economic conditions; similar to our shadow-rate concept, all prescriptions

ignore the ELB.46 Some of these rules are so-called “inertial” rules that generate pre-

scriptions with strong lagged dependence on past policy rates. At the ELB, inertia with

respect to lagged interest rate values as obtained from unconstrained prescriptions (or so-

called notional rates) can capture lower-for-longer policies as discussed by, for example,

Billi (2020), and resemble the form of the feedback rule embedded in our shadow-rate

VARs.

Our shadow-rate estimates for the COVID-19 period were negative from April 2020

through February 2022 (the estimates were around -2 percent from May 2020 through

May 2021), which broadly aligns with unconstrained prescriptions of common policy rules.

For example, with data available as of December 1, 2020, the median rule prescription

calculated by the Federal Reserve Bank of Cleveland put the federal funds rate at about

−50 basis points in 2020:Q4 and −70 basis points for the first three quarters of 2021.

These simple rule predictions were jumping off the actual funds rate level in late 2020

(not the negative level of a notional rate). As a result, the simple prescriptions were a

little less negative than those derived from our simple shadow-rate VAR at the end of

2020:Q3 as shown in Panel (b) of the figure, but both predicted a similar timing of the

first rate hike above the ELB by spring 2022. Reflecting stronger economic conditions

towards the end of our sample, the median rule prescription calculated by the Federal

Reserve Bank of Cleveland by June 1, 2021, put the federal funds rate for 2021:Q2 a

bit above the ELB, at 72 basis points, while (as of June 2021) our simple shadow-rate

VAR did not predict rates to rise above the ELB until early 2022, which is more in line

with prescriptions from the lower end of the range of rules prescription reported by the

Cleveland Fed in June 2021. However, the shallow federal funds rate path predicted by

46The rule results and documentation are available at https://www.clevelandfed.org/en/

our-research/indicators-and-data/simple-monetary-policy-rules.aspx. Prescriptions from a
similar set of policy rules are also computed by staff at the Board of Governors and presented to the
FOMC ahead of each of its meetings as part of Tealbook Book B; see also Board of Governors of the
Federal Reserve System (2023).
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the simple shadow-rate VAR was much closer to survey expectations obtained from Blue

Chip Financial Forecasts and the Survey of Professional Forecasters (SPF).47

7 Structural Analysis

This section illustrates the use of our models in structural analysis, estimating the response

of the economy to a shock to financial conditions with our hybrid shadow-rate VAR. We

focus here on the hybrid shadow-rate VAR, since in the simple shadow-rate VAR, the

responses of macroeconomic variables to shocks are invariant to whether the ELB binds

or not. The model takes the form described above, adding the excess bond premium

of Gilchrist and Zakraǰsek (2012) to our baseline variable set. For simplicity, we use a

recursive ordering for identification with the EBP ordered first. As detailed in Section

3.6, we rely on the generalized impulse response function approach of Koop, Pesaran, and

Potter (1996) to estimate the responses, with full-sample estimates of the model. The size

of the shock reflects an average estimate of the standard deviation in EBP shocks during

2005-2006, the two years preceding the Great Recession.

To illustrate the influence of binding ELB constraints, Figure 6 reports estimated

GIRFs for January 2007 (blue lines) and December 2012 (red lines).48 In the former

case, the economy was still expanding, and interest rates were well above the ELB (e.g.,

the federal funds rate was 5.25 percent), whereas in the latter, the ELB was binding for

short-term rates (with readings for the federal funds, 6-month, and 1-year Treasury rates

at 16, 12, and 16 basis points, respectively). For chart readability, we report estimates of

a key subset of the model’s variables. These GIRFs do not assume the economy to either

remain at or away from the ELB over the response horizon, but endogenously account for

changes of interest rates towards or away from the ELB as the simulations move forward

47For example, the 2021:Q2 SPF did not see any significant rise in the 3-month Treasury rate before
2023.

48In keeping with the timing assumptions described in Section 3.6, the GIRF origins represent the
jump-off point t of baseline forecasts against which an alternative forecast is compared that conditions
on a specific shock occurring at t+ 1.
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Figure 6: Generalized Impulse Responses to an EBP Shock in 2007 and 2012
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Note: Estimates obtained from full-sample posterior hybrid shadow-rate VAR at two different

GIRF origins with 48-month horizons. Size of EBP shock corresponds to average SV level of

0.11 for the years 2005-2006. Posterior means and 68 percent bands. Interest rates in levels,

and cumulated log levels (times 100) for all other variables.

in time.

