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Appendix A Non-linear expectational difference equations 

We are interested in the non-linear expectational difference equation: 

�
Π𝑡𝑡−1

∗

Π𝑡𝑡
�

𝜙𝜙
= 𝔼𝔼𝑡𝑡

Ξ𝑡𝑡+1
𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1

Π𝑡𝑡
∗

Π𝑡𝑡+1
. 

If we define 𝑋𝑋𝑡𝑡 ≔ Π𝑡𝑡−1
∗

Π𝑡𝑡
 and 𝑍𝑍𝑡𝑡 ≔ Ξ𝑡𝑡+1

𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1
 then this difference equation is a particular 

example of the more general equation: 

𝑋𝑋𝑡𝑡
𝜙𝜙 = 𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1𝑋𝑋𝑡𝑡+1. 

We show in Appendix A.1 that if 𝑍𝑍𝑡𝑡 = 1 for all 𝑡𝑡, then this has a unique solution for 

𝜙𝜙 > 1, and we show in Appendix A.2 that it still has a unique solution for arbitrary 𝑍𝑍𝑡𝑡 

under a few additional conditions, and that the solution is approximately unique 

under even milder conditions. 

For the results of Appendix A.2 to apply, we need that Π𝑡𝑡 is bounded above. This is 

true in any model with monopolistic competition in which at least some small fraction 

of firms do not adjust their price each period. This does not seem an unrealistic 

assumption, at least if the model’s time periods are sufficiently short. Even under 

hyper-inflation, it is still unlikely that firms adjust prices many times per day. 

Π𝑡𝑡 is bounded above in such a model because the price level remains finite even if 

adjusting firms set an infinite price, as all demand switches to non-adjusting firms. For 

example, the model of Fernández-Villaverde et al. (2015) contains the equation: 

1 = 𝜃𝜃Π𝑡𝑡
𝜀𝜀−1 + (1 − 𝜃𝜃)Π�𝑡𝑡

1−𝜀𝜀, 

where Π�𝑡𝑡 is the relative price of adjusting firms and 𝜀𝜀 > 1. This equation comes from 

the definition of the aggregate price. As Π�𝑡𝑡 → ∞, Π𝑡𝑡 → 𝜃𝜃− 1
𝜀𝜀−1 < ∞, thus inflation is 

always bounded above, as required. 



Page 4 of 64 

 

A.1 Uniqueness of the solution of a simple non-linear expectational 
difference equation 

Let 𝜙𝜙 > 1. We seek to prove that the non-linear expectational difference equation: 

𝑋𝑋𝑡𝑡
𝜙𝜙 = 𝔼𝔼𝑡𝑡𝑋𝑋𝑡𝑡+1, 

has a unique solution that is: 

a) positive (i.e., 𝑋𝑋𝑡𝑡 > 0 for all 𝑡𝑡 ∈ ℤ), 

b) strictly stationary (so for example 𝔼𝔼𝑋𝑋𝑡𝑡 = 𝔼𝔼𝑋𝑋𝑠𝑠 for all 𝑡𝑡, 𝑠𝑠, ∈ ℤ), 

c) and has bounded unconditional mean and log mean (i.e., 𝔼𝔼𝑋𝑋𝑡𝑡 < ∞ and 

�𝔼𝔼 log 𝑋𝑋𝑡𝑡� < ∞ for all 𝑡𝑡 ∈ ℤ). 

Clearly 𝑋𝑋𝑡𝑡 = 1 is one such solution. 

Let 𝑋𝑋𝑡𝑡 be a solution to 𝑋𝑋𝑡𝑡
𝜙𝜙 = 𝔼𝔼𝑡𝑡𝑋𝑋𝑡𝑡+1 satisfying (a), (b) and (c) above. Let 𝑥𝑥𝑡𝑡 ≔ log 𝑋𝑋𝑡𝑡. 

Then from taking logs, we have: 

𝜙𝜙𝑥𝑥𝑡𝑡 = log 𝔼𝔼𝑡𝑡 exp 𝑥𝑥𝑡𝑡+1 ≥ log exp 𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 = 𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1, 

by Jensen’s inequality. Therefore, by the law of iterated expectations, for any 𝑘𝑘 ∈ ℕ: 

𝜙𝜙𝑘𝑘𝑥𝑥𝑡𝑡 ≥ 𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+𝑘𝑘 = 𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+𝑘𝑘. 

As 𝑘𝑘 → ∞, the left-hand side tends to either plus infinity (if 𝑥𝑥𝑡𝑡 > 0), zero (if 𝑥𝑥𝑡𝑡 = 0), or 

minus infinity (if 𝑥𝑥𝑡𝑡 < 0). On the other hand, as 𝑘𝑘 → ∞, the right-hand side tends to 

𝔼𝔼𝑥𝑥𝑡𝑡 > −∞, by stationarity. Thus, we must have that 𝑥𝑥𝑡𝑡 ≥ 0 for all 𝑡𝑡 ∈ ℤ, else this 

equation would be violated. Hence, 𝑋𝑋𝑡𝑡 ≥ 1 for all 𝑡𝑡 ∈ ℤ. 

Now note that by stationarity, the law of iterated expectations and Jensen’s inequality: 

𝔼𝔼𝑋𝑋𝑡𝑡 = 𝔼𝔼𝑋𝑋𝑡𝑡+1 = 𝔼𝔼𝔼𝔼𝑡𝑡𝑋𝑋𝑡𝑡+1 = 𝔼𝔼𝑋𝑋𝑡𝑡
𝜙𝜙 ≥ (𝔼𝔼𝑋𝑋𝑡𝑡)𝜙𝜙, 

so 1 ≥ (𝔼𝔼𝑋𝑋𝑡𝑡)𝜙𝜙−1, meaning 𝔼𝔼𝑋𝑋𝑡𝑡 ≤ 1. However, since 𝑋𝑋𝑡𝑡 ≥ 1 for all 𝑡𝑡 ∈ ℤ, the only way 

we can have that 𝔼𝔼𝑋𝑋𝑡𝑡 ≤ 1 is if in fact 𝑋𝑋𝑡𝑡 = 1 for all 𝑡𝑡 ∈ ℤ. 

Therefore, 𝑋𝑋𝑡𝑡 ≡ 1 is the unique solution to the original expectational difference 

equation satisfying (a), (b) and (c) above. 
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A.2 Uniqueness of the solution of a more general non-linear difference 
equation 

Let 𝜙𝜙 ≥ 1 and let (𝑍𝑍𝑡𝑡)𝑡𝑡∈ℤ be a stochastic process satisfying the following conditions: 

i) 𝑍𝑍𝑡𝑡 > 0, for all 𝑡𝑡 ∈ ℤ, 

ii) 𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1 = 1, for all 𝑡𝑡 ∈ ℤ, 

iii) (𝑍𝑍𝑡𝑡)𝑡𝑡∈ℤ is strictly stationary, 

iv) there exists 𝑍𝑍 ≥ 1, independent of the stochastic process (𝑋𝑋𝑡𝑡)𝑡𝑡∈ℤ (to be 

introduced), such that for all 𝜙𝜙 > 𝜙𝜙, and for all 𝑡𝑡 ∈ ℤ and all 𝑘𝑘 ∈ ℕ with 𝑘𝑘 > 0, 

𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+𝑘𝑘

𝜙𝜙
𝜙𝜙−1 ≤ 𝑍𝑍

𝜙𝜙
𝜙𝜙−1. 

The larger is 𝜙𝜙, the weaker is the moment boundedness assumptions (iv). For 

example, if 𝜙𝜙 = 2, then this just requires bounded second moments. 

Let 𝑋𝑋 ∈ (0,1) and let 𝜙𝜙 > 𝜙𝜙. We seek to prove that the non-linear expectational 

difference equation: 

𝑋𝑋𝑡𝑡
𝜙𝜙 = 𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1𝑋𝑋𝑡𝑡+1, 

has a unique solution that is: 

a) bounded below by 𝑋𝑋 (so 𝑋𝑋𝑡𝑡 > 𝑋𝑋 > 0 for all 𝑡𝑡 ∈ ℤ), 

b) strictly stationary (so for example 𝔼𝔼𝑋𝑋𝑡𝑡 = 𝔼𝔼𝑋𝑋𝑠𝑠 for all 𝑡𝑡, 𝑠𝑠, ∈ ℤ), 

c) and has bounded unconditional mean, 𝜙𝜙th mean and log mean (i.e., 𝔼𝔼𝑋𝑋𝑡𝑡 < ∞, 

𝔼𝔼𝑋𝑋𝑡𝑡
𝜙𝜙 < ∞ and �𝔼𝔼 log 𝑋𝑋𝑡𝑡� < ∞ for all 𝑡𝑡 ∈ ℤ). 

Clearly 𝑋𝑋𝑡𝑡 = 1 is one such solution. Note that 𝑍𝑍𝑡𝑡 may be a function of 𝑋𝑋𝑡𝑡 and its history, 

so 𝑍𝑍𝑡𝑡 and 𝑋𝑋𝑡𝑡 are not guaranteed to be independent. The previous subappendix covers 

the case with 𝑍𝑍𝑡𝑡 ≡ 1 in which slightly weaker assumptions are needed. 

First note that for all 𝑡𝑡 ∈ ℤ: 

1 = 𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1 = 𝔼𝔼𝑡𝑡�𝑍𝑍𝑡𝑡+11� = 𝔼𝔼𝑡𝑡�𝑍𝑍𝑡𝑡+1𝔼𝔼𝑡𝑡+1�𝑍𝑍𝑡𝑡+21�� = 𝔼𝔼𝑡𝑡�𝔼𝔼𝑡𝑡+1�𝑍𝑍𝑡𝑡+1𝑍𝑍𝑡𝑡+21�� 

= 𝔼𝔼𝑡𝑡�𝑍𝑍𝑡𝑡+1𝑍𝑍𝑡𝑡+21� = 𝔼𝔼𝑡𝑡�𝑍𝑍𝑡𝑡+1𝑍𝑍𝑡𝑡+2𝔼𝔼𝑡𝑡+2�𝑍𝑍𝑡𝑡+31�� = ⋯ 

= 𝔼𝔼𝑡𝑡
⎣
⎢⎡� 𝑍𝑍𝑡𝑡+𝑗𝑗

𝑘𝑘

𝑗𝑗=1 ⎦
⎥⎤ , ∀𝑘𝑘 ∈ ℕ, 
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by assumption (ii) and the law of iterated expectations. 

Now let 𝑥𝑥𝑡𝑡 ≔ log 𝑋𝑋𝑡𝑡 and 𝑥𝑥 ≔ log 𝑋𝑋. Then from taking logs, we have: 

𝜙𝜙𝑥𝑥𝑡𝑡 = log 𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1 exp 𝑥𝑥𝑡𝑡+1 ≥ log exp 𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1𝑥𝑥𝑡𝑡+1 = 𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1𝑥𝑥𝑡𝑡+1, 

by Jensen’s inequality, as 𝔼𝔼𝑡𝑡�𝑍𝑍𝑡𝑡+1 × (⋅)� defines a measure since 𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1 = 1. Therefore, 

by the law of iterated expectations, for any 𝑘𝑘 ∈ ℕ: 

𝜙𝜙𝑘𝑘𝑥𝑥𝑡𝑡 ≥ 𝔼𝔼𝑡𝑡
⎣
⎢⎡� 𝑍𝑍𝑡𝑡+𝑗𝑗

𝑘𝑘

𝑗𝑗=1 ⎦
⎥⎤ 𝑥𝑥𝑡𝑡+𝑘𝑘 ≥ 𝔼𝔼𝑡𝑡

⎣
⎢⎡� 𝑍𝑍𝑡𝑡+𝑗𝑗

𝑘𝑘

𝑗𝑗=1 ⎦
⎥⎤ 𝑥𝑥 = 𝑥𝑥 > −∞, 

by the result of the previous paragraph. As 𝑘𝑘 → ∞, the left-hand side tends to either 

plus infinity (if 𝑥𝑥𝑡𝑡 > 0), zero (if 𝑥𝑥𝑡𝑡 = 0), or minus infinity (if 𝑥𝑥𝑡𝑡 < 0). Thus, we must 

have that 𝑥𝑥𝑡𝑡 ≥ 0 for all 𝑡𝑡 ∈ ℤ, else this equation would be violated. Hence, 𝑋𝑋𝑡𝑡 ≥ 1 for 

all 𝑡𝑡 ∈ ℤ. 

Now, define 𝑧𝑧 ≔ log 𝑍𝑍, and for all 𝑡𝑡 ∈ ℤ and all 𝑘𝑘 ∈ ℕ with 𝑘𝑘 > 0 define: 

𝑧𝑧𝑡̃𝑡,𝑡𝑡+𝑘𝑘 ≔ log
⎣
⎢⎡𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+𝑘𝑘

𝜙𝜙
𝜙𝜙−1

⎦
⎥⎤

𝜙𝜙−1
𝜙𝜙

< 𝑧𝑧, 

by our assumptions (iv). Then by repeatedly applying Hölder’s inequality: 

𝑋𝑋𝑡𝑡
𝜙𝜙 = 𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1𝑋𝑋𝑡𝑡+1 ≤

⎣
⎢⎡𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1

𝜙𝜙
𝜙𝜙−1

⎦
⎥⎤

𝜙𝜙−1
𝜙𝜙

�𝔼𝔼𝑡𝑡𝑋𝑋𝑡𝑡+1
𝜙𝜙 �

1
𝜙𝜙 

≤
⎣
⎢⎡𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1

𝜙𝜙
𝜙𝜙−1

⎦
⎥⎤

𝜙𝜙−1
𝜙𝜙

⎣
⎢⎢
⎢⎢
⎡

𝔼𝔼𝑡𝑡

⎣
⎢⎢
⎢
⎡

⎣
⎢⎡𝔼𝔼𝑡𝑡+1𝑍𝑍𝑡𝑡+2

𝜙𝜙
𝜙𝜙−1

⎦
⎥⎤

𝜙𝜙−1
𝜙𝜙

�𝔼𝔼𝑡𝑡+1𝑋𝑋𝑡𝑡+2
𝜙𝜙 �

1
𝜙𝜙

⎦
⎥⎥
⎥
⎤

⎦
⎥⎥
⎥⎥
⎤

1
𝜙𝜙

 

≤
⎣
⎢⎡𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1

𝜙𝜙
𝜙𝜙−1

⎦
⎥⎤

𝜙𝜙−1
𝜙𝜙

⎣
⎢⎡𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+2

𝜙𝜙
𝜙𝜙−1

⎦
⎥⎤

𝜙𝜙−1
𝜙𝜙2

�𝔼𝔼𝑡𝑡𝑋𝑋𝑡𝑡+2
𝜙𝜙 �

1
𝜙𝜙2 

≤ ⋯ 

≤ �
⎣
⎢⎡𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+𝑗𝑗

𝜙𝜙
𝜙𝜙−1

⎦
⎥⎤

𝜙𝜙−1
𝜙𝜙𝑗𝑗𝑘𝑘

𝑗𝑗=1
�𝔼𝔼𝑡𝑡𝑋𝑋𝑡𝑡+𝑘𝑘

𝜙𝜙 �
1

𝜙𝜙𝑘𝑘, 

for all 𝑘𝑘 ∈ ℕ with 𝑘𝑘 > 0. Thus, from taking logs and limits: 

𝑥𝑥𝑡𝑡 ≤ � 𝜙𝜙−𝑗𝑗𝑧𝑧𝑡̃𝑡,𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=1
+

1
𝜙𝜙 lim

𝑘𝑘→∞
�𝜙𝜙−𝑘𝑘 log 𝔼𝔼𝑡𝑡𝑋𝑋𝑡𝑡+𝑘𝑘

𝜙𝜙 � = � 𝜙𝜙−𝑗𝑗𝑧𝑧𝑡̃𝑡,𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=1
≤

𝑧𝑧
𝜙𝜙 − 1, 
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where the equality follows from the fact that by stationarity, lim
𝑘𝑘→∞

𝔼𝔼𝑡𝑡𝑋𝑋𝑡𝑡+𝑘𝑘
𝜙𝜙 = 𝔼𝔼𝑋𝑋𝑡𝑡

𝜙𝜙 < ∞. 

Thus, 𝑋𝑋𝑡𝑡 ≤ 𝑍𝑍
1

𝜙𝜙−1 for all 𝑡𝑡 ∈ ℤ. By assumption 𝑍𝑍 is not a function of 𝜙𝜙, so as 𝜙𝜙 → ∞, this 

upper bound on 𝑋𝑋𝑡𝑡 tends to 1. Hence, for large 𝜙𝜙, 𝑋𝑋𝑡𝑡 ≈ 1, giving approximate 

uniqueness. 

We can derive even stronger results in the case in which 𝜙𝜙 = 1 (in our assumptions) 

and one additional assumption holds. First note that with 𝜙𝜙 = 1, from taking limits as 

𝜙𝜙 → 1 in assumption (iv), we must have that 𝑍𝑍𝑡𝑡 ≤ 𝑍𝑍 with probability one (for all 𝑡𝑡 ∈

ℤ). 

Let 𝑍𝑍𝑡𝑡
∗ be the value that would be taken by 𝑍𝑍𝑡𝑡 if it were the case that 𝑋𝑋𝑡𝑡 = 1 for all 𝑡𝑡 ∈

ℤ. So, it is also the case that 𝑍𝑍𝑡𝑡
∗ ≤ 𝑍𝑍 with probability one (for all 𝑡𝑡 ∈ ℤ), by our 

assumption (iv). Suppose further that there exists 𝜅𝜅 ≥ 0 such that: 

𝔼𝔼�𝑍𝑍𝑡𝑡 − 𝑍𝑍𝑡𝑡
∗� ≤ 𝜅𝜅𝔼𝔼(𝑋𝑋𝑡𝑡 − 1). 

This is reasonable, since if 𝑋𝑋𝑡𝑡 → 1 (almost surely), we expect that 𝑍𝑍𝑡𝑡 → 𝑍𝑍𝑡𝑡
∗ (almost 

surely) as well. 

Now note that: 

𝔼𝔼(𝑋𝑋𝑡𝑡 − 1) = 𝔼𝔼 ��𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1𝑋𝑋𝑡𝑡+1�
1
𝜙𝜙 − 1� ≤ 𝔼𝔼 �

1
𝜙𝜙 �𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1𝑋𝑋𝑡𝑡+1 − 1�� =

1
𝜙𝜙 [𝔼𝔼𝑍𝑍𝑡𝑡𝑋𝑋𝑡𝑡 − 1], 

(using stationarity and the law of iterated expectations in the final equality). Thus: 

𝔼𝔼(𝑋𝑋𝑡𝑡 − 1) = 𝔼𝔼 ��𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1𝑋𝑋𝑡𝑡+1�
1
𝜙𝜙 − 1� ≤ 𝔼𝔼 �

1
𝜙𝜙 �𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1𝑋𝑋𝑡𝑡+1 − 1�� =

1
𝜙𝜙 [𝔼𝔼𝑍𝑍𝑡𝑡𝑋𝑋𝑡𝑡 − 1] 

=
1
𝜙𝜙 [𝔼𝔼𝑍𝑍𝑡𝑡𝑋𝑋𝑡𝑡 − 𝔼𝔼𝑍𝑍𝑡𝑡

∗] =
1
𝜙𝜙 [𝔼𝔼(𝑍𝑍𝑡𝑡 − 𝑍𝑍𝑡𝑡

∗)𝑋𝑋𝑡𝑡 + 𝔼𝔼𝑍𝑍𝑡𝑡
∗(𝑋𝑋𝑡𝑡 − 1)] 

≤
1
𝜙𝜙 [𝔼𝔼�𝑍𝑍𝑡𝑡 − 𝑍𝑍𝑡𝑡

∗�𝑋𝑋𝑡𝑡 + 𝔼𝔼𝑍𝑍𝑡𝑡
∗(𝑋𝑋𝑡𝑡 − 1)] ≤

1
𝜙𝜙 �𝜅𝜅𝔼𝔼(𝑋𝑋𝑡𝑡 − 1)𝑍𝑍

1
𝜙𝜙−1 + 𝑍𝑍𝔼𝔼(𝑋𝑋𝑡𝑡 − 1)� 

=
1
𝜙𝜙 �𝜅𝜅𝑍𝑍

1
𝜙𝜙−1 + 𝑍𝑍� 𝔼𝔼(𝑋𝑋𝑡𝑡 − 1), 

(from, respectively, the convexity of 𝑦𝑦 ↦ 𝑦𝑦
1
𝜙𝜙, stationarity and the law of iterated 

expectations, the fact that 𝔼𝔼𝑍𝑍𝑡𝑡
∗ = 1, algebra, that 𝑦𝑦 ≤ �𝑦𝑦�, our bounds on 𝑋𝑋𝑡𝑡, 𝔼𝔼�𝑍𝑍𝑡𝑡 − 𝑍𝑍𝑡𝑡

∗� 

and 𝑍𝑍𝑡𝑡
∗, and more algebra). As 𝜙𝜙 → ∞, 𝜅𝜅𝑍𝑍

1
𝜙𝜙−1 + 𝑍𝑍 → 𝜅𝜅 + 𝑍𝑍 < ∞, so for large 𝜙𝜙 it must 

be the case that 1
𝜙𝜙 �𝜅𝜅𝑍𝑍

1
𝜙𝜙−1 + 𝑍𝑍� < 1. Hence if 𝜙𝜙 is large enough for this to hold, then 
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𝔼𝔼(𝑋𝑋𝑡𝑡 − 1) ≤ 0. However, since 𝑋𝑋𝑡𝑡 ≥ 1 for all 𝑡𝑡 ∈ ℤ, the only way we can have that 

𝔼𝔼𝑋𝑋𝑡𝑡 ≤ 1 is if in fact 𝑋𝑋𝑡𝑡 = 1 for all 𝑡𝑡 ∈ ℤ. 

Therefore, for large enough 𝜙𝜙, 𝑋𝑋𝑡𝑡 ≡ 1 is the unique solution to the original 

expectational difference equation satisfying (a), (b) and (c) above. 

Appendix B Fiscal Theory of the Price Level (FTPL) results 

B.1 Exact equilibria under active fiscal policy with geometric coupon 
debt and flexible prices 

Suppose the representative household supplies one unit of labour, inelastically. 

Production of the final good is given by: 

𝑦𝑦𝑡𝑡 = 𝑙𝑙𝑡𝑡(= 1). 

In period 0, the representative household maximises: 

𝔼𝔼0 � 𝛽𝛽𝑡𝑡 log 𝑐𝑐𝑡𝑡

∞

𝑡𝑡=0
 

subject to the budget constraint: 

𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡 + 𝐴𝐴𝑡𝑡 + 𝑄𝑄𝑡𝑡𝐵𝐵𝑡𝑡 + 𝑃𝑃𝑡𝑡𝜏𝜏𝑡𝑡 = 𝑃𝑃𝑡𝑡𝑦𝑦𝑡𝑡 + 𝐼𝐼𝑡𝑡−1𝐴𝐴𝑡𝑡−1 + 𝐵𝐵𝑡𝑡−1(1 + 𝜔𝜔𝑄𝑄𝑡𝑡), 

where 𝑐𝑐𝑡𝑡 is consumption, 𝜏𝜏𝑡𝑡 are real lump sum taxes, 𝑃𝑃𝑡𝑡 is the price of the final good, 

𝐴𝐴𝑡𝑡 is the number of one period nominal bonds purchased by the household at 𝑡𝑡, which 

each return 𝐼𝐼𝑡𝑡 in period 𝑡𝑡 + 1, 𝑄𝑄𝑡𝑡 is the price of a long (geometric coupon) bond and 

𝐵𝐵𝑡𝑡 are the number of units of this long bond purchased by the household at 𝑡𝑡. One unit 

of the period 𝑡𝑡 long bond bought at 𝑡𝑡 returns $1 at 𝑡𝑡 + 1, along with 𝜔𝜔 units of the 

period 𝑡𝑡 + 1 bond. 

The household first order conditions imply: 

1 = 𝛽𝛽𝐼𝐼𝑡𝑡𝔼𝔼𝑡𝑡
𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡

𝑃𝑃𝑡𝑡+1𝑐𝑐𝑡𝑡+1
, 

𝑄𝑄𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡
𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡

𝑃𝑃𝑡𝑡+1𝑐𝑐𝑡𝑡+1
�1 + 𝜔𝜔𝑄𝑄𝑡𝑡+1�. 

The household transversality conditions are that: 

lim
𝑡𝑡→∞

𝛽𝛽𝑡𝑡 𝐴𝐴𝑡𝑡
𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡

= 0, 
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lim
𝑡𝑡→∞

𝛽𝛽𝑡𝑡 𝑄𝑄𝑡𝑡𝐵𝐵𝑡𝑡
𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡

= 0. 

The government fixes taxes at a constant positive level: 

𝜏𝜏𝑡𝑡 = 𝜏𝜏, 𝜏𝜏 > 0. 

The government issues no one period bonds, so: 

𝐴𝐴𝑡𝑡 = 0. 

The central bank pegs nominal interest rates at: 

𝐼𝐼𝑡𝑡 = 𝛽𝛽−1. 

(We will discuss active monetary policy later.) 

The final goods market clears, so: 

𝑦𝑦𝑡𝑡 = 𝑐𝑐𝑡𝑡 = 1. 

Thus, from the household budget constraint, we have the following government 

budget constraint: 

𝑄𝑄𝑡𝑡𝐵𝐵𝑡𝑡 + 𝑃𝑃𝑡𝑡𝜏𝜏 = 𝐵𝐵𝑡𝑡−1(1 + 𝜔𝜔𝑄𝑄𝑡𝑡). 

We look for an equilibrium in which 𝑃𝑃𝑡𝑡 = 𝑃𝑃 for all 𝑡𝑡 ≥ 0. We do not impose a priori 

that 𝑃𝑃 = 𝑃𝑃−1. 

With 𝑃𝑃𝑡𝑡 = 𝑃𝑃 for 𝑡𝑡 ≥ 0, the household Euler equations simplify to (respectively): 

1 = 𝛽𝛽𝐼𝐼𝑡𝑡, 

𝑄𝑄𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡�1 + 𝜔𝜔𝑄𝑄𝑡𝑡+1�. 

The former equation is consistent with the CB’s peg of 𝐼𝐼𝑡𝑡 = 𝛽𝛽−1. 

We consider the following solution to the latter equation: 

𝑄𝑄𝑡𝑡 =
𝛽𝛽

1 − 𝛽𝛽𝛽𝛽 + �𝑄𝑄0 −
𝛽𝛽

1 − 𝛽𝛽𝛽𝛽� �𝛽𝛽𝛽𝛽�−𝑡𝑡. 

We wish to find 𝑄𝑄0, which is free to jump. There are three cases to consider: 

Case 1: 𝑄𝑄0 < 𝛽𝛽
1−𝛽𝛽𝛽𝛽. Then 𝑄𝑄𝑡𝑡 eventually goes to zero (and then negative), which 

certainly cannot be consistent with a world in which 𝐼𝐼𝑡𝑡 > 0. Thus, this case is ruled out. 
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Case 2: 𝑄𝑄0 = 𝛽𝛽
1−𝛽𝛽𝛽𝛽. Then 𝑄𝑄𝑡𝑡 is constant, and the government budget constraint 

becomes: 

𝐵𝐵𝑡𝑡 = 𝛽𝛽−1𝐵𝐵𝑡𝑡−1 − 𝛽𝛽−1�1 − 𝛽𝛽𝛽𝛽�𝑃𝑃𝑃𝑃. 

