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Non-technical summary

Research question

The stabilisation properties of make-up strategies, such as average inflation targeting (AIT),

are usually quite strong in representative-agent New Keynesian (RANK) models, especially

when interest rate policy is subject to an effective lower bound (ELB). By assuming ra-

tional expectations and complete financial markets, this class of models might, however,

exaggerate the effectiveness of such strategies. In this paper, we analyse to what extent the

stabilisation benefits of make-up strategies depend on these two modelling assumptions.

Contribution

For our quantitative analysis, we extend a heterogeneous-agent New Keynesian (HANK)

model by allowing for an occasionally-binding ELB and non-rational expectations. Based

on stochastic model simulations, we contrast the macroeconomic stabilisation properties of

an inflation targeting (IT) strategy, which sets the interest rate by targeting a value for the

current inflation rate, with those of an AIT strategy, which targets the average inflation rate

and therefore displays a make-up element. To simulate our model, we develop a numerical

algorithm that can simultaneously handle household heterogeneity, non-rational expectation

formation and an occasionally-binding ELB.

Results

We obtain four main results. First, our simulations predict that AIT outperforms IT in

terms of inflation and output stabilisation when there is an ELB. Second, the relative perfor-

mance of AIT hardly differs between our HANK model and a corresponding RANK model,

suggesting that the complete-markets assumption is not particularly important for the ef-

fectiveness of make-up strategies. Third, although we find that AIT tends to mitigate the

negative consequences of an ELB better than IT even under bounded rationality, the relative

gains become quite small for low cognitive ability levels – including values consistent with

micro-evidence. Fourth, whereas market incompleteness and bounded rationality comple-

ment each other in attenuating the effects of forward guidance, our model does not indicate

such an interaction for the stabilisation properties of make-up strategies.



Nichttechnische Zusammenfassung

Fragestellung

Die Stabilisierungswirkungen vergangenheitsabhängiger geldpolitischer Strategien, wie z.B.

einer durchschnittlichen Inflationssteuerung (Average Inflation Targeting: AIT), fallen in

neukeynesianischen Modellen mit einem repräsentativen Haushalt zumeist ausgesprochen

stark aus. Dies gilt insbesondere dann, wenn die Zinspolitik einer Zinsuntergrenze (ZUG)

unterliegt. Aufgrund der Annahme rationaler Erwartungen und vollständiger Kapitalmärkte

könnte diese Modellklasse die tatsächliche Effektivität solcher Strategien überzeichnen. In

der vorliegenden Arbeit untersuchen wir die Bedeutung der beiden Modellannahmen für die

Stabilisierungswirkungen vergangenheitsabhängiger Strategien.

Beitrag

Unsere quantitative Analyse beruht auf einem neukeynesianischen Modell mit heterogenen

Haushalten, das wir durch eine endogen bindende ZUG und nicht-rationale Erwartungsbil-

dung erweitern. Auf Basis stochastischer Modellsimulationen vergleichen wir die Stabi-

lisierungswirkungen einer Inflationssteuerung (Inflation Targeting: IT) mit denen von AIT.

Während die Zinssetzung bei IT ein Inflationsziel für die laufende Periode anstrebt, wird

bei AIT ein Zielwert für den Durchschnitt der Inflationrate angestrebt, wobei dieser über die

laufende und vergangene Perioden berechnet wird, so dass eine Vergangheitsabhängigkeit

entsteht. Für die Simulation des Modells entwickeln wir einen numerischen Algorithmus,

der es erlaubt, simultan heterogene Haushalte, nicht-rationale Erwartungsbildung und eine

endogen bindende ZUG zu berücksichtigen.

Ergebnisse

Die Modellanalyse liefert vier Resultate. Erstens zeigen unsere Simulationen, dass AIT über

bessere Stabilisierungseigenschaften verfügt als IT, wenn die Zinspolitik einer ZUG unter-

liegt. Zweitens hängen diese Stabilisierungsvorteile von AIT gegenüber IT nicht von der

Annahme (un)vollständiger Kapitalmärkte ab. Drittens kann AIT die negativen Konsequen-

zen einer ZUG zwar auch bei nicht-rationaler Erwartungsbildung besser abfedern als IT, je-

doch fallen die Stabilisierungsvorteile recht klein aus, wenn die kognitiven Fähigkeiten der

Wirtschaftssubjekte – in Einklang mit Mikro-Evidenz – gering sind. Viertens beobachten

wir, dass sich unvollständige Kapitalmärkte und beschränkte Rationalität nicht in einer

Weise ergänzen, die die Stabilsierungsvorteile vergangenheitsabhängiger Strategien zusätz-

lich abschwächt. Gleichwohl finden wir, dass in unserem Modell eine solche Interaktion

hinsichtlich der Wirkung einer Zins-Forward-Guidance besteht.
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1 Introduction

In August 2020, the Federal Reserve announced its revised monetary policy strategy. Among

the most striking changes was a shift to a flexible form of average inflation targeting (AIT).

In theory, a make-up strategy like AIT can be helpful in a low-rate environment, which is

characterised by an elevated risk of nominal rates hitting an effective lower bound (ELB).1

The key idea behind AIT is that if the inflation target is not met today, monetary policy

promises to “make up” for this in the future. If inflation is currently below target, monetary

policy commits to steer inflation above target in the future to ensure that the inflation target

is met on average. If credible and well understood, this commitment to raise future inflation

already lowers expected real rates today and thereby stimulates current economic activity –

even when nominal rates are currently stuck at the ELB.

Typically, the benefits of make-up strategies are quite strong in representative-agent

New Keynesian (RANK) models, which are frequently used for monetary policy analy-

sis.2 However, there are at least two major concerns about the robustness of this finding.

First, it is unclear whether the performance of make-up strategies is robust to deviations

from rational expectations. Intuitively, if agents do not fully understand that an inflation

undershoot today implies an inflation overshoot tomorrow, their behaviour is not going to

respond as much as under rational expectations.3 Second, the effectiveness of make-up

strategies crucially depends on the willingness and ability of households to substitute con-

sumption over time. By assuming complete markets, RANK models usually exhibit a coun-

terfactually strong sensitivity of household consumption to interest rate changes (see e.g.

Vissing-Jørgensen, 2002; Kaplan et al., 2014) and likely exaggerate the power of make-up

strategies as a result.

Motivated by these concerns, we study how bounded rationality and market incomplete-

ness influence the effectiveness of make-up strategies. To do so, we develop a quantitative

heterogeneous-agent New Keynesian (HANK) model with incomplete markets, heteroge-

neous households, nominal price and wage rigidities, an occasionally-binding ELB and

bounded rationality. The introduction of market incompleteness and borrowing constraints

into the New Keynesian model gives rise to household behaviour that is consistent with em-

pirical evidence (see e.g. Kaplan and Violante, 2018). In particular, household consumption

becomes less sensitive to interest rate changes and more responsive to changes in tempo-

rary income. As a result, under incomplete markets, monetary policy is largely transmitted

through indirect general equilibrium effects that affect household income and less via di-

rect effects of interest rate changes (see Kaplan et al., 2018). Market incompleteness may

furthermore interact with bounded rationality in a way that can attenuate the macroeco-

1In principle, unconventional monetary policies, such as asset purchases, forward guidance or negative
interest rates, can substitute for further interest rate cuts at an ELB. An alternative to the use of additional
instruments is to raise the inflation target, which can reduce the probability of hitting the ELB (see e.g. Coibion
et al., 2012; Andrade et al., 2018; Blanco, 2021). We do not discuss these policy options in this paper.

2See e.g. Work Stream on the Price Stability Objective (2021).
3See the literature review at the end of this section for details.
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nomic effects of announcements about future interest rates (see Farhi and Werning, 2019).

This interaction could thus have immediate consequences for the performance of make-up

strategies as well.

We model bounded rationality by assuming that agents form reflective expectations

(see Garcı́a-Schmidt and Woodford, 2019).4 The concept of reflective expectations can

be viewed as a “smooth” version of level-k thinking, which is supported by experimental

evidence (see Farhi and Werning, 2019).5 In both cases, agents form beliefs about future

aggregate outcomes based on iterative reasoning. More specifically, agents with a certain

cognitive ability level believe that the economy behaves as if it were populated by agents

that are slightly less intelligent than they are themselves. The higher the cognitive ability

level is, the more agents are able to understand the general equilibrium effects of aggre-

gate shocks to the economy. In the limit, as the cognitive ability level approaches infinity,

rational expectations emerge. Under level-k thinking, cognitive ability levels are discrete

valued and the belief formation operates in discrete steps (or rounds). By contrast, under

reflective expectations, cognitive ability is continuous valued and belief formation follows

a differential equation.6

To study the impact of bounded rationality and market incompleteness on the perfor-

mance of make-up strategies, we simulate our model for two monetary policy strategies.

The first one is an inflation targeting (IT) strategy, which is modelled via a standard (iner-

tial) Taylor rule commonly used for monetary policy analysis. The second one is an AIT

strategy, which we model via a slightly modified Taylor rule that responds to deviations of

the average inflation rate from the inflation target. Both interest rate rules are subject to an

ELB constraint, which binds endogenously in our model economy that is subject to random

aggregate demand and cost-push shocks. To solve and simulate our model, we build on re-

cent advances in the literature that use a sequence-space approximation for heterogeneous-

agent models (see Boppart et al., 2018; Auclert et al., 2021) and show how to apply this

approach to a model with iterative belief formation and an occasionally-binding ELB.

We obtain four main results. First, our model predicts that AIT outperforms IT in terms

of inflation and output stabilisation when there is an ELB. By managing agents’ expecta-

tions, AIT reduces ELB incidences and negative biases in inflation and real economic activ-

ity observed under IT. These findings hold for our model regardless of whether markets are

complete and agents are rational. Second, although we calibrate our HANK model to match

4The model features three types of forward-looking agents: households, intermediate-good firms and labour
unions.

5A RANK model economy with agents that form reflective expectations can be reinterpreted as an economy
with a continuum of “level-k agents” that are heterogeneous with respect to their cognitive ability (see Garcı́a-
Schmidt and Woodford, 2019). This property will help us identify empirically plausible values for agents’
cognitive abilities.

6A key advantage of using reflective expectations rather than level-k thinking as in Farhi and Werning (2019)
is that the model is not as susceptible to oscillatory feedback between different rounds of reasoning. Such
feedback can cause a model to exhibit explosive behaviour after only a few rounds (see e.g. Garcı́a-Schmidt
and Woodford, 2019; Angeletos and Sastry, 2021; Bianchi-Vimercati et al., 2021). Avoiding such oscillatory
behaviour, which can be viewed as an artifact of level-k thinking, makes the computation of models more stable,
particularly for larger ones.
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an empirically plausible average marginal propensity to consume (MPC) out of temporary

income, the relative performance of AIT versus IT hardly differs between our HANK model

and the corresponding RANK model.7 This result suggests that the complete-markets as-

sumption may not be particularly important for the effectiveness of make-up policies. Third,

while we find that AIT tends to mitigate the consequences of the ELB better than IT even

under reflective expectations, the relative gains become quite small for low cognitive abil-

ity levels. Importantly, this includes cognitive ability levels consistent with empirical and

experimental evidence. This finding reflects that make-up strategies cannot play out their

advantages very well if agents do not fully understand how they operate. Fourth, our model

does not indicate that market incompleteness and bounded rationality complement each

other in attenuating the ability of make-up strategies to steer the economy. However, our

model predicts such a complementarity in the context of interest rate forward guidance,

consistent with Farhi and Werning (2019). While these two results may appear to be at odds

with each other at first sight, we show how to reconcile them in this paper.

Literature Our paper contributes to three strands of literature. First, it contributes to the

growing HANK literature that integrates household heterogeneity and incomplete markets

(see İmrohoroğlu, 1992; Huggett, 1993; Aiyagari, 1994) into a New Keynesian environment

(see Galı́, 2015).8 Within the HANK literature, our paper is particularly related to Farhi and

Werning (2019), Auclert et al. (2020) and Grimaud (2021), who allow for deviations from

rational expectations, as well as to Feiveson et al. (2020), Dobrew et al. (2021) and Djeutem

et al. (2022), who look at the interaction between household heterogeneity and make-up

policies under rational expectations.9 While the last two studies consider an occasionally-

binding ELB, the former ones do not. Other papers that study HANK models with an

occasionally-binding ELB constraint are Schaab (2020), Fernández-Villaverde et al. (2021),

Lee (2021) and McKay and Wieland (2021). However, they restrict attention to standard

interest rate rules without make-up elements.

Second, our paper contributes to the literature on make-up monetary policy strategies

(see e.g. Svensson, 1999; Arias et al., 2020).10 Specifically, it contributes to recent studies

7As in Hagedorn et al. (2019), we consider a HANK model with nominal wage stickiness and a calibration
that attenuates the power of anticipated future monetary accommodation, which AIT relies on. In contrast to
these authors, we however allow for positive (nominal) household debt as in Ferrante and Paustian (2019), such
that there are redistributive effects that can potentially increase the effectiveness of future interest rate changes
by reallocating resources between indebted high- and saving low-MPC households.

8See Kaplan and Violante (2018) for a recent survey. Prominent examples of this literature include Werning
(2015), McKay et al. (2016), McKay and Reis (2016), Kaplan et al. (2018), Bayer et al. (2019), Hagedorn et al.
(2019), Acharya and Dogra (2020), Bhandari et al. (2021), Gornemann et al. (2021) and Luetticke (2021). A
complementary literature exists on New Keynesian models with heterogeneous firms and financial frictions (see
e.g. Jeenas, 2020; Ottonello and Winberry, 2020; Jungherr et al., 2021).