Our estimates of the shock’s effects in 2007 resemble the estimates of Gilchrist and

Zakraǰsek (2012) based on quarterly data. The EBP shock depresses economic activity

(in our figure, industrial production, consumption, and employment) and stock prices. In

our estimates, the shock boosts measures of the aggregate price level, whereas it lowers

the price level in Gilchrist and Zakraǰsek (2012); but in both sets of estimates, the impacts

of the shock on price levels are sufficiently imprecise as to not differ significantly from 0.
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The shock leads to a reduction of the federal funds rate, as well as declines in other yields.

When the same-sized shock hits financial conditions after the end of 2012, short-term

rates are at the ELB, while policy can still affect longer-term yields (such as the 5- and

10-year yields in our model). With short-term rates already at the ELB just prior to

impact, the shock leads to a much more muted decline in their forecasts than in the

case of the 2007 shock. For example, the ELB constraint prevents federal funds rate

predictions from falling for more than six months after the shock occurred. To be clear,

these responses (as in standard impulse responses) are declines in average predictions for

future funds rates relative to a baseline forecast (that is often rising), and not expected

declines relative to a current level of the funds rate that is ostensibly at its effective lower

bound. With the funds rate starting at the ELB in December 2012, the model expects

the shadow rate to gradually rise from negative to positive territory, eventually returning

to its historical mean, in turn implying a baseline path of the federal funds rate that

after some months lifts off the ELB and subsequently gradually increases.With the shock,

the funds rate lifts off later and follows a lower trajectory. Accordingly, reflecting these

baseline and shocked paths of the federal funds rate, Figure 6’s GIRF estimate shows the

federal funds rate eventually declining, albeit much less than it would in the absence of the

ELB constraint. As might be expected given the term structure, the differences between

the 2007 and 2012 responses of the 5-year bond yield are smaller than the differences in

responses of the federal funds rate. With interest rates moving less in the 2012 GIRFs

as compared to 2007, some measures of economic activity (e.g., industrial production)

show sharper declines in response to the 2012 shock, albeit with overlap in the point-wise

uncertainty bands from each simulation. Measures of aggregate prices faced by firms and

households show stronger increases following the 2012 shock as compared to the 2007

shock. This pattern in price level responses could be seen as consistent with the model-

based predictions in Gilchrist, et al. (2017) in which an adverse demand shock causes

inflation to rise rather than fall in a model in which firms facing financial frictions raise

their prices in response to adverse shocks to demand or financial conditions, driven by a
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desire to preserve internal liquidity and avoid external financing.

In the interest of brevity, we relegated to the supplementary online appendix another

comparison, of GIRFs obtained from a linear VAR that ignores the ELB against the

responses from our hybrid model as shown here. These estimates differ from each other

in ways that are broadly similar to those shown in Figure 6’s hybrid-model GIRF with

origins in 2007 and 2012. For example, at times when the ELB binds, our model expects a

more severe decline in economic activity than a linear VAR, which ignores the ELB. This

comparison confirms the impact on structural inference from our approach to modeling

the ELB through the shadow-rate VAR as opposed to a purely linear model.

Together, the GIRF estimates presented in this section illustrate the use of our (hybrid)

shadow-rate VAR for structural analysis. Our approach to modeling ELB constraints on

interest rates shows impacts of incorporating the ELB in the VAR through the shadow

rate as opposed to a purely linear VAR. The results presented here are also confirmed by

additional GIRFs, obtained for origins at other ELB dates, shocks of other sizes and signs,

as well as replacing shocks to EBP by those to VXO, and a smaller-sized VAR model,

as reported in the supplementary online appendix. Among others, we studied GIRFs

obtained from a small-size VAR model that only contains EBP, unemployment, inflation

and the federal funds rate. The smaller model generates responses that are qualitatively

similar to those for our medium-size model, in the sense that at the ELB the interest rate

decreases less so that unemployment increases more and inflation decreases less. Yet, the

differences emerge more slowly than in the larger model, which provides a more granular

representation of the economy that better captures the shock transmission mechanism.