Thus: 

𝐵𝐵𝑡𝑡 = 𝑃𝑃𝑃𝑃
1 − 𝛽𝛽𝛽𝛽
1 − 𝛽𝛽 + �𝐵𝐵−1 − 𝑃𝑃𝑃𝑃

1 − 𝛽𝛽𝛽𝛽
1 − 𝛽𝛽 � 𝛽𝛽−𝑡𝑡−1 

So: 

𝛽𝛽𝑡𝑡 𝑄𝑄𝑡𝑡𝐵𝐵𝑡𝑡
𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡

=
𝛽𝛽

1 − 𝛽𝛽𝛽𝛽
1
𝑃𝑃 �𝑃𝑃𝑃𝑃

1 − 𝛽𝛽𝛽𝛽
1 − 𝛽𝛽 𝛽𝛽𝑡𝑡 + �𝐵𝐵−1 − 𝑃𝑃𝑃𝑃

1 − 𝛽𝛽𝛽𝛽
1 − 𝛽𝛽 � 𝛽𝛽−1� 

→
1

1 − 𝛽𝛽𝛽𝛽
1
𝑃𝑃 �𝐵𝐵−1 − 𝑃𝑃𝑃𝑃

1 − 𝛽𝛽𝛽𝛽
1 − 𝛽𝛽 � 

as 𝑡𝑡 → ∞. 

Thus, from the transversality constraint: 

𝑃𝑃 =
𝐵𝐵−1
𝜏𝜏

1 − 𝛽𝛽
1 − 𝛽𝛽𝛽𝛽. 

This is the standard FTPL equilibrium. Equilibrium type 1! 

Case 3: 𝑄𝑄0 > 𝛽𝛽
1−𝛽𝛽𝛽𝛽. 

Define: 

𝑞𝑞𝑡𝑡 ≔ 𝑄𝑄𝑡𝑡�𝛽𝛽𝛽𝛽�𝑡𝑡, 

𝑏𝑏𝑡𝑡 ≔ 𝐵𝐵𝑡𝑡𝜔𝜔−𝑡𝑡. 

Then the government budget constraint states: 

𝑏𝑏𝑡𝑡 = �1 +
�𝛽𝛽𝛽𝛽�𝑡𝑡

𝜔𝜔𝑞𝑞𝑡𝑡
� 𝑏𝑏𝑡𝑡−1 −

𝛽𝛽𝑡𝑡𝑃𝑃𝑃𝑃
𝑞𝑞𝑡𝑡

, 

and the transversality constraint states: 
1
𝑃𝑃 lim

𝑡𝑡→∞
𝑞𝑞𝑡𝑡𝑏𝑏𝑡𝑡 = 0. 

By our solution for 𝑞𝑞𝑡𝑡, we know that 𝑞𝑞𝑡𝑡 → 𝑄𝑄0 − 𝛽𝛽
1−𝛽𝛽𝛽𝛽 > 0. Thus, the transversality 

condition requires: 

lim
𝑡𝑡→∞

𝑏𝑏𝑡𝑡 = 0. 
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Now define: 

𝑏̂𝑏𝑡𝑡 ≔
𝑏𝑏𝑡𝑡

∏ �1 + �𝛽𝛽𝛽𝛽�𝑘𝑘

𝜔𝜔𝑞𝑞𝑘𝑘
�𝑡𝑡

𝑘𝑘=0

, 

with 𝑏̂𝑏−1 = 𝑏𝑏−1 = 𝜔𝜔𝐵𝐵−1. 

The denominator in the definition of 𝑏̂𝑏𝑡𝑡 is greater than 1, so if 𝑏𝑏𝑡𝑡 → 0 as 𝑡𝑡 → ∞, then 

certainly 𝑏̂𝑏𝑡𝑡 → 0. Likewise, if 𝑏̂𝑏𝑡𝑡 → 0 as 𝑡𝑡 → ∞, then also 𝑏𝑏𝑡𝑡 → 0, since for all 𝑡𝑡: 

� �1 +
�𝛽𝛽𝛽𝛽�𝑘𝑘

𝜔𝜔𝑞𝑞𝑘𝑘
�

𝑡𝑡

𝑘𝑘=0
≤ � �1 +

�𝛽𝛽𝛽𝛽�𝑘𝑘

𝜔𝜔𝑞𝑞𝑘𝑘
�

∞

𝑘𝑘=0
 

= � �1 +
1 − 𝛽𝛽𝛽𝛽

𝛽𝛽𝛽𝛽 + 𝜔𝜔��1 − 𝛽𝛽𝛽𝛽�𝑄𝑄0 − 𝛽𝛽��𝛽𝛽𝛽𝛽�−𝑘𝑘�
∞

𝑘𝑘=0
 

= exp � log �1 +
1 − 𝛽𝛽𝛽𝛽

𝛽𝛽𝛽𝛽 + 𝜔𝜔��1 − 𝛽𝛽𝛽𝛽�𝑄𝑄0 − 𝛽𝛽��𝛽𝛽𝛽𝛽�−𝑘𝑘�
∞

𝑘𝑘=0
 

≤ exp � log �1 +
1 − 𝛽𝛽𝛽𝛽

𝛽𝛽𝛽𝛽 + 𝜔𝜔��1 − 𝛽𝛽𝛽𝛽�𝑄𝑄0 − 𝛽𝛽��𝛽𝛽𝛽𝛽�−𝑘𝑘�
∞

−1
 

=
(1 + 𝜔𝜔𝑄𝑄0)�1 − 𝛽𝛽𝛽𝛽�
𝜔𝜔��1 − 𝛽𝛽𝛽𝛽�𝑄𝑄0 − 𝛽𝛽�

exp
⎣
⎢⎡

1
log�𝛽𝛽𝛽𝛽� �dilog �

1 + 𝛽𝛽𝛽𝛽(1 + 𝜔𝜔𝑄𝑄0)
𝛽𝛽𝛽𝛽(1 + 𝜔𝜔𝑄𝑄0) � + dilog�𝛽𝛽𝛽𝛽�

− dilog �
1 + 𝛽𝛽𝛽𝛽(1 + 𝜔𝜔𝑄𝑄0)

1 + 𝜔𝜔𝑄𝑄0
��

⎦
⎥⎤ 

< ∞, 

where dilog(𝑥𝑥) ≔ ∫ log(𝑧𝑧)
1−𝑧𝑧 𝑑𝑑𝑧𝑧𝑥𝑥

1  for all 𝑥𝑥 is the dilogarithm function. 

Now, substituting the definition of 𝑏̂𝑏𝑡𝑡 into the law of motion for 𝑏𝑏𝑡𝑡 gives: 

𝑏̂𝑏𝑡𝑡 = 𝑏̂𝑏𝑡𝑡−1 −
𝛽𝛽𝑡𝑡𝑃𝑃𝑃𝑃

𝑞𝑞𝑡𝑡 ∏ �1 + �𝛽𝛽𝛽𝛽�𝑘𝑘

𝜔𝜔𝑞𝑞𝑘𝑘
�𝑡𝑡

𝑘𝑘=0

, 

so: 

𝑏̂𝑏𝑡𝑡 = 𝑏̂𝑏−1 − 𝑃𝑃𝑃𝑃 �
𝛽𝛽𝑗𝑗

𝑞𝑞𝑗𝑗 ∏ �1 + �𝛽𝛽𝛽𝛽�𝑘𝑘

𝜔𝜔𝑞𝑞𝑘𝑘
�𝑗𝑗

𝑘𝑘=0

𝑡𝑡

𝑗𝑗=0
 

= 𝑏̂𝑏−1 − 𝑃𝑃𝑃𝑃 �
∏ 𝛽𝛽 �1 + 1 − 𝛽𝛽𝛽𝛽

𝛽𝛽𝛽𝛽 + �𝜔𝜔�1 − 𝛽𝛽𝛽𝛽�𝑄𝑄0 − 𝛽𝛽𝛽𝛽��𝛽𝛽𝛽𝛽�−𝑘𝑘�
−1

𝑗𝑗
𝑘𝑘=0

𝛽𝛽 � 𝛽𝛽
1 − 𝛽𝛽𝛽𝛽 �𝛽𝛽𝛽𝛽�𝑗𝑗 + �𝑄𝑄0 − 𝛽𝛽

1 − 𝛽𝛽𝛽𝛽��

𝑡𝑡

𝑗𝑗=0
. 

Note that for 𝑘𝑘 ≥ 0: 

1 < 1 +
1 − 𝛽𝛽𝛽𝛽

𝛽𝛽𝛽𝛽 + �𝜔𝜔�1 − 𝛽𝛽𝛽𝛽�𝑄𝑄0 − 𝛽𝛽𝛽𝛽��𝛽𝛽𝛽𝛽�−𝑘𝑘 ≤ 1 +
1

𝜔𝜔𝑄𝑄0
<

1
𝛽𝛽𝛽𝛽, 
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so: 

�𝛽𝛽2𝜔𝜔�𝑗𝑗+1 < � 𝛽𝛽 �1 +
1 − 𝛽𝛽𝛽𝛽

𝛽𝛽𝛽𝛽 + �𝜔𝜔�1 − 𝛽𝛽𝛽𝛽�𝑄𝑄0 − 𝛽𝛽𝛽𝛽��𝛽𝛽𝛽𝛽�−𝑘𝑘�
−1𝑗𝑗

𝑘𝑘=0
< 𝛽𝛽𝑗𝑗+1. 

Thus, since the denominator within the sum is converging to 𝛽𝛽�𝑄𝑄0 − 𝛽𝛽
1−𝛽𝛽𝛽𝛽� the sum is 

finite and has a finite limit as 𝑡𝑡 → ∞. 

Hence, one equilibrium is for 𝑄𝑄0 > 𝛽𝛽
1−𝛽𝛽𝛽𝛽 to be arbitrary and for 𝑃𝑃 to be given by: 

𝑃𝑃 =
𝑏̂𝑏−1

𝜏𝜏 ∑
∏ 𝛽𝛽 �1 + 1 − 𝛽𝛽𝛽𝛽

𝛽𝛽𝛽𝛽 + �𝜔𝜔�1 − 𝛽𝛽𝛽𝛽�𝑄𝑄0 − 𝛽𝛽𝛽𝛽��𝛽𝛽𝛽𝛽�−𝑘𝑘�
−1

𝑗𝑗
𝑘𝑘=0

𝛽𝛽 � 𝛽𝛽
1 − 𝛽𝛽𝛽𝛽 �𝛽𝛽𝛽𝛽�𝑗𝑗 + �𝑄𝑄0 − 𝛽𝛽

1 − 𝛽𝛽𝛽𝛽��

∞
𝑗𝑗=0

. 

Equilibrium type 2! 

Alternatively, suppose 𝑃𝑃 is given. When can we solve the previous equation to find 

𝑄𝑄0? As 𝑄𝑄0 → 𝛽𝛽
1−𝛽𝛽𝛽𝛽, the right-hand side of the previous equation tends to: 

𝑏̂𝑏−1
𝜏𝜏𝜏𝜏

1 − 𝛽𝛽
1 − 𝛽𝛽𝛽𝛽 =

𝐵𝐵−1
𝜏𝜏

1 − 𝛽𝛽
1 − 𝛽𝛽𝛽𝛽. 

As 𝑄𝑄0 → ∞, this right-hand side tends to ∞. Thus, by the intermediate value theorem, 

for any 𝑃𝑃 ∈ �𝐵𝐵−1
𝜏𝜏

1−𝛽𝛽
1−𝛽𝛽𝛽𝛽 , ∞�, there is a 𝑄𝑄0 that satisfies the transversality constraint. 

Hence, inflation is unbounded about in the initial period. 

Equilibrium type 3! 

Therefore, the FTPL implies a lower bound on the price level, not an upper bound, and 

so with passive monetary policy, there are multiple equilibria. 

Now suppose that monetary policy is active, with: 

𝐼𝐼𝑡𝑡 = 𝛽𝛽−1Π𝑡𝑡
𝜙𝜙, 

with 𝜙𝜙 > 1 and Π𝑡𝑡 ≔ 𝑃𝑃𝑡𝑡
𝑃𝑃𝑡𝑡−1

. 𝛽𝛽−1 is the real interest rate in this model, so this is a non-

linear real rate rule. Given that 𝑐𝑐𝑡𝑡 = 1, the Euler equation for one period bonds implies 

the nonlinear Fisher equation: 

1 = 𝛽𝛽𝐼𝐼𝑡𝑡𝔼𝔼𝑡𝑡
1

Π𝑡𝑡+1
, 
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so, for 𝑡𝑡 ≥ 0: 

𝔼𝔼𝑡𝑡
1

Π𝑡𝑡+1
= �

1
Π𝑡𝑡

�
𝜙𝜙

. 

Π𝑡𝑡 = 1 is the unique stationary solution to this equation, by the results of Appendix 

A.1 (with 𝑋𝑋𝑡𝑡 ≔ 1
Π𝑡𝑡

). In this candidate equilibrium, 𝐼𝐼𝑡𝑡 = 𝛽𝛽−1, so Π𝑡𝑡 and 𝐼𝐼𝑡𝑡 have the same 

time series as under the passive policy in the special case in which 𝑃𝑃 = 𝑃𝑃−1. 

Consequently, if 𝑃𝑃−1 ≥ 𝐵𝐵−1
𝜏𝜏

1−𝛽𝛽
1−𝛽𝛽𝛽𝛽 then by the above results, there exists a 𝑄𝑄0 under 

which all equilibrium conditions and transversality conditions are satisfied. Thus, 

even with active monetary and active fiscal policy, there is still a stable equilibrium for 

inflation and real variables. 

B.2 Linearised equilibria under active fiscal policy with geometric 
coupon debt and sticky prices 

We now examine the fiscal theory of the price level in a richer model with sticky prices. 

We just give the linearised equations of the model. These follow equations 5.17 to 5.21 

of Cochrane (2022), and the reader is referred there for the derivations. All shocks 

(variables of the form 𝜀𝜀⋅,𝑡𝑡) are assumed to be mean zero and independent, both across 

time and across shocks. The equations follow: 

Euler: 

𝑥𝑥𝑡𝑡 = 𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 − 𝜎𝜎𝑟𝑟𝑡𝑡. 

Phillips: 

𝜋𝜋𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜅𝜅𝑥𝑥𝑡𝑡. 

Fisher: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1. 

Robust real rate rule: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡. 

Exogenous real government surplus: 

𝑠𝑠𝑡𝑡 = 𝜀𝜀𝑠𝑠,𝑡𝑡. 
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Debt evolution (𝑣𝑣𝑡𝑡 is the value of debt to GDP, 𝑒𝑒𝑡𝑡 is the ex-post nominal return on 

government debt): 

𝛽𝛽𝑣𝑣𝑡𝑡 = 𝑣𝑣𝑡𝑡−1 + 𝑒𝑒𝑡𝑡 − 𝜋𝜋𝑡𝑡 − 𝑠𝑠𝑡𝑡. 

Equal returns: 

𝔼𝔼𝑡𝑡𝑒𝑒𝑡𝑡+1 = 𝑖𝑖𝑡𝑡. 

Bond pricing (𝜔𝜔 controls the maturity structure. 𝜔𝜔 = 0 is one period debt, 𝜔𝜔 = 1 is a 

perpetuity): 

𝑒𝑒𝑡𝑡 = 𝜔𝜔𝑞𝑞𝑡𝑡 − 𝑞𝑞𝑡𝑡−1. 

We assume that 𝜔𝜔 > 0. Then for any 𝜙𝜙 ≠ 0, the following solves these linear 

expectational difference equations: 

𝜋𝜋𝑡𝑡 = −
𝜀𝜀𝑖𝑖,𝑡𝑡
𝜙𝜙 ,   𝑥𝑥𝑡𝑡 = −

𝜀𝜀𝑖𝑖,𝑡𝑡
𝜅𝜅𝜅𝜅, 

𝑟𝑟𝑡𝑡 =
𝜀𝜀𝑖𝑖,𝑡𝑡

𝜎𝜎𝜎𝜎𝜎𝜎 ,   𝑣𝑣𝑡𝑡 = −
𝜀𝜀𝑖𝑖,𝑡𝑡

𝜎𝜎𝜎𝜎𝜎𝜎, 

𝑒𝑒𝑡𝑡 = 𝜀𝜀𝑠𝑠,𝑡𝑡 − �
𝛽𝛽

𝜎𝜎𝜎𝜎𝜎𝜎 +
1
𝜙𝜙� 𝜀𝜀𝑖𝑖,𝑡𝑡 +

𝜀𝜀𝑖𝑖,𝑡𝑡−1
𝜎𝜎𝜎𝜎𝜎𝜎 , 

𝑞𝑞𝑡𝑡 =
1
𝜔𝜔 �𝑞𝑞𝑡𝑡−1 + 𝜀𝜀s,𝑡𝑡 − �

𝛽𝛽
𝜎𝜎𝜎𝜎𝜎𝜎 +

1
𝜙𝜙� 𝜀𝜀𝑖𝑖,𝑡𝑡 +

𝜀𝜀𝑖𝑖,𝑡𝑡−1
𝜎𝜎𝜎𝜎𝜎𝜎 �. 

As in the non-linear, flexible price case, the bond price is exploding. However, the real 

value of government debt remains stationary, which is sufficient for the transversality 

constraint to be satisfied. Inflation and all real variables are also stationary. Thus, if 

monetary policy is passive (𝜙𝜙 ∈ (0,1)), then the linearised model has multiple valid 

equilibria, this one, and the standard “FTPL” one in which 𝑞𝑞𝑡𝑡 is stationary (see 

Cochrane (2022)). Conversely, if monetary policy is active (𝜙𝜙 > 1), then the model 

possesses a valid equilibrium with stationary inflation and real variables. 

B.3 Stability under real rate rules for generic models 

When is the real rate rule 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜀𝜀𝜁𝜁,𝑡𝑡 with 𝜙𝜙 > 1 consistent with stable real 

variables? 

We need to impose at least some additional structure on the rest of the model in order 

to make progress on this question for general models. In particular, we assume that 
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the other endogenous variables of the model can be partitioned into two groups, 𝑧𝑧𝑡𝑡 

and 𝑞𝑞𝑡𝑡, where 𝑧𝑧𝑡𝑡 may affect 𝑞𝑞𝑡𝑡 but not vice versa. The variables in 𝑧𝑧𝑡𝑡 must be stationary 

in equilibrium, but always have a unique stationary solution if 𝜋𝜋𝑡𝑡 is stationary. The 

variables in 𝑞𝑞𝑡𝑡 need not be stationary in equilibrium. These restrictions are satisfied by 

models of the fiscal theory of the price level, for example, in which case hours, output, 

consumption, investment, debt-to-GDP, inflation, nominal & real rates and so on will 

be in 𝑧𝑧𝑡𝑡, while bond prices and quantities will be in 𝑞𝑞𝑡𝑡. That bond prices and quantities 

need not be stationary under the fiscal theory of the price level was carefully 

established from transversality conditions in Appendix B.1, under the assumption of 

geometric coupon debt. The calculations of Appendices B.1 and B.2 also show that 

only the value of government debt matters for “𝑧𝑧𝑡𝑡” variables, not its decomposition 

into bond prices and quantities. 

Then, without loss of generality, the linearized model (without the monetary rule) 

must have a representation in the following form: 1 

0 = 𝐴𝐴𝑧𝑧𝑧𝑧𝔼𝔼𝑡𝑡𝑧𝑧𝑡𝑡+1 + 𝐵𝐵𝑧𝑧𝑧𝑧𝑧𝑧𝑡𝑡 + 𝐶𝐶𝑧𝑧𝑧𝑧𝑧𝑧𝑡𝑡−1 + 𝑑𝑑𝑧𝑧𝜋𝜋𝑡𝑡 + 𝐸𝐸𝑧𝑧𝜈𝜈𝑡𝑡, (9) 

0 = 𝐴𝐴𝑞𝑞𝑞𝑞𝔼𝔼𝑡𝑡𝑞𝑞𝑡𝑡+1 + 𝐵𝐵𝑞𝑞𝑞𝑞𝑞𝑞𝑡𝑡 + 𝐶𝐶𝑞𝑞𝑞𝑞𝑞𝑞𝑡𝑡−1 + 𝐴𝐴𝑞𝑞𝑞𝑞𝔼𝔼𝑡𝑡𝑧𝑧𝑡𝑡+1 + 𝐵𝐵𝑞𝑞𝑞𝑞𝑧𝑧𝑡𝑡 + 𝐶𝐶𝑞𝑞𝑞𝑞𝑧𝑧𝑡𝑡−1 + 𝑑𝑑𝑞𝑞𝜋𝜋𝑡𝑡 + 𝐸𝐸𝑞𝑞𝜈𝜈𝑡𝑡, (10) 

where 𝜈𝜈𝑡𝑡 is a vector of exogenous shocks with 𝔼𝔼𝑡𝑡−1𝜈𝜈𝑡𝑡 = 0, and where the coefficient 

matrices are such that there is a unique matrix 𝐹𝐹𝑧𝑧 with eigenvalues in the unit circle 

such that 𝐹𝐹𝑧𝑧 = −(𝐴𝐴𝑧𝑧𝑧𝑧𝐹𝐹𝑧𝑧 + 𝐵𝐵𝑧𝑧𝑧𝑧)−1𝐶𝐶𝑧𝑧𝑧𝑧. This condition on 𝐹𝐹𝑧𝑧 imposes that 𝑧𝑧𝑡𝑡 has a 

stationary solution if 𝜋𝜋𝑡𝑡 is stationary: in other words, it ensures there is no real 

indeterminacy in the model. Note that 𝑞𝑞𝑡𝑡 (and its lags and leads) do not enter the 

equation for 𝑧𝑧𝑡𝑡, by our assumption that 𝑞𝑞𝑡𝑡 does not affect 𝑧𝑧𝑡𝑡. 

We want to see if 𝜋𝜋𝑡𝑡 = − 1
𝜙𝜙 𝜀𝜀𝜁𝜁,𝑡𝑡 is consistent with (9) and (10). This is the only possible 

stationary solution for inflation under the real rate rule 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜀𝜀𝜁𝜁,𝑡𝑡 with 𝜙𝜙 > 1. 

From this solution for 𝜋𝜋𝑡𝑡, (9) and the definition of 𝐹𝐹𝑧𝑧: 

 
1 The lack of terms in 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 and 𝜋𝜋𝑡𝑡−1 is without loss of generality, as such responses can be included by adding 

an auxiliary variable 𝑧𝑧𝑡𝑡,𝑗𝑗 with an equation of the form 𝑧𝑧𝑡𝑡,𝑗𝑗 = 𝜋𝜋𝑡𝑡. 
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𝑧𝑧𝑡𝑡 = 𝐹𝐹𝑧𝑧𝑧𝑧𝑡𝑡−1 + (𝐴𝐴𝑧𝑧𝑧𝑧𝐹𝐹𝑧𝑧 + 𝐵𝐵𝑧𝑧𝑧𝑧)−1 �
1
𝜙𝜙 𝑑𝑑𝑧𝑧𝜀𝜀𝜁𝜁,𝑡𝑡 − 𝐸𝐸𝑧𝑧𝜈𝜈𝑡𝑡�. 

Hence, from (10): 

0 = 𝐴𝐴𝑞𝑞𝑞𝑞𝔼𝔼𝑡𝑡𝑞𝑞𝑡𝑡+1 + 𝐵𝐵𝑞𝑞𝑞𝑞𝑞𝑞𝑡𝑡 + 𝐶𝐶𝑞𝑞𝑞𝑞𝑞𝑞𝑡𝑡−1 + ��𝐴𝐴𝑞𝑞𝑞𝑞𝐹𝐹𝑧𝑧 + 𝐵𝐵𝑞𝑞𝑞𝑞�𝐹𝐹𝑧𝑧 + 𝐶𝐶𝑞𝑞𝑞𝑞�𝑧𝑧𝑡𝑡−1

+ �𝐴𝐴𝑞𝑞𝑞𝑞𝐹𝐹𝑧𝑧 + 𝐵𝐵𝑞𝑞𝑞𝑞�(𝐴𝐴𝑧𝑧𝑧𝑧𝐹𝐹𝑧𝑧 + 𝐵𝐵𝑧𝑧𝑧𝑧)−1 �
1
𝜙𝜙 𝑑𝑑𝑧𝑧𝜀𝜀𝜁𝜁,𝑡𝑡 − 𝐸𝐸𝑧𝑧𝜈𝜈𝑡𝑡� −

1
𝜙𝜙 𝑑𝑑𝑞𝑞𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝐸𝐸𝑞𝑞𝜈𝜈𝑡𝑡. 

If there is a real matrix 𝐹𝐹𝑞𝑞 solving 𝐹𝐹𝑞𝑞 = −�𝐴𝐴𝑞𝑞𝑞𝑞𝐹𝐹𝑞𝑞 + 𝐵𝐵𝑞𝑞𝑞𝑞�−1𝐶𝐶𝑞𝑞𝑞𝑞 then 𝑞𝑞𝑡𝑡 admits a solution 

of the form: 

𝑞𝑞𝑡𝑡 = 𝐹𝐹𝑞𝑞𝑞𝑞𝑡𝑡−1 + 𝐺𝐺𝑧𝑧𝑡𝑡−1 + ℎ𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝐽𝐽𝜈𝜈𝑡𝑡, 

for some matrices 𝐺𝐺 and 𝐽𝐽 and some vector ℎ. This may be explosive, but that is allowed 

by our assumptions. (In the fiscal theory of the price level contexts, this corresponds 

to explosions in bond prices and quantities of opposite signs, producing stable debt 

values.) In this case, there is no inconsistency with the solution for inflation implied 

by our real rate rule. So, the answer to the question “is a real rate rule consistent with 

stable 𝑧𝑧𝑡𝑡 variables?” is the same as the answer to the question “does 𝐴𝐴𝑞𝑞𝑞𝑞𝐹𝐹𝑞𝑞
2 + 𝐵𝐵𝑞𝑞𝑞𝑞𝐹𝐹𝑞𝑞 +

𝐶𝐶𝑞𝑞𝑞𝑞 have a real solution for 𝐹𝐹𝑞𝑞?”. 

When 𝐴𝐴𝑞𝑞𝑞𝑞 = 0, this is simple. A real solution exists if and only if 𝐵𝐵𝑞𝑞𝑞𝑞 is full rank. 