9See also Pfäuti and Seyrich (2022) who introduce cognitive discounting à la Gabaix (2020) into the tractable
HANK (THANK) model proposed by Bilbiie (2021). Related, but not within a HANK context, are also Meh
et al. (2010) and Bergman et al. (2022). Whereas the former analyse price-level targeting for an overlapping-
generations model, the latter study average inflation targeting for a RANK model with heterogeneous workers
and a frictional labour market.

10Price-level targeting as a particular type of make-up strategy is known to have a number of desirable
properties in the standard RANK model. For instance, Vestin (2006) shows that, under certain conditions, the
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that highlight the limitations of make-up strategies in New Keynesian models with bounded

rationality (see e.g. Budianto et al., 2020; Honkapohja and Mitra, 2020; Mele et al., 2020;

Erceg et al., 2021; Bodenstein et al., 2022; Dupraz et al., 2022).11 In contrast to these

studies, our analysis is not restricted to a RANK environment but allows for household het-

erogeneity and market incompleteness. Farhi and Werning (2019) show that the interaction

between bounded rationality and market incompleteness can strongly attenuate the power

of forward guidance, which aims to affect current economic activity by managing agents’

expectations. Since this type of expectations management is also at the heart of make-up

strategies, an analysis of such strategies that allows for bounded rationality but does not

take into account market incompleteness could be misleading. To model bounded rational-

ity, we build on recent work that introduces behavioural or informational frictions into the

textbook RANK model to eliminate some of its puzzling features (see Angeletos and Lian,

2018; Woodford, 2018; Farhi and Werning, 2019; Garcı́a-Schmidt and Woodford, 2019;

Gabaix, 2020).12 As in these papers, we consider forward-looking expectation formation

that is limited with respect to how much information agents use. Specifically, we use the

approach introduced by Garcı́a-Schmidt and Woodford (2019) and study its implications

for the effectiveness of make-up policies in a HANK context.13

Third, from a methodological perspective, our paper contributes to recent studies that

solve heterogeneous-agent models by using a local model approximation in the sequence

space (see Boppart et al., 2018; Auclert et al., 2021) rather than the recursive state space

(see Reiter, 2009; Bayer and Luetticke, 2020). In particular, we show how to leverage the

sequence-space approximation to solve a HANK model with non-rational expectations and

an occasionally-binding ELB, using anticipated monetary policy shocks (see e.g. Boden-

stein et al., 2013; Holden, 2016).14

Layout The remainder of the paper is organised as follows. Section 2 introduces the

model. Section 3 describes the model calibration. Section 4 covers our numerical solution

approach. Section 5 presents and discusses the results. Section 6 concludes.

optimal Ramsey policy can be implemented as the optimal discretionary policy if the central bank’s objective
includes a price-level rather than an inflation target. Furthermore, price-level targeting can approximate the
optimal Ramsey policy prescription for ELB episodes (see e.g. Eggertsson and Woodford, 2003).

11See Eusepi and Preston (2018) for a recent survey of monetary policy in RANK models with adaptive
learning.

12Well-known examples of such features are the forward guidance puzzle (see Del Negro et al., 2015), which
states that anticipated future interest rate cuts have implausibly large contemporary effects on economic activity,
and the reversal puzzle (see Carlstrom et al., 2015; Gerke et al., 2020), which states that an interest rate peg
leads to a counterintuitive contraction in inflation.

13Bersson et al. (2019) consider level-k thinking as well as reflective expectations for a RANK model with an
ELB constraint. In the paper, the authors look at optimal monetary policy and selected experiments, focussing
on a deterministic environment. By contrast, we provide a quantitative analysis of a HANK model based on
stochastic simulations. Iovino and Sergeyev (2021) study central bank balance sheet policies when agents have
reflective expectations.

14Auclert et al. (2020) also use a sequence-space approximation for a HANK model with non-rational ex-
pectations. In contrast to our paper, the model considers sticky household expectations rather than an iterative
belief formation and does not consider stochastic simulations with an occasionally-binding ELB constraint.
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2 Model

In this section, we extend a standard New Keynesian model with nominal price and wage

rigidities (see Galı́, 2015) by including idiosyncratic household income risk, incomplete

financial markets and non-rational expectations. We also allow for an occasionally-binding

effective lower bound (ELB) on the short-term nominal interest rate, which gives rise to

ELB episodes of endogenous length and severity. Although we are ultimately interested

in analysing the model with random aggregate shocks and non-rational expectations, we

provide the model formulation only for deterministic aggregate shocks and do not impose

restrictions on how expectations are formed. Building on the model formulation laid out

in this section, we study stochastic model simulations under non-rational expectation in

Section 5. Since these simulations will be carried out based on a linearised model version

(see Section 4), where certainty equivalence holds, we refrain from spelling out how agents

form expectations in the presence of aggregate uncertainty for the nonlinear model in a

general way.15

2.1 Economy

This section describes the individual components of the model economy.

Households The economy is populated by a unit-mass continuum of infinitely-lived house-

holds, indexed by i ∈ [0,1], that derive utility from consumption and leisure. Households

face idiosyncratic income risk due to time-varying labour productivity zi,t , which affects the

size of individual labour earnings, wtzi,tNt . Idiosyncratic productivity follows a first-order

discrete Markov process. We normalise its support to obtain an average productivity level

of one for the economy, i.e. ∑i Pr(zi)zi = 1 with Pr(zi) denoting the time-invariant share

of households with zi. In each period, households receive firm profits due to ownership

of intermediate-good firms in the economy. Shares in these firms are not tradable and thus

fully illiquid. Aggregate firm dividends dt are distributed across households in proportion to

their individual productivity relative to average labour productivity.16 Households can only

imperfectly insure themselves against income risk by saving (or borrowing) via a nominal

non-state contingent bond, b̃i,t+s, subject to the ad-hoc borrowing constraint b̃i,t+s ≥ b.17

Following Farhi and Werning (2019), we assume that households can observe aggregate

model variables in the current period t when deciding on their consumption-savings plans.

However, for future periods t + s, s > 0, households rely on – potentially non-rational –

beliefs for these variables, which is captured by the use of index e. Let Ωt denote the set

15See Appendix B for details on how the model formulation in this section relates to the numerical model
solution. As in Evans et al. (2022), one could also view the setting presented in this section as one where agents
face aggregate uncertainty but rely on point expectations of future aggregate variables.

16This proportional dividend rule reduces the impact that distributional effects have on aggregate fluctuations
(see e.g. Hagedorn et al., 2019).

17We express individual holdings of nominal bonds in real terms, b̃i,t = B̃i,t /Pt , where B̃i,t denotes non-
normalised nominal bond holdings and Pt the aggregate price level.
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of relevant endogenous aggregate variables in period t and Ωe
t+s denote the respective set

of period-t beliefs about these variables in period t + s, s > 0. For notational convenience,

define the convention that Ωe
t+s = Ωt for s = 0. The tilde symbol used for the sequences

{c̃i,t+s}∞

s=0 and
{

b̃i,t+s
}∞

s=0 indicates that these are plans, made conditional on being in pe-

riod t and individual states (bi,t−1,zi,t), which do not have to materialise in equilibrium,

even though consumption and bond holdings are controlled by the household.

Due to sticky nominal wages, household labour supply is entirely demand-determined

in the model. As we explain in greater detail below, all household types work the same

amount of hours, Lt , which – due to inefficiencies caused by wage dispersion – will not

generally coincide with the amount of labour demanded by firms at aggregate real wage

wt , denoted as Nt . Taking as given hours worked and labour demanded, households form

beliefs about the respective future values, Le
t+s and Ne

t+s, as well as about future values

of the aggregate real wage, we
t+s, aggregate firm dividends, de

t+s, the (gross) inflation rate,

Πe
t+s, and the (gross) nominal interest rate, Re

t+s−1. While households form beliefs about

endogenous aggregate variables, they have perfect foresight with respect to the time path of

exogenous aggregate variables, which are summarised by the vector St+s that also contains

the household discount factor βt+s, s≥ 0.

At date t, the decision problem of an individual household i with bond holdings bi,t−1 in-

volves choosing a plan for consumption and bond holdings,
{

c̃i,t+s, b̃i,t+s
}∞

s=0, to maximise

expected lifetime utility,

Et

[
∑

∞

s=0

(
∏

s
k=0 βt+k−1

){
u(c̃i,t+s)− v

(
Le

t+s
)}]

,

with felicity functions u(c) = (c1−σ − 1)/(1−σ) and v(l) = χl1+η/(1+η), subject to

the actual budget constraint for the current period t, c̃i,t + b̃i,t = bi,t−1Rt−1Π
−1
t +wtzi,tNt +

dtzi,t , expected future period budget constraints, c̃i,t+s + b̃i,t+s = b̃i,t−1+sRe
t−1+s(Π

e
t+s)

−1 +

we
t+szi,t+sNe

t+s +de
t+szi,t+s, for s > 0, as well as borrowing limits b̃i,t+s ≥ b, for s≥ 0.18

It will be useful to define demand functions for individual bond holdings and consump-

tion, given by xt (b,z) = x
(
bi,t−1,zi,t ;{St+s}∞

s=0 ,Ωt−1,Ωt ,
{

Ωe
t+1+s

}∞

s=0

)
, x ∈ {b,c}. These

functions solve the household problem at date t and constitute the policy functions for b̃i,t

and c̃i,t , respectively. Furthermore, let Ψi,t−1 denote the beginning-of-period joint distribu-

tion of bonds bi,t−1 and labour productivity zi,t for period t. In this paper, there is no public

debt and bonds are therefore in zero net supply.19 The bond market clearing condition hence

is given by ∫i bi,tdΨi,t−1 = 0, with bi,t = bt (bi,t−1,zi,t).

Note that without idiosyncratic income risk and borrowing constraints, i.e. if zi,t+s = 1,

18The expectations operator Et [·] computes household expectations with respect to idiosyncratic labour pro-
ductivity.

19In RANK models, lump-sum taxes ensure Ricardian equivalence holds, allowing a separation of monetary
and fiscal policy in the presence of positive public debt. Such a separation is no longer possible in HANK
models. Even if monetary policy transmission does not depend on fiscal policy in the corresponding RANK
model, fiscal policy and the details of how it is specified would play a non-trivial role in our HANK model
(see e.g. Kaplan et al., 2018). Given that this would make it more complicated to understand the role of market
(in)completeness for make-up strategies, we disregard fiscal policy in this paper altogether.
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for s ≥ 0, as well as b = −∞, individual consumption c̃i,t can be expressed in closed form

as

c̃i,t =

bi,t−1
Rt−1
Πt

+wtNt +dt +∑
∞
s=1

(
∏

s
u=1

(
Re

t+u−1
Πe

t+u

)−1
)(

we
t+sN

e
t+s +de

t+s
)

1+∑
∞
s=1 ∏

s
u=1 β

1/σ

t+u−1

(
Re

t+u−1
Πe

t+u

)1/σ−1 ,

which illustrates that individual consumption in period t is a fraction of the sum of initial

wealth and the present-value of lifetime income as perceived by the household at date t.20

Given c̃i,t , bond holdings b̃i,t are then determined residually via the household period budget

constraint b̃i,t = bi,t−1Rt−1Π
−1
t +wtzi,tNt +dtzi,t − c̃i,t .

Goods market A representative firm combines intermediate production inputs Yj,t , sup-

plied by a unit-mass continuum of monopolistic firms, indexed by j ∈ [0,1], to produce

the final good Yt =
(
∫ jYj,t

(θp−1)/θpd j
)θp/(θp−1)

. Profit maximisation by the firms yields

Yj,t = (Pj,t/Pt)
−θpYt as the demand function for intermediate good j. The price of the fi-

nal good is Pt =
(
∫ jPj,t

1−θpd j
)1/(1−θp), where Pj,t denotes the price of input Yj,t set by

intermediate-good firm j. The intermediate good Yj,t is produced by firm j with production

function Yj,t = N j,t . Real marginal costs are equal across firms and given by wt .

Intermediate-good firms set prices subject to a Calvo-type friction. Only a randomly

selected fraction (1− ξp) of firms is therefore able to reset its price Pj,t in each period,

taking into account future price stickiness. For the remaining fraction of firms that cannot

optimally reset their prices (ξp), the intermediate-good price is updated according to Pj,t =

Pj,t−1
[
Πιp(Πe

t−1)
1−ιp
]
, where Π denotes the long-run inflation rate and ιp ∈ [0,1] how prices

are indexed. When setting its price at date t, firm j can observe the endogenous variables for

the current period but relies on beliefs about their future values. Specifically, the relevant

beliefs involve the aggregate price level, Pe
t+s, aggregate production, Y e

t+s, and the aggregate

real wage, we
t+s. Firms do, however, possess perfect foresight with respect to fluctuations in

exogenous aggregate variables. For simplicity, we assume that firms discount future profits

with constant discount factor β , which is the long-run value of household discount factor

βt . We assume that intermediate firms have to pay a fixed cost Φ≥ 0 in each period.

An intermediate-good firm j that can reset its price in period t chooses Pj,t to maximise

∑
∞

s=0 (βξp)
s[(Pj,t/Pe

t+s−λt+swe
t+s)Yj,t+s−Φ],

subject to the demand function Yj,t = (Pj,t/Pt)
−θpYt and the indexing rule Pj,t+s = Pj,t ×

∏
s
u=1
[
Πιp(Πe

t+u−1)
1−ιp
]
, which updates prices until they can again be re-set in the future.