These results underscore the importance of working with such larger shadow-rate models,

and use of our shadow-rate sampling methods assures their computational feasibility.
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8 Conclusion

Motivated by the prevalence of lower bound constraints on nominal interest rates, this

paper develops a tractable approach to including a shadow-rate specification in medium-

scale VARs commonly used in macroeconomic forecasting. Our models treat interest

rates as censored observations of a latent shadow-rate process in a VAR setup. As in a

classic Tobit model, the shadow rate is assumed to run below the ELB when the actual

interest rate is at the ELB, and equal to the observed interest rate when the ELB is

not binding. Our shadow-rate approaches extend the specific unobserved components

model of Johannsen and Mertens (2021) to the general VAR setting and build on the

data augmentation methods developed by Chib (1992) and Chib and Greenberg (1998) for

Tobit and Probit models. By using a computationally more efficient shadow-rate sampling

algorithm, together with the recursive methods of Carriero, Clark, and Marcellino (2019)

and Carriero, et al. (2022a) for efficient estimation of Bayesian VARs with stochastic

volatility, our approaches are easily applied to a medium-scale VAR system, and they

successfully handle data in which the ELB is binding for multiple interest rates of different

maturities.

We consider two specifications of the shadow-rate VAR. The “simple shadow-rate

VAR” assumes that only shadow rates, not actual rates, matter as explanatory variables

in linear forecasting equations. In contrast, the “hybrid shadow-rate VAR” combines

actual and shadow interest rates in its state dynamics. Since actual and shadow rates

are perfectly collinear when above the ELB, their joint inclusion in a VAR can create

challenges in identification and estimation, in particular for the purpose of generating

reliable out-of-sample forecasts based on the (yet) still limited experience with ELB data.

Hence, our hybrid shadow-rate VAR includes shadow rates as VAR regressors only in

forecasting equations for other (shadow) term structure variables, while using actual rates

(and not shadow rates) as explanatory variables in the VAR equations of macroeconomic

variables and other measures of financial conditions. As in the simple shadow-rate VAR,
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the hybrid model uses shadow rates as dependent variables to describe the evolution of

(shadow) term structure variables. Through direct and indirect effects, both actual and

shadow rates influence multi-step forecasts of all variables in the hybrid VAR system.

We use our shadow-rate models to form forecasts and responses to structural shocks

from medium-scale BVARs with stochastic volatility. In our results, forecasts for interest

rates obtained from a simple shadow-rate VAR for the US since 2009 are clearly supe-

rior, in terms of both point and density forecasts, to predictions from a standard VAR

that ignores the ELB. These interest rates include not only the federal funds rate but

also longer-term bond yields. For some macroeconomic variables, the shadow-rate VAR

generates gains in predictive performance, in particular when actual (instead of shadow)

rates serve as explanatory variables. However, the models are quite similar in accuracy

for forecasts for many macroeconomic variables, as the standard VAR can generate a

negative-rate outlook (for actual rates) that influences its economic forecasts in ways that

are similar to a shadow-rate VAR. For forecasting financial and macro variables, it is,

of course, helpful to include in the models a range of yields from the term structure of

interest rates and not just the federal funds rate. Critically, when conditioned on interest

rates of shorter- and longer-term maturities, our shadow-rate VARs considerably improve

upon forecasts for macroeconomic variables obtained from a linear VAR that simply omits

short-term interest rates to avoid ELB issues. Our forecasts are also superior to those

from a VAR that replaces the federal funds rate with an external shadow-rate estimate.

Finally, to illustrate the use of our shadow-rate VARs for structural analysis, we

estimate the response of the economy to a shock to financial conditions and find that

accounting for the ELB matters for estimated responses, as the latter differ both when at

or away from the ELB and with respect to the same responses from a linear VAR.
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Appendix

A Shadow-Rate Sampling

This appendix provides further details on the application of a shadow-rate sampler in

a VAR context that can be embedded in an otherwise standard MCMC estimation.

Throughout, we take as given values of all parameters (including SV) of the shadow-

rate VAR in (4). These parameter values can be obtained from standard MCMC steps

(and based on previously sampled “data” for {zt}Tt=1) as described in, for example, Car-

riero, Clark, and Marcellino (2019)). Here we focus on the MCMC step concerned with

sampling from the shadow-rate problem stated in (14) for given values of the VAR param-

eters {Cj}pj=1 and {Σt}Tt=1. For ease of notation, references to {Cj}pj=1 and {Σt}Tt=1 will

be suppressed from the conditioning sets described below. Moreover, the value of ELB

is taken as a known constant.