Generically, matrices are full rank, so except in knife edge cases, a real solution exists 

when 𝐴𝐴𝑞𝑞𝑞𝑞 = 0. Furthermore, by continuity, for almost all 𝐴𝐴𝑞𝑞𝑞𝑞 with sufficiently small 

norm, a real solution must exist. Under standard models of the fiscal theory of the 

price level, 𝐴𝐴𝑞𝑞𝑞𝑞 = 0, since the geometric coupon bond first order condition 𝑄𝑄𝑡𝑡 =

𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

�1 + 𝜔𝜔𝑄𝑄𝑡𝑡+1� can be rewritten as the two equations 𝐸𝐸𝑡𝑡 = 1+𝜔𝜔𝑄𝑄𝑡𝑡
𝑄𝑄𝑡𝑡−1

, and 1 =

𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

𝐸𝐸𝑡𝑡+1 (𝐸𝐸𝑡𝑡 is in 𝑧𝑧𝑡𝑡, while 𝑄𝑄𝑡𝑡 is in 𝑞𝑞𝑡𝑡, also see Appendices B.1 and B.2). Thus, 

generically, all models sufficiently close to a standard fiscal theory of the price level 

model must have a real solution for 𝐹𝐹𝑞𝑞. Therefore, for all such models, a real rate rule 

is consistent with a stationary path for 𝑧𝑧𝑡𝑡 variables. 
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Appendix C Welfare in New Keynesian models 

In Subsection 1.4, we established that real rate rules like equation (7) could exactly 

mimic any other time invariant policy, with the time varying inflation target only 

responding to structural shocks and their lags. Thus, real rate rules can mimic 

unconditionally optimal policy, optimal commitment policy from a timeless 

perspective, or optimal discretionary policy. Hence, these rules can achieve high 

welfare. 

We begin this section by looking at unconditionally optimal time-invariant policy 

using real rate rules, in a simple NK model. We then go on to analyse the performance 

of these rules if further restrictions are placed upon them, such as only permitting the 

central bank to respond to current or sufficiently recent shocks. We show that optimal 

policy in estimated models of the US economy comes close to stabilizing inflation, with 

optimal inflation dynamics describable by an ARMA process with few MA terms. 

C.1 Welfare in the basic three equation model 

Any welfare analysis requires us to specify the rest of the model, as welfare is generally 

a function of output’s variability, not just that of inflation. Thus, as a first example 

suppose that inflation and output are linked by the standard Phillips curve: 

𝜋𝜋𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜅𝜅𝑥𝑥𝑡𝑡 + 𝜅𝜅𝜔𝜔𝑡𝑡, 

where 𝑥𝑥𝑡𝑡 is the output gap, and 𝜔𝜔𝑡𝑡 is a mark-up shock, which is assumed IID with 

mean zero. Additionally, suppose that the policy maker wants to minimise the 

unconditional expectation of a quadratic loss function in inflation and the output gap. 

I.e., the period 𝑡𝑡 policy maker minimises: 

�1 − 𝛽𝛽�𝔼𝔼 � 𝛽𝛽𝑘𝑘�𝜋𝜋𝑡𝑡+𝑘𝑘
2 + 𝜆𝜆𝑥𝑥𝑡𝑡+𝑘𝑘

2 �
∞

𝑘𝑘=0
, 

for some 𝜆𝜆 > 0 and 𝛽𝛽 ∈ (0,1). 
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We suppose that the policy maker is constrained to choose a time-invariant (i.e., 

stationary) policy, thus the objective simplifies to:2 

𝔼𝔼�𝜋𝜋𝑡𝑡
2 + 𝜆𝜆𝑥𝑥𝑡𝑡

2�. 

As the policy maker only cares about inflation and output gaps, with the former being 

effectively under their control, and the latter only determined by inflation and mark-

up shocks, the optimal policy must have the form: 

𝜋𝜋𝑡𝑡 = 𝜅𝜅 � 𝜃𝜃𝑘𝑘𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=0
, 

for some 𝜃𝜃0, 𝜃𝜃1, … to be determined. We have already shown that such a policy may be 

determinately implemented via a rule of the form of (7). 

Substituting this policy into the Phillips curve then gives: 

� 𝜃𝜃𝑘𝑘𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=0
= 𝛽𝛽 � 𝜃𝜃𝑘𝑘+1𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=0
+ 𝑥𝑥𝑡𝑡 + 𝜔𝜔𝑡𝑡, 

so: 

𝑥𝑥𝑡𝑡 = ��𝜃𝜃𝑘𝑘 − 𝛽𝛽𝜃𝜃𝑘𝑘+1 − 𝟙𝟙[𝑘𝑘 = 0]�𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=0
. 

Hence, the policy maker’s objective is to choose 𝜃𝜃0, 𝜃𝜃1, … to minimise: 

𝔼𝔼�𝜋𝜋𝑡𝑡
2 + 𝜆𝜆𝑥𝑥𝑡𝑡

2� = 𝔼𝔼�𝜔𝜔𝑡𝑡
2� ��𝜅𝜅2𝜃𝜃𝑘𝑘

2 + 𝜆𝜆�𝜃𝜃𝑘𝑘 − 𝛽𝛽𝜃𝜃𝑘𝑘+1 − 𝟙𝟙[𝑘𝑘 = 0]�2�
∞

𝑘𝑘=0
. 

The first order conditions then give: 

𝜃𝜃0 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1� = 0, 

𝜃𝜃1 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃1 − 𝛽𝛽𝜃𝜃2� − 𝛽𝛽

𝜆𝜆
𝜅𝜅2 �𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1� = 0, 

∀𝑘𝑘 > 1, 𝜃𝜃𝑘𝑘 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃𝑘𝑘 − 𝛽𝛽𝜃𝜃𝑘𝑘+1� − 𝛽𝛽

𝜆𝜆
𝜅𝜅2 �𝜃𝜃𝑘𝑘−1 − 𝛽𝛽𝜃𝜃𝑘𝑘� = 0. 

The solution of these conditions is given in Appendix E.13. Unsurprisingly, this agrees 

with the unconditionally optimal solution given in the prior literature (e.g. 

Damjanovic, Damjanovic & Nolan (2008)), which satisfies: 

𝜋𝜋𝑡𝑡 +
𝜆𝜆
𝜅𝜅 �𝑥𝑥𝑡𝑡 − 𝛽𝛽𝑥𝑥𝑡𝑡−1� = 0, 

 
2 See e.g. Damjanovic, Damjanovic & Nolan (2008). 
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i.e.: 

𝜅𝜅 � 𝜃𝜃𝑘𝑘𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=0
+

𝜆𝜆
𝜅𝜅 ���𝜃𝜃𝑘𝑘 − 𝛽𝛽𝜃𝜃𝑘𝑘+1 − 𝟙𝟙[𝑘𝑘 = 0]�𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=0

− 𝛽𝛽 ��𝜃𝜃𝑘𝑘−1 − 𝛽𝛽𝜃𝜃𝑘𝑘 − 𝟙𝟙[𝑘𝑘 − 1 = 0]�𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=1
� = 0. 

To see the equivalence, note that from matching coefficients, this equation holds if and 

only if the above first order conditions hold. We will present a convenient 

representation of the solution to these equations below. 

Additionally, note that as 𝜆𝜆
𝜅𝜅2 → 0, 𝜃𝜃𝑘𝑘 → 0 for all 𝑘𝑘 ∈ ℕ. In other words, if the central 

bank does not care about the output gap, then they optimally choose to have constant 

inflation, i.e., to follow the rule from equation (2). The central bank also chooses 

constant inflation if the Phillips curve is vertical (i.e., 𝜅𝜅 = ±∞). In this case, neither 

inflation nor mark-up shocks have any impact on the output gap.  

C.2 Optimal policy under limited central bank memory 

The first order conditions derived above also enable us to easily solve for optimal 

unconditional policy under limited memory. For example, if the central bank does not 

“remember” 𝜔𝜔𝑡𝑡−1, 𝜔𝜔𝑡𝑡−2, …, so uses a rule that is only a function of 𝜔𝜔𝑡𝑡 at 𝑡𝑡, then the 

optimal 𝜃𝜃0 will satisfy the above first order conditions with 𝜃𝜃1 = 𝜃𝜃2 = ⋯ = 0. This 

means: 

𝜃𝜃0 +
𝜆𝜆
𝜅𝜅2 (𝜃𝜃0 − 1) = 0, 

so 𝜃𝜃0 = 𝜆𝜆
𝜆𝜆+𝜅𝜅2. It turns out that this exactly coincides with the solution under discretion 

(see Appendix E.14). 

If the central bank can “remember” 𝜔𝜔𝑡𝑡−1, so 𝜋𝜋𝑡𝑡 is an MA(1), then the optimal solution 

will have: 

𝜃𝜃0 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1� = 0, 

𝜃𝜃1 +
𝜆𝜆
𝜅𝜅2 𝜃𝜃1 − 𝛽𝛽

𝜆𝜆
𝜅𝜅2 �𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1� = 0. 
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The solution has 𝜃𝜃0 ≥ 0 and 𝜃𝜃1 ≤ 0. Thus, the shock increases 𝜋𝜋𝑡𝑡 while reducing 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, thus dampening the required movement in 𝑥𝑥𝑡𝑡, from the Phillips curve. We will 

see that this is already enough to come close to the fully optimal policy. 

Going one step further, if the central bank can also “remember” 𝜋𝜋𝑡𝑡−1, then they can 

choose interest rates to ensure 𝜋𝜋𝑡𝑡 follows the ARMA(1,1) process: 

𝜋𝜋𝑡𝑡 = 𝜌𝜌𝜋𝜋𝑡𝑡−1 + 𝜅𝜅𝜃𝜃0𝜔𝜔𝑡𝑡 + 𝜅𝜅𝜃𝜃1𝜔𝜔𝑡𝑡−1, 

for some 𝜌𝜌, 𝜃𝜃0, 𝜃𝜃1 to be determined.3 Since US inflation appears to be well 

approximated by an ARMA(1,1) (Stock & Watson 2009), this may be a reasonable 

model of Fed behaviour. This ARMA(1,1) process has the MA(∞) representation: 

𝜋𝜋𝑡𝑡 = 𝜅𝜅𝜃𝜃0 � 𝜌𝜌𝑘𝑘𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=0
+ 𝜅𝜅𝜃𝜃1 � 𝜌𝜌𝑘𝑘𝜔𝜔𝑡𝑡−1−𝑘𝑘

∞

𝑘𝑘=0
= 𝜅𝜅𝜃𝜃0𝜔𝜔𝑡𝑡 + 𝜅𝜅�𝜌𝜌𝜃𝜃0 + 𝜃𝜃1� � 𝜌𝜌𝑘𝑘−1𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=1
. (11) 

Substituting this policy into the Phillips curve gives: 

𝜃𝜃0𝜔𝜔𝑡𝑡 + �𝜌𝜌𝜃𝜃0 + 𝜃𝜃1� � 𝜌𝜌𝑘𝑘−1𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=1
= 𝛽𝛽�𝜌𝜌𝜃𝜃0 + 𝜃𝜃1�𝜔𝜔𝑡𝑡 + 𝛽𝛽�𝜌𝜌𝜃𝜃0 + 𝜃𝜃1� � 𝜌𝜌𝑘𝑘𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=1
+ 𝑥𝑥𝑡𝑡 + 𝜔𝜔𝑡𝑡, 

meaning: 

𝑥𝑥𝑡𝑡 = ��1 − 𝛽𝛽𝛽𝛽�𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1�𝜔𝜔𝑡𝑡 + �1 − 𝛽𝛽𝛽𝛽��𝜌𝜌𝜃𝜃0 + 𝜃𝜃1� � 𝜌𝜌𝑘𝑘−1𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=1
. 

Hence, the policy maker’s objective is to choose 𝜌𝜌, 𝜃𝜃0, 𝜃𝜃1 to minimise: 

𝔼𝔼�𝜋𝜋𝑡𝑡
2 + 𝜆𝜆𝑥𝑥𝑡𝑡

2� = 𝔼𝔼�𝜔𝜔𝑡𝑡
2� �𝜅𝜅2𝜃𝜃0

2 + 𝜆𝜆��1 − 𝛽𝛽𝛽𝛽�𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1�2

+ �𝜅𝜅2�𝜌𝜌𝜃𝜃0 + 𝜃𝜃1�2 + 𝜆𝜆�1 − 𝛽𝛽𝛽𝛽�2�𝜌𝜌𝜃𝜃0 + 𝜃𝜃1�2�
1

1 − 𝜌𝜌2�. 

Tedious algebra gives that the first order conditions have solution:4 

𝜌𝜌 =
𝜅𝜅2 + �1 + 𝛽𝛽2�𝜆𝜆 − ��𝜅𝜅2 + �1 − 𝛽𝛽�2𝜆𝜆��𝜅𝜅2 + �1 + 𝛽𝛽�2𝜆𝜆�

2𝛽𝛽𝛽𝛽 , 𝜃𝜃0 =
𝜌𝜌
𝛽𝛽 , 𝜃𝜃1 = −𝜌𝜌. 

 
3 The targeted inflation can respond to lagged targeted inflation without changing the determinacy properties of 

realised inflation (always equal to targeted inflation in equilibrium). Targeted inflation cannot respond to other 

endogenous variables without potentially changing these determinacy properties. 

4 There is an additional solution to the first order condition with 𝜌𝜌 =
𝜅𝜅2+�1+𝛽𝛽2�𝜆𝜆+��𝜅𝜅2+�1−𝛽𝛽�2𝜆𝜆��𝜅𝜅2+�1+𝛽𝛽�2𝜆𝜆�

2𝛽𝛽𝛽𝛽 , but this is 

outside of the unit circle as: 
𝜅𝜅2+�1+𝛽𝛽2�𝜆𝜆+��𝜅𝜅2+�1−𝛽𝛽�2𝜆𝜆��𝜅𝜅2+�1+𝛽𝛽�2𝜆𝜆�

2𝛽𝛽𝛽𝛽 >
𝜅𝜅2+�1+𝛽𝛽2�𝜆𝜆+��𝜅𝜅2+�1−𝛽𝛽�2𝜆𝜆��𝜅𝜅2+�1−𝛽𝛽�2𝜆𝜆�

2𝛽𝛽𝛽𝛽 =
𝜅𝜅2+�1−𝛽𝛽+𝛽𝛽2�𝜆𝜆

𝛽𝛽𝛽𝛽 > 1−𝛽𝛽+𝛽𝛽2

𝛽𝛽 = 1
𝛽𝛽 + 𝛽𝛽 − 1 > 1. However, the given solution is inside the unit circle as 
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As 𝜆𝜆 → 0, or 𝜅𝜅 → ∞, 𝜌𝜌 → 0. As 𝜆𝜆 → ∞, or 𝜅𝜅 → 0, 𝜌𝜌 → 𝛽𝛽. Since there is no other solution 

for 𝜅𝜅 to the equation 𝜌𝜌 = 𝛽𝛽 than 𝜅𝜅 = 0, we must have 𝜌𝜌 ≤ 𝛽𝛽, so 𝜌𝜌𝜃𝜃0 + 𝜃𝜃1 ≤ 0, meaning 

that the response of inflation to a positive mark-up shock is again negative after the 

first period. Since we have one extra degree of freedom, this must attain even higher 

welfare than the MA(1) solution. In fact, it attains the unconditionally optimal 

solution. Examination of the unconditionally optimal solution from Appendix E.13 

reveals that it has the same form as equation (11), thus by a revealed preference 

argument, the two solutions must coincide. (For example, the solution for 𝜌𝜌 agrees 

with the geometric decay rate of the MA coefficients at lags beyond the first of the fully 

optimal solution we found in Appendix E.13.) 

Hence, in a world in which the only inefficient shocks are IID cost-push shocks, the 

central bank can attain the unconditionally optimal welfare by ensuring inflation 

follows an appropriate ARMA(1,1) process. This process will have an MA coefficient 

equal to −𝛽𝛽 ≈ −0.99, and as long as the central bank cares about output stabilisation, 

it will have a high degree of persistence. This is very close to the IMA(1,1) processes 

estimated by Dotsey, Fujita & Stark (2018) for the post-1984 period. 

To see the welfare attained by the other policies we have discussed, Figure 1 plots the 

policy frontiers attained by varying 𝜆𝜆 for each of the polices. In all cases, we follow 

Eggertsson & Woodford (2003) in setting 𝛽𝛽 = 0.99 and 𝜅𝜅 = 0.02. The figure makes 

clear that the MA(1) policy (green) is a substantial improvement on the MA(0) 

(discretionary) policy (red). It also shows just how close Woodford’s timeless 

perspective (1999) (blue, hidden behind purple, derived in Appendix E.15) comes to 

the unconditionally optimal policy. 

 

 
𝜅𝜅2+�1+𝛽𝛽2�𝜆𝜆−��𝜅𝜅2+�1−𝛽𝛽�2𝜆𝜆��𝜅𝜅2+�1+𝛽𝛽�2𝜆𝜆�

2𝛽𝛽𝛽𝛽 >
𝜅𝜅2+�1+𝛽𝛽2�𝜆𝜆−��𝜅𝜅2+�1+𝛽𝛽�2𝜆𝜆��𝜅𝜅2+�1+𝛽𝛽�2𝜆𝜆�

2𝛽𝛽𝛽𝛽 = −1, 
𝜅𝜅2+�1+𝛽𝛽2�𝜆𝜆−��𝜅𝜅2+�1−𝛽𝛽�2𝜆𝜆��𝜅𝜅2+�1+𝛽𝛽�2𝜆𝜆�

2𝛽𝛽𝛽𝛽 <
𝜅𝜅2+�1+𝛽𝛽2�𝜆𝜆−��𝜅𝜅2+�1−𝛽𝛽�2𝜆𝜆��𝜅𝜅2+�1−𝛽𝛽�2𝜆𝜆�

2𝛽𝛽𝛽𝛽 = 1. 
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Figure 1: Policy frontiers (values attained by varying 𝝀𝝀). 𝜷𝜷 = 𝟎𝟎. 𝟗𝟗𝟗𝟗, 𝜿𝜿 = 𝟎𝟎. 𝟎𝟎𝟎𝟎. 

Purple: Unconditionally optimal policy, equivalent to ARMA(𝟏𝟏, 𝟏𝟏) policy. 

Blue (hidden behind purple): Timeless optimal solution. 

Red: Policy just responding to current shocks, equivalent to discretion. 

Green: Policy that responds to current and once lagged shocks. 

 

 

  

Figure 2: Logarithms of ratios of variance under a given policy to variance under unconditionally optimal 

policy. 𝜷𝜷 = 𝟎𝟎. 𝟗𝟗𝟗𝟗, 𝜿𝜿 = 𝟎𝟎. 𝟎𝟎𝟎𝟎. 

Blue: Timeless optimal solution. 

Red: Policy just responding to current shocks, equivalent to discretion. 

Green: Policy that responds to current and once lagged shocks. 
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Figure 2 shows how these differences across policies are driven by 𝜆𝜆, by plotting the 

logarithm of the ratio of variance under a given policy to the variance under 

unconditionally optimal policy. We allow 𝜆𝜆 to vary from 0.002 (the value obtained by 

a second order approximation to the consumer’s utility with 𝜅𝜅 = 0.02, if the elasticity 

of substitution across goods equals 10) to 1
16 (corresponding to an equal weight on 

annual inflation and the output gap). Both the MA(0) and the MA(1) policy generate 

too much inflation variance and too little variance in output, relative to the 

unconditionally optimal solution. However, if the central bank can feasibly respond to 

𝜔𝜔𝑡𝑡 and 𝜔𝜔𝑡𝑡−1 they can probably also respond to 𝜋𝜋𝑡𝑡−1, which is enough to deliver the 

unconditional optimum. 

C.3 Welfare in larger NK models 

Even in larger models, optimal inflation dynamics appear to be well approximated by 

an ARMA process with relatively few MA terms. Figure 3 shows the dynamics of 

observed and optimal inflation in the Justiniano, Primiceri & Tambalotti (2013) model. 

(This is a medium-scale New Keynesian DSGE model broadly similar to the model of 

Smets & Wouters (2007).) While actual inflation is highly persistent, with the same 

shocks hitting the economy, optimal inflation is far less persistent, with the sample 

autocorrelation essentially insignificant at 95% after four lags. 

Note that for any 𝜌𝜌 ∈ (−1,1), the solution for optimal inflation has a multiple shock, 

ARMA(1, ∞) representation of the form: 

𝜋𝜋𝑡𝑡 − 𝜋𝜋 = 𝜌𝜌(𝜋𝜋𝑡𝑡−1 − 𝜋𝜋) + � � 𝜃𝜃𝑛𝑛,𝑘𝑘
�𝜌𝜌�𝜀𝜀𝑛𝑛,𝑡𝑡−𝑘𝑘

𝑁𝑁

𝑛𝑛=1

∞

𝑘𝑘=0
, 

where 𝜀𝜀1,𝑡𝑡, … , 𝜀𝜀𝑁𝑁,𝑡𝑡 are the model’s structural shocks. We can approximate this process 

by truncating the MA terms at some point, e.g., by considering the multiple shock 

ARMA(1, 𝐾𝐾) process: 

𝜋𝜋𝑡𝑡
(𝐾𝐾) − 𝜋𝜋 = 𝜌𝜌�𝜋𝜋𝑡𝑡−1

(𝐾𝐾) − 𝜋𝜋� + � � 𝜃𝜃𝑛𝑛,𝑘𝑘
�𝜌𝜌�𝜀𝜀𝑛𝑛,𝑡𝑡−𝑘𝑘

𝑁𝑁

𝑛𝑛=1

𝐾𝐾

𝑘𝑘=0
. 
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Date 

 
Lag 

Figure 3: Behaviour of realised inflation (blue) and optimal inflation (red) in the Justiniano, Primiceri & 

Tambalotti (2013) model. 

Left panel shows the timeseries. Right panel shows their sample autocorrelation. 

 
Number of MA lags 

Figure 4: Proportion of the variance of optimal inflation in the Justiniano, Primiceri & Tambalotti (2013) 

model explained by truncating the number of MA lags. Blue: 𝝆𝝆 = 𝟎𝟎. Red: 𝝆𝝆 = 𝟎𝟎. 𝟔𝟔𝟔𝟔. 

 

In Figure 4 we plot the proportion of the variance of optimal inflation that is explained 

by this truncated process for 𝐾𝐾 = 0, … ,16, and 𝜌𝜌 ∈ {0,0.61}.5 A multiple shock 

ARMA(1,1) process already explains over 90% of the variance of optimal inflation, 

while a multiple shock ARMA(1,2) explains over 95%. Thus, optimal inflation in 

 
5 𝜌𝜌 = 0.61 is the value of 𝜌𝜌 that minimises the variance of ∑ ∑ 𝜃𝜃𝑛𝑛,𝑘𝑘

�𝜌𝜌�𝜀𝜀𝑛𝑛,𝑡𝑡−𝑘𝑘
𝑁𝑁
𝑛𝑛=1

∞
𝑘𝑘=0 . I.e., it is the value of 𝜌𝜌 that would 

be estimated by OLS using an infinite sample of observations from optimal inflation. 
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plausible models can be well approximated by relatively simple inflation dynamics. 

More broadly, it seems that thinking about optimal monetary policy in terms of 

inflation dynamics is a productive approach. 

Appendix D Other solutions to the ZLB 

D.1 Price level real rate rules 

One way to improve the performance of real rate rules near the ZLB is to replace the 

response to inflation with a response to the price level. Holden (2021) shows that 

responding to the price level is a robust way to ensure the existence of a unique 

solution with the ZLB, at least given that inflation does not converge to the 

deflationary steady state. We discuss how to rule out convergence to the deflationary 

steady state in Subsection 4.3 of the paper. 

Price level rules rule out self-fulfilling temporary jumps to the ZLB as under a price 

level rule, the deflation during the bound period must be made up for by high inflation 

after exiting the bound. Thus, expected inflation is high in the last period at the bound, 

which via the Fisher equation, implies nominal interest rates should be high that 

period as well, unless real rates are still very low. This unwinds non-fundamental ZLB 

spells, as in a non-fundamental jump to the bound, real rates are unlikely to move 

enough to drive the economy to the ZLB on their own. 

Incorporating the ideas from the Subsection 4.2, a variable target price level real rate 

rule takes the form: 

𝑖𝑖𝑡𝑡 = max�0, 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝑝𝑝𝑡̌𝑡+1
∗ − 𝑝𝑝𝑡̌𝑡

∗ + 𝜃𝜃�𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡̌𝑡
∗��, 

with: 

𝑝𝑝𝑡̌𝑡
∗ = 𝑝𝑝𝑡̌𝑡−1

∗ + max�−𝑟𝑟𝑡𝑡−1, �1 − 𝜚𝜚��𝑝𝑝𝑡𝑡
∗ − 𝑝𝑝𝑡̌𝑡−1

∗ � + 𝜚𝜚�𝑝𝑝𝑡𝑡
∗ − 𝑝𝑝𝑡𝑡−1

∗ ��, 

where 𝑝𝑝𝑡𝑡 is the logarithm of the price level (so 𝜋𝜋𝑡𝑡 = 𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1), 𝑝𝑝𝑡𝑡
∗ is the price level 

target, 𝜃𝜃 > 0 controls the response to price deviations and 𝜚𝜚 ∈ [0,1) controls the speed 
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with which 𝑝𝑝𝑡̌𝑡
∗ returns to 𝑝𝑝𝑡𝑡

∗ following a constrained spell. This has a solution in which 

𝑝𝑝𝑡𝑡 = 𝑝𝑝𝑡̌𝑡
∗ for all 𝑡𝑡, since if this holds, then from the monetary rule: 

𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 = max�−𝑟𝑟𝑡𝑡, 𝔼𝔼𝑡𝑡𝑝𝑝𝑡̌𝑡+1
∗ − 𝑝𝑝𝑡̌𝑡

∗� = 𝔼𝔼𝑡𝑡𝑝𝑝𝑡̌𝑡+1
∗ − 𝑝𝑝𝑡̌𝑡

∗ = 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 

as 𝔼𝔼𝑡𝑡𝑝𝑝𝑡̌𝑡+1
∗ − 𝑝𝑝𝑡̌𝑡

∗ ≥ −𝑟𝑟𝑡𝑡 by the definition of 𝑝𝑝𝑡̌𝑡+1
∗ , so the Fisher equation holds as required. 

Note that 𝜃𝜃 > 0 is sufficient for determinacy in the absence of the ZLB, since then the 

monetary rule and Fisher equation imply that: 

(1 + 𝜃𝜃)�𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡̌𝑡
∗� = 𝔼𝔼𝑡𝑡�𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡̌𝑡+1

∗ �. 

Thus, price level rules have the same advantage of smoothed rules in not requiring 

𝜙𝜙 > 1. Convincing agents that 𝜃𝜃 > 0 is likely easier than convincing them that 𝜙𝜙 > 1, 

as argued in Subsection 1.5. Furthermore, just like standard (inflation) real rate rules, 

price level real rate rules are robust, since away from the ZLB, price level 

determination is completely independent of the real interest rate or the rest of the 

model. Their chief advantage over standard real rate rules is in avoiding the 

multiplicity of transition paths highlighted by Holden (2021). In fact, they would 

manage to do this even had we set 𝑝𝑝𝑡̌𝑡
∗ ≔ 𝑝𝑝𝑡𝑡

∗. 