We introduce the random variable λt to allow for cost-push shocks.21

We focus on a symmetric equilibrium in which all firms that can reset their prices do so

in the same way. Let P∗t denote the common reset price and define Π∗t = P∗t /Pt−1 as well

20The derivation of the optimal decision rules shown in this section can be found in Appendix A.
21As in Chen et al. (2012), we assume that the mark-up shifter λt shows up in the intermediate-good firm

problem, affecting price setting, but not in actual profits. This formulation is similar to how Hagedorn et al.
(2019) treat Rotemberg-type price adjustment costs in the goods market.
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as Πt = Pt/Pt−1. It is straightforward to show that the first-order condition for P∗t can be

written as

Π
∗
t =

θp

θp−1

λtwtYt +∑
∞
s=1 (βξp)

s
(

∏
s
u=1

Π
ιp (Πe

t+u−1)
1−ιp

Π
e
t+u

)−θp

λt+swe
t+sY

e
t+s

Yt +∑
∞
s=1 (βξp)

s
(

∏
s
u=1

Π
ιp (Πe

t+u−1)
1−ιp

Π
e
t+u

)1−θp

Y e
t+s

Πt ,

with inflation Πt satisfying Πt
1−θp = (1−ξp)(Π

∗
t )

1−θp +ξp
(
Πιp(Πt−1)

1−ιp
)1−θp .

Due to price dispersion, µp,t , aggregate output in the economy satisfies µp,tYt = Nt

and is hence distorted for µp,t > 1. The law of motion for price dispersion is given by

µp,t = Π
θp
t
[
(1−ξp)(Π

∗
t )
−θp +ξp

(
Πιp(Πe

t−1)
1−ιp)−θp µp,t−1

]
. Goods market clearing re-

quires Yt = ∫i ci,tdΨi,t−1 +Φ, where ci,t = ct (bi,t−1,zi,t). Finally, aggregate firm profits are

dt = Yt −wtNt −Φ.

Labour market There is a unit-one continuum of labour unions, indexed by k∈ [0,1], that

aggregate labour supplied by households to specialised labour services Nk,t which are then

offered to a representative labour packer at nominal wage Wk,t . These labour services are

in turn combined by the labour packer to generate the composite labour input Nt according

to a CES function, Nt =
(
∫kNk,t

(θw−1)/θwdk
)θw/(θw−1)

, and sold to intermediate-good firms

at the nominal wage Wt .22 Profit maximisation by the labour packer yields the demand

function for labour services of union k, Nk,t = (Wk,t/Wt)
−θwNt . The aggregate wage satisfies

Wt =
(
∫kWk,t

1−θwdk
)1/(1−θw).

Each union k generates labour services by aggregating efficiency units of labour sup-

plied by households, Nk,t = ∫izi,tni,k,tdΨi,t−1. Household i is employed by union k according

to the uniform rule ni,k,t = Nk,t , implying that all households supply the same amount of

labour to union k and hence in total. Total hours worked by household i are li,t = ∫kni,k,tdk

and – as will be shown below – equal across households, i.e. li,t = Lt .

Unions are subject to nominal rigidities à la Calvo when setting wage Wk,t for labour

services Nk,t . Similar to the goods market, only a fraction 1− ξw of randomly selected

unions can thus optimally reset the wage Wk,t in each period, whereas the remaining frac-

tion cannot re-optimise and updates the wage based on the indexing rule Wk,t+s = Wk,t ×
∏

s
u=1
[
Πιw(Πe

t+u−1)
1−ιw

]
, with ιw ∈ [0,1]. Like the households and the intermediate-good

firms, labour unions form beliefs about endogenous aggregate variables,
{

Ωe
t+1+s

}∞

s=0, but

have perfect foresight regarding exogenous aggregate variables, {St+s}∞

s=0.

Taking as given household consumption-saving decisions and anticipating future wage

stickiness, a union k that can reset its wage at date t chooses Wk,t to maximise

∑
∞

s=0 (βξw)
s{MUe

t+s(Wk,t+s/Pe
t+s)Nk,t+s−MV e

t+sNk,t+s
}
,

with MUt+s = ∫ zi,t+sci,t+s
−σ dΨi,t+s−1 and MVt+s = ∫ χli,t+s

ηdΨi,t+s−1, subject to labour

22The structure of the labour market follows Auclert et al. (2020), who extend the sticky-wage framework
developed in Erceg et al. (2000) and Schmitt-Grohé and Uribe (2006) to a HANK model.
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service demand Nk,t+s =
(
Wk,t+s/W e

t+s
)−θwNe

t+s and the indexing rule for wages.

In a symmetric equilibrium, all unions that can reset their wages choose to do so in the

same way. Define W ∗t as the common nominal reset wage for these unions. The unions’

first-order condition for the nominal wage W ∗t can be written in real terms as

w∗t =
θw

θw−1

Ntw
θw
t MVt +∑

∞
s=1 (βξw)

s
(

∏
s
u=1

Πιw (Πe
t+u−1)

1−ιw

Π
e
t+u

)−θw

Ne
t+s
(
we

t+s
)θwMV e

t+s

Ntw
θw
t MUt +∑

∞
s=1 (βξw)

s
(

∏
s
u=1

Πιw (Πe
t+u−1)

1−ιw

Π
e
t+u

)1−θw
Ne

t+s(we
t+s)

θwMUe
t+s

,

where w∗t =W ∗t /Pt .

Using the uniform labour demand rule ni,k,t = Nk,t and the demand function for labour

services offered by union k, Nk,t =(Wk,t/Wt)
−θwNt , total hours for household i, li,t = ∫kni,k,tdk,

can be written as li,t = µw,tNt , with wage dispersion µw,t evolving according to the law of

motion µw,t = (1−ξw)(w∗t /wt)
−θw + ξw(wt−1/wt)

−θw
(
Πιw(Πe

t−1)
1−ιw/Πt

)−θw
µw,t−1. It is

straightforward to see that – as noted earlier – all households work the same amount of

hours li,t = Lt , which is different from composite labour input Nt for µw,t > 1. It therefore

holds that Lt = µw,tNt . Finally, the aggregate real wage satisfies wt
1−θw =(1−ξw)(w∗t )

1−θw +

ξw
(
Πιw(Πe

t−1)
1−ιwwt−1/Πt

)1−θw .

Monetary policy The central bank sets the nominal interest rate Rt based on an instrument

rule and subject to an ELB, Rt = max
{

R̃t ,RELB
}

. For the shadow rate R̃t , we consider a

slightly modified inertial Taylor rule,

R̃t

R
=

(
R̃t−1

R

)ρR

(Π
(T )
t

Π

)φΠ(
Yt

Y

)φY

1−ρR

,

where R denotes the (quarterly) long-run nominal interest rate, Π the (quarterly) inflation

target, Y the long-run output level, and Π
(T )
t =

(
∏

T
k=1 Πt−k+1

)1/T the average (quarterly)

inflation rate over the past T periods.

This rule captures two types of monetary policy strategies. For T = 1, the rule reduces

to a standard Taylor rule that targets the current inflation rate. We refer to this case as an

inflation targeting (IT) strategy. This is the case usually considered in the New Keynesian

literature to model monetary policy. For T > 1, the policy rule targets the average inflation

rate over the last T periods. We refer to this case as an average inflation targeting (AIT)

strategy. Under this specification, missing the inflation target in a given period has impli-

cations for how interest rates will be set in future periods. Specifically, monetary policy is

committed to make up for past inflation misses until the average inflation rate meets the tar-

get again. As is well known (see Svensson, 1999; Arias et al., 2020), this make-up element

can help to stabilise inflation more effectively by guiding agents’ expectations, particularly

when monetary policy is constrained by an ELB.

As a measure of real economic activity, output enters the interest rate rule as well. This

assumption is standard and implies that the central bank does not follow a strict (A)IT strat-
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egy. Instead, it follows a flexible version of it that reflects potential policy trade-offs, e.g.

due to a dual mandate. This is consistent with the monetary policy of the Fed, both before

and after its recent strategy revision. The interest rate rule also includes an interest rate

smoothing component, which captures that interest rates tend to be adjusted only gradually

in practice (see e.g. Nakata and Schmidt, 2019).

2.2 Equilibrium

In this section, we define the model equilibrium. Having derived the relevant equilibrium

conditions for arbitrary beliefs in the previous section, we start by defining a temporary

equilibrium for the model.23 Building on this, we then define the equilibrium under rational

and reflective expectations.

Temporary equilibrium We define a temporary equilibrium as follows. Let Ω = (µp,µw,

Π,{Π−},Π∗,Ψ(·),d,L,MU,MV,N,R, R̃,w,w∗,Y ) denote the set of endogenous aggregate

variables and S = (β ,λ ) the set of exogenous aggregate variables.24 Given initial val-

ues Ωt−1, St−1 and beliefs
{

Ωe
t+1+s

}∞

s=0, a temporary equilibrium consists of sequences
{St+s,Ωt+s,bt+s (·) ,ct+s (·)}∞

s=0, such that households, firms and unions solve their respec-

tive optimisation problems, markets clear and the wealth distribution is consistent with

household actions at every date t + s, s≥ 0.

Rational-expectations equilibrium The rational-expectations equilibrium provides us

with an important benchmark for our model analysis under non-rational expectations. We

can define a rational-expectations equilibrium simply as a temporary equilibrium that satis-

fies perfect foresight (see Farhi and Werning, 2019). Specifically, a rational-expectations

equilibrium is given by {St+s,Ωt+s,bt+s(b,z),ct+s(b,z),Ωe
t+s}∞

s=0, such that {St+s,Ωt+s,

bt+s (b,z) ,ct+s (b,z)}∞
s=0 is a temporary equilibrium for beliefs

{
Ωe

t+s
}∞

s=0 and
{

Ωe
t+s
}∞

s=0 =

{Ωt+s}∞

s=0 holds for s≥ 0 (perfect foresight).

Reflective-expectations equilibrium To model bounded rationality, we consider a reflec-

tive-expectations equilibrium (see Garcı́a-Schmidt and Woodford, 2019). The concept of

reflective expectations is closely related to level-k thinking, which is analysed in a HANK

context by Farhi and Werning (2019). In both cases, beliefs are updated based on a recursive

scheme after an aggregate shock is realised. While both concepts are closely related, level-

k thinking is more well known and easier to understand than the more general concept of

23The temporary equilibrium concept goes back to Hicks (1939), Lindahl (1939) and Grandmont (1977).
More recently, Preston (2005) and Woodford (2013), as well as Farhi and Werning (2019) and Garcı́a-Schmidt
and Woodford (2019), have applied this concept for the analysis of New Keynesian models with bounded
rationality.

24By including the lagged inflation rates {Π−s,t}s∈{1,2,...,T−2}, where Π−s,t = Π−(s−1),t−1 for s ∈
{1,2, . . . ,T − 2} and Π−0,t−1 = Πt−1, in the vector of endogenous variables, Ωt−1 and St contain all state

variables needed to determine Ωt , since we can write Π
(T )
t =

(
Πt ×∏

T−2
s=0 Π−s,t−1

)1/T .
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reflective expectations. We thus first describe level-k thinking in the context of the model

and then turn to reflective expectations.

Under level-k thinking, the beliefs of agents with the discrete level of reasoning k >

1 about outcomes in period t + s, s > 0, denoted as Ω
e,k
t+s, are given by the equilibrium

outcomes for that period in an economy where all agents possess the level of reasoning k−1,

denoted as Ω
k−1
t+s .25 Starting with some initial beliefs held by agents in a “level-1 economy”

in period t about outcomes in period t + s, Ω
e,1
t+s, beliefs held by “level-k” agents in period t

about outcomes in period t + s are thus determined by the discrete recursion Ω
e,k
t+s = Ω

k−1
t+s .

Intuitively, a naive level-1 agent responds to changes in the exogenous aggregate variables

(e.g. an increase in patience) but fails to take into account any general equilibrium effects of

the shock. For k > 1, level-k agents take general equilibrium effects into account but only

imperfectly. The more rounds of reasoning k an agent goes through, the closer his beliefs

are to reality, with beliefs approaching rational expectations for k→ ∞.

Reflective expectation formation operates similarly but does not proceed in discrete

steps. Instead, beliefs are updated continuously. Let n denote the – now continuous – level

of cognitive ability under reflective expectations. Beliefs about outcomes in period t + s

held by agents with cognitive ability level n in period t, denoted as Ω
e,n
t+s, are now formed

based on the differential equation dΩ
e,n
t+s/dn=Ωn

t+s−Ω
e,n
t+s, where Ωn

t+s denotes equilibrium

outcomes in period t + s for an economy populated by n-type agents.

To illustrate the connection between reflective expectations and level-k thinking, it is

helpful to consider a discrete approximation of the continuous updating process,

Ω
e,n+dn
t+s

∼= dn×Ω
n
t+s +(1−dn)×Ω

e,n
t+s,

where dn > 0 is a very small real number. Beliefs of agents with cognitive ability n+ dn

about outcomes in period t+s can hence be viewed as a convex combination of equilibrium

outcomes in period t + s for an economy populated by n-type agents, Ωn
t+s, and beliefs

for period t + s held by agents in such an economy, Ω
e,n
t+s. Compared to level-k thinking,

which is effectively nested for dn = 1 in the expression above, updating of reflective beliefs

occurs in a smooth manner since dn ≈ 0 implies an updating weight of approximately one

for Ω
e,n
t+s. This smoothness avoids jumps in expectations that can take place during belief

updating under level-k thinking and result in oscillatory behaviour of the economy over time

(see Garcı́a-Schmidt and Woodford, 2019). As noted by Angeletos and Sastry (2021), such

behaviour can be considered an artifact of discrete belief updating under level-k thinking

without deeper economic meaning.26

Formally, we can define the reflective-expectations equilibrium as follows. Let {S,Ω ,

b(b,z) ,c(b,z) ,Ωe}∞

t=0 be a rational-expectations equilibrium where all variables stay at

the steady state forever. Define initial beliefs
{

Ω
e,0
t+s
}∞

s=0 =
{

Ω
}∞

s=0 , such that, in period

25Equilibrium outcomes in period t + s in turn depend on beliefs for all periods going forward, i.e.
{Ωe,k−1

t+s+ j}
∞
j=0.

