# Fragility of Safe Asset Markets (T. Eisenbach and G. Phelan)

#### Agnese Leonello (ECB)

#### 1 October 2024

The views expressed here are the authors' and do not necessarily reflect those of the ECB or the Eurosystem.

(日) (日) (日) (日) (日) (日) (日) (日)

# Contribution

Provides a framework to explain fragility in safe asset market

- In the presence of a constrained dealers' demand, investors (e.g., MMFs) preemptively sold US Treasuries in the attempt to avoid to "be the last in line"
- Sheds light on unintended consequences of post GFC regulation
  - Non-risk weighted constraints, e.g., leverage ratio, make it more expensive for banks to engage in low-margin activities
- Shows an unexpected positive impact of "flight to safety" on market fragility
  - Timing of safety investors' demand is key, as well as inherent market fragility (amplification effects)

### The Model: Main Ingredients

- Dealers buy safe assets from liquidity investors at two dates t = 0, 1
  - Prices are set by dealers competing à la Bertrand
  - Quantity sold q<sub>t</sub> depends on realization of liquidity shock s and investors' strategic decisions λ
- Strategic complementarity in liquidity investors' sale decisions (akin to depositors' run)
  - Selling at t = 0 is optimal when  $\pi(s, \lambda) > 0$ , with

$$\pi(s,\lambda) = \underbrace{p_0(s,\lambda)}_{\text{payoff from selling}} - \underbrace{(sp_1(s,\lambda) + (1-s)v)}_{\text{payoff from holding}}$$
  
the safe asset at  $t = 0$  the safe asset until  $t = 1$ 

•  $\pi(s, \lambda)$  varies with s and  $\lambda$ : direct effect plus indirect effect via prices  $\rightarrow$  crucial role of  $-cq^2$  as it leads to  $p_1 \downarrow$  when supply of safe assets  $\downarrow$  in t = 1

#### Price determination stage

- Three key elements:
  - Convex inventory costs; Bertrand competition; Trades executed sequentially
- Under the current setup

$$p_1=1-\mathit{cq}_1-2\mathit{cq}_0$$
 and  $p_0=1-\mathit{cq}_0$ 

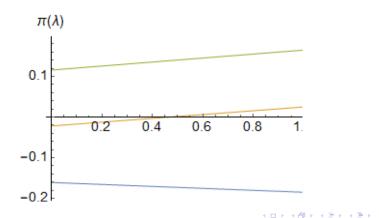
Alternative scenario: Dealers choose {q<sub>0</sub>, q<sub>1</sub>} so to maximize profits

$$p_1^{\mathcal{A}}=1-2cq_1-2cq_0$$
 and  $p_0^{\mathcal{A}}=1-2cq_0$ 

- A change in  $q_0$  has the same impact on prices  $p_t^A$  at t = 0, 1
- What does this implies for the strategic complementarity, is still  $\pi'_{\lambda}(s, \lambda) > 0$ ?

Preemptively sale: Strategic complementarity and global games

- In this setup, global games are useful to pin down the probability of an equilibrium with preemptive sales
  - Investors receive an imperfect signal on s and based on this signal decide what to do



-

### Translating into the bank run language

For extreme values of s, investors have dominant strategies

| Lower dominance                    |              | Intermediate                      |                                     |             | Upper dominance |
|------------------------------------|--------------|-----------------------------------|-------------------------------------|-------------|-----------------|
| no investors                       | <br><u>s</u> | investors                         | <br>s*                              | <br><u></u> | all investors   |
| sell assets<br>due to low <i>s</i> |              | sell because of $s$ and $\lambda$ | sell assets<br>due to high <i>s</i> |             |                 |
| -no sales                          |              | <ul> <li>"panic sales"</li> </ul> | — "fundamental" sales               |             |                 |

where  $\underline{s}$  solves  $\pi(1, s) = 0$  and  $\overline{s}$  solves  $\pi(0, s) = 0$  and  $s^*$  is the solution to

$$\int_0^1 \pi\left(\lambda, s\right) d\lambda = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

#### Properties of the payoff differential function

- For the global games,  $\pi(\lambda, s)$  must be increasing in  $\lambda$ 
  - In the paper, this is the case if s is sufficiently large s > s̃ = 0.27. How does this compare to s?

$$\underline{s} = \frac{2(\nu - 1) + c}{2(\nu - 1 + 2c)}$$

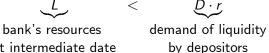
• Maybe, there is a "cleaner" condition on v and c so that  $\frac{\partial \pi(\lambda,s)}{\partial \lambda} > 0$  for any  $s > \underline{s}$ ?

Sources of strategic complementarity

In a bank run framework, sources of strategic complementarity are easily pinned down. Panic requires



at intermediate date



- $\blacktriangleright$  When L = Dr, strategic complementarity disappears but not runs
  - Fundamental (efficient) runs still occur
- What is the equivalent here? What is needed for  $s^* \rightarrow \overline{s}$ ?
  - It could be useful to discuss/analyze interventions aimed at preventing fragility

## Inefficient preemptive sales

- In the range  $s > \overline{s}$  selling is a dominant action  $\overline{s}$  solves  $\pi(0, s) = 0$
- How does  $s^{**}$  in the paper compares to  $\overline{s}$ ?
  - Is  $s^{**} > \overline{s}$ , so that only **some** fundamental sales are efficient?

- Efficiency is defined from a liquidity investor's perspective only
  - What about considering the fall of the price below the fundamental value v?

### Additional comments

- Run is often used as a substitute for preemptive sale: state clear the parallel at the beginning of the paper
- How much is the whole analysis about safe asset markets? What would be different if thinking about risky assets? Extra effects?
- The possible non-monotonicity of π (λ, s) in λ hints to the one-sided strategic complementarity in GP(2005). Is it a concern? Does it affect the uniqueness of equilibrium?

## Conclusions

- Very interesting paper providing a microfoundation for fragility in safe asset market in time of a crisis
  - Highlight the consequence of post GFC regulation (complementary to other studies, e.g., Breckenfelder and Ivashina, 2023)
- Delivers important policy implications about how to alleviate and prevent such episode
  - Key is to pin down sources of strategic complementarity

 Stylized framework, but appears to be even more broadly applicable (e.g., risky assets?)