Additionally, since on the equilibrium path, the Fisher equation under a price level 

real rate rule implies 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 = 𝔼𝔼𝑡𝑡𝑝𝑝𝑡̌𝑡+1
∗ − 𝑝𝑝𝑡𝑡, these rules also guarantee that open market 

operations can affect 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 even when expectations are fixed at their values on the 

equilibrium path. This ensures complete robustness to the concern raised in 

Subsection 2.4, giving another argument for favouring price level real rate rules. 

D.2 Perpetuity real rate rules 

An even more robust solution to the problems caused by the ZLB is for the central 

bank to intervene in a market which does not have an equivalent to the ZLB. 

Perpetuities (also called “consols”) are one such asset. For suppose that nominal 

interest rates were expected to be at 𝑖𝑖 for all time. Then the price of a perpetuity would 
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be 1𝑖𝑖 .
6 Thus, any finite, positive, perpetuity price is consistent with at least one path for 

future nominal interest rates. In other words, there is no upper or lower bound on the 

price of a perpetuity. 

Note that the central bank does not strictly need the treasury to issue perpetuities in 

order to implement a perpetuity real rate rule. Since central banks in developed 

nations are generally believed to be extremely long-lived institutions, the central bank 

can issue perpetuities itself. As central banks can always print money to pay the 

coupon, central banks may be one of the only institutions that could be trusted to pay 

coupons for ever. Central banks may also decide to trust the perpetuities issued by 

some selected private banks, even if these will always carry some default risk. If the 

central bank views default as very unlikely in the short to medium term, then such 

default risk may not substantially distort pricing. 

In the below, we will call standard perpetuities “nominal perpetuities”. To implement 

a real rate rule on perpetuities, we will also need there to be a corresponding “real 

perpetuity” traded in the economy. In particular, we suppose that one unit of the 

period 𝑡𝑡 nominal perpetuity bought at 𝑡𝑡 returns $1 at 𝑡𝑡 + 1, along with one unit of the 

period 𝑡𝑡 + 1 nominal perpetuity. On the other hand, one unit of the period 𝑡𝑡 real 

perpetuity bought at 𝑡𝑡 returns $ 𝑃𝑃𝑡𝑡+1

Π∗𝑡𝑡+1 at 𝑡𝑡 + 1, along with one of the period 𝑡𝑡 + 1 real 

perpetuity, where 𝑃𝑃𝑡𝑡+1 is the price level in period 𝑡𝑡 + 1 and Π∗ ≥ 1 is the target for the 

gross inflation rate. The nominal perpetuity trades at a price of 𝑄𝑄𝐼𝐼,𝑡𝑡 at 𝑡𝑡, whereas the 

real perpetuity trades at a price of 𝑄𝑄𝑅𝑅,𝑡𝑡 at 𝑡𝑡. 

If we write Ξ𝑡𝑡+1 for the real SDF between periods 𝑡𝑡 and 𝑡𝑡 + 1, and Π𝑡𝑡+1 = 𝑃𝑃𝑡𝑡+1
𝑃𝑃𝑡𝑡

 for gross 

inflation between these periods, then the price of these two perpetuities must satisfy: 

𝑄𝑄𝐼𝐼,𝑡𝑡 = 𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

�𝑄𝑄𝐼𝐼,𝑡𝑡+1 + 1�, 𝑄𝑄𝑅𝑅,𝑡𝑡 = 𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

�𝑄𝑄𝑅𝑅,𝑡𝑡+1 +
𝑃𝑃𝑡𝑡+1

Π∗𝑡𝑡+1�. 

 
6 This is correct under continuous time with a continuous flow of coupons, and approximately correct under 

discrete time, as we will see below. 
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The real perpetuity price could be non-stationary due to the potential unit root in the 

logarithm of the price level, so it is helpful to define a detrended version. In particular, 

let: 

𝑄̂𝑄𝑅𝑅,𝑡𝑡 ≔ 𝑄𝑄𝑅𝑅,𝑡𝑡
Π∗𝑡𝑡

𝑃𝑃𝑡𝑡
= 𝔼𝔼𝑡𝑡

Ξ𝑡𝑡+1
Π∗ �𝑄̂𝑄𝑅𝑅,𝑡𝑡+1 + 1�. 

Rewritten in this way, the analogy between the pricing of nominal and real 

perpetuities is clear. If Π𝑡𝑡 = Π∗ for all 𝑡𝑡, then 𝑄𝑄𝐼𝐼,𝑡𝑡 = 𝑄̂𝑄𝑅𝑅,𝑡𝑡 for all 𝑡𝑡 as well. If inflation 

and the SDF are stationary, then 𝑄̂𝑄𝑅𝑅,𝑡𝑡 and 𝑄𝑄𝐼𝐼,𝑡𝑡 will admit a stationary solution. 

We also assume that one period nominal bonds are traded in the economy, with gross 

return 𝐼𝐼𝑡𝑡. As in Subsection 2.1, the pricing for these bonds must satisfy: 

𝐼𝐼𝑡𝑡𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

= 1. 

We can now redo the argument of this subsection’s initial paragraph, slightly more 

formally. So, suppose that the gross nominal interest rate 𝐼𝐼𝑡𝑡 is pegged at the constant 

level 𝐼𝐼 (which may be inconsistent with the inflation target of Π∗). Then, the pricing 

equation for nominal perpetuities has a solution in which 𝑄𝑄𝐼𝐼,𝑡𝑡 = 𝑄𝑄𝐼𝐼 for all 𝑡𝑡, with 𝑄𝑄𝐼𝐼 =

𝐼𝐼−1[𝑄𝑄𝐼𝐼 + 1], since 𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

= 𝐼𝐼−1, for all 𝑡𝑡. Thus, 𝑄𝑄𝐼𝐼 = 1
𝐼𝐼−1. As 𝐼𝐼 → 1 (the ZLB), 𝑄𝑄𝐼𝐼 → ∞, 

while as 𝐼𝐼 → ∞, 𝑄𝑄𝐼𝐼 → 0. Thus, in line with our initial argument, any finite, positive, 

nominal perpetuity price is consistent with at least one possible path for nominal rates, 

no matter the dynamics of the real SDF. This ensures that the central bank can set the 

nominal perpetuity price to an arbitrary level, without any constraints. We do not need 

the real perpetuity price to be unbounded in this manner, as the central bank will not 

intervene in real perpetuity markets. 

The reader might worry that a bound on nominal perpetuity prices could enter 

another way. Suppose that nominal perpetuity prices were known at least one period 

in advance (e.g., because there is no uncertainty), and that money is available to trade. 

Then it would be the case that 𝑄𝑄𝐼𝐼,𝑡𝑡+1 + 1 ≥ 𝑄𝑄𝐼𝐼,𝑡𝑡, else nominal perpetuities would have 
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return strictly dominated by that of cash. This inequality is an immediate consequence 

of 𝐼𝐼𝑡𝑡 ≥ 1 though, when 𝑄𝑄𝐼𝐼,𝑡𝑡+1 is known at 𝑡𝑡. 𝐼𝐼𝑡𝑡 ≥ 1 implies 𝑄𝑄𝐼𝐼,𝑡𝑡
𝐼𝐼𝑡𝑡

≤ 𝑄𝑄𝐼𝐼,𝑡𝑡, so: 

𝑄𝑄𝐼𝐼,𝑡𝑡𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

=
𝑄𝑄𝐼𝐼,𝑡𝑡
𝐼𝐼𝑡𝑡

≤ 𝑄𝑄𝐼𝐼,𝑡𝑡 = 𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

�𝑄𝑄𝐼𝐼,𝑡𝑡+1 + 1�, 

which implies 𝑄𝑄𝐼𝐼,𝑡𝑡+1 + 1 ≥ 𝑄𝑄𝐼𝐼,𝑡𝑡 if 𝑄𝑄𝐼𝐼,𝑡𝑡+1 is known at 𝑡𝑡. Thus, the bound on one period 

nominal rates is all that really matters, and we have already showed that this bound 

does not imply a bound on 𝑄𝑄𝐼𝐼,𝑡𝑡. Intuitively, 𝑄𝑄𝐼𝐼,𝑡𝑡+1 + 1 ≥ 𝑄𝑄𝐼𝐼,𝑡𝑡 is not a constraint on 𝑄𝑄𝐼𝐼,𝑡𝑡 

as 𝑄𝑄𝐼𝐼,𝑡𝑡+1 is endogenous. 

We can now introduce our perpetuity real rate rule. We suppose that the central bank 

intervenes in nominal perpetuity markets to ensure: 

𝑄𝑄𝐼𝐼,𝑡𝑡 = 𝑄̂𝑄𝑅𝑅,𝑡𝑡 �
Π𝑡𝑡
Π∗�

−𝜓𝜓
, 

for some exponent 𝜓𝜓 ∈ ℝ. While 𝜓𝜓 > 0 may seem natural (so that high inflation 

results in low bond prices and thus high interest rates), we do not impose this. 

We analyse the resulting dynamics via log-linearizing around the steady-state with 

inflation at Π∗.7 In particular, suppose that: 

𝑄𝑄𝐼𝐼,𝑡𝑡 = 𝑄𝑄 exp 𝑞𝑞𝐼𝐼,𝑡𝑡 , 𝑄̂𝑄𝑅𝑅,𝑡𝑡 = 𝑄𝑄 exp 𝑞𝑞𝑅𝑅,𝑡𝑡, 

Ξ𝑡𝑡 = Ξ exp 𝜉𝜉𝑡𝑡 , Π𝑡𝑡 = Π∗ exp 𝜋𝜋𝑡𝑡, 

where 𝑄𝑄 ≔ 1
𝐼𝐼∗−1, with 𝐼𝐼∗ ≔ Π∗

Ξ . We assume Ξ < 1, so 𝐼𝐼∗ > 1. Then to a first order 

approximation around 𝑞𝑞𝐼𝐼,𝑡𝑡 = 𝑞𝑞𝑅𝑅,𝑡𝑡 = 𝜉𝜉𝑡𝑡 = 𝜋𝜋𝑡𝑡 = 0: 

𝑞𝑞𝐼𝐼,𝑡𝑡 = 𝔼𝔼𝑡𝑡 �𝜉𝜉𝑡𝑡+1 − 𝜋𝜋𝑡𝑡+1 +
Ξ

Π∗ 𝑞𝑞𝐼𝐼,𝑡𝑡+1� , 𝑞𝑞𝑅𝑅,𝑡𝑡 = 𝔼𝔼𝑡𝑡 �𝜉𝜉𝑡𝑡+1 +
Ξ

Π∗ 𝑞𝑞𝑅𝑅,𝑡𝑡+1�, 

𝑞𝑞𝐼𝐼,𝑡𝑡 = 𝑞𝑞𝑅𝑅,𝑡𝑡 − 𝜓𝜓𝜋𝜋𝑡𝑡. 

Thus: 

𝜓𝜓𝜋𝜋𝑡𝑡 = 𝑞𝑞𝑅𝑅,𝑡𝑡 − 𝑞𝑞𝐼𝐼,𝑡𝑡 = 𝔼𝔼𝑡𝑡 �𝜋𝜋𝑡𝑡+1 +
Ξ

Π∗ �𝑞𝑞𝑅𝑅,𝑡𝑡+1 − 𝑞𝑞𝐼𝐼,𝑡𝑡+1�� = 𝔼𝔼𝑡𝑡 �𝜋𝜋𝑡𝑡+1 +
Ξ

Π∗ 𝜓𝜓𝜋𝜋𝑡𝑡+1�. 

Hence, if we define 𝜙𝜙 ≔ 𝜓𝜓�1 + Ξ
Π∗ 𝜓𝜓�

−1
, we then have that: 

𝜙𝜙𝜋𝜋𝑡𝑡 = 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, 

 
7 While it would ideally be better to examine these determinacy questions in a fully non-linear model, this is not 

tractable. We take comfort from the fact that even Cochrane (2011) primarily relies on linearized models. 
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just as when one period bonds are used. With 𝜙𝜙 > 1, this has the unique stationary 

solution 𝜋𝜋𝑡𝑡 = 0 (so Π𝑡𝑡 = Π∗), as usual. The crucial difference is that with the 

perpetuity real rate rule, this is achieved without violating the ZLB. 

As a final observation, note that our definition of 𝜙𝜙 implies that 𝜓𝜓 = −𝜙𝜙� Ξ
Π∗ 𝜙𝜙 − 1�

−1
, 

so, for sufficiently large 𝜙𝜙 (𝜙𝜙 > 𝐼𝐼∗ = Π∗

Ξ ) 𝜓𝜓 < − Π∗

Ξ < 0. Thus, under a perpetuity real 

rate rule with sufficiently large 𝜙𝜙, the central bank will raise nominal perpetuity prices 

in response to high inflation. This sign becomes more intuitive once money flows are 

considered. While if the central bank buys perpetuities, they are raising the money 

supply in the period of purchase, in every subsequent period they are reducing the 

money supply, as the private sector must pay coupons back to the central bank. Given 

the forward-looking nature of inflation determination, it is this long-run reduction 

which is crucial. 

Appendix E Proofs and supplemental results 

E.1 Phillips curve based forecasting with ARMA(1,1) policy shocks 

As before, we have the monetary rule: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡,  

which combined with the Fisher equation gives: 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡. 

Suppose 𝜁𝜁𝑡𝑡 follows the ARMA(1,1) process: 

𝜁𝜁𝑡𝑡 = 𝜌𝜌𝜁𝜁 𝜁𝜁𝑡𝑡−1 + 𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝜃𝜃𝜁𝜁 𝜀𝜀𝜁𝜁,𝑡𝑡−1, 𝜀𝜀𝜁𝜁,𝑡𝑡 ∼ 𝑁𝑁�0, 𝜎𝜎𝜁𝜁
2� 

with 𝜌𝜌𝜁𝜁 , 𝜃𝜃𝜁𝜁 ∈ (−1,1). Then from matching coefficients, with 𝜙𝜙 > 1 we have the unique 

solution: 

𝜋𝜋𝑡𝑡 = −
1

𝜙𝜙 − 𝜌𝜌𝜁𝜁
�𝜁𝜁𝑡𝑡 +

𝜃𝜃𝜁𝜁

𝜙𝜙 𝜀𝜀𝜁𝜁,𝑡𝑡�. 

Thus: 

𝜋𝜋𝑡𝑡 − 𝜌𝜌𝜁𝜁 𝜋𝜋𝑡𝑡−1 = −
1

𝜙𝜙 − 𝜌𝜌𝜁𝜁
�1 +

𝜃𝜃𝜁𝜁

𝜙𝜙 � �𝜀𝜀𝜁𝜁,𝑡𝑡 +
𝜙𝜙 − 𝜌𝜌𝜁𝜁

𝜙𝜙 + 𝜃𝜃𝜁𝜁
𝜃𝜃𝜁𝜁 𝜀𝜀𝜁𝜁,𝑡𝑡−1�, 



Page 31 of 64 

 

so 𝜋𝜋𝑡𝑡 also follows an ARMA(1,1) process. Suppose for now that −𝜌𝜌𝜁𝜁 ≤ 𝜃𝜃𝜁𝜁 , which is 

likely to be satisfied in reality as we expect 𝜌𝜌𝜁𝜁  to be large and positive, while 𝜃𝜃𝜁𝜁  should 

be close to zero. (For example, Dotsey, Fujita & Stark (2018) find that an IMA(1,1) 

model fits inflation well, in which case −𝜌𝜌𝜁𝜁 = −1 < 𝜃𝜃𝜁𝜁  as required.) Then 0 < 𝜙𝜙−𝜌𝜌𝜁𝜁
𝜙𝜙+𝜃𝜃𝜁𝜁

<

1, so �𝜙𝜙−𝜌𝜌𝜁𝜁
𝜙𝜙+𝜃𝜃𝜁𝜁

𝜃𝜃𝜁𝜁 � < 1 meaning the process for inflation is invertible. With inflation 

following an invertible linear process, the full-information optimal forecast of 𝜋𝜋𝑡𝑡+1 is 

a linear combination of 𝜋𝜋𝑡𝑡, 𝜋𝜋𝑡𝑡−1, …. In particular, as before 𝑥𝑥𝑡𝑡 is not useful. 

In the unlikely case in which −𝜌𝜌𝜁𝜁 > 𝜃𝜃𝜁𝜁 , of if the forecaster’s information set ℐ𝑡𝑡 is 

smaller than {𝜋𝜋𝑡𝑡, 𝑥𝑥𝑡𝑡, 𝜋𝜋𝑡𝑡−1, 𝑥𝑥𝑡𝑡−1, … },8 then 𝑥𝑥𝑡𝑡 may contain some useful information. 

Combining the solution for inflation with the Phillips curve: 

𝜋𝜋𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜅𝜅𝑥𝑥𝑡𝑡 + 𝜅𝜅𝜔𝜔𝑡𝑡,  

gives: 

𝑥𝑥𝑡𝑡 = −
1
𝜅𝜅 �

1 − 𝛽𝛽𝜌𝜌𝜁𝜁

𝜙𝜙 − 𝜌𝜌𝜁𝜁
�𝜁𝜁𝑡𝑡 +

𝜃𝜃𝜁𝜁

𝜙𝜙 𝜀𝜀𝜁𝜁,𝑡𝑡� − 𝛽𝛽
𝜃𝜃𝜁𝜁

𝜙𝜙 𝜀𝜀𝜁𝜁,𝑡𝑡� − 𝜔𝜔𝑡𝑡 

=
1
𝜅𝜅 ��1 − 𝛽𝛽𝜌𝜌𝜁𝜁 �𝜋𝜋𝑡𝑡 + 𝛽𝛽

𝜃𝜃𝜁𝜁

𝜙𝜙 𝜀𝜀𝜁𝜁,𝑡𝑡� − 𝜔𝜔𝑡𝑡. 

In this case, it is possible that 𝔼𝔼�𝜋𝜋𝑡𝑡+1�ℐ𝑡𝑡� ≠ 𝔼𝔼�𝜋𝜋𝑡𝑡+1�ℐ𝑡𝑡−1, 𝜋𝜋𝑡𝑡� as 𝑥𝑥𝑡𝑡 provides an 

independent signal about 𝜀𝜀𝜁𝜁,𝑡𝑡. 

There are two important special cases. If 𝜔𝜔𝑡𝑡 = 0, and the forecaster knows this, then: 

𝜀𝜀𝜁𝜁,𝑡𝑡 =
𝜙𝜙

𝛽𝛽𝜃𝜃𝜁𝜁
�𝜅𝜅𝑥𝑥𝑡𝑡 − �1 − 𝛽𝛽𝜌𝜌𝜁𝜁 �𝜋𝜋𝑡𝑡�, 

so: 

𝜁𝜁𝑡𝑡 = − �𝜙𝜙 −
1
𝛽𝛽� 𝜋𝜋𝑡𝑡 −

𝜅𝜅
𝛽𝛽 𝑥𝑥𝑡𝑡, 

which enables the forecaster to form the full-information optimal forecast: 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = −
1

𝜙𝜙 − 𝜌𝜌𝜁𝜁
�𝜌𝜌𝜁𝜁 𝜁𝜁𝑡𝑡 + 𝜃𝜃𝜁𝜁 𝜀𝜀𝜁𝜁,𝑡𝑡� =

1
𝛽𝛽 (𝜋𝜋𝑡𝑡 − 𝜅𝜅𝑥𝑥𝑡𝑡). 

(This formula also follows immediately from the Phillips curve.) Note that the output 

gap has what Dotsey, Fujita & Stark (2018) call the “wrong” sign, meaning Phillips 

 
8 We nonetheless assume that 𝜋𝜋𝑡𝑡 and 𝑥𝑥𝑡𝑡 are in ℐ𝑡𝑡. 
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curve based forecasting regressions may have surprising results. However, in the 

general case in which 𝜔𝜔𝑡𝑡 has positive variance, then output’s signal about 𝜀𝜀𝜁𝜁,𝑡𝑡 will be 

polluted by the noise from 𝜔𝜔𝑡𝑡, making it much less informative. Indeed, with 𝜙𝜙 large, 

as we expect, then 𝜃𝜃𝜁𝜁
𝜙𝜙 𝜀𝜀𝜁𝜁,𝑡𝑡 will have low variance, making it more likely that it is 

drowned out by the noise from 𝜔𝜔𝑡𝑡.  

The second important special case is when 𝜀𝜀𝜁𝜁,𝑡𝑡 = 0, and again the forecaster knows 

this. In this case, much as in the main text: 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜌𝜌𝜁𝜁 𝜋𝜋𝑡𝑡 −
1

𝜙𝜙 − 𝜌𝜌𝜁𝜁
�1 +

𝜃𝜃𝜁𝜁

𝜙𝜙 � �𝔼𝔼𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡+1 +
𝜙𝜙 − 𝜌𝜌𝜁𝜁

𝜙𝜙 + 𝜃𝜃𝜁𝜁
𝜃𝜃𝜁𝜁 𝜀𝜀𝜁𝜁,𝑡𝑡� = 𝜌𝜌𝜁𝜁 𝜋𝜋𝑡𝑡, 

so 𝑥𝑥𝑡𝑡 is unhelpful. 

The general case will inherit aspects of these two special cases, as well as the case in 

which 𝜋𝜋𝑡𝑡’s stochastic process was invertible. Inflation and its lags will certainly help 

forecast inflation, but the output gap may also provide a little extra information, 

possibly with the “wrong” sign. 

E.2 Robustness to non-unit responses to real interest rates 

Suppose that the central bank is unable to respond with a precise unit coefficient to 

real interest rates, so instead follows the monetary rule: 

𝑖𝑖𝑡𝑡 = (1 + 𝛾𝛾)𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡, 

where 𝛾𝛾 ∈ ℝ is some small value giving the departure from unit responses. 

For simplicity, suppose the rest of the model takes the same form as in Subsection 1.2, 

with: 

𝑥𝑥𝑡𝑡 = 𝛿𝛿𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 − 𝜍𝜍(𝑟𝑟𝑡𝑡 − 𝑛𝑛𝑡𝑡), 

𝜋𝜋𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜅𝜅𝑥𝑥𝑡𝑡 + 𝜅𝜅𝜔𝜔𝑡𝑡, 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1. 

We suppose 𝜙𝜙 > 1, but do not make any assumptions on the signs of 𝛿𝛿, 𝛽𝛽, 𝜅𝜅, 𝜍𝜍, 𝛾𝛾, 

beyond assuming that 𝜍𝜍 ≠ 0 (so monetary policy has some effect on the output gap) 

and 𝜅𝜅 ≠ 0 (so monetary policy has some effect on inflation, via the output gap). 
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Combining the monetary rule with the Fisher equation gives: 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝛾𝛾𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡, 

so: 

𝑟𝑟𝑡𝑡 =
1
𝛾𝛾 �𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 − 𝜙𝜙𝜋𝜋𝑡𝑡 − 𝜁𝜁𝑡𝑡�, 

meaning: 

𝑥𝑥𝑡𝑡 = 𝛿𝛿𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 −
𝜍𝜍
𝛾𝛾 �𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 − 𝜙𝜙𝜋𝜋𝑡𝑡� + 𝜍𝜍𝑛𝑛𝑡𝑡 +

𝜍𝜍
𝛾𝛾 𝜁𝜁𝑡𝑡. 

Then, since: 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 =
1
𝛽𝛽 𝜋𝜋𝑡𝑡 −

𝜅𝜅
𝛽𝛽 𝑥𝑥𝑡𝑡 −

𝜅𝜅
𝛽𝛽 𝜔𝜔𝑡𝑡, 

we have that: 

𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 = �
1
𝛿𝛿 −

𝜍𝜍𝜍𝜍
𝛾𝛾𝛾𝛾𝛾𝛾� 𝑥𝑥𝑡𝑡 −

𝜍𝜍
𝛿𝛿𝛿𝛿 �𝜙𝜙 −

1
𝛽𝛽� 𝜋𝜋𝑡𝑡 −

𝜍𝜍
𝛿𝛿𝛿𝛿 �𝛾𝛾𝑛𝑛𝑡𝑡 + 𝜁𝜁𝑡𝑡 +

𝜅𝜅
𝛽𝛽 𝜔𝜔𝑡𝑡�. 

Woodford (2003) (Addendum to Chapter 4, Proposition C.1) proves that this model 

is determinate if and only if both eigenvalues of the matrix: 

𝑀𝑀 ≔

⎣
⎢
⎢
⎢
⎡

1
𝛿𝛿 −

𝜍𝜍𝜍𝜍
𝛾𝛾𝛾𝛾𝛾𝛾 −

𝜍𝜍
𝛿𝛿𝛿𝛿 �𝜙𝜙 −

1
𝛽𝛽�

−
𝜅𝜅
𝛽𝛽

1
𝛽𝛽 ⎦

⎥
⎥
⎥
⎤

 

are outside of the unit circle, which in turn is proven to hold if and only if EITHER: 

Case I: 1 < det 𝑀𝑀, 0 < 1 + det 𝑀𝑀 − tr 𝑀𝑀, and 0 < 1 + det 𝑀𝑀 + tr 𝑀𝑀, OR Case II: 0 > 1 +

det 𝑀𝑀 − tr 𝑀𝑀, and 0 > 1 + det 𝑀𝑀 + tr 𝑀𝑀. Note: 

det 𝑀𝑀 =
1

𝛽𝛽𝛽𝛽 −
𝜍𝜍𝜍𝜍

𝛾𝛾𝛾𝛾𝛾𝛾 𝜙𝜙, 

tr 𝑀𝑀 =
1
𝛿𝛿 −

𝜍𝜍𝜍𝜍
𝛾𝛾𝛾𝛾𝛾𝛾 +

1
𝛽𝛽. 

Thus, Case I requires: 

1 < det 𝑀𝑀 =
1

𝛽𝛽𝛽𝛽 −
𝜍𝜍𝜍𝜍

𝛾𝛾𝛾𝛾𝛾𝛾 𝜙𝜙, 

0 < 1 + det 𝑀𝑀 − tr 𝑀𝑀 =
�1 − 𝛽𝛽�(1 − 𝛿𝛿)

𝛽𝛽𝛽𝛽 −
𝜍𝜍𝜍𝜍

𝛾𝛾𝛾𝛾𝛾𝛾 �𝜙𝜙 − 1�, 

and 0 < 1 + det 𝑀𝑀 + tr 𝑀𝑀 =
�1 + 𝛽𝛽�(1 + 𝛿𝛿)

𝛽𝛽𝛽𝛽 −
𝜍𝜍𝜍𝜍

𝛾𝛾𝛾𝛾𝛾𝛾 �1 + 𝜙𝜙�. 



Page 34 of 64 

 

And Case II requires: 

0 > 1 + det 𝑀𝑀 − tr 𝑀𝑀 =
�1 − 𝛽𝛽�(1 − 𝛿𝛿)

𝛽𝛽𝛽𝛽 −
𝜍𝜍𝜍𝜍

𝛾𝛾𝛾𝛾𝛾𝛾 �𝜙𝜙 − 1�, 

and 0 > 1 + det 𝑀𝑀 + tr 𝑀𝑀 =
�1 + 𝛽𝛽�(1 + 𝛿𝛿)

𝛽𝛽𝛽𝛽 −
𝜍𝜍𝜍𝜍

𝛾𝛾𝛾𝛾𝛾𝛾 �1 + 𝜙𝜙�. 