A.1 Gibbs sampling from the truncated multivariate normal

While the joint density from a multivariate normal (MVN) distribution can be factorized

into a product of univariate normal densities, the same property does not generally extend

to the truncated MVN density, as discussed by, for example, Geweke (1991). In our

context, this means that draws from the missing-value problem, S | Ȳ ∼ N (µ,Ω) in (13),

could be recursively obtained by a sequence of univariate normal draws, but not so for

the corresponding shadow-rate problem S |Y ∼ TN (µ,Ω,−∞, ELB).

Instead, consider a single element of S, denoted st, and let s1:t−1 and st+1:T denote

the vectors of all elements of S that precede and follow st, respectively.
49 Conditional

on s1:t−1 and st+1:T (as well as Y ), st has a univariate truncated normal distribution,

with moment parameters µ1:t−1,t+1:T and ω1:t−1,t+1:T identical to those obtained from the

49In the case of Ns > 1, the argument made here applies to a single scalar element of st conditional
on values for the remainder of the shadow-rate vector, as well as s1:t−1, st+1:T , and Y .

56



corresponding missing-value problem:50

st
∣∣ s1:t−1, st+1:T ,Y ∼ TN (µ1:t−1,t+1:T , ω1:t−1,t+1:T ,−∞, ELB) , (A.1)

st
∣∣ s1:t−1, st+1:T , Ȳ ∼ N (µ1:t−1,t+1:T , ω1:t−1,t+1:T ) . (A.2)

As discussed by Geweke (1991), Gelfand, Smith, and Lee (1992), and references

therein, the fact that conditional distributions of the truncated MVN are also truncated

normals means that the problem of obtaining draws from the truncated MVN can be

addressed with a Gibbs sampler, which we also pursue. For now, we abstract from esti-

mating the VAR, and consider solely the shadow-rate sampling problem for given VAR

parameters. Adopting language from Geweke (1991), a Gibbs sampler generates a draw

from (14) by performing N passes over (A.1), at each pass iterating over t = 1, 2, . . . T .51

Specifically, let S(n) denote a draw of S from the nth pass of the Gibbs sampler, with

typical element s
(n)
t . At each pass n = 1, 2, . . . , N , the Gibbs sampler iterates from

t = 1, 2 . . . , T and draws

s
(n)
t

∣∣ s(n)1:t−1, s
(n−1)
t+1:T ,Y . (A.3)

We keep S(N) = {s(N)
t }Tt=1 as the draw from (14). Appendix B describes in further detail

how this Gibbs sampler for the shadow-rate problem is embedded in our MCMC sampler

for the shadow-rate VAR.

Our implementation of the Gibbs sampling steps for the shadow-rate problem in (A.1)

exploits the particular structure of the VAR(p) setting to derive the conditional moments

µ1:t−1,t+1:T , ω1:t−1,t+1:T without ever having to compute the entire mean vector, µ, and

50For recent treatments, see, for example, Horrace (2005) and Chopin (2011). The argument also
extends to the case in which the truncation bounds vary from one element of the vector to another, which
also allows us to handle where the sequence s1:T covers observations where the ELB does not bind, so
that st = it > ELB. To handle those cases, the shadow-rate sampling problem can be stated more
generally as S |Y ∼ TN (µ,Ω,−∞, I), where I is the vector of all actual rates, and the inequality S ≤ I
applies element-wise. Note that observations of it for which the ELB does not bind are included in Ȳ so
that the distribution of the missing-value problem in (13) collapses on a point mass, st = it, for those
observations.

51When the sequence s1:T includes observations t where the ELB does not bind, the posterior in (A.2)
collapses on a point mass, st = it > ELB, and those cases can be skipped. (Formally, the support of the
truncated normal in (A.1) could be viewed as being bounded from above by it for all observations t.)
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variance-covariance matrix, Ω, of the full shadow-rate problem in (14), which can be

substantial in size because S is a vector of size T ·Ns.
52 For example, in our application to

monthly US data, and considering only the ELB episode witnessed from 2008:12 through

2015:12, we have T = 85 and Ns = 3 (as the ELB has been binding for the federal funds

rate, 6-month T-bill rate, and 1-year Treasury yield in our data set over this period).

