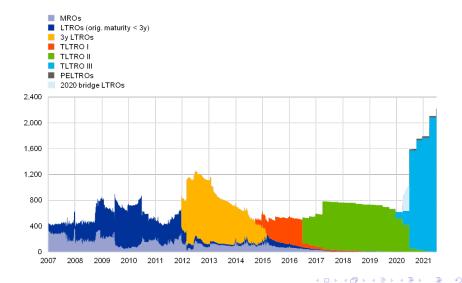
Breaking Bagehot's Rules: Loan Contracting with Advantageous Central Bank Funding

Christian Eufinger (IESE) and Zhiqiang Ye (Zhejiang University)

Conference on Markets and Intermediaries - Frankfurt October 1-2, 2024

Preferential central bank funding schemes


- Since global financial crisis, central banks have fundamentally redefined their role, extending beyond classical "lender of last resort" (LOLR)
- New tool: preferential funding schemes (e.g., ECB's LTRO)
- Primary purposes (BIS, 2023; Carlson and Zarutskie, 2022; Goodhart et al., 2020):
 - Stimulate credit growth
 - Improve bank profitability and liquidity

Examples

- Bank of Japan's "Loan Support Program"
- ECB's "Long-Term Refinancing Operations" (LTRO) and Targeted-LTRO (TLTRO)
- Bank of England's "Funding for Lending Scheme"
- Fed's Bank Term Funding Program

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

LTRO volumnes

Eufinger and Ye

October 1-2, 2024

Preferential CB funding schemes usually contain:

- Preferential interest rates (below market rate):
 - Ex: ECB's TLTRO programs offered rates as low as -1%
- Preferential collateral requirements (compared to market requirements):
 - Ex (1): ECB's haircut on 5-year PT government bonds 4% in 2010, while market haircut 10%
 - Ex (2) Fed's Bank Term Funding Program values collateral at par

Research questions

• Effects of preferential CB funding schemes studied empirically:

- Andrade et al., 2019; Cahn et al., 2017; Carpinelli and Crosignani, 2021; Casiraghi et al., 2013; Darracq-Paries and De Santis, 2015; Garcia-Posada and Marchetti, 2016 Bednarek et al., 2021; Acharya and Steffen, 2015; Andreeva and Vlassopoulos, 2019; Crosignani et al., 2020; van der Kwaak 2022; and many others
- ...but (a) theoretical analyses scarce (b) unclear transmission mechanism from the CB schemes to firm behavior
- We address this gap by investigating how preferential CB funding schemes (interest rates and collateral requirements) affect ...
 - Loan contracting
 - Borrower investments (size and efficiency)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Effects of preferential CB funding schemes

- Incentivize banks to encourage their borrowers to take on excessive leverage and overinvest
- If collateral requirements sufficiently lenient, banks lose monitoring incentives and steer borrowers toward inferior **high-risk projects**
- Interaction between preferential interest rates, collateral requirements, and market rates
 - Favorable rates and lower market rates can amplify negative effect of lenient collateral requirements on banks' loan contracting and borrowers' investment efficiency
- Although such funding programs may provide short-term benefits to banks' credit growth and profitability, they can plant seeds for financial instability and hinder economic growth in the long run

・ロット (母) ・ ヨ) ・ ヨ)

Model setup

Model

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Model overview

- Risk-neutral players: firm, bank, central bank, and numerous competitive household investors ("investors")
- Firm (with equity endowment E) has real investment projects: good & bad
- Bank offers loan contract to firm and can monitor it
 - Bank monitoring: force firm to choose good project
- Investors provide funds to both, firm and bank
- Central bank (CB) provides preferential funding scheme to bank

Model

Firm projects

- Firm's projects are represented by $\{F(I), P\}$
 - I: investment scale
 - F(I): project return when successful
 - P: success probability
- Good project: F(I) = f(I) and $P = p_H$.
- Bad project: $F(I) = \delta f(I)$ (with $\delta > 1$) and $P = p_L$ (with $p_L < p_H$).

• f'(I) > 0, f''(I) < 0, and $f(0) = f'(\infty) = 0$.