26In addition to eliminating this model feature, the smooth belief formation under reflective expectations also
improves the stability of the numerical model solution.
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t, the economy is expected to remain at the steady state in all future periods.27 Given a

sequence {St+s}∞

s=0, a reflective-expectations equilibrium consists of a belief-updating pro-

cess, dΩ
e,n
t+s/dn=Ωn

t+s−Ω
e,n
t+s, and sequences indexed by level of reflective reasoning n≥ 0,{

St+s,Ω
n
t+s,b

n
t+s (·) ,cn

t+s (·)
}∞

s=0, such that each
{

St+s,Ω
n
t+s,b

n
t+s (·) , cn

t+s (·)
}∞

s=0 constitutes

a temporary equilibrium for beliefs
{

Ω
e,n
t+s
}∞

s=0, with n = n∗ > 0 being the actual level of

reflective reasoning in the economy. For notational convenience, we use the convention

Ωt+s = Ωn∗
t+s, s ∈ {0,1,2, . . . ,T}, for the reflective-expectations case. Rational expectations

are nested as a special case for the limit n∗→ ∞.

Garcı́a-Schmidt and Woodford (2019) show that period-t beliefs about outcomes in pe-

riod t+s held by agents in a reflective-expectations equilibrium with the continuous level of

reasoning n, Ω
e,n
t+s, are equal to the average beliefs held in a level-k economy where agents

with the discrete level of reasoning k ≥ 1 are distributed across the population according to

a Poisson distribution with mean n,

Ω
e,n
t+s =

∞

∑
k=1

nk−1exp(−n)
(k−1)!

Ω
e,k
t+s.

The beliefs held by level-k thinkers for period t + s, Ω
e,k
t+s, are in this case determined by the

discrete recursion Ω
e,k
t+s = Ω

k−1
t+s .

3 Calibration

We calibrate the model for the United States at a quarterly frequency. The parameter values

are summarised in Table 1. Parameters related to the monetary policy rule are specified as

follows. We assume an annual inflation target (Π)4 of 2%, an effective lower bound (RELB)
4

of 0.125% (see Nakata and Schmidt, 2019) and the rather standard policy rule parameters

(φΠ,φY ,ρR) = (1.5,1,0.75).28 Consistent with estimates reported in Bernanke (2020), we

target an annual long-run real rate of 1% and implement it via the (long-run) household

discount factor. For the RANK model, the required β -value is 0.998, whereas it is 0.993 for

the HANK model.29

We choose a standard value of 2 for the coefficient of relative risk aversion σ and a

Frisch elasticity 1/η of 0.5 (see Chetty et al., 2011). For the RANK model, we normalise

the labour disutility parameter χ to 1 and set it equal to 1.023 for the corresponding HANK

model, such that both model versions display the same steady-state output level. The house-

hold borrowing limit is set to -1.667, which equals 5 times the monthly household labour

income (see Ferrante and Paustian, 2019). We set the elasticity of substitution between in-
27It is of course possible to consider initial beliefs based on more general rational-expectations equilibria (see

e.g. Farhi and Werning, 2019). We assume this particular equilibrium because our numerical model solution
makes this assumption as well.

28As suggested by Brayton et al. (1997) and Taylor (1999), we use an output response coefficient of 1, which
is somewhat higher compared to parameter values often considered in the literature (see e.g. Taylor, 1993). See
also Arias et al. (2020).

29The discount factor is lower for the HANK model calibration because the households’ precautionary saving
motive pushes down the real rate for a given discount factor (see e.g. Huggett, 1993).
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Table 1: Model parameters for HANK model

Parameter Description Value
β Discount factor 0.993∗

χ Weight labour disutility 1.023∗

Φ Fixed cost of production 0.167
φΠ Inflation coeff. policy rule 1.5
φY Output coeff. policy rule 1
η Inverse Frisch elasticity 2
ιp Price indexation 1
ιw Wage indexation 1
λ Price mark-up shifter 1

(Π)4 Long-run inflation target (annual) 1.02
Πw Long-run nominal wage inflation 1.005
θp Price elast. of subst. int. goods 6
θw Wage elast. of subst. labour services 6
ρβ Persist. discount factor 0.85
ρλ Persist. mark-up shifter 0
ρz Persist. idiosync. productivity 0.966
ρR Interest rate smoothing 0.75
σ Coeff. of relative risk aversion 2
σβ Std. dev. discount factor shock 0.006
σλ Std. dev. mark-up shock 0.118
σz Std. dev. idiosync. prod. shock 0.052
ξp Calvo price-setting 0.85
ξw Calvo wage-setting 0.85
b Household borrowing limit -1.667

(RELB)
4 ELB (annual) 1.001

∗ For the RANK model, we use (β ,χ) = (0.998,1) instead.

termediate goods θp and the Calvo price-setting parameter ξp to 6 and 0.85, respectively

(see McKay et al., 2016), and normalise the degree of price indexation to ιp = 1. For the

labour market, we use the same parameter values as for the goods market, i.e. θw = θp,

ξw = ξp and ιw = ιp. As in Hagedorn et al. (2019), we calibrate the fixed production cost to

obtain zero firm profits in the steady state, which is accomplished with Φ = 0.167.

Idiosyncratic productivity zi,t follows a log-normal AR(1) process with persistence pa-

rameter ρz and shock standard deviation σz. We set ρz = 0.966 (see McKay et al., 2016)

and – similar to Fernández-Villaverde et al. (2021) – calibrate the shock standard deviation

to match an average annual marginal propensity to consume (MPC) of 0.55 (see Auclert

et al., 2020), implying σz = 0.052.30 We also consider log-normal AR(1) processes for the

household discount factor and the mark-up shifter, given by βt = β
1−ρβ βt−1

ρβ exp(εβ ,t) and

λt = λ 1−ρλ λt−1
ρλ exp(ελ ,t), respectively. The i.i.d. shock εx,t is drawn from a normal dis-

tribution with zero mean and standard deviation σx, x ∈ {β ,λ}. The persistence parameters

30Our model calibration yields a Gini coefficient of 0.80 in the steady state, which is slightly lower than the
value of 0.87 reported by Kuhn and Rı́os-Rull (2016) based on 2013 US data on liquid wealth.
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Figure 1: Distribution of level-k agents for different cognitive ability levels n∗
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ρβ and ρλ are set to 0.85 and 0, respectively (see Nakata and Schmidt, 2019). We calibrate

the shock standard deviations to match statistics for the rational-expectations RANK model

with an IT interest rate rule, i.e. for T = 1. To obtain an ELB frequency of 20%, we set

σβ to 0.0062. For σλ , we choose a value of 0.118 to match the standard deviation of annu-

alised US inflation for the time period 1997:Q3-2017:Q2, which is 0.52% (see Nakata and

Schmidt, 2019).31 When analysing AIT, we consider specifications with averaging windows

of T = 16 and T = 32 quarters, i.e. 4 and 8 years, for the average inflation target.32 We refer

to these specifications as AIT4 and AIT8, respectively.

For the reflective-expectations case, we consider the cognitive ability levels n∗ ∈ {0.5,1,
2,3,6}. Based on the interpretation proposed by Garcı́a-Schmidt and Woodford (2019) (see

Section 2.2), different n∗-values imply different (Poisson) distributions of level-k agents in

the population. Figure 1 displays the population shares associated with the values that we

consider for the simulation exercise. Experimental evidence typically suggests that most

probability mass is covered by k ∈ {1,2,3} (see e.g. Nagel, 1995; Costa-Gomes and Craw-

ford, 2006; Arad and Rubinstein, 2012), which is consistent with the distributions predicted

by n∗ ∈ {0.5,1,2}.33 As argued by Farhi and Werning (2019), experimental evidence relies

31For simplicity, both shock standard deviations are calibrated to match the respective targets under the
assumption that the other aggregate shock is not operative. They are hence not jointly calibrated.

32The remaining model parameters are kept unchanged in this case.
33There are, however, exceptions. For example, Kneeland (2015)’s experimental evidence shows substantial
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on games that are substantially simpler than the environment agents are facing in macroe-

conomic models. As a result, the k-values relevant for our quantitative model are likely

lower than the ones found in the experimental literature. Whereas the n∗-values 0.5, 1 and

– perhaps – 2 can be considered empirically plausible, the values 3 and 6 suggest a level

of cognitive ability that is hard to reconcile with (micro-level) evidence. Nevertheless, we

consider these higher values as well to investigate how large n∗ has to be in order for the

economy to behave as in the rational-expectations case.

4 Numerical solution

In theory, the extended path method is a natural candidate for stochastic simulations of

a model with reflective expectations.34 However, the method is not well suited for our

particular application, which not only involves iterative belief formation but also an ELB

and household heterogeneity.35 In a stochastic simulation, the model economy is hit with

new unanticipated aggregate shocks in each simulation period going forward. When using

the extended path method for such a simulation, one has to numerically compute a new

nonlinear transition path back to the steady state for each simulation period. In practice,

these computations become already quite slow for our rather simple RANK model when

allowing for iterative belief formation and an occasionally-binding ELB. In a model that

also includes incomplete markets, such that the entire wealth distribution becomes a relevant

aggregate state variable, these speed issues become prohibitive.

To overcome this difficulty, we use a numerical solution approach that is based on a

local approximation of the model in the sequence space (see Boppart et al., 2018; Auclert

et al., 2021) and takes into account the occasionally-binding ELB constraint by using antici-

pated monetary policy shocks (see Bodenstein et al., 2013; Holden, 2016).36 The algorithm

consists of two steps. The first step involves the computation of impulse response func-

tions for the endogenous aggregate variables to shocks to the exogenous aggregate model

variables. These shocks hit the economy in the deterministic steady state and are assumed

to be unanticipated, transitory and small. Under these assumptions, Boppart et al. (2018)

probability mass also at k = 4, which is in line with the distribution implied by n∗ = 2. Similarly, based on firm
survey data, Coibion et al. (2021) find levels of reasoning k ∈ {3,4,5} to be well represented.

34See Heer and Maußner (2009) for a recent treatment of the method. As discussed in Garcı́a-Schmidt and
Woodford (2015), there is a direct link between the belief formation process under reflective expectation (or
level-k thinking) and the extended path method, which was pioneered by Fair and Taylor (1983). However,
Garcı́a-Schmidt and Woodford (2015, 2019), as well as Farhi and Werning (2019) and Bianchi-Vimercati et al.
(2021), only consider one-time MIT shocks and do not employ the extended path algorithm to perform model
simulations with randomly drawn aggregate shocks. Assuming that agents rely on point expectations of future
aggregate variables, which effectively implies certainty equivalence, it is straightforward to set up the extended
path algorithm based on the equilibrium definitions from Section 2 (see Appendix B). See Qiu (2018) for an
alternative approach that uses a recursive model formulation for a New Keynesian model with level-k thinking
and reduced-form household heterogeneity.

35We cannot use standard perturbation techniques (see e.g. Schmitt-Grohé and Uribe, 2004; Reiter, 2009) for
the HANK model with reflective expectations due to the iterative nature of belief formation.

36McKay and Wieland (2021) also use anticipated monetary policy shocks to enforce the ELB for simulations
of a continuous-time HANK model with durable consumption.
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Table 2: Results for RANK model with rational expectations (RE-RANK)

ELB incidence Inflation (%) Output (%)

Policy rule
Freq.
(%)

Avg. duration
(quarters)

Avg. Std. Avg. Std.

IT (w/o ELB) 0 0 2.00 0.78 0.00 0.88
AIT4 (w/o ELB) 0 0 2.00 0.70 0.00 0.95
AIT8 (w/o ELB) 0 0 2.00 0.69 0.00 0.97

IT 20.18 6.78 1.95 0.87 -0.11 1.17
AIT4 17.11 6.65 1.98 0.74 -0.07 1.14
AIT8 16.71 6.42 1.99 0.72 -0.06 1.14

show that the computed impulse response functions can be viewed as a linear approxima-

tion of the model in the sequence space. In the second step, we use this remarkable result to

perform Monte Carlo simulations for our model based on the linearised model. Given that

the model approximation is a local one, it does not take into account the ELB constraint

on the nominal interest rate. To enforce the ELB for the model simulations, we use news

shocks to the policy rate (see Holden, 2016). In principle, applying this method requires the

assumption of perfect foresight to be satisfied. However, we show how to apply it to our

model with reflective expectations and demonstrate the numerical accuracy of the approach.

Details about our numerical solution and its accuracy can be found in Appendix B.

5 Results

This section presents and discusses the results of our quantitative model analysis.

5.1 Stochastic simulations

In this section, we explore the impact of market incompleteness and bounded rationality

on the effectiveness of AIT vis-à-vis IT based on stochastic simulations.37 To isolate the

contribution of the two features, we proceed in four steps. To establish a baseline, we start

with a comparison of IT and AIT for the standard RANK model with complete markets and

rational expectations (RE-RANK). Then we relax the complete-markets assumption and

compare the two strategies for the rational-expectations HANK (RE-HANK) model. After

that, we provide a comparison of IT and AIT for the RANK model with bounded rationality

(BR-RANK), highlighting the role played by the rational-expectations assumption. Finally,

we compare the two monetary policy strategies for the full (BR-HANK) model, abandoning

both complete markets and rational expectations.

RANK with rational expectations A comparison of IT and AIT for the RE-RANK

model without an ELB constraint already illustrates a key advantage of make-up monetary

37We conduct 25 simulations with 40,000 periods each (excluding 1,000 additional burn-in periods). For
each of the 25 simulations, we then calculate moments for variables of interest and report the average of these
moments across simulations.
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Figure 2: ELB episode under rational expectations
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Notes: IRFs are for a large demand shock (εβ ,t = 5σβ ) and in percentage deviations from steady state.
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Table 3: Results for HANK model with rational expectations (RE-HANK)

ELB incidence Inflation (%) Output (%)

Policy rule
Freq.
(%)

Avg. duration
(quarters)

Avg. Std. Avg. Std.