Drawing from (A.1) requires a draw from the truncated normal distribution. With

Ns = 3 in our application, (A.1) represents a draw from the multivariate truncated normal,

which can be broken down further into a sequence of Gibbs sampling steps consisting of

draws of univariate truncated normals.53 We implement this draw by application of

uniform-inverse-transform sampling as follows. Dropping time subscripts, consider the

problem of drawing the scalar s ∼ TN(µ, ω2,−∞, ELB), which is equivalent to drawing

v ∼ TN(0, 1,−∞, v̄) with v̄ = (ELB − µ)/σ and s = µ+ σ v. The support of v is v ≤ v̄,

over which its probability density function (pdf) and cumulative distribution function

(cdf), fv(v) and Fv(v), are:

fv(v) =
ϕ(v)

Φ(v̄)
, Fv(v) =

Φ(v)

Φ(v̄)
, (A.4)

where ϕ(·) and Φ(·) are the standard normal pdf and cdf , respectively. We construct

v = F−1
v (u) = Φ−1 (u · Φ(v̄)), using a draw u ∼ U(0, 1) of a uniform random variable with

support [0, 1]. Alternatively, rejection sampling could be used, or a combination of both

approaches; see, for example, Geweke (1991), Chopin (2011), and Botev (2017).54

52By exploiting sparsities and the recursive structure of the VAR’s state space representation, our
approach echoes recent advances in the field of sampling from the truncated MVN distribution made by
Cong, Chen, and Zhou (2017), albeit specialized to the VAR(p) that we intend to investigate further.
Other advances in Gibbs sampling from the truncated MVN distribution are discussed by Botev (2017),
Park, Genton, and Ghosh (2007), Chopin (2011), Damien and Walker (2001), and Robert (1995).

53In case of Ns > 1, the missing value problem gives rise to an Ns dimensional multivariate normal
with Ns × 1 mean vector, µ1:t−1,t+1:T , and Ns ×Ns dimensional variance-covariance-matrix ω1:t−1,t+1:T ,
based on which we can derive the conditional moments of a given scalar element of st for given values of
its remaining elements, as described, among others, by Geweke (1991).

54In our application, potential gains from applying a combination approach have been limited. Direct
application of the MATLAB routine trandn.m from Botev (2017) underperformed relative to uniform-
inverse-transform sampling. A likely cause appears to be our use of large pre-generated random arrays
as opposed to generating pseudo-random values one-at-a-time.
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A.2 Shadow-rate VAR in companion form

To derive µ1:t−1,t+1:T , ω1:t−1,t+1:T , we now focus on the moments of the (unconstrained)

missing-value problem stated in (A.2), understanding that draws for st are to be generated

from the constrained shadow-rate problem in (A.1). Written in companion form, the

VAR(p) in (4) is characterized by Markov dynamics of a state vector that tracks zt and

p−1 of its lags. Consequently, it is sufficient to consider no more than p lags and leads of

zt in the derivation of µ1:t−1,t+1:T , ω1:t−1,t+1:T . We employ the following companion-form

notation for the VAR (omitting intercepts), adapted to the partitioning of zt into xt and

st:

Zt = CZt−1 +Ψtwt , wt ∼ N(0, I) , (A.5)

and let Dx and Ds be selection matrices so that xt = DxZt and st = DsZt.

To construct this companion form, consider for concreteness the case of a second-order

system (p = 2):

Xt =

 xt

xt−1

 , St =

 st

st−1

 , Zt =

Xt

St

 =



xt

xt−1

st

st−1


, (A.6)

with C =



C1
xx C2

xx C1
xs C2

xs

I 0 0 0

C1
sx C2

sx C1
ss C2

ss

0 0 I 0


, Ψt =



Ψx,t

0

Ψs,t

0


, (A.7)

where Ψx,t and Ψs,t are conformable partitions of a factorization Σ0.5
t of the variance-

covariance matrix of VAR residuals in (4), so that Σt = Σ0.5
t (Σ0.5

t )
′
and Σ0.5

t =

[
Ψ′

x,t Ψ′
s,t

]′
.
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A.3 Moments of the missing-value problem

Given the VAR(p) structure of the model, and using the companion-form notation in-

troduced above, the posterior density of the Gaussian missing-value problem in (A.2)

simplifies as follows:

f
(
st
∣∣ s1:t−1, st+1:T , Ȳ

)
= f

(
st
∣∣ st−p:t−1, st+1:t+p, xt−p:t+p

)
= f

(
st
∣∣Zt−1, Zt+p, xt

)
= f

(
st
∣∣Zt−1, Zt+p − Zt+p|t−1, v

x
t

)
, (A.8)

where Zt+p|t−1 = E(Zt+p|Zt−1) = Cp+1Zt−1 and vxt = xt − E(xt|Zt−1) = Dxvt.