Good project is "good" and bad project "bad" from efficiency perspective:

$$p_H f'(E) > 1 + r > p_L f'(0).$$

• 1 + r: Market interest rate / investors' cost of capital

ger an	

Breaking Bagehot's Rules

Firm moral hazard

Without monitoring, firm will choose good project only if:

$$p_H \left[f(I) - R_{out} \right] \ge p_L \left[\delta f(I) - R_{out} \right],$$
 [Firm IC]

- Rout: nominal return promised to outside funding providers
- IC holds when I is not too large
- Without monitoring, I cannot exceed upper bound \overline{I}

Bank lending and monitoring

- Bank can monitor firm (force firm to implement good project; moral hazard disappears)
- Banks can offers loan contract {R_b, q} to firm
 - q: loan volume
 - R_b: promised loan repayment
- Bank incurs private participation costs γ when lending (e.g., debt overhang or giving up risk-shifting opportunity)
- Bank's funding sources: αq from CB funding scheme with nominal interest rate $1 + r_c$ and $(1 \alpha)q$ from investors (fairly priced)

Preferential CB funding

CB funding is "preferential":

- Rate 1 + r_c < market-based interest rate
- Favorable collateral requirements:
 - Collateral covers proportion $\lambda \in [0, 1]$ of CB interest rate $1 + r_c$
 - If bank defaults it incurs per-unit value loss of $\lambda(1 + r_c)$, which is CB's collateral seizure
 - Lower $\lambda \Rightarrow$ more favorable collateral requirements

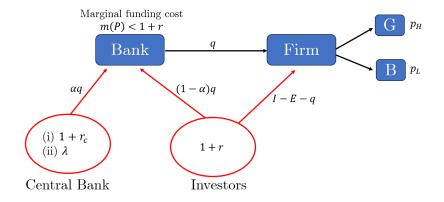
イロト イポト イヨト イヨト

Bank profit

Bank's expected per-unit payment to central bank is

$$\iota(P) \equiv P(1+r_c) + (1-P)\,\lambda(1+r_c),$$

- $P = p_H$ or p_L , depending on firm's project choice
- $\iota(P) < 1 + r$: CB funding less costly than market-based funding
- Bank's marginal funding costs:


$$m(P) \equiv (1 - \alpha)(1 + r) + \alpha \iota(P) < 1 + r$$

Bank profit:

$$\pi_b \left(R_b, q, P \right) = P R_b - q m \left(P \right) - \gamma$$

Model

Setup overview

finger	

October 1-2, 2024

・ロト ・回ト ・ヨト ・ヨト

15/29

æ

Optimal bank contract

Optimal bank contract - with compulsory monitoring

Eufinger and Ye

Breaking Bagehot's Rules

October 1-2, 2024

Optimal contract with compulsory monitoring

Proposition 1

With compulsory monitoring, the bank's optimal contract, $\{R_b^h, q^h\}$, is given by solution of the following system of equations

$$p_H f'(q^h + E) = m(p_H),$$

$$p_H R_b^h = p_H f(q^h + E) - E(1+r) - \left(p_H f(\overline{I}) - \overline{I} (1+r) \right)$$

If bank lends to firm, the firm's investment level is $\underline{I^h \equiv q^h + E > I^*}$ and thus higher than the efficient level.

ufing		

Optimal contract with *compulsory monitoring* (cont.)

Corollary 1

Extent of investment inefficiency and firm's leverage increase with extent of CB funding cost advantage (i.e., increase with α and decrease with $\iota(p_H)$)

As $m(p_H)$ decreases (i.e., α becomes higher or $\iota(p_H)$ becomes lower):

- Lending spread $1 + r m(p_H)$ becomes more profitable;
- Bank increases q^h to extract more profit from lending spread, worsening firm's overinvestment

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Optimal bank contract

Optimal bank contract - without compulsory monitoring

Eufinger and Ye

Breaking Bagehot's Rules

October 1-2, 2024

19/29

Without compulsory monitoring

Proposition 2

If following inequality holds:

$$\underbrace{\alpha \left(1-\lambda\right) \left(1+r_c\right) \Delta p}_{=m(p_H)-m(p_L)} > \left(p_H - p_L \delta\right) f'(0),$$

it is optimal for the bank to offer the bad project loan contract $\{R_b^l, q^l\}$ when the bank's liabilities are sufficiently large. The firm implements the bad project after accepting the contract.

Eufinger and Ye	
-----------------	--

Why does bank potentially waive monitoring?