IT (w/o ELB) 0 0 2.00 0.59 0.00 0.89
AIT4 (w/o ELB) 0 0 2.00 0.57 0.00 0.91
AIT8 (w/o ELB) 0 0 2.00 0.57 0.00 0.92

IT 16.57 5.45 1.93 0.65 -0.07 1.11
AIT4 14.40 5.79 1.97 0.59 -0.05 1.07
AIT8 14.07 5.65 1.98 0.59 -0.05 1.07

policy strategies emphasised in the literature: improved inflation stabilisation (see Table 2).

Specifically, under AIT4, the standard deviation of inflation is about 10% (8 basis points)

lower relative to IT. Extending the averaging window by an additional 4 years (16 model

periods) further improves inflation stabilisation, but the additional improvement relative to

AIT4 is only 1 basis point. The lower inflation volatility under AIT is achieved by suc-

cessfully managing agents’ expectations. If the average inflation target is missed in a given

period, AIT prescribes that monetary policy will make up for this in the future. For in-

stance, if average 4-year inflation is below target today, monetary policy is committed to be

more expansionary in the subsequent periods. This commitment in turn drives up current

expectations for inflation and real economic activity, providing additional stimulus today

by encouraging households to increase consumption, firms to raise prices and unions to

increase wages. Due to this “automatic stabiliser”, all of this is accomplished without the

need to move interest rates as much as in the IT case, which contributes to the improve-

ment in price stabilisation. However, history dependence has the opposite impact on output

volatility, which goes up as the length of the averaging window is increased. This highlights

a potential downside of make-up strategies.38

The commitment to make up for past misses is particularly valuable when the economy

is at the ELB and monetary policy cannot offer additional stimulus by cutting current inter-

est rates (see e.g. Eggertsson and Woodford, 2003). This can be illustrated by looking at im-

pulse response functions for a large contractionary demand shock. This shock immediately

pushes the policy rate to the ELB (see left panels in Figure 2), causing strong contractions

in inflation and output. However, inflation drops substantially less during the ELB episode

for AIT (solid blue and dashed red lines) relative to IT (dotted yellow line). Furthermore,

under AIT, the policy rate does not stay at the ELB as long as under IT. These observations

highlight the automatic stabiliser property of make-up strategies mentioned above. When

average inflation is below target during an ELB episode, the AIT rule promises to keep in-

terest rates “lower for longer”, providing additional stimulus that the IT rule does not. Note

that, although AIT generally promises to make up for past inflation misses, it only leads to

38In contrast to the dampening impact on the volatility of inflation, we find that – in the absence of an ELB
constraint – the qualitative effect of history dependence on output volatility depends on the degree of interest
rate smoothing, ρR.
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Table 4: Results for RANK model with reflective expectations (BR-RANK w/o ELB)

Std. inflation (in %) Std. output (in %)
Cognitive ability n∗ IT AIT4 AIT8 IT AIT4 AIT8

0.5 0.64 0.64 0.64 1.26 1.27 1.28
1 0.68 0.68 0.68 0.96 1.00 1.02
2 0.74 0.72 0.74 0.89 0.95 0.98
3 0.77 0.72 0.74 0.88 0.95 0.98
6 0.78 0.70 0.69 0.88 0.95 0.97
∞ 0.78 0.70 0.69 0.88 0.95 0.97

an actual inflation overshoot above target in Figure 2 for an averaging window of 8 years.

In the stochastic model simulations, the lack of monetary stimulus at the ELB is reflected

in a negative bias in inflation and output as well as heightened macroeconomic volatility.

Consistent with Figure 2, these negative effects are mitigated by an AIT rule. It is worth

noting that with an ELB constraint, inflation and output volatility are both lower under AIT,

such that AIT leads to unambiguous improvements over IT in terms of macroeconomic

stabilisation.

HANK with rational expectations Compared to the RE-RANK model, inflation and out-

put do not behave much differently in the RE-HANK model – with or without the ELB (see

Table 3). The only sizable difference involves a generally lower incidence and duration of

ELB episodes in the incomplete markets case, as well as a generally lower degree of macroe-

conomic volatility. Importantly, the relative performance of AIT vs. IT does not change

compared to the RE-RANK model, both qualitatively and quantitatively (see also right pan-

els in Figure 2). These results likely reflect counteracting forces with respect to how market

incompleteness affects the way AIT can manage economic activity by steering agents’ ex-

pectations. On the one hand, the sensitivity of household consumption to promised future

interest rate cuts is diminished by the presence of borrowing-constrained households (see

McKay et al., 2016; Hagedorn et al., 2019). On the other hand, the marginal propensity to

consume out of temporary income is substantially higher in the HANK model. Compared

to the complete-markets case, this raises the importance of indirect monetary policy effects

that stimulate economic activity via changes in disposable household income. For instance,

redistributional effects that transfer wealth from low-MPC savers to high-MPC borrowers

could in principle raise the potential of future interest rate cuts to provide economic stimu-

lus (see e.g. Ferrante and Paustian, 2019). For our model, these counteracting forces appear

to roughly cancel each other out, such that market incompleteness does not matter much for

the effectiveness of make-up strategies.39

39As shown in Section 5.3, this finding is robust with respect to various assumptions made about the model,
such as the denomination of debt and the cyclicality of household income risk.
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Figure 3: Results for RANK model with reflective expectations (BR-RANK)
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Figure 4: Results for HANK model with reflective expectations (BR-HANK)
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RANK with reflective expectations In contrast to market incompleteness, bounded ra-

tionality has a clearly visible impact on model predictions and the effectiveness of AIT. First

consider the BR-RANK model without an ELB constraint (see Table 4).40 Under IT, infla-

tion tends to be more volatile than under AIT. Furthermore, cognitive ability n∗ increases

inflation volatility under IT, whereas n∗ has a hump-shaped impact on inflation volatility

under AIT. With respect to output, we observe that it is more stable when cognitive ability

is high and becomes more volatile as the degree of history dependence goes up – in line with

the findings for the RE-RANK model. The model properties are virtually the same for the

BR-RANK model with n∗ = 6 and the RE-RANK model (depicted in Table 4 as n∗ = ∞),

and are already close to the rational-expectations case for n∗ = 3.41

When monetary policy faces an ELB constraint, inflation is more stable under an AIT

rule (see Figure 3). Inflation volatility furthermore increases with cognitive ability under

IT, whereas n∗ again exhibits a hump-shaped impact on the standard deviation of inflation

under AIT. By contrast, output is almost equally volatile under IT and AIT. In addition,

output volatility is higher for low degrees of cognitive ability (n∗ = 0.5) but hardly different

between intermediate and high cognitive ability levels. Note that inflation and output tend

to be only slightly less volatile under AIT8 than AIT4, illustrating decreasing returns to

history dependence under AIT.

The better macroeconomic stabilisation properties of AIT are reflected in a lower inci-

dence of ELB episodes. Importantly, by acting as an “automatic stabiliser”, AIT reduces the

first-order consequences of the ELB observed under IT, as measured by downward biases

in average inflation and output, for all considered degrees of cognitive ability. However, the

improvement vis-à-vis IT is quite small for degrees of cognitive ability that are in line with

empirical and experimental evidence, i.e. n∗ ∈ {0.5,1,2}.

HANK with reflective expectations Similar to the rational-expectations case, the be-

haviour of the HANK model economy is also close to that of the corresponding RANK

model economy under reflective expectations (see Figure 4). This observation holds for

both monetary policy strategies, and regardless of the agents’ cognitive ability and the pres-

ence of an ELB constraint (see Table 5). This underscores our previous findings: Whereas

market (in)completeness does not matter for the relative performance of AIT vs. IT in our

model, the expectations process clearly does.

In addition, we do not find an interaction between market incompleteness and bounded

rationality with respect to the attenuation of make-up strategies. Figure 5 illustrates this

finding by plotting the inflation and output biases under AIT relative to IT. The relation-

ship between the relative biases and cognitive ability n∗, given by the solid blue (AIT4)

40As under rational expectations, impulse responses for a demand-shock induced ELB episode paint a picture
that is in line with the simulation-based results (see Figures 14 to 16 in Appendix C).

41This observation is reassuring from a computational perspective since we use a numerical equation solver
for the rational-expectation model versions but the iterative procedure sketched in Appendix B for the cases
with bounded rationality. As predicted by theory, both approaches yield the same results if n∗ is sufficiently
large.
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Table 5: Results for HANK model with reflective expectations (BR-HANK w/o ELB)

Std. inflation (in %) Std. output (in %)
Cognitive ability n∗ IT AIT4 AIT8 IT AIT4 AIT8

0.5 0.62 0.62 0.62 1.29 1.30 1.30
1 0.61 0.61 0.62 1.00 1.02 1.03
2 0.60 0.60 0.61 0.90 0.92 0.93
3 0.60 0.58 0.60 0.89 0.92 0.93
6 0.59 0.57 0.57 0.89 0.91 0.92
∞ 0.59 0.57 0.57 0.89 0.91 0.92

and dashed red (AIT8) lines, is almost the same in the RANK model (left panels) and the

HANK model (right panels). The only notable difference is a small upward shift of the

lines in the HANK model, which reflects that make-up strategies are slightly less effective

in lowering the biases under incomplete markets. A positive (negative) complementarity be-

tween market incompleteness and bounded rationality would require the lines to be steeper

(flatter) for the HANK model, showing that bounded rationality dampens the effectiveness

of make-up strategies more (less) in this case relative to the RANK model with complete

markets. However, Figure 5 documents that the marginal impact of a change in n∗ on the

benefits of AIT is almost the same in the RANK and HANK models.

5.2 (Non-)Interaction between incomplete markets and bounded rationality

Farhi and Werning (2019) show that incomplete markets and bounded rationality can strongly

attenuate the power of forward guidance when combined, but only have small attenuating

effects when considered in isolation. In other words, there is a positive complementarity.

Since make-up strategies operate via a built-in commitment to future interest rates, it might

be surprising to see that our simulations do not indicate such a relationship between the

incomplete markets and bounded rationality. In this section, we show how to reconcile our

findings with those in Farhi and Werning (2019).

Forward guidance We start by performing a forward guidance experiment for different

cognitive ability levels and conditional on market (in)completeness. Running this experi-

ment allows us to check the existence of a complementarity between market incompleteness

and bounded rationality with respect to forward guidance à la Farhi and Werning (2019).

Given that we can indeed verify this property for our model, we can rule out differences

between our model and the one used in Farhi and Werning (2019) as causes of a missing

complementarity in the context of make-up strategies.42 We show the results of the experi-

ment in Figures 6 and 7.

Figure 6 plots the period-t responses of output and inflation to a date-t announcement

42Apart from small differences in terms of calibration, our model mainly differs from the quantitative sticky-
price model employed in Farhi and Werning (2019) by featuring nominal wage stickiness, allowing for positive
and nominal household debt as well as excluding outside liquidity.
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Figure 5: Negative inflation and output biases for stochastic simulations
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Notes: The biases are expressed as percentage deviations from the respective values under inflation targeting.

of a one-percent real rate cut in period t + τ (see McKay et al., 2016). First, consider

the RANK model (left panels). Under rational expectations (n∗ = ∞), the responsiveness of

output does not depend on the horizon of the real rate cut realisation τ , whereas the inflation

response exponentially increases with it. These properties constitute what is usually referred

to as the “forward guidance puzzle” (see Del Negro et al., 2015; McKay et al., 2016), as they

are difficult to square with economic intuition. By contrast, under reflective expectations,

the output response declines with τ and inflation responds less strongly to real rate cuts

further away in the future compared to n∗ = ∞. What is more, the less sophisticated agents

are, the more the output and inflation responses are attenuated. While the output response

in the RANK model hardly changes with time horizon τ at all, the marginal effect of τ

on the inflation response is declining for sufficiently low cognitive ability levels n∗. As a

result, inflation remains bounded for τ → ∞ in this case. In that sense, bounded rationality

can successfully solve the forward guidance puzzle, although its quantitative impact is not

particularly large, which is in line with Farhi and Werning (2019).

In the HANK model (right panels), the output response declines with τ when agents’
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Figure 6: Forward guidance experiment
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Notes: The figure plots the percentage deviations of the respective variables from steady state upon announce-
ment of a one-percent real rate cut in τ periods.

cognitive ability is sufficiently low, but increases with the horizon under rational expecta-

tions. As in the RANK model, the inflation response remains bounded for τ → ∞ when

n∗ is low, but not for n∗ = ∞. Market incompleteness thus amplifies the forward guidance

puzzle for our model calibration under rational expectations.43 Note that forward guidance

generally has stronger output and inflation effects in the HANK model relative to the RANK

model if the time horizon τ is short, reflecting strong indirect effects of monetary policy that

are are not (as) important under complete markets (see Kaplan et al., 2018).

To visualise the complementarity between market incompleteness and bounded ratio-

nality in the context of forward guidance, it is helpful to normalise the responses depicted

in Figure 6 by the respective values under rational expectations. Given that the output and

inflation responses in the RANK and HANK models differ in size, these normalised re-

43As first pointed out by Werning (2015), this property depends on various model features, the cyclicality of
household income risk and aggregate liquidity in particular. In our case, a redistribution of resources from savers
(low MPCs) to borrowers (high MPCs) via inflation is crucial for making forward guidance more powerful under
incomplete markets. When this redistribution of wealth is absent because bonds are indexed to inflation, the
output effect declines with the horizon τ in all cases, including n∗ = ∞.
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Figure 7: Forward guidance experiment (normalised)
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Notes: The figure plots the responses from Figure 6 but in percent of the respective responses under rational
expectations n∗ = ∞.

sponses illustrate the impact of bounded rationality on the power of forward guidance in a

more transparent way.44 Figure 7 plots these normalised responses for different cognitive

ability levels and time horizons τ . By comparing these relative responses between RANK

(left panels) and HANK (right panels), we observe that the attenuating effect of bounded

rationality on the interest rate sensitivity of output and inflation is stronger under incom-

plete markets and increasing with time horizon τ .45 In line with Farhi and Werning (2019),

these differences between the RANK and HANK models reveal a positive complementarity

between market incompleteness and bounded rationality with respect to the attenuation of

forward guidance.