Observations t with t+p ≤ T : As stated above, we assume that we have observations

for at least p initial lags of st at t = 1, so that we can condition on st−p:t−1. For t+p ≤ T ,

we define a signal vector, Z t+p:

Z t+p =

Zt+p − Zt+p|t−1

vxt

 =

∑p
j=0C

p−j Ψt+j wt+j

DxΨt wt

 .

The moments µ1:t−1,t+1:T and ω1:t−1,t+1:T follow from Gaussian signal extraction:

µ1:t−1,t+1:T = E(st|Zt−1, Zt+1, xt) = E(st|Zt−1) + J t−1Z t+p,

with J t−1 = Cov
(
st,Z t+p

∣∣Zt−1

) (
Var

(
Z t+p

∣∣Zt−1

))−1
, (A.9)

Var
(
Z t+p

∣∣Zt−1

)
=

∑p
j=0C

p−j Ψt+jΨ
′
t+j

(
Cp−j

)′
CpΨtΨ

′
tD

′
x

Dx ΨtΨ
′
t (C

p)′ Dx ΨtΨ
′
tD

′
x

 ,

Cov
(
st,Z t+p

∣∣Zt−1

)
=

Ds ΨtΨ
′
t (C

p)′

DsΨtΨ
′
t D

′
x

 ,
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and ω1:t−1,t+1:T = Var (st|Zt−1, Zt+1, xt) = DsΨtΨ
′
tD

′
s

− Cov
(
st,Z t+p

∣∣Zt−1

) (
Var

(
Z t+p

∣∣Zt−1

))−1
Cov

(
st,Z t+p

∣∣Zt−1

)
. (A.10)

To compute the Kalman-smoothing gain J t−1 and residual variance Var (st|Zt−1, Zt+1, xt)

efficiently, and robustly to numerical round-off errors (which could otherwise imply non-

positive-definite values for variance-covariance matrices), we employ a QR factorization

that builds on some of the fast-array algorithms presented by Kailath, Sayed, and Hassibi

(2000). Specifically, consider a factorization of the joint variance-covariance matrix of the

signal, Z t+p, and unknown state, st:
55

Vart−1


Z t+p

st


 = Lt−1L

′
t−1 = M t−1M

′
t−1,

where Lt−1 and M t−1 are the following square matrices of length Nz · p+Ns along each

dimension:

Lt−1 =

 Vart−1 (Z t+p)
0.5 0

J t−1

(
Vart−1 (Z t+p)

0.5)′ Vart−1 (st|Z t+p)
0.5



M t−1 =


CpΨt Cp−1Ψt+1 . . . C1Ψt+p−1 Ψt+p

DxΨt 0 . . . . . . 0

DsΨt 0 . . . . . . 0

 .

The matrix M t−1 is straightforward to construct. Crucially, Lt−1 is a lower triangular

matrix, and its transpose, L′
t−1, can directly be obtained from a QR factorization of

M ′
t−1, M

′
t−1 = Qt−1L

′
t−1 (where Qt−1 is an orthogonal matrix that can be ignored for

our purpose). The Kalman-smoothing gain, J t−1, and the square root of the residual

variance of st are contained in appropriate partitions of Lt−1. Based on (A.8), it follows

55For brevity, we let Vart−1 (·) denote Var (·|Zt−1). In addition, for any positive-(semi)definite square
matrix P , P 0.5 denotes a (not necessarily positive-(semi)definite) lower-triangular factorization, such

that P = P 0.5
(
P 0.5

)′
.
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that Vart−1 (st|Z t+p) = ω1:t−1,t+1:T , which is the second moment needed for the shadow-

rate sampling problem in (A.1) of drawing st conditional on the remainder of the shadow-

rate path.

Observations t with t + p > T : When the ELB is binding near the end of the data

sample, in particular for t with t + p > T , the signal vector must be limited to include

only leads of st and xt up to T . Specifically, letting t = T − k (with k < p), the adapted

signal vector is shortened to a length of Nz · k +Nx as follows:

ZT,k =

ZT − ZT |T−k−1

vxt

 =

∑k
j=0Hk C

k−j Ψt+j wt+j

DxΨt wt

 , (A.11)

whereHk =

[
INz ·k 0Nz ·(p−k)

]
is a selection matrix selecting the first Nz ·k elements out of

a vector of length Nz ·p. In the case of t = T (and thus k = 0), the signal vector collapses

to ZT,0 = vxt . The expressions for J t−1 and Var (st|Zt−1, Zt+1, xt) in (A.9) and (A.10) are

adjusted accordingly.