With $\lambda < 1$, inducing firm to implement bad project has two effects:

- Cost-saving: $m(p_L) < m(p_H)$.
 - Lowers likelihood that bank has to honor its debt repayment obligations
- Income-reducing:
 - Bad project's expected return < good project's expected return

When cost-saving effect > income-reducing effect (if λ sufficiently small), bank waives monitoring

Why does bank potentially waive monitoring?

Proposition 3

If there exists a λ for which bank prefers bad project, then there exists a $\hat{\lambda}$ with $\hat{\lambda} \in [0,1)$ for which bank prefers bad (resp. good) project whenever $\lambda \leq \hat{\lambda}$ (resp. $\lambda > \hat{\lambda}$)

• Corollary: more severe borrower over investment when bad project is implemented $(q^l > q^h)$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

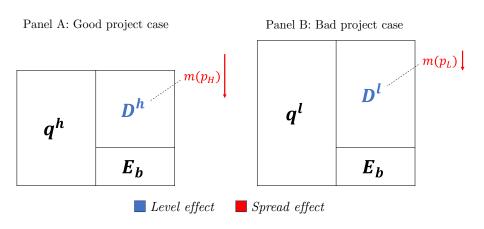
Interaction preferential rate and collateral requirement

Depending on bank's debt level, lowering CB funding scheme (lowering r_c) can either amplify or weaken negative effect of preferential collateral requirements on bank's loan contract design.

Proposition 4

 $r_c \downarrow$ will shift bank's preference toward bad project if:

$$\frac{D^l}{D^h} > \frac{p_H + (1 - p_H \lambda)}{p_L + (1 - p_L \lambda)}$$

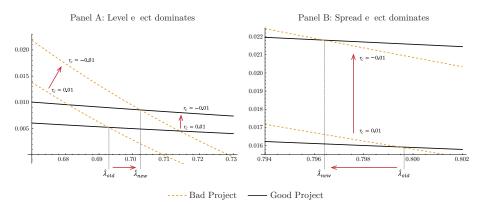

inger	

Interaction preferential rate and collateral requirement

 $r_c \downarrow$ has two opposing effects on bank's project preference:

- Spread effect:
 - Bank's success likelihood (and thus having to repay its debt obligations) higher if bank implements good instead of bad project loan contract
 - Decreasing r_c decreases bank's marginal funding costs more for good project loan contract (i.e., $\Delta m(p_H) > \Delta m(p_L)$)
- Level effect:
 - If $D^l > D^h$, reduction in bank's marginal funding costs by some τ decreases bank's funding costs by more for bad than for good project loan contract (as $\tau D^l > \tau D^h$)
- \Rightarrow If $D^l >> D^h$, level effect > spread effect, shifting bank's preference toward firm's bad project (i.e., waiving monitoring).

Effect of $r_c \downarrow$


E

Interaction preferential rate and collateral requirement

- Whether r_c ↓ has amplification or dampening on risk-taking is determined by favorability of collateral requirement
- $D^l > D^h$ holds if collateral requirement sufficiently lenient:

$$\lambda < \overline{\lambda} \equiv \frac{1 - \frac{1}{\delta}}{1 - \frac{1}{\delta} + \frac{1}{p_L \delta} - \frac{1}{p_H}} - \frac{(1 - \alpha)}{\alpha} \frac{(1 + r)\left(\frac{1}{p_L \delta} - \frac{1}{p_H}\right)}{(1 + r_c)\left(\frac{1 - p_L}{p_L \delta} - \frac{1 - p_H}{p_H}\right)}.$$

Potential amplification through preferential rate

Further Results

- Similar finding for decrease in market rate as for decrease in preferential CB funding rate
- Optimal central bank funding scheme involves
 - bid limit for banks
 - e sufficiently strict collateral requirements
- Results robust to endogenous firm equity decision
- Results robust to economy with infinite number of nonidentical firms

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Conclusion

- We examine impact of preferential central bank funding on (i) banks' loan contract design, (ii) their monitoring incentives, and (iii) borrowers' investment behavior
- Preferential funding schemes can incentivize banks to encourage their borrowers to
 - take on excessive leverage
 - overinvest
 - invest in inferior high-risk projects
- Dangerous to have both, preferential interest rates and favorable collateral requirements, due to interaction effects