To see when these conditions are satisfied, first suppose that 𝜍𝜍𝜍𝜍
𝛾𝛾𝛾𝛾𝛾𝛾 < 0, so 𝜍𝜍𝜍𝜍

𝛾𝛾𝛾𝛾𝛾𝛾 = − |𝜍𝜍𝜍𝜍|
|𝛾𝛾|�𝛽𝛽𝛽𝛽�. 

Then if 𝛾𝛾 is sufficiently small in magnitude, it is immediately clear that all three 

conditions of Case I are satisfied, since 𝜙𝜙 > 0, 𝜙𝜙 − 1 > 0 and 1 + 𝜙𝜙 > 0. In particular, in 

this case we need: 

|𝛾𝛾| < |𝜍𝜍𝜍𝜍| min

⎩�
��
��
⎨
��
��
�⎧

𝜙𝜙
max�0, −�sign�𝛽𝛽𝛽𝛽� − �𝛽𝛽𝛽𝛽��� ,

𝜙𝜙 − 1
max�0, −�sign�𝛽𝛽𝛽𝛽���1 − 𝛽𝛽�(1 − 𝛿𝛿)� ,

1 + 𝜙𝜙
max�0, −�sign�𝛽𝛽𝛽𝛽���1 + 𝛽𝛽�(1 + 𝛿𝛿)� ⎭�

��
��
⎬
��
��
�⎫

. 

Alternatively, suppose that 𝜍𝜍𝜍𝜍
𝛾𝛾𝛾𝛾𝛾𝛾 > 0, so 𝜍𝜍𝜍𝜍

𝛾𝛾𝛾𝛾𝛾𝛾 = |𝜍𝜍𝜍𝜍|
|𝛾𝛾|�𝛽𝛽𝛽𝛽�. Then, similarly, if 𝛾𝛾 is sufficiently 

small in magnitude, both conditions of Case II are satisfied, since 𝜙𝜙 − 1 > 0 and 1 +

𝜙𝜙 > 0. In particular, in this case we need: 

|𝛾𝛾| < |𝜍𝜍𝜍𝜍| min

⎩�
��
⎨
���
⎧ 𝜙𝜙 − 1

max�0, �sign�𝛽𝛽𝛽𝛽���1 − 𝛽𝛽�(1 − 𝛿𝛿)� ,

1 + 𝜙𝜙
max�0, �sign�𝛽𝛽𝛽𝛽���1 + 𝛽𝛽�(1 + 𝛿𝛿)� ⎭�

��
⎬
���
⎫

. 

Thus, it is always sufficient for determinacy that: 

|𝛾𝛾| < |𝜍𝜍𝜍𝜍| min

⎩�
��
��
⎨
��
��
�⎧

𝜙𝜙
max�0, −�sign�𝛽𝛽𝛽𝛽� − �𝛽𝛽𝛽𝛽��� ,

𝜙𝜙 − 1
��1 − 𝛽𝛽�(1 − 𝛿𝛿)� ,

1 + 𝜙𝜙
��1 + 𝛽𝛽�(1 + 𝛿𝛿)� ⎭�

��
��
⎬
��
��
�⎫

. 

Since the right-hand side is strictly positive, there is a positive measure of 𝛾𝛾 for which 

we have determinacy. 
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E.3 Real-time learning of Phillips curve coefficients 

We start by assuming that the central bank knows the Phillips curve coefficients. A 

close examination of this case will lead to a natural learning scheme for when the 

central bank does not know these coefficients. 

As in the main text, suppose the central bank is using the rule: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜙𝜙𝑥𝑥�𝑥𝑥𝑡𝑡 − 𝜅𝜅−1�𝜋𝜋𝑡𝑡 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 − 𝛽𝛽𝜚̃𝜚𝜋𝜋𝜋𝜋𝑡𝑡−1�� + 𝜁𝜁𝑡𝑡, 

and that the model also contains the Phillips curve: 

𝜋𝜋𝑡𝑡 = 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝛽𝛽𝜚̃𝜚𝜋𝜋𝜋𝜋𝑡𝑡−1 + 𝜅𝜅𝑥𝑥𝑡𝑡 + 𝜅𝜅𝜔𝜔𝑡𝑡, 

and the Fisher equation: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1. 

We suppose that 𝜁𝜁𝑡𝑡 follows the ARMA(1,1) process: 

𝜁𝜁𝑡𝑡 = 𝜌𝜌𝜁𝜁 𝜁𝜁𝑡𝑡−1 + 𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝜃𝜃𝜁𝜁 𝜀𝜀𝜁𝜁,𝑡𝑡−1, 𝜀𝜀𝜁𝜁,𝑡𝑡 ∼ 𝑁𝑁�0, 𝜎𝜎𝜁𝜁
2�, 

with 𝜌𝜌𝜁𝜁 , 𝜃𝜃𝜁𝜁 ∈ (−1,1), and for simplicity, we suppose that 𝜔𝜔𝑡𝑡 = 𝜀𝜀𝜔𝜔,𝑡𝑡, where 𝜀𝜀𝜔𝜔,𝑡𝑡 ∼

𝑁𝑁�0, 𝜎𝜎𝜔𝜔
2 �. 

From combining all the above equations, we have that if 𝜙𝜙𝜋𝜋 > 1, there is a unique 

solution with: 

𝜋𝜋𝑡𝑡 = −
1

𝜙𝜙𝜋𝜋 − 𝜌𝜌𝜁𝜁
�𝜁𝜁𝑡𝑡 +

𝜃𝜃𝜁𝜁

𝜙𝜙𝜋𝜋
𝜀𝜀𝜁𝜁,𝑡𝑡� +

𝜙𝜙𝑥𝑥
𝜙𝜙𝜋𝜋

𝜀𝜀𝜔𝜔,𝑡𝑡. 

Thus, if we define: 

𝑚𝑚0 ≔
𝜎𝜎𝜁𝜁

2

𝜅𝜅�𝜙𝜙𝜋𝜋 − 𝜌𝜌𝜁𝜁 �
�𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝜌𝜌𝜁𝜁 + 𝜃𝜃𝜁𝜁 � − �1 +

𝜃𝜃𝜁𝜁

𝜙𝜙𝜋𝜋
��, 

𝑚𝑚1 ≔
𝜎𝜎𝜁𝜁

2

𝜅𝜅�𝜙𝜙𝜋𝜋 − 𝜌𝜌𝜁𝜁 � ⎣
⎢⎡�𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝜌𝜌𝜁𝜁 − 1��𝜌𝜌𝜁𝜁 + 𝜃𝜃𝜁𝜁 � + 𝛽𝛽𝜚̃𝜚𝜋𝜋 �1 +

𝜃𝜃𝜁𝜁

𝜙𝜙𝜋𝜋
�

⎦
⎥⎤, 

𝑚𝑚2 ≔
𝜎𝜎𝜁𝜁

2

𝜅𝜅�𝜙𝜙𝜋𝜋 − 𝜌𝜌𝜁𝜁 �
��𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝜌𝜌𝜁𝜁 − 1�𝜌𝜌𝜁𝜁 + 𝛽𝛽𝜚̃𝜚𝜋𝜋��𝜌𝜌𝜁𝜁 + 𝜃𝜃𝜁𝜁 �, 

then by the Phillips curve 𝑚𝑚0 = 𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡, 𝑚𝑚1 = 𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−1 and 𝑚𝑚2 = 𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−2. Also note 

that: 
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𝜅𝜅 =
𝜎𝜎𝜁𝜁

2

𝜙𝜙𝜋𝜋−𝜌𝜌𝜁𝜁

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �
2

𝜌𝜌𝜁𝜁 �𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �𝑚𝑚0−
⎝
⎜⎛�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 �𝑚𝑚1−�1+

𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝑚𝑚2
⎠
⎟⎞
,  

𝛽𝛽̃ =
�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+

𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 ��𝑚𝑚0−�𝜌𝜌𝜁𝜁 𝑚𝑚1−𝑚𝑚2��−
𝜙𝜙𝜋𝜋+𝜃𝜃𝜁𝜁

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 �𝜙𝜙𝜋𝜋⎝
⎜⎛�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 �𝑚𝑚1−�1+

𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝑚𝑚2
⎠
⎟⎞

𝜌𝜌𝜁𝜁 �𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �𝑚𝑚0−
⎝
⎜⎛�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 �𝑚𝑚1−�1+

𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝑚𝑚2
⎠
⎟⎞

,  

𝜚𝜚𝜋𝜋 = −
�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+

𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 ��𝜌𝜌𝜁𝜁 𝑚𝑚1−𝑚𝑚2�

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 ��𝑚𝑚0−�𝜌𝜌𝜁𝜁 𝑚𝑚1−𝑚𝑚2��−
𝜙𝜙𝜋𝜋+𝜃𝜃𝜁𝜁

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 �𝜙𝜙𝜋𝜋⎝
⎜⎛�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 �𝑚𝑚1−�1+

𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝑚𝑚2
⎠
⎟⎞
.  

In other words, once the central bank knows 𝑚𝑚0, 𝑚𝑚1 and 𝑚𝑚2 they can infer the 

parameters of the Phillips curve from the known properties of their monetary rule and 

monetary shock. This is essentially an instrumental variables regression. We are using 

𝜀𝜀𝜁𝜁,𝑡𝑡, 𝜀𝜀𝜁𝜁,𝑡𝑡−1 and 𝜀𝜀𝜁𝜁,𝑡𝑡−2 as instruments for 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, 𝜋𝜋𝑡𝑡 and 𝜋𝜋𝑡𝑡−1 in a regression of the output 

gap on those variables. This works as long as 𝜃𝜃𝜁𝜁 ≠ 0, else 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 and 𝜋𝜋𝑡𝑡 are colinear. 

If the central bank does not know the true values of 𝜅𝜅, 𝛽𝛽 ̃ and 𝜚𝜚𝜋𝜋, we suppose they 

dynamically update estimates of 𝑚𝑚0, 𝑚𝑚1 and 𝑚𝑚2 using the following decreasing gain 

learning rules (for 𝑡𝑡 > 0): 

𝑚𝑚0,𝑡𝑡 = 𝑚𝑚0,𝑡𝑡−1 + 𝑡𝑡−1�𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡 − 𝑚𝑚0,𝑡𝑡−1�, 

𝑚𝑚1,𝑡𝑡 = 𝑚𝑚1,𝑡𝑡−1 + 𝑡𝑡−1�𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−1 − 𝑚𝑚1,𝑡𝑡−1�, 

𝑚𝑚2,𝑡𝑡 = 𝑚𝑚2,𝑡𝑡−1 + 𝑡𝑡−1�𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−2 − 𝑚𝑚2,𝑡𝑡−1�, 

where 𝜄𝜄 ∈ (0,1] is a gain parameter. Then they can use the monetary rule: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜙𝜙𝑥𝑥�𝑥𝑥𝑡𝑡 + 𝑞𝑞1,𝑡𝑡−1𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝑞𝑞0,𝑡𝑡−1𝜋𝜋𝑡𝑡 + 𝑞𝑞−1,𝑡𝑡−1𝜋𝜋𝑡𝑡−1� + 𝜁𝜁𝑡𝑡, 

where: 

𝑞𝑞1,𝑡𝑡 ≔ 𝜙𝜙𝜋𝜋−𝜌𝜌𝜁𝜁

𝜎𝜎𝜁𝜁
2

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �𝑚𝑚0,𝑡𝑡−
𝜙𝜙𝜋𝜋+𝜃𝜃𝜁𝜁

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 �𝜙𝜙𝜋𝜋⎝
⎜⎛�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 �𝑚𝑚1,𝑡𝑡−�1+

𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝑚𝑚2,𝑡𝑡
⎠
⎟⎞

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �
2 ,  

𝑞𝑞0,𝑡𝑡 ≔ − 𝜙𝜙𝜋𝜋−𝜌𝜌𝜁𝜁

𝜎𝜎𝜁𝜁
2

𝜌𝜌𝜁𝜁 �𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �𝑚𝑚0,𝑡𝑡−
⎝
⎜⎛�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 �𝑚𝑚1,𝑡𝑡−�1+

𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝑚𝑚2,𝑡𝑡
⎠
⎟⎞

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �
2 ,  

𝑞𝑞−1,𝑡𝑡 ≔ − 𝜙𝜙𝜋𝜋−𝜌𝜌𝜁𝜁

𝜎𝜎𝜁𝜁
2

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 ��𝜌𝜌𝜁𝜁 𝑚𝑚1,𝑡𝑡−𝑚𝑚2,𝑡𝑡�

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �
2 .  
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This is reasonable, as if 𝑚𝑚0,𝑡𝑡−1 ≈ 𝑚𝑚0, 𝑚𝑚1,𝑡𝑡−1 ≈ 𝑚𝑚1 and 𝑚𝑚2,𝑡𝑡−1 ≈ 𝑚𝑚2 then 𝑞𝑞1,𝑡𝑡−1 ≈

𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�, 𝑞𝑞0,𝑡𝑡−1 ≈ −𝜅𝜅−1 and 𝑞𝑞−1,𝑡𝑡−1 ≈ 𝜅𝜅−1𝛽𝛽𝜚̃𝜚𝜋𝜋, so this monetary rule is 

approximately the same as the full information one previously considered. Using 

lagged estimates (𝑞𝑞1,𝑡𝑡−1 not 𝑞𝑞1,𝑡𝑡 etc.) in the monetary rule reflects central bank 

information (processing) delays and simplifies the model’s solution. It is also a 

common assumption in the reduced form learning literature (Evans & Honkapohja 

2001). 

With the new monetary rule, the model is no-longer linear. As a result, the exact 

solution is analytically intractable. However, we are only really interested in 

asymptotic dynamics. If 𝑚𝑚0,𝑡𝑡 → 𝑚𝑚0, 𝑚𝑚1,𝑡𝑡 → 𝑚𝑚1 and 𝑚𝑚2,𝑡𝑡 → 𝑚𝑚2 as 𝑡𝑡 → ∞ then we know 

the asymptotic solution will be the stable full information one we found previously. 

We will analyse the system’s behaviour with help from the stochastic approximation 

tools frequently used in the reduced form learning literature (Evans & Honkapohja 

2001). These tools only require a zeroth order approximation in 𝑡𝑡−1 to the dynamics of 

𝑥𝑥𝑡𝑡 and 𝜋𝜋𝑡𝑡.9 Intuitively, this is because 𝑥𝑥𝑡𝑡 (hence 𝜋𝜋𝑡𝑡) enters the law of motion for 𝑚𝑚0,𝑡𝑡, 

𝑚𝑚1,𝑡𝑡 and 𝑚𝑚2,𝑡𝑡 multiplied by 𝑡𝑡−1, so a zeroth order approximation to the dynamics of 𝑥𝑥𝑡𝑡 

and 𝜋𝜋𝑡𝑡 in 𝑡𝑡−1 delivers a first order approximation to the dynamics of 𝑚𝑚0,𝑡𝑡, 𝑚𝑚1,𝑡𝑡 and 𝑚𝑚2,𝑡𝑡 

in 𝑡𝑡−1. 

We conjecture a time-varying coefficients solution with: 

𝜋𝜋𝑡𝑡 = 𝐴𝐴𝑡𝑡−1𝜁𝜁𝑡𝑡 + 𝐵𝐵𝑡𝑡−1𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝐶𝐶𝑡𝑡−1𝜀𝜀𝜔𝜔,𝑡𝑡 + 𝐷𝐷𝑡𝑡−1𝜋𝜋𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 

where we conjecture 𝐴𝐴𝑡𝑡 = 𝐴𝐴𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 𝐵𝐵𝑡𝑡 = 𝐵𝐵𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 𝐶𝐶𝑡𝑡 = 𝐶𝐶𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1� and 

𝐷𝐷𝑡𝑡 = 𝐷𝐷𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�. Substituting this into the monetary rule, Fisher equation and 

Phillips curve implies: 

 
9 Given certain regularity conditions on the higher order terms. These conditions will be satisfied here, at least 

providing we restrict 𝑚𝑚0,𝑡𝑡, 𝑚𝑚1,𝑡𝑡 and 𝑚𝑚2,𝑡𝑡 to a small enough open set around 𝑚𝑚0, 𝑚𝑚1 and 𝑚𝑚2, using a so called 

projection facility. 
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�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡−1�𝐴𝐴𝑡𝑡�𝜌𝜌𝜁𝜁 𝜁𝜁𝑡𝑡 + 𝜃𝜃𝜁𝜁 𝜀𝜀𝜁𝜁,𝑡𝑡�

= �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡−1 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡−1�𝐷𝐷𝑡𝑡��𝐴𝐴𝑡𝑡−1𝜁𝜁𝑡𝑡

+ 𝐵𝐵𝑡𝑡−1𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝐶𝐶𝑡𝑡−1𝜀𝜀𝜔𝜔,𝑡𝑡 + 𝐷𝐷𝑡𝑡−1𝜋𝜋𝑡𝑡−1� + 𝜙𝜙𝑥𝑥�𝑞𝑞−1,𝑡𝑡−1 − 𝜅𝜅−1𝛽𝛽𝜚̃𝜚𝜋𝜋�𝜋𝜋𝑡𝑡−1 − 𝜙𝜙𝑥𝑥𝜀𝜀𝜔𝜔,𝑡𝑡

+ 𝜁𝜁𝑡𝑡 + 𝑂𝑂�𝑡𝑡−1�. 

Matching terms and using 𝐴𝐴𝑡𝑡 = 𝐴𝐴𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1� and 𝐷𝐷𝑡𝑡 = 𝐷𝐷𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1� then gives 

that: 

�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐴𝐴𝑡𝑡𝜌𝜌𝜁𝜁

= �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐷𝐷𝑡𝑡�𝐴𝐴𝑡𝑡 + 1

+ 𝑂𝑂�𝑡𝑡−1�, 

�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐴𝐴𝑡𝑡𝜃𝜃𝜁𝜁

= �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐷𝐷𝑡𝑡�𝐵𝐵𝑡𝑡 + 𝑂𝑂�𝑡𝑡−1�, 

0 = �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡−1�𝐷𝐷𝑡𝑡�𝐶𝐶𝑡𝑡 − 𝜙𝜙𝑥𝑥 + 𝑂𝑂�𝑡𝑡−1�, 

0 = �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐷𝐷𝑡𝑡�𝐷𝐷𝑡𝑡 + 𝜙𝜙𝑥𝑥�𝑞𝑞−1,𝑡𝑡 − 𝜅𝜅−1𝛽𝛽𝜚̃𝜚𝜋𝜋�

+ 𝑂𝑂�𝑡𝑡−1�. 

The final equation has two roots, but we know we need to pick the one that gives 𝐷𝐷𝑡𝑡 →

0 as 𝜙𝜙𝑥𝑥 → 0. Now if 𝑞𝑞0,𝑡𝑡 is sufficiently close to 𝑞𝑞0, then 𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 > 0, so: 

𝐷𝐷𝑡𝑡 =
�𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡� − �

�𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡�2 ⋯
+4𝜙𝜙𝑥𝑥�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡��𝑞𝑞−1,𝑡𝑡 − 𝜅𝜅−1𝛽𝛽𝜚̃𝜚𝜋𝜋�

2�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�

+ 𝑂𝑂�𝑡𝑡−1�, 

and: 

𝐴𝐴𝑡𝑡 = ��1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡��𝐷𝐷𝑡𝑡 + 𝜌𝜌𝜁𝜁 � − �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡��
−1

+ 𝑂𝑂�𝑡𝑡−1�, 

𝐵𝐵𝑡𝑡 =
𝜃𝜃𝜁𝜁 �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐴𝐴𝑡𝑡

𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐷𝐷𝑡𝑡
+ 𝑂𝑂�𝑡𝑡−1�, 

𝐶𝐶𝑡𝑡 =
𝜙𝜙𝑥𝑥

𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐷𝐷𝑡𝑡
+ 𝑂𝑂�𝑡𝑡−1�. 

Since 𝑞𝑞1,𝑡𝑡 = 𝑞𝑞1,𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 𝑞𝑞0,𝑡𝑡 = 𝑞𝑞0,𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1� and 𝑞𝑞−1,𝑡𝑡 = 𝑞𝑞−1,𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, as 

required we have that 𝐴𝐴𝑡𝑡 = 𝐴𝐴𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 𝐵𝐵𝑡𝑡 = 𝐵𝐵𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 𝐶𝐶𝑡𝑡 = 𝐶𝐶𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1� 

and 𝐷𝐷𝑡𝑡 = 𝐷𝐷𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�. 
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Using this result again, we then have that: 

𝑥𝑥𝑡𝑡 = 𝜅𝜅−1 ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐷𝐷𝑡𝑡−1 + 𝜌𝜌𝜁𝜁 ��𝐴𝐴𝑡𝑡−1𝜁𝜁𝑡𝑡

+ �𝐵𝐵𝑡𝑡−1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐴𝐴𝑡𝑡−1𝜃𝜃𝜁𝜁 + 𝐵𝐵𝑡𝑡−1𝐷𝐷𝑡𝑡−1��𝜀𝜀𝜁𝜁,𝑡𝑡

+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷𝑡𝑡−1�𝐶𝐶𝑡𝑡−1 − 𝜅𝜅�𝜀𝜀𝜔𝜔,𝑡𝑡

+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷𝑡𝑡−1�𝐷𝐷𝑡𝑡−1 − 𝛽𝛽𝜚̃𝜚𝜋𝜋�𝜋𝜋𝑡𝑡−1� + 𝑂𝑂�𝑡𝑡−1�. 

Plugging this into the law of motion for 𝑚𝑚0,𝑡𝑡, 𝑚𝑚1,𝑡𝑡 and 𝑚𝑚2,𝑡𝑡 gives a purely backward 

looking non-linear system in the endogenous states 𝑚𝑚0,𝑡𝑡, 𝑚𝑚1,𝑡𝑡, 𝑚𝑚2,𝑡𝑡 and 𝜋𝜋𝑡𝑡. This system 

is of the correct form to be analysed by the stochastic approximation results given in 

Evans & Honkapohja (2001). 

To apply these results, first suppose that for all 𝑡𝑡, 𝑚𝑚0,𝑡𝑡 = 𝑚𝑚�0, 𝑚𝑚1,𝑡𝑡 = 𝑚𝑚�1 and 𝑚𝑚2,𝑡𝑡 = 𝑚𝑚�2, 

for some values 𝑚𝑚�0, 𝑚𝑚�1 and 𝑚𝑚�2. Then 𝑞𝑞1,𝑡𝑡 = 𝑞𝑞1̂, 𝑞𝑞0,𝑡𝑡 = 𝑞𝑞0̂ and 𝑞𝑞−1,𝑡𝑡 = 𝑞𝑞−̂1 for all 𝑡𝑡, where: 

𝑞𝑞1̂ ≔ 𝜙𝜙𝜋𝜋−𝜌𝜌𝜁𝜁

𝜎𝜎𝜁𝜁
2

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �𝑚𝑚�0−
𝜙𝜙𝜋𝜋+𝜃𝜃𝜁𝜁

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 �𝜙𝜙𝜋𝜋⎝
⎜⎛�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 �𝑚𝑚�1−�1+

𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝑚𝑚�2
⎠
⎟⎞

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �
2 ,  

𝑞𝑞0̂ ≔ − 𝜙𝜙𝜋𝜋−𝜌𝜌𝜁𝜁

𝜎𝜎𝜁𝜁
2

𝜌𝜌𝜁𝜁 �𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �𝑚𝑚�0−
⎝
⎜⎛�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 �𝑚𝑚�1−�1+

𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝑚𝑚�2
⎠
⎟⎞

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �
2 ,  

𝑞𝑞−̂1 ≔ − 𝜙𝜙𝜋𝜋−𝜌𝜌𝜁𝜁

𝜎𝜎𝜁𝜁
2

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 ��𝜌𝜌𝜁𝜁 𝑚𝑚�1−𝑚𝑚�2�

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �
2 .  

Thus, for all 𝑡𝑡, 𝐴𝐴𝑡𝑡 = 𝐴𝐴,̂ 𝐵𝐵𝑡𝑡 = 𝐵̂𝐵, 𝐶𝐶𝑡𝑡 = 𝐶𝐶 ̂and 𝐷𝐷𝑡𝑡 = 𝐷𝐷� , where: 

𝐷𝐷� =
�𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0̂� − �

�𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0̂�2 ⋯
+4𝜙𝜙𝑥𝑥�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1̂��𝑞𝑞−̂1 − 𝜅𝜅−1𝛽𝛽𝜚̃𝜚𝜋𝜋�

2�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1̂�
, 

and: 

𝐴𝐴̂ = ��1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1̂��𝐷𝐷� + 𝜌𝜌𝜁𝜁 � − �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0̂��
−1

, 

𝐵̂𝐵 =
𝜃𝜃𝜁𝜁 �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1̂�𝐴𝐴̂

𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0̂ − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1̂�𝐷𝐷�
, 

𝐶𝐶̂ =
𝜙𝜙𝑥𝑥

𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0̂ − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1̂�𝐷𝐷�
. 

So: 

𝜋𝜋𝑡𝑡 = 𝐴𝐴𝜁̂𝜁𝑡𝑡 + 𝐵̂𝐵𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝐶𝐶𝜀̂𝜀𝜔𝜔,𝑡𝑡 + 𝐷𝐷� 𝜋𝜋𝑡𝑡−1, 
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and: 

𝑥𝑥𝑡𝑡 = 𝜅𝜅−1 ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐷𝐷� + 𝜌𝜌𝜁𝜁 ��𝐴𝐴𝜁̂𝜁𝑡𝑡 + �𝐵̂𝐵 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐴𝐴𝜃̂𝜃𝜁𝜁 + 𝐵̂𝐵𝐷𝐷� ��𝜀𝜀𝜁𝜁,𝑡𝑡

+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐶𝐶̂ − 𝜅𝜅�𝜀𝜀𝜔𝜔,𝑡𝑡 + ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐷𝐷� − 𝛽𝛽𝜚̃𝜚𝜋𝜋�𝜋𝜋𝑡𝑡−1� 

= 𝜅𝜅−1 ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐷𝐷� + 𝜌𝜌𝜁𝜁 ��𝐴𝐴�̂𝜌𝜌𝜁𝜁 �𝜌𝜌𝜁𝜁 𝜁𝜁𝑡𝑡−2 + 𝜀𝜀𝜁𝜁,𝑡𝑡−1 + 𝜃𝜃𝜁𝜁 𝜀𝜀𝜁𝜁,𝑡𝑡−2� + 𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝜃𝜃𝜁𝜁 𝜀𝜀𝜁𝜁,𝑡𝑡−1�

+ �𝐵̂𝐵 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐴𝐴𝜃̂𝜃𝜁𝜁 + 𝐵̂𝐵𝐷𝐷� ��𝜀𝜀𝜁𝜁,𝑡𝑡 + ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐶𝐶̂ − 𝜅𝜅�𝜀𝜀𝜔𝜔,𝑡𝑡

+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐷𝐷� − 𝛽𝛽𝜚̃𝜚𝜋𝜋��𝐴𝐴�̂𝜌𝜌𝜁𝜁 𝜁𝜁𝑡𝑡−2 + 𝜀𝜀𝜁𝜁,𝑡𝑡−1 + 𝜃𝜃𝜁𝜁 𝜀𝜀𝜁𝜁,𝑡𝑡−2� + 𝐵̂𝐵𝜀𝜀𝜁𝜁,𝑡𝑡−1

+ 𝐶𝐶𝜀̂𝜀𝜔𝜔,𝑡𝑡−1 + 𝐷𝐷� �𝐴𝐴𝜁̂𝜁𝑡𝑡−2 + 𝐵̂𝐵𝜀𝜀𝜁𝜁,𝑡𝑡−2 + 𝐶𝐶𝜀̂𝜀𝜔𝜔,𝑡𝑡−2 + 𝐷𝐷� 𝜋𝜋𝑡𝑡−3���. 