A.4 Extension to hybrid shadow-rate VAR

The shadow-rate sampling framework described above is straightforward to extend to

the case of a hybrid VAR that features lagged shadow and actual rates as right-hand

side variables. To augment the companion-form representation of the shadow-rate VAR

in (A.5), let It = max (St, ELB) denote the companion-form vector of actual rates (with

element-wise application of the max operator) to obtain the following companion form for

a hybrid shadow-rate VAR:

Zt = CZt−1 + F It−1 +Ψtwt , wt ∼ N(0, I). (A.12)

As a slight generalization of the hybrid shadow-rate VAR described in Section 3, this

representation allows actual and shadow rates to enter each VAR equation concurrently,
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which nests the hybrid shadow-rate VAR described in (6) as a special case with zero

restrictions on the coefficients on lagged it and st in certain equations. In addition, let

I = 1 · ELB denote the actual-rate counterpart of the vector of shadow-rate values, S,

as defined in (12).

For shadow-rate sampling in the hybrid shadow-rate VAR, the values of actual rates

can be treated as known, exogenous regressors. To restate the missing value problem, I is

added to the conditioning set (as VAR regressors but without the censoring constraint) so

that the missing value problem becomes to draw from S|
(
Ȳ , I

)
∼ N(µ,Ω). As before,

the requirement that S < ELB is imposed as part of drawing from S|Y . (Recall that Y

also includes I.) The moments of the missing-value problem can be restated in a similar

form as before, by adjusting the conditioning set for the inclusion of I as follows:

f
(
st
∣∣ s1:t−1, st+1:T , Ȳ , I

)
= f

(
st
∣∣Zt−1, Zt+p − Zt+p|t−1, v

x
t

)
, (A.13)

where we now have Zt+p|t−1 = E(Zt+p|Zt−1, I) = Cp+1Zt−1 +
∑p

j=0C
jF It+p−j−1 and

vxt = xt − E(xt|Zt−1, I) = Dxvt.

B MCMC Estimation of Shadow-Rate VAR

Appendix A describes a Gibbs sampler that generates draws for the shadow rate, accord-

ing to (14), taking specific values for VAR parameters, {Cj}pj=1 and {Σt}Tt=1, as given.
56

Here we describe how the shadow-rate Gibbs sampler is embedded into the MCMC es-

timation of the shadow-rate VAR system. Denoting the mth MCMC draws of the VAR

parameters {Cj}pj=1, {Σt}Tt=1, and the shadow rates {st}Tt=1, by Cm, Σm and Sm, respec-

tively, and denoting (as before) the observed data by Y , the MCMC sampler iterates over

56Given shadow-rate data, our implementation of the stochastic-volatility VAR (4) follows closely the
setup of Carriero, Clark, and Marcellino (2019), where Σt can be broken further down into a set of slope
parameters of a Cholesky factorization and a latent vector process representing stochastic volatilities.
Nevertheless, for brevity, we refer here to {Σt}Tt=1 as a set of VAR “parameters.”
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the following three blocks, for m = 1, 2, . . . ,M .

S(m)|C(m−1),Σ(m−1),Y (A.14)

A(m)|S(m),Σ(m−1),Y (A.15)

Σ(m)|S(m),C(m),Y (A.16)

Henceforth, we will refer to iterations over (A.14)– (A.16), as “the MCMC sampler.” We

use M = 2′000 draws, of which an initial 1′000 burn-in draws are discarded. Convergence

of the MCMC chain is assessed by inefficiency factors and potential scale reduction factors

of Gelman and Rubin (1992) (applied to first and last third of the MCMC chain), with

values for the latter typically falling below 1.2 and often close to 1.0.

The first block of the MCMC sampler, given by (A.14), consists of a sequence of Gibbs

sampling steps, iterating over (A.1) for t = 1, 2, . . . , T , with details described earlier in this

appendix. The second and third block of the sampler, in (A.15) and (A.16), correspond

to the blocks of a conventional sampler for heteroskedastic VAR models, given “data” for

Y and S. Our specification of the heteroskedasticity that is captured by {Σt}Tt=1 follows

Carriero, Clark, and Marcellino (2019) and Carriero, et al. (2022a); details of generating

draws from {Cj}pj=1 and {Σt}Tt=1 follow their procedures.57

The Gibbs sampler for the truncated MVN in the first block of the sampler in (A.14) is

a single-move sampler that draws one observation of st at a time (conditional on previously

sampled values for all others). Consequently, a single pass from the Gibbs sampler for

the truncated normal does not generate a direct draw from S(m)|C(m−1),Σ(m−1),Y .58