Discussion Forward guidance, as analysed in the previous section, is modelled as an unan-

ticipated but perfectly observable news shock. As such, it constitutes a direct and uncondi-

44Farhi and Werning (2019) construct and calibrate their model such that the output and inflation responses
do not differ between the RANK and HANK models under rational expectations. This property makes it more
straightforward to see how market incompleteness and bounded rationality interact.

45Farhi and Werning (2019) refer to the former effect as mitigation effect and the latter one as horizon effect.
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tional commitment to a future interest change, which agents are going to adjust their individ-

ual behaviour to. This particular behavioural response is the direct (or partial equilibrium)

effect of the interest rate shock. In addition, the agents’ behaviour reflects beliefs about the

consequences of the interest rate shock for the future evolution of the aggregate economy.

The corresponding response constitutes the indirect (or general equilibrium) effect of the

interest rate change. The more sophisticated agents are, the better they understand these in-

direct effects and adjust their behaviour accordingly. Even the most naive agent (n close to

0) who does not adjust his expectations about the aggregate economy at all after the shock

is announced, will, however, respond to the interest rate change itself. Bounded rationality

therefore attenuates the indirect general equilibrium effects of the interest rate shock but not

its direct effects, as agents can observe the interest rate change by assumption.

As shown by Farhi and Werning (2019) and verified for our model (see Figures 6 and

7), relaxing the rational-expectations assumption only mildly weakens the output effects of

forward guidance under complete markets, even for quite large deviations from rational ex-

pectations. This finding reflects that in the RANK model, it is largely the direct effect of the

interest rate change rather than its indirect effects that matter for the consumption response

(see Kaplan et al., 2018; Hagedorn et al., 2019).46 Given that the interest rate change itself

is observed by households regardless of their cognitive ability n, this direct effect – and

hence the dominant transmission channel of forward guidance under complete markets –

is not affected when the rational-expectations assumption is relaxed for the RANK model.

By contrast, relaxing the complete-markets assumption by introducing occasionally-binding

borrowing constraints weakens the direct effect of monetary policy. However, at the same

time, it also raises the importance of indirect effects compared to the RANK case. A priori,

it is therefore not obvious whether forward guidance is attenuated or even amplified in this

case.47 When combined, bounded rationality and market incompleteness jointly weaken

direct and indirect effects, which yields a positive complementarity with respect to the at-

tenuation of forward guidance.

In contrast to forward guidance, make-up strategies are rule-based and do not offer in-

formation about future interest rates that is directly observable to all types of agents. Instead,

they only provide an indirect and conditional commitment to future interest rate changes.

Specifically, whether monetary policy commits to adjust future interest rates depends on

whether current average inflation meets the target or not. Future interest rate changes there-

fore have to be triggered first by a macroeconomic shock. While such a shock can be

observed by the agents, whether and to what extent it will affect future interest rate move-

ments has to be figured out by agents together with all other general equilibrium effects.

46The direct effect of the interest rate change can further be decomposed into an income and a substitution
effect. In the RANK model, it is primarily the latter that drives the size of the household consumption response
and the aggregate output response as a result. This can be seen by looking at the real rate elasticity of output in
the announcement period of a real rate shock. It is given as (C/Y )σ−1 for the RE-RANK model, highlighting
the tight link between the intertemporal elasticity of substitution σ−1 and the output response. The coefficient
C/Y reflects that output does not equal consumption in the steady state if there is a fixed production cost Φ > 0.

47As discussed above, our quantitative model implies that forward guidance is more effective in the HANK
model for n∗ = ∞.
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In contrast to the forward guidance experiment, the transmission of monetary policy un-

der an interest rate rule hence operates entirely via indirect general equilibrium effects.48

Given that these effects are not directly observable to the agents, bounded rationality has

a symmetric impact on how make-up strategies affect the economy under complete and

incomplete markets. A complementarity as observed for forward guidance is therefore ab-

sent (or too small to notice), as it relies on market incompleteness and bounded rationality

attenuating different types of effects.49

5.3 Sensitivity

In this section, we assess the sensitivity of our simulation results with respect to different

model assumptions. First, we allow for real instead of nominal household debt. Second, we

consider a model calibration where goods prices and nominal wages are partially indexed

to lagged inflation. Third, we allow household income risk to change endogenously with

macroeconomic conditions. Fourth, we consider model versions where only one type of

forward-looking agent is boundedly rational. Fifth, we investigate the role of interest rate

smoothing for our results.

Debt denomination When household debt is nominal, a deflationary shock redistributes

resources from high-MPC borrowers to low-MPC savers. This transfer of wealth increases

the severity of ELB episodes and raises the benefits of policies that attenuate deflationary

or disinflationary spirals. When debt is real, this (surprise) redistribution is absent and

one would expect the benefits of make-up strategies to be lower compared to a scenario

with nominal household debt (see Table 3). While we confirm this intuition (see Table

6 in Appendix C), the quantitative differences between RE-HANK model versions with

nominal and real debt are of negligible size. The relative performance of IT and AIT thus is

not affected by the denomination of household debt.

Price and wage indexation For our baseline calibration, we assumed price- and wage-

setting to be entirely forward-looking, i.e. ιp = ιw = 1. We now assume that prices and

wages of non-resetting firms and unions are partially indexed to lagged inflation (ιp =

ιw = 0.9).50 This assumption introduces inertia into price- and wage-setting behaviour

and thereby reduces the relative importance of expected price and wage inflation for the

economy. Although one might expect AIT to lose some of its stabilising power due to an
48Only the aggregate shocks themselves have a direct effect on the agents’ behaviour in this case.
49In line with results presented by Bianchi-Vimercati et al. (2021) for unconventional fiscal policies in a

RANK model, discretionary and perfectly observable interest rate cuts are more effective at stimulating an
economy when agents are boundedly rational agents than rule-based tax cuts. Closely related, Angeletos and
Sastry (2021) emphasise the benefits of communicating monetary policy by specifying targets for variables of
interest (like inflation or output) rather than instruments (like interest rates) when the public faces cognitive
constraints.

50For ιp-values below 0.9, we found that for some model versions, there is no equilibrium when the economy
hits the ELB during some simulations, as identified by Holden (2016)’s method (see Section B.2). To compare
all relevant model versions, we therefore took the lowest ιp-value to ensure that this issue did not occur for any
of the considered model versions.
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impaired ability to manage agents’ expectations, the relative performance of IT and AIT

does not change (see Tables 7 and 8 in Appendix C).

Cyclical income risk The literature has emphasised the importance of cyclical household

income risk for monetary policy transmission in general and forward guidance in particular

(see e.g. Werning, 2015; Acharya and Dogra, 2020). Specifically, whereas countercyclical

income risk strengthens the power of forward guidance in a HANK context compared to

the complete markets case, procyclical income risk attenuates it. The intuition is straight-

forward. Countercyclical (procyclical) income risk raises (lowers) MPCs in response to an

expansionary (contractionary) monetary policy, which amplifies (dampens) the economy’s

response by strengthening (weakening) indirect effects. To allow income risk to systemati-

cally change with aggregate economic conditions in our model, we let individual household

productivity depend on aggregate output by adopting a reduced form relationship as in Au-

clert and Rognlie (2020).51 In particular, we assume that individual productivity is given as

ziΓ(zi,Yt), with

Γ(zi,Yt) =
zζ log(Yt/Y )

i

∑ j Pr(z j)z1+ζ log(Yt/Y )
j

.

This functional form implies that the cross-sectional standard deviation of log-household

productivity is [1+ζ log(Yt/Y )]×SD(logzi). Parameter ζ directly governs the cyclicality

of idiosyncratic income risk. In the previous sections we assumed ζ = 0, implying acyclical

income risk. For ζ < 0, the model features countercyclical income risk, whereas income

risk becomes procyclical for ζ > 0.

Tables 9 and 10 in Appendix C show simulation statistics for RE-HANK model versions

with ζ = −1 and ζ = 1, respectively. As expected, countercyclical income risk raises

macroeconomic volatility in general and results in stronger inflation and output biases. The

latter reflects stronger contractions at the aggregate level during ELB episodes compared to

ζ = 0 (see Table 3). The opposite observations can be made when income risk is procyclical.

Importantly, these differences relative to the case with acyclical income risk apply uniformly

across policy rules. The relative performance of make-up strategies is therefore not affected

by the cyclicality of income risk.

Heterogeneous cognitive ability So far, we assumed that households, intermediate-good

firms and labour unions all possess the same degree of cognitive ability. Because of this

assumption, one cannot tell which of the three types of agents matters most for the impact

of bounded rationality on the effectiveness of make-up strategies.52 To clarify this issue,

we solve and simulate our model under the assumption that only one of the three aforemen-

tioned agents is non-rational. Specifically, we assume that this particular type of agent is

51Bayer et al. (2020) model the cyclicality of income risk in a reduced-form way as well. Their model
estimation implies a positive impact of aggregate income on individual income risk.

52Moreover, a recent empirical literature on subjective expectations shows that different types of agents
possess different degrees of rationality (see e.g. Weber et al., 2022).
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characterised by n = 2, while the other ones are perfectly rational. As argued in Section

3, a value of 2 is the highest cognitive ability level n that can be considered in line with

micro-evidence.53 Figures 17 and 18 in Appendix C show that the model statistics slightly

vary depending on which type of agent is assumed to be non-rational. However, the size of

these differences is quantitatively small. Bounded rationality therefore has a quite uniform

impact on monetary policy transmission under all three policy strategies. The results of this

paper thus do not depend on which type of agent is boundedly rational.

Interest rate smoothing While an interest rate rule with interest rate smoothing is stan-

dard in the literature, it could potentially distort the comparison between IT and AIT because

under interest rate smoothing even IT features a history-dependent element. We therefore

simulate the model also without interest rate smoothing (ρR = 0) to assess the robustness

of our findings along this dimension. To enhance comparability, we recalibrate the demand

shock volatility relative to Section 3 to again match an ELB frequency of 20% for the RE-

RANK case. The resulting value is σβ = 0.0047. As can be seen in Figures 19 and 20 in

Appendix C, the main findings of this paper (see Section 5.1) do not change once interest

rate smoothing is abandoned.

6 Conclusion

In this paper, we have studied to what extent the effectiveness of make-up strategies de-

pends on the assumptions of rational expectations and complete markets. Specifically, we

have performed simulations for a HANK model that was extended to allow for non-rational

expectation formation and an occasionally-binding ELB constraint. Our simulations sug-

gest that the power of make-up strategies does not particularly depend on whether markets

are complete. By contrast, if agents are quite limited in their ability to process the macroe-

conomic consequences of aggregate shocks, the effectiveness of make-up strategies suffers,

which can make them almost as useful as standard inflation targeting for addressing the

adverse effects of an ELB. Since we observe that, for a given level of cognitive ability, the

relative performance of AIT and IT hardly differs between our HANK model and a cor-

responding RANK model, one can argue that (bounded) rationality matters more for the

effectiveness of make-up policies than market (in)completeness. This observation also im-

plies that market incompleteness and bounded rationality do not complement each other in

attenuating the benefits of make-up strategies.

53This value is also the lowest one where we did not encounter non-existence of equilibrium during some
ELB episodes for any of the considered model versions.
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A Appendix: Derivation of optimal decision rules

This section derives the optimal decision rules shown in Section 2.1.

Households Define income yt = wtNt +dt , which is taken as given by all households. The

household period budget constraint is

bi,t−1
Rt−1

Πt
+ yt = b̃i,t + c̃i,t ,

for current period t and

b̃i,t+s−1
Re

t+s−1

Πe
t+s

+ ye
t+s = b̃i,t+s + c̃i,t+s,

for future periods t + s, s > 0.

Repeated forward substitution of (planned) end-of-period bonds via

b̃i,t+s−1 =
(
b̃i,t+s + c̃i,t+s− ye

t+s
)(Re

t+s−1

Πe
t+s

)−1

,

yields the intertemporal budget constraint,

bi,t−1
Rt−1

Πt
=

∞

∑
s=0

(
∏

s
u=0

(
Re

t+u

Πe
t+u+1

)−1
)
(ci,t+s− yt+s) ,

or

c̃i,t +
∞

∑
s=1

(
∏

s
u=1

(
Re

t+u−1

Πe
t+u

)−1
)

c̃i,t+s = bi,t−1
Rt−1

Πt
+ yt +

∞

∑
s=1

(
∏

s
u=1

(
Re

t+u−1

Πe
t+u

)−1
)

ye
t+s.

Household i maximises expected lifetime utility,

∑
∞

s=0

(
∏

s
k=0 βt+k−1

){
u(c̃i,t+s)− v

(
Le

t+s
)}

,

by choosing consumption sequence {c̃i,t+s}∞
s=0 subject to the intertemporal budget con-

straint. With felicity function u(c) = (c1−σ − 1)/(1−σ), the first-order condition for

(planned) consumption in period t + s is

c̃−σ

i,t = c̃−σ

i,t+s ∏
s
u=1 βt+u−1

Re
t+u−1

Πe
t+u

,

or

c̃i,t+s = c̃i,t

(
∏

s
u=1 βt+u−1

Re
t+u−1

Πe
t+u

)1/σ

.