Hence: 

𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡 = 𝜎𝜎𝜁𝜁
2𝜅𝜅−1��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐷𝐷� + 𝜌𝜌𝜁𝜁 + 𝜃𝜃𝜁𝜁 ��𝐴𝐴̂ + �1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐵̂𝐵�, 

𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−1 = 𝜎𝜎𝜁𝜁
2𝜅𝜅−1 ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐷𝐷� + 𝜌𝜌𝜁𝜁 ��𝐴𝐴�̂𝜌𝜌𝜁𝜁 + 𝜃𝜃𝜁𝜁 �

+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐷𝐷� − 𝛽𝛽𝜚̃𝜚𝜋𝜋��𝐴𝐴̂ + 𝐵̂𝐵��, 

𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−2 = 𝜎𝜎𝜁𝜁
2𝜅𝜅−1 ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐷𝐷� + 𝜌𝜌𝜁𝜁 ��𝐴𝐴𝜌̂𝜌𝜁𝜁 �𝜌𝜌𝜁𝜁 + 𝜃𝜃𝜁𝜁 �

+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐷𝐷� − 𝛽𝛽𝜚̃𝜚𝜋𝜋��𝐴𝐴�̂𝜌𝜌𝜁𝜁 + 𝜃𝜃𝜁𝜁 � + 𝐷𝐷� �𝐴𝐴̂ + 𝐵̂𝐵���. 

Now denote by 𝒯𝒯  the map taking the vector: 

𝑚𝑚�: =
⎣
⎢
⎡

𝑚𝑚�0
𝑚𝑚�1
𝑚𝑚�2⎦

⎥
⎤ 

to the vector: 

𝒯𝒯 (𝑚𝑚�): =
⎣
⎢⎢
⎡

𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡
𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−1
𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−2⎦

⎥⎥
⎤

. 

Stochastic approximation theory relates the stability of our nonlinear difference 

equation to the stability of the ODE: 
𝑑𝑑𝑚𝑚�(𝜏𝜏)

𝑑𝑑𝜏𝜏 = 𝒯𝒯 �𝑚𝑚�(𝜏𝜏)� − 𝑚𝑚�(𝜏𝜏). 

The 𝒯𝒯  map here plays the role usually played by the mapping from the perceived law 

of motion to the actual law of motion in the reduced form learning literature (Evans 

& Honkapohja 2001). 

We conjecture that: 

𝑚𝑚 ≔
⎣
⎢⎡

𝑚𝑚0
𝑚𝑚1
𝑚𝑚2⎦

⎥⎤ 
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is a locally asymptotically stable point of this ODE. To check this, note that tedious 

algebra gives that: 

𝜕𝜕𝒯𝒯 (𝑚𝑚�)
𝜕𝜕𝑚𝑚� �

𝑚𝑚�=𝑚𝑚
=

𝜙𝜙𝑥𝑥
𝜅𝜅𝜙𝜙𝜋𝜋

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1 𝜙𝜙𝜋𝜋

−1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�
𝜙𝜙𝜋𝜋

−1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�
𝜙𝜙𝜋𝜋 − 𝜌𝜌𝜁𝜁

−𝛽𝛽𝜚̃𝜚𝜋𝜋 1 − 𝜙𝜙𝜋𝜋
−1𝛽𝛽𝜚̃𝜚𝜋𝜋

𝜙𝜙𝜋𝜋�𝜙𝜙𝜋𝜋
−1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�� − 𝜙𝜙𝜋𝜋

−1𝛽𝛽𝜚̃𝜚𝜋𝜋
𝜙𝜙𝜋𝜋 − 𝜌𝜌𝜁𝜁

0 −𝛽𝛽𝜚̃𝜚𝜋𝜋
𝜙𝜙𝜋𝜋�1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝜌𝜌𝜁𝜁 � − 𝛽𝛽𝜚̃𝜚𝜋𝜋

𝜙𝜙𝜋𝜋 − 𝜌𝜌𝜁𝜁 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

For simplicity, we assume 𝜙𝜙𝑥𝑥 ≥ 0, 𝜙𝜙𝜋𝜋 ≥ 0, 𝜅𝜅 ≥ 0, 𝛽𝛽̃ ≥ 0, 𝜚𝜚𝜋𝜋 ∈ [0,1), 𝜌𝜌𝜁𝜁 ∈ [0,1) and 𝜙𝜙𝜋𝜋 ≥

�𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��−1. Under these assumptions, the off-diagonal elements of this matrix are 

all non-positive. Other cases may also go through, but for the sake of brevity we 

concentrate on this most relevant case. Given these assumptions, applying the 

Gershgorin circle theorem to the columns of this matrix gives the following upper 

bound on the real part of the eigenvalues of 𝜕𝜕𝜕𝜕 (𝑚𝑚�)
𝜕𝜕𝑚𝑚� �

𝑚𝑚�=𝑚𝑚
: 

𝜙𝜙𝑥𝑥
𝜅𝜅𝜙𝜙𝜋𝜋

max
⎩�
�⎨
��
⎧ 1 + 𝛽𝛽𝜚̃𝜚𝜋𝜋, 𝜙𝜙𝜋𝜋

−1�𝛽𝛽�̃𝜙𝜙𝜋𝜋 − 𝜚𝜚𝜋𝜋� + 𝜙𝜙𝜋𝜋 − 1�,
�1 − 𝜙𝜙𝜋𝜋

−1��𝜙𝜙𝜋𝜋 − 𝛽𝛽𝜚̃𝜚𝜋𝜋� + 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��1 + 𝜙𝜙𝜋𝜋�1 − 𝜌𝜌𝜁𝜁 �� − 𝜙𝜙𝜋𝜋
−1

𝜙𝜙𝜋𝜋 − 𝜌𝜌𝜁𝜁 ⎭�
�⎬
��
⎫

. 

The first and second arguments in curly brackets here are both less than 1 + 𝛽𝛽.̃ Taking 

the derivative of the third argument in curly brackets with respect to 𝜌𝜌𝜁𝜁  produces an 

expression whose sign is not a function of 𝜌𝜌𝜁𝜁 . Thus, the third argument in curly 

brackets is maximized at either 𝜌𝜌𝜁𝜁 = 0 or 𝜌𝜌𝜁𝜁 = 1. In the former case, the argument is 

less or equal to 1 + 𝛽𝛽 ̃providing 𝛽𝛽̃ ≤ 1. In the latter case, the argument is less or equal 

to 1 + 𝛽𝛽 ̃providing that 2�1 − 𝜚𝜚𝜋𝜋� ≤ 𝜙𝜙𝜋𝜋. Therefore, if 𝜙𝜙𝑥𝑥 ≥ 0, 𝜙𝜙𝜋𝜋 ≥ 0, 𝜅𝜅 ≥ 0, 𝛽𝛽̃ ∈ [0,1], 

𝜚𝜚𝜋𝜋 ∈ [0,1), 𝜌𝜌𝜁𝜁 ∈ [0,1) and: 

𝜙𝜙𝜋𝜋 > max
⎩�⎨
�⎧ 1

𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�
, 2�1 − 𝜚𝜚𝜋𝜋�,

𝜙𝜙𝑥𝑥�1 + 𝛽𝛽�̃
𝜅𝜅 ⎭�⎬

�⎫, 

then all of the eigenvalues of 𝜕𝜕𝜕𝜕 (𝑚𝑚�)
𝜕𝜕𝑚𝑚� �

𝑚𝑚�=𝑚𝑚
 are less than one. Consequently, in this case 

the ODE is locally asymptotically stable, so the stochastic approximation results of 

Evans & Honkapohja (2001) apply. In particular, if we suppose that 𝑚𝑚�0, 𝑚𝑚�1 and 𝑚𝑚�2 are 

constrained to remain within a sufficiently small ball around 𝑚𝑚0, 𝑚𝑚1 and 𝑚𝑚2, then the 
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central bank’s estimates of the Phillips curve parameters will converge to their true 

values, and the model’s dynamics will converge to the determinate ones under rational 

expectations. 

E.4 Responding to other endogenous variables in a general model 

Now, suppose the central bank uses the rule: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜄𝜄𝜙𝜙𝑧𝑧
⊤𝑧𝑧𝑡𝑡 + 𝜙𝜙𝜈𝜈

⊤𝜈𝜈𝑡𝑡. 

Here, 𝑧𝑧𝑡𝑡 is a vector of other endogenous variables, with 𝑧𝑧𝑡𝑡,1 = 𝑟𝑟𝑡𝑡, 𝜄𝜄 > 0 is a scalar 

governing the strength of response to all of them, and 𝜈𝜈𝑡𝑡 is an arbitrary exogenous 

stochastic process (potentially vector valued). As usual, we assume 𝜙𝜙𝜋𝜋 > 1. We also 

assume without loss of generality that the elements of 𝑧𝑧𝑡𝑡 are all zero in steady state. 

Without loss of generality, we suppose that the other endogenous variables satisfy the 

general linear expectational difference equation: 

0 = 𝐴𝐴𝔼𝔼𝑡𝑡𝑧𝑧𝑡𝑡+1 + 𝐵𝐵𝑧𝑧𝑡𝑡 + 𝐶𝐶𝑧𝑧𝑡𝑡−1 + 𝑑𝑑𝜋𝜋𝑡𝑡 + 𝐸𝐸𝜈𝜈𝑡𝑡, 

where the coefficient matrices are such that there is a unique matrix 𝐹𝐹 with eigenvalues 

in the unit circle such that 𝐹𝐹 = −(𝐴𝐴𝐴𝐴 + 𝐵𝐵)−1𝐶𝐶.10 This condition on 𝐹𝐹 just states that 

there is no real indeterminacy in the model. Once inflation is determined, so too is 𝑧𝑧𝑡𝑡. 

Having the same shock process entering both the monetary rule and the model’s other 

equations is without loss of generality as it is multiplied by 𝜙𝜙𝜈𝜈
⊤ and 𝐸𝐸 respectively. 

Now define: 

𝐺𝐺 ≔ −𝐴𝐴(𝐴𝐴𝐴𝐴 + 𝐵𝐵)−1. 

Let 𝐿𝐿 be the lag operator, then note that: 

�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�(𝐴𝐴𝐴𝐴 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝐹𝐹) = 𝐴𝐴𝐿𝐿−1 + 𝐵𝐵 + 𝐶𝐶𝐶𝐶. 

Thus, by the model’s real determinacy, all of 𝐺𝐺’s eigenvalues must also be inside the 

unit circle. 

 
10 The lack of terms in 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 and 𝜋𝜋𝑡𝑡−1 is without loss of generality, as such responses can be included by adding 

an auxiliary variable 𝑧𝑧𝑡𝑡,𝑗𝑗 with an equation of the form 𝑧𝑧𝑡𝑡,𝑗𝑗 = 𝜋𝜋𝑡𝑡. 
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In terms of the lag operator, the model to be solved is then: 

𝔼𝔼𝑡𝑡�1 − 𝜙𝜙𝜋𝜋
−1𝐿𝐿−1�𝜋𝜋𝑡𝑡 = −𝜄𝜄𝜙𝜙𝜋𝜋

−1𝜙𝜙𝑧𝑧
⊤𝑧𝑧𝑡𝑡 − 𝜙𝜙𝜋𝜋

−1𝜙𝜙𝜈𝜈
⊤𝜈𝜈𝑡𝑡, 

𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�(𝐴𝐴𝐴𝐴 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝐹𝐹)𝑧𝑧𝑡𝑡 = −𝑑𝑑𝜋𝜋𝑡𝑡 − 𝐸𝐸𝜈𝜈𝑡𝑡. 

Note for future reference that since 𝜙𝜙𝜋𝜋
−1, 𝐺𝐺 and 𝐹𝐹 all have all their eigenvalues in the 

unit circle, �1 − 𝜙𝜙𝜋𝜋
−1𝐿𝐿−1�, �𝐼𝐼 − 𝐺𝐺𝐿𝐿−1� and (𝐼𝐼 − 𝐹𝐹𝐹𝐹) are all invertible. 

We conjecture a series solution of the form: 

𝜋𝜋𝑡𝑡 = � 𝜄𝜄𝑘𝑘
∞

𝑘𝑘=0
𝜋𝜋𝑡𝑡

(𝑘𝑘), 𝑧𝑧𝑡𝑡 = � 𝜄𝜄𝑘𝑘
∞

𝑘𝑘=0
𝑧𝑧𝑡𝑡

(𝑘𝑘). 

Matching terms gives that 𝜋𝜋𝑡𝑡
(0) solves: 

𝔼𝔼𝑡𝑡�1 − 𝜙𝜙𝜋𝜋
−1𝐿𝐿−1�𝜋𝜋𝑡𝑡

(0) = −𝜙𝜙𝜋𝜋
−1𝜙𝜙𝜈𝜈

⊤𝜈𝜈𝑡𝑡, 

implying that 𝜋𝜋𝑡𝑡
(0) is determinate with: 

𝜋𝜋𝑡𝑡
(0) = −𝔼𝔼𝑡𝑡�1 − 𝜙𝜙𝜋𝜋

−1𝐿𝐿−1�−1𝜙𝜙𝜋𝜋
−1𝜙𝜙𝜈𝜈

⊤𝜈𝜈𝑡𝑡. 

Similarly, from matching terms in the law of motion for 𝑧𝑧𝑡𝑡, we have that: 

𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�(𝐴𝐴𝐴𝐴 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝐹𝐹)𝑧𝑧𝑡𝑡
(0) = −𝑑𝑑𝜋𝜋𝑡𝑡

(0) − 𝐸𝐸𝜈𝜈𝑡𝑡 

so 𝑧𝑧𝑡𝑡
(0) is also determinate (by our assumption on 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶) with: 

𝑧𝑧𝑡𝑡
(0) = −(𝐼𝐼 − 𝐹𝐹𝐹𝐹)−1(𝐴𝐴𝐴𝐴 + 𝐵𝐵)−1𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�−1�𝑑𝑑𝜋𝜋𝑡𝑡

(0) − 𝐸𝐸𝜈𝜈𝑡𝑡�. 

Note that 𝜋𝜋𝑡𝑡
(0) can be treated as exogenous for solving for 𝑧𝑧𝑡𝑡

(0), as the causation only 

runs one way, from 𝜋𝜋𝑡𝑡
(0) to 𝑧𝑧𝑡𝑡

(0). 

Now suppose that we have established that 𝜋𝜋𝑡𝑡
(𝑘𝑘) and 𝑧𝑧𝑡𝑡

(𝑘𝑘) are determinate for some 𝑘𝑘 ∈

ℕ, with a determined solution not a function of higher order terms. (We have already 

proven the base case of 𝑘𝑘 = 0.) We seek to prove that 𝜋𝜋𝑡𝑡
(𝑘𝑘+1) and 𝑧𝑧𝑡𝑡

(𝑘𝑘+1) are also 

determinate. Matching terms again gives that: 

𝔼𝔼𝑡𝑡�1 − 𝜙𝜙𝜋𝜋
−1𝐿𝐿−1�𝜋𝜋𝑡𝑡

(𝑘𝑘+1) = −𝜙𝜙𝜋𝜋
−1𝜙𝜙𝑧𝑧

⊤𝑧𝑧𝑡𝑡
(𝑘𝑘), 

so 𝜋𝜋𝑡𝑡
(𝑘𝑘+1) is also determinate, with: 

𝜋𝜋𝑡𝑡
(𝑘𝑘+1) = −𝔼𝔼𝑡𝑡�1 − 𝜙𝜙𝜋𝜋

−1𝐿𝐿−1�−1𝜙𝜙𝜋𝜋
−1𝜙𝜙𝑧𝑧

⊤𝑧𝑧𝑡𝑡
(𝑘𝑘), 
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where we used the inductive hypothesis that 𝑧𝑧𝑡𝑡
(𝑘𝑘) is already determined, and so it is 

effectively exogenous for the purpose of determining 𝜋𝜋𝑡𝑡
(𝑘𝑘+1). Then from matching 

terms in the law of motion for 𝑧𝑧𝑡𝑡: 

𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�(𝐴𝐴𝐴𝐴 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝐹𝐹)𝑧𝑧𝑡𝑡
(𝑘𝑘+1) = −𝑑𝑑𝜋𝜋𝑡𝑡

(𝑘𝑘+1), 

so 𝑧𝑧𝑡𝑡
(𝑘𝑘+1) is also determinate, with: 

𝑧𝑧𝑡𝑡
(𝑘𝑘+1) = −(𝐼𝐼 − 𝐹𝐹𝐹𝐹)−1(𝐴𝐴𝐴𝐴 + 𝐵𝐵)−1𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�−1𝑑𝑑𝜋𝜋𝑡𝑡

(𝑘𝑘+1), 

much as before. This completes our proof by induction, establishing that there is a 

series solution of the given form. 

The only remaining thing to check is that the series does indeed converge for 

sufficiently small 𝜄𝜄. This follows immediately from the product structure of the 

solution above, which means that the variances of 𝑧𝑧𝑡𝑡
(𝑘𝑘) and 𝜋𝜋𝑡𝑡

(𝑘𝑘) must be 𝑂𝑂�ℎ𝑘𝑘� for some 

ℎ ≥ 1. Hence for sufficiently small 𝜄𝜄, the model is determinate. I.e., given the Taylor 

principle is satisfied, a sufficiently small response to other endogenous variables will 

not break determinacy. 

E.5 Real rate rules with exogenous targets 

We want to prove that even with an exogenous 𝜋𝜋𝑡𝑡
∗, rules in the form of (7) can still 

mimic the outcomes of any other monetary policy regime. 

Suppose that the central bank were to set interest rates in a different (though time 

invariant) way, for example by using another rule, or by adopting optimal policy under 

either commitment or discretion, given some objective. For simplicity, suppose further 

that the economy’s equilibrium conditions are linear, e.g., because we are working 

under a first order approximation. Let �𝜀𝜀1,𝑡𝑡, … , 𝜀𝜀𝑁𝑁,𝑡𝑡�𝑡𝑡∈ℤ be the set of structural shocks 

in the economy,11 all of which are assumed mean zero and independent both of each 

other, and over time. Finally, assume that the central bank’s behaviour produces 

stationary inflation, 𝜋̃𝜋𝑡𝑡, with the � denoting that this is inflation under the alternative 

 
11 This may include sunspot shocks if they are added following Farmer, Khramov & Nicolò (2015). 
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monetary regime. Then, by linearity and stationarity, there must exist a constant 𝜋̃𝜋∗ 

and coefficients �𝜃𝜃1,𝑘𝑘, … , 𝜃𝜃𝑁𝑁,𝑘𝑘�𝑘𝑘∈ℕ such that: 

𝜋̃𝜋𝑡𝑡 = 𝜋̃𝜋∗ + � � 𝜃𝜃𝑛𝑛,𝑘𝑘𝜀𝜀𝑛𝑛,𝑡𝑡−𝑘𝑘

𝑁𝑁

𝑛𝑛=1

∞

𝑘𝑘=0
, 

with ∑ 𝜃𝜃𝑛𝑛,𝑘𝑘
2∞

𝑘𝑘=0 < ∞ for 𝑛𝑛 = 1, … , 𝑁𝑁. So, if the central bank sets: 

𝜋𝜋𝑡𝑡
∗ = 𝜋̃𝜋∗ + � � 𝜃𝜃𝑛𝑛,𝑘𝑘𝜀𝜀𝑛𝑛,𝑡𝑡−𝑘𝑘

𝑁𝑁

𝑛𝑛=1

∞

𝑘𝑘=0
, 

(exogenous!) and uses the rule (7), then for all 𝑡𝑡 and in all states of the world, 𝜋𝜋𝑡𝑡 =

𝜋𝜋𝑡𝑡
∗ = 𝜋̃𝜋𝑡𝑡. Moreover, this implies in turn that all the endogenous variables in the two 

economies must be identical in all periods and in all states of the world. 

To see this final claim, let 𝑧𝑧𝑡𝑡 and 𝑧𝑧𝑡̃𝑡 be vectors stacking the endogenous variables other 

than inflation in the economy with our rule and the economy with the alternative rule, 

respectively, with 𝑧𝑧𝑡𝑡,1 = 𝑟𝑟𝑡𝑡 and 𝑧𝑧𝑡̃𝑡,1 = 𝑟𝑟𝑡̃𝑡. We assume without loss of generality that the 

elements of 𝑧𝑧𝑡𝑡 and 𝑧𝑧𝑡̃𝑡 are all zero in steady state. 

By linearity, without loss of generality, the equations other than the monetary rule or 

monetary policy first order condition must have the form:12 

0 = 𝐴𝐴𝔼𝔼𝑡𝑡𝑧𝑧𝑡𝑡+1 + 𝐵𝐵𝑧𝑧𝑡𝑡 + 𝐶𝐶𝑧𝑧𝑡𝑡−1 + 𝑑𝑑𝜋𝜋𝑡𝑡 + � 𝑓𝑓𝑛𝑛𝜀𝜀𝑛𝑛,𝑡𝑡

𝑁𝑁

𝑛𝑛=1
, (12) 

in the economy with our rule, and they must have the form: 

0 = 𝐴𝐴𝔼𝔼𝑡𝑡𝑧𝑧𝑡̃𝑡+1 + 𝐵𝐵𝑧𝑧𝑡̃𝑡 + 𝐶𝐶𝑧𝑧𝑡̃𝑡−1 + 𝑑𝑑𝜋̃𝜋𝑡𝑡 + � 𝑓𝑓𝑛𝑛𝜀𝜀𝑛𝑛,𝑡𝑡

𝑁𝑁

𝑛𝑛=1
, 

in the economy with the alternative rule. (Here, 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶 are square matrices, while 

𝑑𝑑 and 𝑓𝑓1, … , 𝑓𝑓𝑁𝑁 are vectors.) Since 𝜋𝜋𝑡𝑡 = 𝜋̃𝜋𝑡𝑡 for all 𝑡𝑡, 𝑧𝑧𝑡𝑡 = 𝑧𝑧𝑡̃𝑡 must solve equation (12) for 

all 𝑡𝑡. It will be the unique solution providing the model has no source of indeterminacy 

other than perhaps monetary policy. For example, in a three equation NK model, given 

that 𝜋𝜋𝑡𝑡 ≡ 𝜋̃𝜋𝑡𝑡, the Phillips curve implies that the output gap must agree in the two 

economies, thus the Euler equation then implies that the interest rate must also agree. 

 
12 The lack of terms in 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 and 𝜋𝜋𝑡𝑡−1 is without loss of generality, as such responses can be included by adding 

an auxiliary variable 𝑧𝑧𝑡𝑡,𝑗𝑗 with an equation of the form 𝑧𝑧𝑡𝑡,𝑗𝑗 = 𝜋𝜋𝑡𝑡. 
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To see the uniqueness more formally, suppose that there is a unique matrix 𝐹𝐹 with 

eigenvalues in the unit circle such that 𝐹𝐹 = −(𝐴𝐴𝐴𝐴 + 𝐵𝐵)−1𝐶𝐶. This condition on 𝐹𝐹 just 

states that there is no real indeterminacy in the model. 

Now define: 

𝐺𝐺 ≔ −𝐴𝐴(𝐴𝐴𝐴𝐴 + 𝐵𝐵)−1. 

Let 𝐿𝐿 be the lag operator, then note (as in the previous appendix subsection) that: 

�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�(𝐴𝐴𝐴𝐴 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝐹𝐹) = 𝐴𝐴𝐿𝐿−1 + 𝐵𝐵 + 𝐶𝐶𝐶𝐶. 

Thus, by the model’s real determinacy, all of 𝐺𝐺’s eigenvalues must also be inside the 

unit circle. Hence, since 𝐺𝐺 and 𝐹𝐹 all have all their eigenvalues in the unit circle, 

�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1� and (𝐼𝐼 − 𝐹𝐹𝐹𝐹) are both invertible. 

In terms of the lag operator, the equations determining 𝑧𝑧𝑡𝑡 and 𝑧𝑧𝑡̃𝑡 are: 

𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�(𝐴𝐴𝐴𝐴 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝐹𝐹)𝑧𝑧𝑡𝑡 = −𝑑𝑑𝜋𝜋𝑡𝑡 − � 𝑓𝑓𝑛𝑛𝜀𝜀𝑛𝑛,𝑡𝑡

𝑁𝑁

𝑛𝑛=1
 

= −𝑑𝑑𝜋̃𝜋𝑡𝑡 − � 𝑓𝑓𝑛𝑛𝜀𝜀𝑛𝑛,𝑡𝑡

𝑁𝑁

𝑛𝑛=1
 

= 𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�(𝐴𝐴𝐴𝐴 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝐹𝐹)𝑧𝑧𝑡̃𝑡, 

as 𝜋𝜋𝑡𝑡 = 𝜋̃𝜋𝑡𝑡 for all 𝑡𝑡. Consequently: 

𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�(𝐴𝐴𝐴𝐴 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝐹𝐹)(𝑧𝑧𝑡𝑡 − 𝑧𝑧𝑡̃𝑡) = 0. 

Therefore, by the invertibility of �𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�, (𝐴𝐴𝐴𝐴 + 𝐵𝐵) and (𝐼𝐼 − 𝐹𝐹𝐹𝐹), 𝑧𝑧𝑡𝑡 = 𝑧𝑧𝑡̃𝑡 for all 𝑡𝑡, as 

required. (Expectations drop out as the right-hand side is deterministic.) 

The only slight difficulty with setting 𝜋𝜋𝑡𝑡
∗ as a function of structural shocks is that the 

central bank may struggle to observe these shocks. The central bank can certainly 

observe linear combinations of structural shocks, via estimating a VAR with 

sufficiently many lags. For variables that are plausibly contemporaneously exogenous, 

such as commodity prices for a small(ish) economy, this is already sufficient to recover 

the corresponding structural shock. To infer other shocks, the central bank needs to 

know more about the structure of the economy. However, we do not need to assume 

any more than is standard in rational expectations models. Forming rational 
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expectations requires you to know the structure of the economy; if you know this 

structure, then you know the mapping from the reduced form shocks estimated by a 

VAR to the model’s structural shocks.13 Additionally, it is common to assume that the 

central bank responds to an output gap constructed by comparing outcomes to an 

economy without price rigidity. This already requires the central bank to know the 

values of all parameters and structural shocks. 