Nevertheless, repeated iterations over (A.14), (A.15), and (A.16), with each pass over the

57Specifically, we let vt = A−1Λ0.5
t εt, where A is a lower unit-triangular matrix, Λt is a diagonal matrix,

and the vector of its diagonal elements is denoted λt, with log λt = log λt−1 + ηt, ηt ∼ N(0,Φ), and
εt ∼ N(0, I). Other forms of heteroskedasticity could also be specified. For the purpose of our discussion,
we subsume the slope parameters A and variance parameters Ω in the block of parameters denoted by
{Σt}Tt=1. Our MCMC sampler also reflects the ordering of steps in SV estimation recommended by
Del Negro and Primiceri (2015).

58In contrast, in the case of the linear missing-value problem in (13), multi-move sampling is feasible.
The missing-value problem has a linear Gaussian state space representation, and a Kalman-smoothing
sampler can directly draw from the (untruncated) multivariate normal distribution of the problem, for
example, by employing the methods described in Durbin and Koopman (2002).
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shadow-rate block in (A.14) captured by a single pass of the Gibbs sampler in (A.3), will

eventually generate draws from the joint posterior density of C, Σ, and S.59

In order to achieve higher computational efficiency, we conduct multiple passes of the

Gibbs sampler at every iteration, m, of the MCMC sampler.60 In doing so, we exploit the

fact that the Kalman-smoothing gains, J t, and residual variances Var (st|Zt−1, Zt+1, xt),

described in (A.9) and (A.10) above, depend only on prior draws of the VAR parameters

C(m−1) and Σ(m−1), but not the sampled path for the shadow rate, S(m). As noted

already by Geweke (1991), the second-moment matrices required for multiple passes of

the Gibbs sampler for the truncated MVN need to be computed only once (given C(m−1)

and Σ(m−1)), which makes it computationally relatively cheap to conduct multiple Gibbs

passes. Denoting the number of Gibbs passes by N , we retain only the output sampled in

the Nth pass, treating the initial N − 1 as burn-in passes. Similar to Waggoner and Zha

(1999), the motivation behind our approach is to hand over a draw S(m) to the remaining

MCMC steps that avoids the higher serial dependence between MCMC steps resulting

from the previously described single-pass approach, while also being computationally

relatively cheap to produce compared to other elements of the MCMC setup.

Formally, for every MCMC draw m, we implement the shadow-rate sampling block

in (A.14) with N Gibbs passes as follows: For each n = 1, 2, . . . , N , (and holding m fixed)

iterate over

s
(m,n)
t

∣∣ s(m,n)
1:t−1 , s

(m,n−1)
t+1:T ,Y for t = 1, 2, . . . , T . (A.17)

For each m, we initialize the first Gibbs pass with s
(m,0)
t = s

(m−1,N)
t , ∀ t, and we retain

S(m) = {s(m,N)
t }Tt=1 as the mth draw of the sequence of shadow rates. In our application,

we employ N = 101 Gibbs passes over (A.17), and thus 100 burn-in passes for every

59Formally, the mth draw from the shadow-rate block in (A.14) is then obtained by a single iteration

over s
(m)
t

∣∣ s(m)
1:t−1, s

(m−1)
t+1:T ,C(m−1),Σ(m−1),Y for T = 1, 2, . . . , T and holding m fixed.

60Our approach of embedding the procedures for drawing from the truncated MVN into the MCMC
sampler with multiple passes at each MCMC step builds on ideas developed by Waggoner and Zha (1999)
for forecast simulations with soft restrictions.
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step, m, of the MCMC sampler. To further enhance the efficiency of the MCMC sampler

in estimation of the simple shadow-rate VAR, we attempt to draw the sequence S via

rejection sampling from a draw of the missing value problem with 10 attempts.61 We

do so at every iteration m after burnin. However, depending on data sample and model

specification, acceptance rates for entire trajectories of S to lie below ELB tend to be

at most moderate, necessitating frequent use of the Gibbs sampling techniques described

above.

61Multiple draws from the missing value problem are efficiently obtained from the disturbance smooth-
ing sampler of Durbin and Koopman (2002), which allows to generate the draws in parallel within the
same Kalman filtering/smoothing iterations.
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