By using this condition to replace c̃i,t+s in the intertemporal household budget con-
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straint, we obtain

c̃i,t + c̃i,t

∞

∑
s=1

(
∏

s
u=1

(
Re

t+u−1

Πe
t+u

)−1
)(

∏
s
u=1 βt+u−1

Re
t+u−1

Πe
t+u

)1/σ

= bi,t−1
Rt−1

Πt
+ yt +

∞

∑
s=1

(
∏

s
u=1

(
Re

t+u−1

Πe
t+u

)−1
)

ye
t+s.

Solving for c̃i,t then yields

c̃i,t =

bi,t−1
Rt−1
Πt

+ yt +∑
∞
s=1

(
∏

s
u=1

(
Re

t+u−1
Πe

t+u

)−1
)

ye
t+s

1+∑
∞
s=1

(
∏

s
u=1

(
Re

t+u−1
Πe

t+u

)−1
)(

∏
s
u=1 βt+u−1

Re
t+u−1
Πe

t+u

)1/σ
,

or simplified

c̃i,t =

bi,t−1
Rt−1
Πt

+ yt +∑
∞
s=1

(
∏

s
u=1

(
Re

t+u−1
Πe

t+u

)−1
)

ye
t+s

1+∑
∞
s=1 ∏

s
u=1 β

1/σ

t+u−1

(
Re

t+u−1
Πe

t+u

)1/σ−1 .

Intermediate-good firms In period t, intermediate-good firm j sets price Pj,t to maximise

the expected present value of its profits,

∞

∑
s=0

(βξp)
s


(P∗t )

1−θp

(
∏

s
u=1 Π

ιp(Πe
t+u−1)

1−ιp

Pe
t+s

)1−θp

Y e
t+s

−λt+swe
t+s(P

∗
t )
−θp

(
∏

s
u=1 Π

ιp(Πe
t+u−1)

1−ιp

Pe
t+s

)−θp

Y e
t+s−Φ

,

where we used that Yj,t+s =(Pj,t+s/Pt+s)
−θpYt+s and Pj,t+s =Pj,t×∏

s
u=1
[
Πιp(Πe

t+u−1)
1−ιp
]
.

Let P∗t denote the optimal reset price, which is the same across all firms j that can adjust

prices in period t. The first-order condition for P∗t can be written as

P∗t =
θp

θp−1

∞

∑
s=0

(βξp)
s
(

∏
s
u=1 Π

ιp(Πe
t+u−1)

1−ιp

Pe
t+s

)−θp

λt+swe
t+sY

e
t+s

∞

∑
s=0

(βξp)
s
(

∏
s
u=1 Π

ιp(Πe
t+u−1)

1−ιp

Pe
t+s

)1−θp

Y e
t+s

.

Define optimal reset inflation as Π∗t+s = P∗t+s/Pt+s−1. Using Pe
t+s = Pt ×∏

s
u=1 Πe

t+u and

Πt+s = Pt+s/Pt+s−1, we can write the expression above as

Π
∗
t =

θp

θp−1

∞

∑
s=0

(βξp)
s
(

∏
s
u=1

Π
ιp(Πe

t+u−1)
1−ιp

Πe
t+u

)−θp

λt+swe
t+sY

e
t+s

∞

∑
s=0

(βξp)
s
(

∏
s
u=1

Π
ιp(Πe

t+u−1)
1−ιp

Πe
t+u

)1−θp

Y e
t+s

Πt .
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Labour unions Labour union k sets nominal wage Wk,t to maximise the expected aver-

age lifetime utility of its members, ∑
∞
s=0 (βξw)

s{MUe
t+s(Wk,t+s/Pe

t+s)Nk,t+s−MV e
t+sNk,t+s

}
,

subject to the labour demand condition Nk,t+s = (Wk,t+s/Wt+s)
−θwNt+s and the wage index-

ing rule Wk,t+s =Wk,t ×∏
s
u=1
[
Πιw(Πe

t+u−1)
1−ιw

]
.

Using the two constraints to eliminate Nk,t+s and Wk,t+s in the union’s objective yields

∞

∑
s=0

(βξw)
s

 (Pe
t+s
)−1

(Wk,t)
1−θw

(
∏

s
u=1 Πιw

(
Πe

t+u−1

)1−ιw
)1−θw

Ne
t+s
(
W e

t+s
)θwMUe

t+s

−(Wk,t)
−θw
(

∏
s
u=1 Πιw

(
Πe

t+u−1

)1−ιw
)−θw

Ne
t+s
(
W e

t+s
)θwMV e

t+s

.
Let W ∗t denote the nominal wage chosen by all unions that can reset their wages in

period t. The first-order condition for W ∗t can be written as

W ∗t =
θw

θw−1

∞

∑
s=0

(βξw)
s
(

∏
s
u=1 Πιw

(
Πe

t+u−1

)1−ιw
)−θw

Ne
t+s
(
W e

t+s
)θwMV e

t+s

∞

∑
s=0

(βξw)
s(Pe

t+s)
−1
(

∏
s
u=1 Πιw

(
Πe

t+u−1

)1−ιw
)1−θw

Ne
t+s(W e

t+s)
θwMUe

t+s

,

which in turn can be rearranged to

w∗t =
θw

θw−1

∞

∑
s=0

(βξw)
s
(

∏
s
u=1

Πιw(Πe
t+u−1)

1−ιw

Πe
t+u

)−θw

Ne
t+s
(
we

t+s
)θwMV e

t+s

∞

∑
s=0

(βξw)
s
(

∏
s
u=1

Πιw(Πe
t+u−1)

1−ιw

Πe
t+u

)1−θw

Ne
t+s(we

t+s)
θwMUe

t+s

,

by using Pe
t+s = Pt ×∏

s
u=1 Πe

t+u, wt+s =Wt+s/Pt+s and w∗t =W ∗t /Pt .
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B Appendix: Numerical solution

In this section, we describe our numerical solution approach.

B.1 Extended path method

Despite its shortcomings (see Section 4), the extended path method provides a natural con-

ceptual starting point and a useful benchmark for our local method.54 We first describe the

method for the (standard) case with rational expectations. Then, we present a more general

version that can handle reflective expectations as well.

Rational expectations Suppose that the economy enters period t = 0 at its deterministic

steady state, i.e. Ω−1 = Ω and S−1 = S. In period t = 0, the economy is then hit by unantici-

pated shocks that move the exogenous aggregate variables S0 and therefore the endogenous

aggregate ones Ω0 away from their respective steady state values. If the economy does not

experience shocks in later periods t > 0, the assumption of rational expectations implies

perfect foresight. Date-0 beliefs about the transition path back to the steady state must

therefore coincide with the actual evolution of the economy, i.e.
{

Ωe
t+s
}∞

s=0 = {Ωt}∞

t=0. As-

suming the economy will have returned to the steady state at date t = T +1, the computation

of sequence {Ωt}T
t=0 boils down to solving a nonlinear equation system, which can e.g. be

accomplished by using a numerical solver in combination with a good initial guess.55 While

the computation of this sequence can be time-consuming even under rational expectations,

especially when there is household heterogeneity, it is straightforward to implement concep-

tually. Note that this step requires tracking the evolution of the infinite-dimensional wealth

distribution {Ψt (b,z)}T
t=0 in a tractable way. As is common in the literature, we do so using

a discrete approximation of this distribution based on a finite-dimensional histogram (see

Reiter, 2009; Young, 2010; Bayer and Luetticke, 2020).

Now, suppose that we are not interested in the economy’s response to unanticipated one-

time (MIT) shocks in period t = 0, but in running a stochastic model simulation. In this case,

the sequence {Ωt}T
t=0 is only needed to determine the beliefs

{
Ωe

t+s
}T

s=0 held by agents at

date t, which are necessary to pin down the actual values for the current period t = 0, Ω0. To

compute the actual values for t = 1, i.e. Ω1, we proceed as just described for t = 0, except

that the initial values now are given by Ω0 and S0, instead of Ω−1 = Ω and S−1 = S. New

unanticipated shocks then again hit the exogenous states, S1. Under certainty equivalence,

i.e. ignoring the possibility of future shocks hitting the economy, perfect foresight applies

again and the shocks give rise to a new deterministic sequence {St}T
t=1. Since (rational)

beliefs adjust to this new information, one needs to compute a new sequence of beliefs{
Ωe

t+s
}T

s=0 for t = 1. This can again be accomplished by using a nonlinear equation solver

to calculate the deterministic sequence {Ωt+s}T
s=0 for t = 1, which coincides with beliefs

54See Christiano et al. (2016) and Erceg et al. (2021) for recent applications of the extended path method.
55For the rational-expectations case, one can e.g. use perturbation methods to obtain a good initial guess,

both with as well as without household heterogeneity (see e.g. Dobrew et al., 2021).
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{
Ωe

t+s
}T

s=0 in a rational-expectations equilibrium under certainty equivalence. From this

sequence, we again only keep the values Ω1, which are the actually realised values in period

t = 1 that – together with S1 – serve as initial values for the next period, t = 2, where we will

proceed as for t = 1. We repeat these steps for a sufficiently high number of periods T̃ to

obtain times series for the model variables of length T̃ . Based on these time series, we can

calculate model statistics for selected variables and assess the quantitative model properties

for different monetary policy rules. Note that, since we use a nonlinear equation solver for

the computations, it is straightforward to impose the ELB constraint for the monetary policy

rule. However, such a nonlinearity slows down the numerical computation.

Reflective expectations Under reflective rather than rational expectations, we can pro-

ceed as sketched, except that beliefs
{

Ωe
t+s
}T

s=0 do not generally coincide with the actual

evolution of the respective variables under perfect foresight (and certainty equivalence) any-

more. As a result, we cannot directly solve for the entire sequence as before and – similar

to Farhi and Werning (2019) and Garcı́a-Schmidt and Woodford (2019) – use an iterative

procedure to determine Ωt for each time period t instead, taking as given initial values Ωt−1

and St−1. Specifically, we apply the following algorithm:

1. Let n∗ denote the actual level of cognitive ability that we want the economy to exhibit.

Choose a small number γ > 0. The necessary number of iterations with respect to

cognitive ability then is n∗/γ . Set the initial time index to t = 0. Set the initial values

to Ωt−1 = Ω and St−1 = S.

2. Draw period-t shocks εt . Given St−1, εt and the law of motion for St+s, calculate the

time path {St+s}T
s=0 . Set the initial level of reflective reasoning to n = γ and initialise

beliefs
{

Ω
e,n
t+s
}T

s=0 .

3. Given Ωt−1, {St+s}T
s=0 and

{
Ω

e,n
t+s
}T

s=0 , compute the individual policy functions for

the households, firms and unions for s∈ {0,1,2, . . . ,T}. While closed-form solutions

are available for the reset price and the reset wage, this is only true for individual

household consumption and bond holdings in the RANK model. For the HANK

model, one has to compute the individual household policies numerically via back-

ward induction, using a global solution method like the endogenous grid method (see

Carroll, 2006).56

4. Go forward in time to compute the sequence
{

Ωn
t+s
}T

s=0 :

a. Set s = 0 and Ωn
t−1 = Ωt−1.

b. Compute Ωn
t+s, given Ωn

t+s−1 and the policies computed in Step 3.

c. Set s = s+1.

d. If s≤ T go to Step 4b. If s > T , go to Step 5.
56We also use the endogenous grid method when directly solving for a sequence under rational expectations.
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5. If n = n∗, set Ωt = Ωn
t and go to Step 6. If n < n∗, update beliefs,

{
Ω

e,n+γ

t+s

}T

s=0
=

γ ×
{

Ωn
t+s
}T

s=0 +(1− γ) ×
{

Ω
e,n
t+s
}T

s=0 , as well as the level of reasoning, n = n+ γ ,

and go to Step 3.57

6. If t = T̃ , stop. If t < T̃ , update the time index, t = t +1, and go to Step 2.

This procedure yields the simulated time series {Ωt}T̃
t=0 which we can use to calculate

statistics for model variables of interest. Step 4b requires the use of a nonlinear equation

solver. Given that – for each n ∈ {γ, . . . n∗} – it is only the variables in period t and not an

entire sequence that is computed in this step, it usually is not particularly time-consuming

on its own. Since it will however be performed n∗/γ times for each t+s, s∈ {0,1,2, . . . ,T},
the computational burden is much higher relative to the rational-expectations computations

sketched earlier, even if n∗/γ is low. While one could in principle use the iterative algorithm

above to approximate the rational-expectations case for sufficiently high n∗, it usually is

hence not advisable to do so as it would be much slower – as well as less numerically stable

– compared to the procedure described above.58

One can imagine various ways to initialise beliefs for Step 2. However, we make the

simplifying assumption that beliefs are anchored at the steady state in each period, i.e.

Ω
n,e
t+s = Ω for n = γ , s ∈ {0,1,2, . . . ,T} and t ∈

{
0,1,2, . . . , T̃

}
, which is consistent with

our definition of a reflective-expectations equilibrium in the previous section. This assump-

tion has two main implications for our analysis. First, when shocks are only drawn for the

first period and set to zero thereafter, i.e. {εt}T̃
t=0 = {εt ,0, . . . ,0} with εt 6= 0, where εt =(

εβ ,t ,ελ ,t
)
, the algorithm outlined above would imply that the sequence {Ωt}T̃

t=0 , obtained

after applying the entire algorithm above, coincides with the sequence {Ωt+s}T
s=0 obtained

after applying the steps 1 to 5 only once for t = 0, assuming T = T̃ . By contrast, if initial

beliefs
{

Ω
n,e
t+s
}T

s=0 , with n = γ , could change (endogenously) with t, this relationship would

not generally hold anymore. Although a time-varying anchoring of beliefs could allow for

potentially interesting learning dynamics (see e.g. Bianchi-Vimercati, 2022), we prefer to

keep the model analysis simple at this stage. Second, anchoring beliefs at the steady state

allows us to apply a local approximation for the reflective-expectations model, facilitating

fast model simulation. If initial beliefs were to change as time passes, the local approxima-

tion would no longer be appropriate anymore because the anchor for the belief formation

would (or at least could) move too far away from the steady state.59

57This updating rule reflects that the continuous belief-updating process dΩ
e,n
t+s/dn = Ωn

t+s−Ω
e,n
t+s can be

approximated by
(
Ω

e,n+dn
t+s −Ω

e,n
t+s
)
/dn = Ωn

t+s −Ω
e,n
t+s. If dn = γ , this equation can in turn be written as

Ω
e,n+γ

t+s = γ×Ωn
t+s+(1− γ)×Ω

e,n
t+s.