E.6 Partially smoothed real rate rules 

Suppose that the central bank sets interest rates according to the partially smoothed 

real rate rule: 

𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 = 𝜚𝜚𝑖𝑖(𝑖𝑖𝑡𝑡−1 − 𝑟𝑟𝑡𝑡−1) + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1
∗ − 𝜚𝜚𝑖𝑖𝔼𝔼𝑡𝑡−1𝜋𝜋𝑡𝑡

∗ + �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗), 

where 𝜙𝜙 > 1, 𝜚𝜚𝑖𝑖 < 1 and where 𝜋𝜋𝑡𝑡
∗ is the inflation target. Then, from the Fisher 

equation: 

𝔼𝔼𝑡𝑡�𝜋𝜋𝑡𝑡+1 − 𝜋𝜋𝑡𝑡+1
∗ � = 𝜚𝜚𝑖𝑖𝔼𝔼𝑡𝑡−1(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗) + �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗). 

Now let 𝜋̂𝜋𝑡𝑡 ≔ 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗ and 𝑒𝑒𝑡𝑡 ≔ 𝔼𝔼𝑡𝑡�𝜋𝜋𝑡𝑡+1 − 𝜋𝜋𝑡𝑡+1

∗ �. Then we have the system: 

𝑒𝑒𝑡𝑡 = 𝔼𝔼𝑡𝑡𝜋̂𝜋𝑡𝑡+1, 

𝑒𝑒𝑡𝑡 = 𝜚𝜚𝑖𝑖𝑒𝑒𝑡𝑡−1 + �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙𝜋̂𝜋𝑡𝑡. 

Equivalently: 

�1 −1
0 1 � 𝔼𝔼𝑡𝑡 �𝜋̂𝜋𝑡𝑡+1

𝑒𝑒𝑡𝑡
� = � 0 0

�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 𝜚𝜚𝑖𝑖
� � 𝜋̂𝜋𝑡𝑡

𝑒𝑒𝑡𝑡−1
�, 

so, from pre-multiplying by �1 1
0 1�: 

𝔼𝔼𝑡𝑡 �𝜋̂𝜋𝑡𝑡+1
𝑒𝑒𝑡𝑡

� = �
�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 𝜚𝜚𝑖𝑖
�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 𝜚𝜚𝑖𝑖

� � 𝜋̂𝜋𝑡𝑡
𝑒𝑒𝑡𝑡−1

�. 

Now: 

�
�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 𝜚𝜚𝑖𝑖
�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 𝜚𝜚𝑖𝑖

� =
⎣
⎢⎡

−
𝜚𝜚𝑖𝑖

�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 1

1 1⎦
⎥⎤ �0 0

0 𝜚𝜚𝑖𝑖 + �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙�
⎣
⎢⎡

−
𝜚𝜚𝑖𝑖

�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 1

1 1⎦
⎥⎤

−1

. 

 
13 This mapping may not be unique valued if there are more shocks than observables. However, since we expect a 

relatively small number of shocks to explain the bulk of business cycle variance, this is unlikely to be problematic 

in practice. 
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Thus, if we define: 

�
𝑢𝑢𝑡𝑡
𝑣𝑣𝑡𝑡

� ≔
⎣
⎢⎡

−
𝜚𝜚𝑖𝑖

�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 1

1 1⎦
⎥⎤

−1

� 𝜋̂𝜋𝑡𝑡
𝑒𝑒𝑡𝑡−1

� =
�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙

𝜚𝜚𝑖𝑖 + �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 ⎣
⎢⎡

−1 1
1

𝜚𝜚𝑖𝑖
�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙⎦

⎥⎤ � 𝜋̂𝜋𝑡𝑡
𝑒𝑒𝑡𝑡−1

�, 

then: 

𝔼𝔼𝑡𝑡 �
𝑢𝑢𝑡𝑡+1
𝑣𝑣𝑡𝑡+1

� = �0 0
0 𝜚𝜚𝑖𝑖 + �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙� �

𝑢𝑢𝑡𝑡
𝑣𝑣𝑡𝑡

�. 

Now, since 𝜙𝜙 > 1 and 𝜚𝜚𝑖𝑖 < 1, 𝜚𝜚𝑖𝑖 + �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 = 𝜙𝜙 − 𝜚𝜚𝑖𝑖�𝜙𝜙 − 1� > 1. Thus, the unique 

non-explosive solution for 𝑣𝑣𝑡𝑡 is 𝑣𝑣𝑡𝑡 = 0. (Note that 𝑣𝑣𝑡𝑡 must be stationary as 𝜋̂𝜋𝑡𝑡 and 𝑒𝑒𝑡𝑡−1 

must be stationary.) Hence, by the definition of 𝑣𝑣𝑡𝑡: 

𝜋̂𝜋𝑡𝑡 = −
𝜚𝜚𝑖𝑖

�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 𝑒𝑒𝑡𝑡−1. 

 So as 𝑒𝑒𝑡𝑡 = 𝔼𝔼𝑡𝑡𝜋̂𝜋𝑡𝑡+1: 

𝑒𝑒𝑡𝑡 = −
𝜚𝜚𝑖𝑖

�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 𝑒𝑒𝑡𝑡, 

i.e.: 

�𝜚𝜚𝑖𝑖 + �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙�𝑒𝑒𝑡𝑡 = 0, 

so 𝑒𝑒𝑡𝑡 = 0, and hence 𝜋̂𝜋𝑡𝑡 = 0. 

Therefore, with 𝜙𝜙 > 1, 𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡
∗ is the unique stationary solution. 

Finally, note that the coefficient on 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗ in the original rule was �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙, so for 

any 𝜃𝜃 > 0 if we set 𝜙𝜙 ≔ 𝜃𝜃
1−𝜚𝜚𝑖𝑖

 then for 𝜚𝜚𝑖𝑖 sufficiently close to 1, 𝜙𝜙 > 1 as required. Thus, 

for 𝜚𝜚𝑖𝑖 sufficiently close to 1 a coefficient of 𝜃𝜃 > 0 on 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗ will do. This links the 

results of this appendix to those of the main text. 

E.7 Dynamics under lag-augmented real rate rules 

We are interested in the solution of the expectational difference equation: 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜓𝜓𝜋𝜋𝑡𝑡−1. 

The two roots of the characteristic equation are given by: 

𝜙𝜙 ± �𝜙𝜙2 + 4𝜓𝜓
2 . 
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We need to prove that if 𝜙𝜙 > �1 − 𝜓𝜓�, the positive root is strictly greater than 1, while 

the negative root is in (−1,1). 

For this, we first need to prove that these roots are real. This follows as: 

𝜙𝜙2 > �1 − 𝜓𝜓�2 = 1 − 2𝜓𝜓 + 𝜓𝜓2, 

so: 

𝜙𝜙2 + 4𝜓𝜓 > 1 + 2𝜓𝜓 + 𝜓𝜓2 = �1 + 𝜓𝜓�2 ≥ 0. 

Next, note that 𝜙𝜙 > �1 − 𝜓𝜓� > 1 − 𝜓𝜓, so 𝜓𝜓 > 1 − 𝜙𝜙. Hence: 

𝜙𝜙2 + 4𝜓𝜓 > 𝜙𝜙2 − 4𝜙𝜙 + 4 = �𝜙𝜙 − 2�2, 

meaning that: 

�𝜙𝜙2 + 4𝜓𝜓 > �𝜙𝜙 − 2�. 

Thus: 

𝜙𝜙 + �𝜙𝜙2 + 4𝜓𝜓 > 2, 

and: 

𝜙𝜙 − �𝜙𝜙2 + 4𝜓𝜓 < 2. 

Finally, note that 𝜙𝜙 > �1 − 𝜓𝜓� > 𝜓𝜓 − 1, so 𝜓𝜓 < 𝜙𝜙 + 1. Hence: 

𝜙𝜙2 + 4𝜓𝜓 < 𝜙𝜙2 + 4𝜙𝜙 + 4 = �𝜙𝜙 + 2�2, 

meaning that: 

𝜙𝜙 + 2 > �𝜙𝜙2 + 4𝜓𝜓, 

so: 

𝜙𝜙 − �𝜙𝜙2 + 4𝜓𝜓 > −2. 

Hence, we have established that as required: 

𝜙𝜙 + �𝜙𝜙2 + 4𝜓𝜓
2 > 1, 

while: 

−1 <
𝜙𝜙 + �𝜙𝜙2 + 4𝜓𝜓

2 < 1. 

E.8 Roots of the characteristic equation arising from multiperiod bonds 

We are interested in the roots for 𝜆𝜆 ∈ ℂ of the characteristic equation: 
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1
𝑇𝑇 � 𝜆𝜆𝑘𝑘+𝑆𝑆−𝐿𝐿

𝑇𝑇

𝑘𝑘=1
= 𝜙𝜙, 

for 𝑇𝑇, 𝑆𝑆, 𝐿𝐿 ∈ ℕ and 𝜙𝜙 > 1. We wish to prove that this equation has max{0, −(1 + 𝑆𝑆 −

𝐿𝐿)} roots strictly inside the unit circle and max{0, 𝑇𝑇 + 𝑆𝑆 − 𝐿𝐿} roots strictly outside of 

the unit circle. We proceed by cases. (These cases have some overlap, which is 

inconsequential.) 

Case 1: 1 + 𝑆𝑆 − 𝐿𝐿 ≥ 0 

Note that in this case, 𝑘𝑘 + 𝑆𝑆 − 𝐿𝐿 ≥ 0 for all 𝑘𝑘 ∈ {1, … , 𝑇𝑇}. Thus if 𝜆𝜆 ∈ ℂ with |𝜆𝜆| ≤ 1, 

then by the triangle inequality: 

�
1
𝑇𝑇 � 𝜆𝜆𝑘𝑘+𝑆𝑆−𝐿𝐿

𝑇𝑇

𝑘𝑘=1
� ≤

1
𝑇𝑇 ��𝜆𝜆𝑘𝑘+𝑆𝑆−𝐿𝐿�

𝑇𝑇

𝑘𝑘=1
≤

1
𝑇𝑇 � 1

𝑇𝑇

𝑘𝑘=1
= 1 < 𝜙𝜙. 

Hence, in this case, there cannot be any roots weakly inside the unit circle. Thus, by 

the fundamental theorem of algebra, the equation has max{0, 𝑇𝑇 + 𝑆𝑆 − 𝐿𝐿} roots all 

strictly outside the unit circle. 

Case 2: 𝑇𝑇 + 𝑆𝑆 − 𝐿𝐿 ≤ 0 

In this case, −(𝑘𝑘 + 𝑆𝑆 − 𝐿𝐿) ≥ 0 for all 𝑘𝑘 ∈ {1, … , 𝑇𝑇}. Suppose 𝜆𝜆 ∈ ℂ with |𝜆𝜆| ≥ 1 and 

define 𝜅𝜅 ≔ 𝜆𝜆−1, so |𝜅𝜅| ≤ 1. Then again by the triangle inequality: 

�
1
𝑇𝑇 � 𝜆𝜆𝑘𝑘+𝑆𝑆−𝐿𝐿

𝑇𝑇

𝑘𝑘=1
� = �

1
𝑇𝑇 � 𝜅𝜅−(𝑘𝑘+𝑆𝑆−𝐿𝐿)

𝑇𝑇

𝑘𝑘=1
� ≤

1
𝑇𝑇 ��𝜅𝜅−(𝑘𝑘+𝑆𝑆−𝐿𝐿)�

𝑇𝑇

𝑘𝑘=1
≤

1
𝑇𝑇 � 1

𝑇𝑇

𝑘𝑘=1
= 1 < 𝜙𝜙. 

Hence, in this case, there cannot be any roots weakly outside the unit circle. Thus, by 

the fundamental theorem of algebra, the equation has max{0, −(1 + 𝑆𝑆 − 𝐿𝐿)} roots all 

strictly inside the unit circle. 

Case 3: 1 + 𝑆𝑆 − 𝐿𝐿 < 0 and 𝑇𝑇 + 𝑆𝑆 − 𝐿𝐿 > 0 

Multiplying the original equation by 𝜆𝜆−(1+𝑆𝑆−𝐿𝐿) gives: 
1
𝑇𝑇 � 𝜆𝜆𝑘𝑘−1

𝑇𝑇

𝑘𝑘=1
= 𝜙𝜙𝜆𝜆−(1+𝑆𝑆−𝐿𝐿). 

This equation has precisely the same roots of the original, since the original contained 

a term in 𝜆𝜆1+𝑆𝑆−𝐿𝐿 and 1 + 𝑆𝑆 − 𝐿𝐿 < 0. Now if |𝜆𝜆| = 1, then by the triangle inequality: 



Page 51 of 64 

 

�
1
𝑇𝑇 � 𝜆𝜆𝑘𝑘−1

𝑇𝑇

𝑘𝑘=1
� ≤

1
𝑇𝑇 ��𝜆𝜆𝑘𝑘−1�

𝑇𝑇

𝑘𝑘=1
=

1
𝑇𝑇 � 1

𝑇𝑇

𝑘𝑘=1
= 1. 

Also, if |𝜆𝜆| = 1, then: 

�−𝜙𝜙𝜆𝜆−(1+𝑆𝑆−𝐿𝐿)� = 𝜙𝜙 > 1. 

Thus, for all 𝜆𝜆 ∈ ℂ with |𝜆𝜆| = 1: 

�
1
𝑇𝑇 � 𝜆𝜆𝑘𝑘−1

𝑇𝑇

𝑘𝑘=1
� < �−𝜙𝜙𝜆𝜆−(1+𝑆𝑆−𝐿𝐿)�. 

This means that the original equation cannot have any roots with |𝜆𝜆| = 1. Additionally, 

by Rouché’s theorem, this implies that the polynomial 𝜆𝜆 ↦ 1
𝑇𝑇 ∑ 𝜆𝜆𝑘𝑘−1𝑇𝑇

𝑘𝑘=1 − 𝜙𝜙𝜆𝜆−(1+𝑆𝑆−𝐿𝐿) 

has the same number of zeros strictly inside the unit circle as the polynomial 𝜆𝜆 ↦

−𝜙𝜙𝜆𝜆−(1+𝑆𝑆−𝐿𝐿) (counting multiplicities). The latter polynomial has −(1 + 𝑆𝑆 − 𝐿𝐿) roots 

inside the unit circle (all equal to zero). Therefore, both 1
𝑇𝑇 ∑ 𝜆𝜆𝑘𝑘−1𝑇𝑇

𝑘𝑘=1 = 𝜙𝜙𝜆𝜆−(1+𝑆𝑆−𝐿𝐿) and 

our original equation have −(1 + 𝑆𝑆 − 𝐿𝐿) = max{0, −(1 + 𝑆𝑆 − 𝐿𝐿)} roots strictly inside 

the unit circle. 

Finally, note that 1
𝑇𝑇 ∑ 𝜆𝜆𝑘𝑘−1𝑇𝑇

𝑘𝑘=1 = 𝜙𝜙𝜆𝜆−(1+𝑆𝑆−𝐿𝐿) is a polynomial of degree max{𝑇𝑇 −

1, −(1 + 𝑆𝑆 − 𝐿𝐿)}, hence it has max{𝑇𝑇 − 1, −(1 + 𝑆𝑆 − 𝐿𝐿)} roots in total, by the 

fundamental theorem of algebra. Hence our original equation has: 

max{𝑇𝑇 − 1, −(1 + 𝑆𝑆 − 𝐿𝐿)} − [−(1 + 𝑆𝑆 − 𝐿𝐿)] = 𝑇𝑇 − 1 + (1 + 𝑆𝑆 − 𝐿𝐿) = 𝑇𝑇 + 𝑆𝑆 − 𝐿𝐿 

= max{0, 𝑇𝑇 + 𝑆𝑆 − 𝐿𝐿} 

roots strictly outside the unit circle. This completes the proof. 

E.9 Uniqueness and positivity of the multiperiod bond solution 

We are interested in the solution of the difference equation: 

𝐴𝐴𝑗𝑗 =
1
𝜙𝜙 𝟙𝟙�𝑗𝑗 = 0� +

1
𝜙𝜙𝜙𝜙 � 𝐴𝐴𝑗𝑗−𝑘𝑘−𝑆𝑆+𝐿𝐿

𝑇𝑇

𝑘𝑘=1
. 

To understand this difference equation, first let ℓ∞(ℤ) be the space of bounded 

sequences with indices in ℤ. This is a complete normed space under the sup-norm. 

Then define an operator 𝒯𝒯 : ℓ∞(ℤ) → ℓ∞(ℤ) by: 

�𝒯𝒯 �𝐴𝐴�̃�
𝑗𝑗

=
1
𝜙𝜙 𝟙𝟙�𝑗𝑗 = 0� +

1
𝜙𝜙𝜙𝜙 � 𝐴𝐴𝑗̃𝑗−𝑘𝑘−𝑆𝑆+𝐿𝐿

𝑇𝑇

𝑘𝑘=1
, 
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for all 𝐴𝐴̃ ∈ ℓ∞(ℤ) and 𝑗𝑗 ∈ ℤ. 

Note that for 𝐴𝐴(1), 𝐴𝐴(2) ∈ ℓ∞(ℤ) and 𝑗𝑗 ∈ ℤ: 

�𝒯𝒯 �𝐴𝐴(1)� − 𝒯𝒯 �𝐴𝐴(2)��
𝑗𝑗

=
1

𝜙𝜙𝜙𝜙 ��𝐴𝐴𝑗𝑗−𝑘𝑘−𝑆𝑆+𝐿𝐿
(1) − 𝐴𝐴𝑗𝑗−𝑘𝑘−𝑆𝑆+𝐿𝐿

(2) �
𝑇𝑇

𝑘𝑘=1
, 

so: 

��𝒯𝒯 �𝐴𝐴(1)� − 𝒯𝒯 �𝐴𝐴(2)��
𝑗𝑗
� ≤

1
𝜙𝜙𝜙𝜙 ��𝐴𝐴𝑗𝑗−𝑘𝑘−𝑆𝑆+𝐿𝐿

(1) − 𝐴𝐴𝑗𝑗−𝑘𝑘−𝑆𝑆+𝐿𝐿
(2) �

𝑇𝑇

𝑘𝑘=1
≤

1
𝜙𝜙𝜙𝜙 ��𝐴𝐴(1) − 𝐴𝐴(2)�∞

𝑇𝑇

𝑘𝑘=1
 

=
1
𝜙𝜙 �𝐴𝐴(1) − 𝐴𝐴(2)�∞. 

This means that for all 𝐴𝐴(1), 𝐴𝐴(2) ∈ ℓ∞(ℤ): 

�𝒯𝒯 �𝐴𝐴(1)� − 𝒯𝒯 �𝐴𝐴(2)��∞ ≤
1
𝜙𝜙 �𝐴𝐴(1) − 𝐴𝐴(2)�∞, 

and hence that 𝒯𝒯  is a contraction mapping, as 𝜙𝜙 > 1. Thus, by the Banach fixed-point 

theorem, 𝒯𝒯  has a unique fixed point, which must be our desired 𝐴𝐴 = �𝐴𝐴𝑗𝑗�𝑗𝑗∈ℤ
. 

Furthermore, the Banach fixed point theorem implies that if we define 𝐴𝐴𝑗𝑗
(0) ≔ 0 for all 

𝑗𝑗 ∈ ℤ, and 𝐴𝐴(𝑛𝑛+1) ≔ 𝒯𝒯 �𝐴𝐴(𝑛𝑛)� for all 𝑛𝑛 ∈ ℕ, then 𝐴𝐴(𝑛𝑛) → 𝐴𝐴 (under the sup norm) as 

𝑛𝑛 → ∞. 

Now, suppose  𝐴𝐴̃ ∈ ℓ∞(ℤ) with 𝐴𝐴𝑗̃𝑗 ≥ 0 for all 𝑗𝑗 ∈ ℤ. Then, by the definition of 𝒯𝒯 , 

�𝒯𝒯 �𝐴𝐴�̃�
𝑗𝑗

≥ 0 for all 𝑗𝑗 ∈ ℤ. Hence, as 𝐴𝐴𝑗𝑗
(0) ≥ 0 for all 𝑗𝑗 ∈ ℤ, by induction, 𝐴𝐴𝑗𝑗

(𝑛𝑛) ≥ 0 for 

all 𝑗𝑗 ∈ ℤ. Therefore, as 𝐴𝐴(𝑛𝑛) → 𝐴𝐴 as 𝑛𝑛 → ∞, 𝐴𝐴𝑗𝑗 ≥ 0 for all 𝑗𝑗 ∈ ℤ. 

E.10 Approximate uniqueness with endogenous wedges and multi-
period bonds 

Under the setup of Section 3, if we define 𝐵𝐵 ≔ ∑ 𝐴𝐴𝑗𝑗
∞
𝑗𝑗=−∞ , then: 

𝐵𝐵 =
1
𝜙𝜙 + �

1
𝜙𝜙𝜙𝜙 � 𝐴𝐴𝑗𝑗−𝑘𝑘−𝑆𝑆+𝐿𝐿

𝑇𝑇

𝑘𝑘=1

∞

𝑗𝑗=−∞
=

1
𝜙𝜙 +

1
𝜙𝜙𝜙𝜙 � � 𝐴𝐴𝑗𝑗−𝑘𝑘−𝑆𝑆+𝐿𝐿

∞

𝑗𝑗=−∞

𝑇𝑇

𝑘𝑘=1
=

1
𝜙𝜙 +

1
𝜙𝜙𝜙𝜙 � 𝐵𝐵

𝑇𝑇

𝑘𝑘=1
=

1
𝜙𝜙 (1 + 𝐵𝐵). 

Thus, 𝐵𝐵 = 1
𝜙𝜙−1. This will be sufficient to establish that 𝜋𝜋𝑡𝑡 ≈ 𝜋𝜋𝑡𝑡

∗ for large 𝜙𝜙, even when 

𝜈𝜈𝑡𝑡+𝑆𝑆|𝑡𝑡 − 𝜈𝜈𝑡̅𝑡+𝑆𝑆|𝑡𝑡 is endogenous, by an identical to argument to that of Subsection 2.2. 

In particular, suppose we assume that 𝜈𝜈𝑡𝑡+𝑆𝑆|𝑡𝑡 − 𝜈𝜈𝑡̅𝑡+𝑆𝑆|𝑡𝑡 is stationary, and that there exists 

some 𝜇𝜇����0, 𝜇𝜇����1, 𝜇𝜇����2, 𝛾𝛾����0, 𝛾𝛾����1, 𝛾𝛾����2 ≥ 0 such that for any stationary solution for 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗, 
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�𝔼𝔼�𝜈𝜈𝑡𝑡+𝑆𝑆|𝑡𝑡 − 𝜈𝜈𝑡̅𝑡+𝑆𝑆|𝑡𝑡�� ≤ 𝜇𝜇����0 + 𝜇𝜇����1�𝔼𝔼(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗)� + 𝜇𝜇����2 Var(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗) and Var�𝜈𝜈𝑡𝑡+𝑆𝑆|𝑡𝑡 − 𝜈𝜈𝑡̅𝑡+𝑆𝑆|𝑡𝑡� ≤

𝛾𝛾����0 + 𝛾𝛾����1�𝔼𝔼(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗)� + 𝛾𝛾����2 Var(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗), for all 𝑡𝑡 ∈ ℤ and 𝑗𝑗, 𝑘𝑘 ∈ ℕ. This assumption is 

very mild, as already discussed in Subsection 2.2. Then, following the argument of 

that subsection (and using the fact that 𝐴𝐴𝑗𝑗 ≥ 0 for all 𝑗𝑗 ∈ ℤ): 

�𝔼𝔼(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗)� ≤

𝜇𝜇����0 + 𝜇𝜇����1�𝔼𝔼(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗)� + 𝜇𝜇����2 Var(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗)
𝜙𝜙 − 1 , 

and: 

Var(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗) ≤

𝛾𝛾����0 + 𝛾𝛾����1�𝔼𝔼(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗)� + 𝛾𝛾����2 Var(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗)
�𝜙𝜙 − 1�2 . 

So, for sufficiently large 𝜙𝜙: 

�𝔼𝔼(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗)� ≤

��𝜙𝜙 − 1�2 − 𝛾𝛾����2�𝜇𝜇����0 + 𝜇𝜇����2𝛾𝛾����0
�𝜙𝜙 − 1 − 𝜇𝜇����1���𝜙𝜙 − 1�2 − 𝛾𝛾����2� − 𝜇𝜇����2𝛾𝛾����1

= 𝑂𝑂 �
1
𝜙𝜙�, 

Var(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗) ≤

�𝜙𝜙 − 1 − 𝜇𝜇����1�𝛾𝛾����0 + 𝜇𝜇����0𝛾𝛾����1
�𝜙𝜙 − 1 − 𝜇𝜇����1���𝜙𝜙 − 1�2 − 𝛾𝛾����2� − 𝜇𝜇����2𝛾𝛾����1

= 𝑂𝑂 �
1

𝜙𝜙2�. 

Hence, as 𝜙𝜙 → ∞, 𝔼𝔼(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗) → 0 and Var(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗) → 0. 

E.11 Uniqueness of the solution for the modified inflation target 

We are examining the modified inflation target monetary rule from Subsection 4.2. As 

in Holden (2021), we work under perfect foresight, with the initial state 𝑟𝑟0 given. We 

assume the rest of the model is given by equations (4) and (5), so we have the 

following equations for 𝑡𝑡 > 0: 

𝜋𝜋𝑡𝑡 = 𝛽𝛽𝜋𝜋𝑡𝑡+1 + 𝜅𝜅𝑥𝑥𝑡𝑡, 

𝑥𝑥𝑡𝑡 = 𝛿𝛿𝑥𝑥𝑡𝑡+1 − 𝜍𝜍(𝑟𝑟𝑡𝑡 − 𝑛𝑛𝑡𝑡), 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜋̌𝜋𝑡𝑡+1
∗ + 𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋̌𝜋𝑡𝑡

∗), 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1, 

𝜋̌𝜋𝑡𝑡
∗ = max{−𝑟𝑟𝑡𝑡−1 + 𝜖𝜖, 𝜋𝜋𝑡𝑡

∗}. 

We are interested in the constraint in the definition of 𝜋̌𝜋𝑡𝑡
∗, which we note can be 

rewritten as the pair of equations: 

𝑧𝑧𝑡𝑡 = 𝜋̌𝜋𝑡𝑡
∗ + 𝑟𝑟𝑡𝑡−1 − 𝜖𝜖, 𝑧𝑧𝑡𝑡 = max{0, 𝜋𝜋𝑡𝑡

∗ + 𝑟𝑟𝑡𝑡−1 − 𝜖𝜖}, 

where 𝑧𝑧𝑡𝑡 is an auxiliary variable. We assume that 𝜋𝜋𝑡𝑡
∗ + 𝑟𝑟𝑡𝑡−1 − 𝜖𝜖 > 0 in steady-state, so 

that in steady-state, 𝜋̌𝜋𝑡𝑡
∗ = 𝜋𝜋𝑡𝑡

∗. 
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The results of Holden (2021) imply that conditional on 𝑧𝑧𝑡𝑡 eventually converging to its 

positive steady state value, we can prove uniqueness via replacing the second equation 

for 𝑧𝑧𝑡𝑡 just given with: 

𝑧𝑧𝑡𝑡 = 𝜋𝜋𝑡𝑡
∗ + 𝑟𝑟𝑡𝑡−1 − 𝜖𝜖 + 𝑦𝑦𝑡𝑡, 

where 𝑦𝑦𝑡𝑡 is an exogenous forcing process. This implies that in equilibrium: 

𝜋𝜋𝑡𝑡 = 𝜋̌𝜋𝑡𝑡
∗ = 𝜋𝜋𝑡𝑡

∗ + 𝑦𝑦𝑡𝑡, 

𝑥𝑥𝑡𝑡 =
1
𝜅𝜅 ��𝜋𝜋𝑡𝑡

∗ + 𝑦𝑦𝑡𝑡� − 𝛽𝛽�𝜋𝜋𝑡𝑡+1
∗ + 𝑦𝑦𝑡𝑡+1��, 

𝑟𝑟𝑡𝑡 = 𝑛𝑛𝑡𝑡 +
1
𝜅𝜅𝜅𝜅 �−�𝜋𝜋𝑡𝑡

∗ + 𝑦𝑦𝑡𝑡� + �𝛽𝛽 + 𝛿𝛿��𝜋𝜋𝑡𝑡+1
∗ + 𝑦𝑦𝑡𝑡+1� − 𝛽𝛽𝛽𝛽�𝜋𝜋𝑡𝑡+2

∗ + 𝑦𝑦𝑡𝑡+2��, 

𝑧𝑧𝑡𝑡 = 𝜋𝜋𝑡𝑡
∗ − 𝜖𝜖 + 𝑦𝑦𝑡𝑡 + 𝑛𝑛𝑡𝑡−1 +

1
𝜅𝜅𝜅𝜅 �−�𝜋𝜋𝑡𝑡−1

∗ + 𝑦𝑦𝑡𝑡−1� + �𝛽𝛽 + 𝛿𝛿��𝜋𝜋𝑡𝑡
∗ + 𝑦𝑦𝑡𝑡� − 𝛽𝛽𝛽𝛽�𝜋𝜋𝑡𝑡+1

∗ + 𝑦𝑦𝑡𝑡+1��, 

from, respectively, the equations for 𝑧𝑧𝑡𝑡, the monetary rule and Fisher equation, the 

Phillips curve, the Euler equation, and the first equation for 𝑧𝑧𝑡𝑡. 

Holden (2021) shows that uniqueness is determined by the determinants of the 

principal sub-matrices of the so-called “𝑀𝑀” matrix for the model, which, here, contains 

the partial derivatives of 𝑧𝑧𝑡𝑡 (𝑡𝑡 in rows) with respect to 𝑦𝑦𝑠𝑠 (𝑠𝑠 in columns). We assume 

that 𝜋𝜋𝑡𝑡
∗ is exogenous. Thus, the 𝑀𝑀 matrix is Toeplitz and tridiagonal, with − 1

𝜅𝜅𝜅𝜅 , 1 +
𝛽𝛽+𝛿𝛿
𝜅𝜅𝜅𝜅 , − 𝛽𝛽𝛽𝛽

𝜅𝜅𝜅𝜅 on the left, main and right diagonals respectively. Hence, by standard results, 

the eigenvalues of any 𝑆𝑆 × 𝑆𝑆 principal sub-matrix of 𝑀𝑀 are given by 1 + 𝛽𝛽+𝛿𝛿
𝜅𝜅𝜅𝜅 +

2
𝜅𝜅𝜅𝜅 �𝛽𝛽𝛽𝛽 cos�𝑠𝑠𝜋𝜋∘

𝑆𝑆+1� for 𝑠𝑠 ∈ {1, … , 𝑆𝑆}, where 𝜋𝜋∘ is the mathematical constant usually 

denoted 𝜋𝜋. These are real if and only if 𝛽𝛽𝛽𝛽 ≥ 0. They are positive for all 𝑆𝑆 at least if 

𝜅𝜅𝜅𝜅 > 0. In this case, the minimum eigenvalue is greater than 1, so the determinant is 

also greater than 1, hence this is not knife-edge positivity: small changes to the model 

will not change this result. Thus, with 𝜋𝜋𝑡𝑡
∗ exogenous, 𝜋𝜋𝑡𝑡 = 𝜋̌𝜋𝑡𝑡

∗ is robustly the unique 

solution conditional on the terminal condition. 

E.12 Optimal consumption with perpetuities and a permanent ZLB 

For the sake of illustration, we adopt the simple parametric set-up used in Appendix 

B.1. It is clear our results are not specific to this set-up, however. 
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We suppose the representative household supplies one unit of labour, inelastically. 

Production of the final good is given by: 

𝑦𝑦𝑡𝑡 = 𝑙𝑙𝑡𝑡(= 1). 

In period 𝑡𝑡, the representative household maximises: 

𝔼𝔼𝑡𝑡 � 𝛽𝛽𝑘𝑘 log 𝑐𝑐𝑡𝑡+𝑘𝑘

∞

𝑘𝑘=0
, 

subject to the budget constraint: 

𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡 + 𝐴𝐴𝑡𝑡 + 𝑄𝑄𝑡𝑡𝐵𝐵𝑡𝑡 + 𝑃𝑃𝑡𝑡𝜏𝜏𝑡𝑡 = 𝑃𝑃𝑡𝑡𝑦𝑦𝑡𝑡 + 𝐼𝐼𝑡𝑡−1𝐴𝐴𝑡𝑡−1 + 𝐵𝐵𝑡𝑡−1(1 + 𝜔𝜔𝑄𝑄𝑡𝑡), 

where 𝑐𝑐𝑡𝑡 is consumption, 𝜏𝜏𝑡𝑡 are real lump sum taxes, 𝑃𝑃𝑡𝑡 is the price of the final good, 

𝐴𝐴𝑡𝑡 is the number of one period nominal bonds purchased by the household at 𝑡𝑡, which 

each return 𝐼𝐼𝑡𝑡 in period 𝑡𝑡 + 1, 𝑄𝑄𝑡𝑡 is the price of a long (geometric coupon) bond and 

𝐵𝐵𝑡𝑡 are the number of units of this long bond purchased by the household at 𝑡𝑡. One unit 

of the period 𝑡𝑡 long bond bought at 𝑡𝑡 returns $1 at 𝑡𝑡 + 1, along with 𝜔𝜔 ∈ (0,1] units of 

the period 𝑡𝑡 + 1 bond. 

The household first order conditions imply: 

1 = 𝛽𝛽𝐼𝐼𝑡𝑡𝔼𝔼𝑡𝑡
𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡

𝑃𝑃𝑡𝑡+1𝑐𝑐𝑡𝑡+1
, 

𝑄𝑄𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡
𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡

𝑃𝑃𝑡𝑡+1𝑐𝑐𝑡𝑡+1
�1 + 𝜔𝜔𝑄𝑄𝑡𝑡+1�. 

The household transversality conditions are that: 

lim
𝑘𝑘→∞

𝛽𝛽𝑘𝑘𝔼𝔼𝑡𝑡
𝐴𝐴𝑡𝑡+𝑘𝑘

𝑃𝑃𝑡𝑡+𝑘𝑘𝑐𝑐𝑡𝑡+𝑘𝑘
= 0, 

lim
𝑘𝑘→∞

𝛽𝛽𝑘𝑘𝔼𝔼𝑡𝑡
𝑄𝑄𝑡𝑡+𝑘𝑘𝐵𝐵𝑡𝑡+𝑘𝑘
𝑃𝑃𝑡𝑡+𝑘𝑘𝑐𝑐𝑡𝑡+𝑘𝑘

= 0, 

but we do not assume the second is necessary when 𝜔𝜔 = 1. (The necessity of the 

transversality constraint when 𝜔𝜔 < 1 follows from the following test given in 

Kamihigashi (2006), and formally proven in Kamihigashi (2003): “Shift the entire 

optimal path [for the state variable] downward by a small fixed proportion. Does it 

reduce the value of the objective function by only a finite amount? If so, the 

transversality condition is necessary.”) 
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The government issues no one period bonds, so: 

𝐴𝐴𝑡𝑡 = 0. 

The government fixes the supply of long-bonds at: 

𝐵𝐵𝑡𝑡 = 𝐵𝐵𝑡𝑡
∗ ≔ 𝐵𝐵−1𝜔𝜔𝑡𝑡+1. 

The central bank pegs nominal interest rates at the ZLB, meaning: 

𝐼𝐼𝑡𝑡 = 1. 

The final goods market clears, so: 

𝑦𝑦𝑡𝑡 = 𝑐𝑐𝑡𝑡 = 1. 

Thus, from the household budget constraint, we have the following government 

budget constraint: 

𝑄𝑄𝑡𝑡𝐵𝐵𝑡𝑡
∗ + 𝑃𝑃𝑡𝑡𝜏𝜏𝑡𝑡 = 𝐵𝐵𝑡𝑡−1

∗ (1 + 𝜔𝜔𝑄𝑄𝑡𝑡). 

We assume that the government adjusts taxes 𝜏𝜏𝑡𝑡 period by period to ensure this always 

holds (i.e., fiscal policy is passive and Ricardian). Thus: 

𝑃𝑃𝑡𝑡𝜏𝜏𝑡𝑡 = 𝐵𝐵−1𝜔𝜔𝑡𝑡. 

Let Π𝑡𝑡 ≔ 𝑃𝑃𝑡𝑡
𝑃𝑃𝑡𝑡−1

, then from market clearing and the Euler equation for nominal bonds: 

1 = 𝛽𝛽𝔼𝔼𝑡𝑡
1

Π𝑡𝑡+1
. 

So, from the Euler equation for the long bond: 

𝑄𝑄𝑡𝑡 =
1

1 − 𝜔𝜔 + lim
𝑘𝑘→∞

𝜔𝜔𝑘𝑘𝛽𝛽𝑘𝑘𝔼𝔼𝑡𝑡
⎣
⎢⎡�

1
Π𝑡𝑡+𝑗𝑗

𝑘𝑘

𝑗𝑗=1 ⎦
⎥⎤ 𝑄𝑄𝑡𝑡+𝑘𝑘 ≥

1
1 − 𝜔𝜔, 

with equality when 𝜔𝜔 < 1 as the transversality constraint definitely holds in that case. 

But, when 𝜔𝜔 = 1, this says 𝑄𝑄𝑡𝑡 ≥ ∞, so 𝑄𝑄𝑡𝑡 = ∞, hence 𝑄𝑄𝑡𝑡 = 1
1−𝜔𝜔 for all 𝜔𝜔 ∈ [0,1]. 

Now let: 

𝑏𝑏𝑡𝑡 ≔
𝑄𝑄𝑡𝑡𝐵𝐵𝑡𝑡

𝑃𝑃𝑡𝑡
, 

then from the budget constraint: 

𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡 + 𝑃𝑃𝑡𝑡𝑏𝑏𝑡𝑡 + 𝑃𝑃𝑡𝑡𝜏𝜏𝑡𝑡 = 𝑃𝑃𝑡𝑡 +
𝑃𝑃𝑡𝑡−1𝑏𝑏𝑡𝑡−1

𝑄𝑄𝑡𝑡−1
(1 + 𝜔𝜔𝑄𝑄𝑡𝑡) = 𝑃𝑃𝑡𝑡 + 𝑃𝑃𝑡𝑡−1𝑏𝑏𝑡𝑡−1, 

and thus: 
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𝑐𝑐𝑡𝑡 + 𝑏𝑏𝑡𝑡 + 𝜏𝜏𝑡𝑡 = 1 +
𝑏𝑏𝑡𝑡−1
Π𝑡𝑡

. 

It is instructive to re-solve the original household problem under this rewritten budget 

constraint. This must have the same solution as the original problem. In particular, 

consider the problem of maximising: 

𝔼𝔼𝑡𝑡 � 𝛽𝛽𝑘𝑘 log 𝑐𝑐𝑡𝑡+𝑘𝑘

∞

𝑘𝑘=0
, 

subject to: 

𝑐𝑐𝑡𝑡 + 𝑏𝑏𝑡𝑡 + 𝜏𝜏𝑡𝑡 = 1 +
𝑏𝑏𝑡𝑡−1
Π𝑡𝑡

, 

by choosing 𝑐𝑐𝑡𝑡, 𝑐𝑐𝑡𝑡+1, … , 𝑏𝑏𝑡𝑡, 𝑏𝑏𝑡𝑡+1, …. This is the “textbook” cake eating problem with 

exogenous income, 1 − 𝜏𝜏𝑡𝑡, and gross interest rate 1
Π𝑡𝑡

. The Euler equation is: 
1
𝑐𝑐𝑡𝑡

= 𝛽𝛽𝔼𝔼𝑡𝑡
1

Π𝑡𝑡+1𝑐𝑐𝑡𝑡+1
, 

and the (always necessary) transversality constraint states that: 

lim
𝑘𝑘→∞

𝛽𝛽𝑘𝑘𝔼𝔼𝑡𝑡
𝑏𝑏𝑡𝑡+𝑘𝑘
𝑐𝑐𝑡𝑡+𝑘𝑘

= 0. 

Additionally, the government budget constraint can be rewritten as: 

𝜏𝜏𝑡𝑡 = (1 − 𝜔𝜔)𝑏𝑏−1 ��
1

Π𝑠𝑠

𝑡𝑡

𝑠𝑠=0
� 𝜔𝜔𝑡𝑡. 

We know that in equilibrium, market clearing implies 𝑐𝑐𝑡𝑡 = 1, but for now, we will 

“forget” this fact, and merely suppose that 𝑐𝑐𝑡𝑡 = 𝑐𝑐 for all 𝑡𝑡, for some 𝑐𝑐 > 0. This satisfies 

the Euler equation as: 
1
𝑐𝑐 = 𝛽𝛽𝔼𝔼𝑡𝑡

1
Π𝑡𝑡+1𝑐𝑐 =

1
𝑐𝑐, 

as 1 = 𝛽𝛽𝔼𝔼𝑡𝑡
1

Π𝑡𝑡+1
. Then transversality simplifies to: 

lim
𝑘𝑘→∞

𝛽𝛽𝑘𝑘𝔼𝔼𝑡𝑡𝑏𝑏𝑡𝑡+𝑘𝑘 = 0, 

and the budget constraint gives: 

𝑏𝑏𝑡𝑡 = �
⎣
⎢⎡�

1
Π𝑡𝑡−𝑗𝑗

𝑘𝑘−1

𝑗𝑗=0 ⎦
⎥⎤ (1 − 𝑐𝑐𝑡𝑡−𝑘𝑘 − 𝜏𝜏𝑡𝑡−𝑘𝑘)

𝑡𝑡

𝑘𝑘=0
+

⎣
⎢⎡�

1
Π𝑡𝑡−𝑗𝑗

𝑡𝑡

𝑗𝑗=0 ⎦
⎥⎤ 𝑏𝑏−1 

= (1 − 𝑐𝑐) � �
1

Π𝑠𝑠

𝑡𝑡

𝑠𝑠=𝑡𝑡−𝑘𝑘+1

𝑡𝑡

𝑘𝑘=0
+ 𝜔𝜔𝑡𝑡+1𝑏𝑏−1 �

1
Π𝑠𝑠

𝑡𝑡

𝑠𝑠=0
, 
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by the simplified government budget constraint previously derived. Hence, since 1 =

𝔼𝔼𝑡𝑡𝛽𝛽 1
Π𝑡𝑡+1

: 

𝛽𝛽𝑡𝑡𝔼𝔼0𝑏𝑏𝑡𝑡 = (1 − 𝑐𝑐)
1 − 𝛽𝛽𝑡𝑡+1

1 − 𝛽𝛽 + 𝜔𝜔𝑡𝑡+1𝑏𝑏−1
1

Π0
, 

so, by the period 0 transversality constraint: 

0 = lim
𝑡𝑡→∞

𝛽𝛽𝑡𝑡𝔼𝔼0𝑏𝑏𝑡𝑡 =
1 − 𝑐𝑐
1 − 𝛽𝛽 + 𝑏𝑏−1

1
Π0

lim
𝑡𝑡→∞

𝜔𝜔𝑡𝑡+1. 

If 𝜔𝜔 ∈ (0,1), then this implies that 𝑐𝑐 = 1 as expected. However, if 𝜔𝜔 = 1, then: 

𝑐𝑐 = 1 + �1 − 𝛽𝛽�
𝑏𝑏−1
Π0

. 

Thus, if Π0 is finite, then 𝑐𝑐 > 1, violating the market clearing condition. The only way 

to restore market clearing is if Π0 is infinite. This is intuitive, as when 𝜔𝜔 = 1, 

households have infinite nominal wealth, which cannot fail to push up prices. 

E.13 Solution properties of first welfare example 

Recall, that for 𝑘𝑘 > 1 the solution must satisfy the recurrence relation: 

𝜃𝜃𝑘𝑘 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃𝑘𝑘 − 𝛽𝛽𝜃𝜃𝑘𝑘+1� − 𝛽𝛽

𝜆𝜆
𝜅𝜅2 �𝜃𝜃𝑘𝑘−1 − 𝛽𝛽𝜃𝜃𝑘𝑘� = 0. 

The characteristic equation of this recurrence relationship has roots: 

�1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆

𝜅𝜅2� ± ��1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆

𝜅𝜅2�
2

− �2𝛽𝛽 𝜆𝜆
𝜅𝜅2�

2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

=
�1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆
𝜅𝜅2� ± ��1 + �1 + 𝛽𝛽�2 𝜆𝜆

𝜅𝜅2� �1 + �1 − 𝛽𝛽�2 𝜆𝜆
𝜅𝜅2�

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

. 
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The positive root satisfies: 

�1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆

𝜅𝜅2� + ��1 + �1 + 𝛽𝛽�2 𝜆𝜆
𝜅𝜅2� �1 + �1 − 𝛽𝛽�2 𝜆𝜆

𝜅𝜅2�

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

>
�1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆
𝜅𝜅2� + ��1 + �1 − 𝛽𝛽�2 𝜆𝜆

𝜅𝜅2� �1 + �1 − 𝛽𝛽�2 𝜆𝜆
𝜅𝜅2�

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

=
1 + 𝜆𝜆

𝜅𝜅2 − 𝛽𝛽�1 − 𝛽𝛽� 𝜆𝜆
𝜅𝜅2

𝛽𝛽 𝜆𝜆
𝜅𝜅2

>
1 + 𝜆𝜆

𝜅𝜅2 − �1 − 𝛽𝛽� 𝜆𝜆
𝜅𝜅2

𝛽𝛽 𝜆𝜆
𝜅𝜅2

= 1 +
1

𝛽𝛽 𝜆𝜆
𝜅𝜅2

> 1. 

The negative root satisfies: 

�1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆

𝜅𝜅2� − ��1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆

𝜅𝜅2�
2

− �2𝛽𝛽 𝜆𝜆
𝜅𝜅2�

2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

>
�1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆
𝜅𝜅2� − ��1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆
𝜅𝜅2�

2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

= 0, 

and: 

�1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆

𝜅𝜅2� − ��1 + �1 + 𝛽𝛽�2 𝜆𝜆
𝜅𝜅2� �1 + �1 − 𝛽𝛽�2 𝜆𝜆

𝜅𝜅2�

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

<
�1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆
𝜅𝜅2� − ��1 + �1 − 𝛽𝛽�2 𝜆𝜆

𝜅𝜅2� �1 + �1 − 𝛽𝛽�2 𝜆𝜆
𝜅𝜅2�

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

= 1. 

Hence, the positive root is greater than 1, while the negative root is in (0,1). Thus for 

𝑘𝑘 ≥ 1: 

𝜃𝜃𝑘𝑘 = 𝜃𝜃1

⎣
⎢
⎢
⎢
⎢
⎡�1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆
𝜅𝜅2� − ��1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆
𝜅𝜅2�

2
− �2𝛽𝛽 𝜆𝜆

𝜅𝜅2�
2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

⎦
⎥
⎥
⎥
⎥
⎤

𝑘𝑘−1

. 
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Hence, 𝜃𝜃0, 𝜃𝜃1 and 𝜃𝜃2 are the unique solution of the three linear (in 𝜃𝜃0, 𝜃𝜃1 and 𝜃𝜃2) 

equations: 

𝜃𝜃0 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1� = 0, 

𝜃𝜃1 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃1 − 𝛽𝛽𝜃𝜃2� − 𝛽𝛽

𝜆𝜆
𝜅𝜅2 �𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1� = 0, 

𝜃𝜃2 = 𝜃𝜃1

⎣
⎢
⎢
⎢
⎢
⎡�1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆
𝜅𝜅2� − ��1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆
𝜅𝜅2�

2
− �2𝛽𝛽 𝜆𝜆

𝜅𝜅2�
2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

⎦
⎥
⎥
⎥
⎥
⎤

. 

E.14 Solution under discretion of first welfare example 

Under discretion, we have the standard first order condition: 

𝜋𝜋𝑡𝑡 +
𝜆𝜆
𝜅𝜅 𝑥𝑥𝑡𝑡 = 0, 

i.e.: 

𝜅𝜅 � 𝜃𝜃𝑘𝑘𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=0
+

𝜆𝜆
𝜅𝜅 ��𝜃𝜃𝑘𝑘 − 𝛽𝛽𝜃𝜃𝑘𝑘+1 − 𝟙𝟙[𝑘𝑘 = 0]�𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=0
= 0, 

so: 

𝜃𝜃0 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1� = 0, 

∀𝑘𝑘 ≥ 1, 𝜃𝜃𝑘𝑘 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃𝑘𝑘 − 𝛽𝛽𝜃𝜃𝑘𝑘+1� = 0. 

The latter recurrence relation has the general solution 𝜃𝜃𝑘𝑘 = 𝜃𝜃1�𝜅𝜅2

𝛽𝛽𝛽𝛽 + 1
𝛽𝛽�

𝑘𝑘−1
, which is 

explosive as 𝛽𝛽 < 1. Thus, we must have 𝜃𝜃1 = 𝜃𝜃2 = ⋯ = 0. Hence, 𝜃𝜃0 = 𝜆𝜆
𝜆𝜆+𝜅𝜅2. 

E.15 Solution under the timeless perspective of first welfare example 

The timeless perspective (Woodford 1999) leads to the first order condition: 

𝜋𝜋𝑡𝑡 +
𝜆𝜆
𝜅𝜅 (𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑡𝑡−1) = 0, 

i.e.: 

𝜅𝜅 � 𝜃𝜃𝑘𝑘𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=0
+

𝜆𝜆
𝜅𝜅 ���𝜃𝜃𝑘𝑘 − 𝛽𝛽𝜃𝜃𝑘𝑘+1 − 𝟙𝟙[𝑘𝑘 = 0]�𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=0

− ��𝜃𝜃𝑘𝑘−1 − 𝛽𝛽𝜃𝜃𝑘𝑘 − 𝟙𝟙[𝑘𝑘 − 1 = 0]�𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=1
� = 0, 



Page 61 of 64 

 

so: 

𝜃𝜃0 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1� = 0, 

𝜃𝜃1 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃1 − 𝛽𝛽𝜃𝜃2� −

𝜆𝜆
𝜅𝜅2 �𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1� = 0, 

∀𝑘𝑘 > 1, 𝜃𝜃𝑘𝑘 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃𝑘𝑘 − 𝛽𝛽𝜃𝜃𝑘𝑘+1� −

𝜆𝜆
𝜅𝜅2 �𝜃𝜃𝑘𝑘−1 − 𝛽𝛽𝜃𝜃𝑘𝑘� = 0. 

The roots of the characteristic equation corresponding to the latter recurrence relation 

are: 

�1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽 𝜆𝜆

𝜅𝜅2� ± ��1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽 𝜆𝜆

𝜅𝜅2�
2

− 4𝛽𝛽 � 𝜆𝜆
𝜅𝜅2�

2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

. 

The positive root satisfies: 

�1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽 𝜆𝜆

𝜅𝜅2� + ��1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽 𝜆𝜆

𝜅𝜅2�
2

− 4𝛽𝛽 � 𝜆𝜆
𝜅𝜅2�

2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

>
𝜆𝜆
𝜅𝜅2 + 𝛽𝛽 𝜆𝜆

𝜅𝜅2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

=
1 + 𝛽𝛽

2𝛽𝛽 > 1. 

The negative root satisfies: 

�1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽 𝜆𝜆

𝜅𝜅2� − ��1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽 𝜆𝜆

𝜅𝜅2�
2

− 4𝛽𝛽 � 𝜆𝜆
𝜅𝜅2�

2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

>
�1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽 𝜆𝜆
𝜅𝜅2� − ��1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽 𝜆𝜆
𝜅𝜅2�

2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

= 0, 
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and: 

�1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽 𝜆𝜆

𝜅𝜅2� − ��1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽 𝜆𝜆

𝜅𝜅2�
2

− 4𝛽𝛽 � 𝜆𝜆
𝜅𝜅2�

2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

=
�1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽 𝜆𝜆
𝜅𝜅2� − �1 + �1 − 𝛽𝛽�2 � 𝜆𝜆

𝜅𝜅2�
2

+ 2�1 + 𝛽𝛽� 𝜆𝜆
𝜅𝜅2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

<
�1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽 𝜆𝜆
𝜅𝜅2� − �1 + �1 − 𝛽𝛽�2 � 𝜆𝜆

𝜅𝜅2�
2

+ 2�1 − 𝛽𝛽� 𝜆𝜆
𝜅𝜅2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

=
�1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽 𝜆𝜆
𝜅𝜅2� − ��1 + �1 − 𝛽𝛽� 𝜆𝜆

𝜅𝜅2�
2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

=
2𝛽𝛽 𝜆𝜆

𝜅𝜅2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

= 1. 

Hence, the positive root is greater than 1, while the negative root is in (0,1). Thus for 

𝑘𝑘 ≥ 1: 

𝜃𝜃𝑘𝑘 = 𝜃𝜃1

⎣
⎢
⎢
⎢
⎢
⎡�1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽 𝜆𝜆
𝜅𝜅2� − ��1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽 𝜆𝜆
𝜅𝜅2�

2
− 4𝛽𝛽 � 𝜆𝜆

𝜅𝜅2�
2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

⎦
⎥
⎥
⎥
⎥
⎤

𝑘𝑘−1

. 

Hence, 𝜃𝜃0, 𝜃𝜃1 and 𝜃𝜃2 are the unique solution of the three linear (in 𝜃𝜃0, 𝜃𝜃1 and 𝜃𝜃2) 

equations: 

𝜃𝜃0 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1� = 0, 

𝜃𝜃1 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃1 − 𝛽𝛽𝜃𝜃2� −

𝜆𝜆
𝜅𝜅2 �𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1� = 0, 

𝜃𝜃2 = 𝜃𝜃1

⎣
⎢
⎢
⎢
⎢
⎡�1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽 𝜆𝜆
𝜅𝜅2� − ��1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽 𝜆𝜆
𝜅𝜅2�

2
− 4𝛽𝛽 � 𝜆𝜆

𝜅𝜅2�
2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

⎦
⎥
⎥
⎥
⎥
⎤

. 
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