58However, when there are substantial nonlinearities at the aggregate level, we find that the iterative algorithm
can be more stable compared to an approach that directly computes the entire time path for the model variables
as sketched above. For instance, we found this to be the case when considering more sophisticated mone-
tary policy rules relative to Section 2, such as asymmetric average inflation targeting or temporary price-level
targeting (see e.g. Arias et al., 2020; Erceg et al., 2021).

59For γ = 1, one can also use the algorithm to compute an equilibrium where belief formation is based on
level-k thinking (see Farhi and Werning, 2019). However, we find that the algorithm is not numerically stable
in this case and does not converge to the rational-expectations solution for n∗→ ∞.
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B.2 Local approximation method

Our local model approximation builds on the insights of Boppart et al. (2018). Assume that

the random variables in the model follow log-normal AR(1) processes, with persistence

parameter ρx and shock standard deviation σx, for x ∈ {β ,λ}. Now suppose that we have

computed a transition path for the model variables after a small unanticipated one-time

(MIT) demand shock εβ ,t = h > 0 has hit the economy in the steady state at date t = 0,

giving rise to the (shock-specific) transition path
{

Ωt|β
}T

t=0 . Furthermore, suppose that

RELB = 0 and – for simplicity – only demand shocks are operative in the model, such that we

have
{

Ŝt+s
}T

s=0 =
{

β̂t+s
}T

s=0 =
{

εβ ,0,ρβ εβ ,0,ρ
2
β

εβ ,0,ρ
3
β

εβ ,0, . . . , ρT
β

εβ ,0
}

. The hat symbol

indicates that a variable is expressed in log-deviations from steady state, X̂t = log(Xt/X).

Following Boppart et al. (2018), we can use

X̂t ∼=
T

∑
s=0

X̂s|β εβ ,t−s,

as a linear perfect-foresight approximation around the steady state, for X ∈Ω, where X̂s|β =(
Xs|β −X

)
/h, for s ∈ {0,1,2, . . . ,T}.60 Note that if the model is linear and T = ∞, the

relationship above holds with equality, not just approximately.

To simulate the model, we can now simply draw a sequence of demand shocks and

then calculate the model variables’ values for each period by using the impulse response

coefficients
{

X̂t|β
}T

t=0 and the (truncated) shock history for that period via the formula

above. Instead of relying on a conventional perturbation of the model based on a recursive

formulation, we thus perturb the model in the sequence space, i.e. with respect to the history

of past and present aggregate shocks.

There are two key advantages of using this local approximation method in this paper.

First, when a model features substantial heterogeneity across agents, the histogram used to

approximate the distribution of agents in the economy involves a large number of bins to

achieve a reasonable degree of numerical accuracy. As a result, the size of the minimal state

space required for a local approximation based on a recursive model formulation is usually

going to exceed the number of shocks needed for a model approximation in the (truncated)

sequence space in this case. Boppart et al. (2018)’s approach exploits this property and

makes it possible to quickly solve and simulate heterogeneous-agent models, requiring only

the computation of an impulse response function for each type of aggregate shock, x ∈
{β ,λ}.61 For the full model with all three types of shocks, one can then approximate the

60As Boppart et al. (2018) explain, this normalised transition path represents an impulse response function
(IRF) that can be used as a numerical derivative of the time path for variable X with respect to a one-time shock.
Loosely speaking, the IRF provides a linearisation of the nonlinear model around the deterministic steady state.
If the shock is sufficiently small (and the time horizon T sufficiently long), this linearisation yields the same
results as the method by Reiter (2009).

61Given that the required transition paths need to be calculated only for small unanticipated one-time shocks,
the computational cost of this step is not that high, especially under rational expectations.
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model variables in period t via

X̂t ∼= ∑s∈{0,1,...,T}∑x∈{β ,λ} X̂s|xεx,t−s,

for X ∈Ω.

Second, it is straightforward to apply the sequence-space approximation for models with

iterative belief formation (see e.g. Farhi and Werning, 2019; Garcı́a-Schmidt and Woodford,

2019; Bianchi-Vimercati et al., 2021) because the belief-formation process is directly taken

into account when computing the sequences
{

Ωt|x
}T

t=0 .62 However, note that, as mentioned

earlier, these sequences would be computed under the assumption that beliefs are anchored

at the steady state for all periods t.

B.3 Enforcing the ELB constraint

The local approximation discussed in the previous section does not take into account the

nonlinearity introduced by the occasionally-binding ELB constraint. Building on Boden-

stein et al. (2013) and Holden (2016), we enforce this constraint by using anticipated mone-

tary policy shocks.63 In principle, the method is only guaranteed to recover the true solution

for a linear dynamic model with an occasionally-binding constraint if expectations are ra-

tional and perfect foresight applies. Under these assumptions, enforcing the ELB for the

expected evolution of the economy then amounts to enforcing it for the actual evolution of

the economy as well. This link is, however, broken for our model with non-rational expec-

tations. Nevertheless, as shown below, we find that one can still apply the method and that

the resulting approximation is quite good.

Anticipated monetary policy shocks To apply the method, replace the relationship Rt =

max
{

R̃t ,RELB
}

with Rt = R̃t ∏s∈{0,1,...,T} exp
(
εR,t−s|t

)
, where εR,t−s|t is an anticipated mon-

etary policy shock that is announced in period t−s but realised in period t.64 Before we can

start the model simulation, we need to compute the T +1 transition paths
{

Ωt+s|R,k
}T

s=0 , k∈
{0, . . . ,T}, using the methods described earlier. The sequence

{
Ωt+s|R,k

}T
s=0 denotes the

transition path for the economy after the anticipated monetary policy shock εR,t|t+k = hR > 0

is revealed in period t (“today”) to hit the economy in period t + k. Based on the com-

puted sequences, we calculate the impulse response coefficients
{

X̂s|R,k
}T

s=0 with X̂s|R,k =(
Xt+s|R,k−X

)
/hR, for k ∈ {0, . . . ,T} and X ∈Ω.

62By contrast, at least for the HANK model, it does not appear to be feasible to apply standard perturbation
techniques to a nonlinear model with iterative belief formation. As in Bianchi-Vimercati et al. (2021), for quite
simple models – like the RANK model in this paper – a feasible option would be to first log-linearise the model
equations analytically for a given level of reflective reasoning and then apply the iterative belief formation
process (see also Bersson et al., 2019; Molavi, 2022).

63Laséen and Svensson (2011) have pioneered the use of such anticipated monetary policy shocks to imple-
ment given (exogenous) interest rate paths for linearised DSGE models.

64Remember that it is the shadow rate R̃t , not the realised rate Rt , which affects R̃t+1 as a lagged argument
via the interest rate rule. As a result, the shadow rate R̃t is not directly affected by the monetary policy shocks,
as they are introduced to replace the ELB and not as an independent source of uncertainty.
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Rational expectations We first illustrate the method for the rational-expectations case,

building on the ideas of Bodenstein et al. (2013) and Holden (2016) but relying on a lo-

cal approximation of the model in the sequence space instead. Suppose we want to find

the values for the model variables in a given simulation period t. First, use the local

method sketched in Section B.1 to generate the unconstrained (log-linear) perfect-foresight

sequence
{

Ω̄t+s
}T

s=0 by using X̄t+s = ∑m∈{0,1,...,T}∑x∈{β ,λ} X̂m|xεx,t+s−m, for X ∈ Ω, ini-

tially setting εR,t|t+k = 0 for all k. Second, check whether the sequence
{

R̄t+s
}T

s=0 vi-

olates the ELB constraint, i.e. whether R̄t+s ≥ log
(
RELB/R

)
holds for all future periods

s ∈ {0,1, . . . ,T}. If this condition is violated for at least one period s, we look for an-

ticipated monetary policy shocks
{

εR,t|t+k
}T

k=0 , such that R̂t+s ≥ log
(
RELB/R

)
holds for

R̂t+s = R̄t+s+∑k∈{0,1,...,T} R̂s|R,kεR,t|t+k, with εR,t|t+k ≥ 0,k∈ {0,1, . . . ,T}, as well as
[
R̂t+s−

log
(
RELB/R

)]
εR,t|t+s = 0.65 We thus need to find non-negative anticipated monetary policy

shocks for period t, such that the resulting perfect-foresight transition path for the pol-

icy rate,
{

R̂t+s
}T

s=0 , (i) does not violate the ELB constraint and (ii) only features strictly

positive policy shocks, εR,t|t+s > 0, in periods s ∈ {0,1, . . . ,T} with a binding ELB con-

straint. Having found appropriate period-t policy shocks
{

εR,t|t+s
}T

s=0 , we can compute

the entire perfect-foresight path consistent with the ELB constraint,
{

Ω̂t+s
}T

s=0 , by using

X̂t+s = X̄t+s +∑k∈{0,1,...,T} X̂s|R,kεR,t|t+k, for X ∈ Ω. Having calculated these sequences, we

then only use the first entry, Ω̂t , as it contains the actually realised values for the model

variables in simulation period t. Next, we move to the simulation period t +1 and proceed

as just described for period t.

There are several ways to obtain anticipated policy shocks consistent with the two

requirements listed above. Whereas Bodenstein et al. (2013) employ an iterative guess-

and-verify scheme that shares similarities with Guerrieri and Iacoviello (2015)’s piecewise-

linear method, Holden (2016) proposes an algorithm that solves a mixed-integer linear pro-

gramming (MILP) problem.66 Although we find that both methods lead to the same solu-

tion for our model, the MILP approach has a number of appealing advantages. Specifically,

Holden (2016) proves that a linear dynamic model augmented with anticipated monetary

policy shocks yields the same model dynamics as the original model that is linear except

for the max-operator. In general, the existence and the uniqueness of a sequence
{

R̂t+s
}T

s=0

consistent with requirements (i)-(ii) are, however, not guaranteed and depend on the local

model dynamics, as captured by the impulse response coefficients
{

R̂s|R,k
}T

s=0 . Since the

approach used by Bodenstein et al. (2013) simply assumes the existence of suitable antic-

ipated monetary policy shocks and then proceeds under this assumption, it is not obvious

whether a lack of convergence of their method would be due to numerical issues or the non-

existence of a solution (see Holden, 2016). By contrast, the method proposed by Holden

(2016) has the appealing feature of being able to detect whether a solution exists.67 In ad-

65Formally, finding a shock sequence that satisfies these conditions is a linear complementarity problem (see
Holden, 2016).

66See Bodenstein et al. (2009) for details on the relationship between the iterative approaches used by Bo-
denstein et al. (2013) and Guerrieri and Iacoviello (2015).

67For our model, we found that the approach presented in Holden and Paetz (2012), which determines the
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dition, it makes it possible to select a particular solution in case of multiplicity, e.g. the

solution that minimises the length of an ELB spell.

In the remainder, we closely follow Holden (2016) and refer the interested reader to that

paper for a detailed treatment of the method. Define the vector q =
(
R̄t , R̄t+1, . . . , R̄t+T

)′
−
(
log
(
RELB/R

)
, log

(
RELB/R

)
, . . . , log

(
RELB/R

))′
and the coefficient matrix M =

(
m0,m1,

. . . ,mT
)
, which contains the IRFs ms =

(
R̂s|R,0, R̂s|R,1, . . . , R̂s|R,T

)′
. For a given scalar ω > 0,

we can find suitable policy shocks
{

εR,t|t+k
}T

k=0 by formulating a MILP problem that solves

for scalar α , vector v = (v0,v1, . . . ,vT )
′, and vector z ∈ {0,1}T+1:

max{α,v,z} α s.t. 0≤ α, 0≤ v≤ z , 0≤ αq+Mv≤ ω
(
1(T+1)×1− z

)
.

This type of optimisation problem is well understood in the literature and can be solved

efficiently using readily available numerical solvers.68 How can we recover the anticipated

monetary policy shocks from a solution to this problem? If the solution involves α = 0,

there is no collection of shocks
{

εR,t|t+s
}T

s=0 that satisfies the two requirements (i) and (ii)

listed above. If α > 0, we can recover the shocks via εR,t|t+s = vs/α , for s ∈ {0,1, . . . ,T}.
In case different policy shocks are consistent with different model dynamics at the ELB,

reflecting equilibrium multiplicity, one can select a particular equilibrium via parameter

ω . For instance, ω → 0 would select anticipated policy shocks that minimise ||q+Mv||
∞

,

whereas ω→∞ would select the shock sequence minimising ||v||
∞

. In addition, by treating

ω as an i.i.d. random variable, it is also possible to use sunspot shocks as an equilibrium

selection device for the simulation.

Reflective expectations So far, the method described above relied on perfect foresight to

enforce the ELB constraint for the linearised model. However, under reflective expectations,

perfect foresight does not hold anymore, such that the equivalence between the realised

sequences and the expected sequences breaks down. It is therefore not obvious whether and,

if so, how one can use anticipated monetary policy shocks to enforce the ELB in this case.

In principle, one would now have to enforce the ELB constraint for all levels of reflective

reasoning, n ∈ {γ,2γ, . . . ,n∗}, considered for the belief formation process. Doing so would,

however, make the local method as slow as the nonlinear one and therefore undo its key

advantage. Instead, we proceed as in the rational-expectations case by assuming that the

(unconstrained) actual evolution of the economy populated by agents with cognitive ability

n∗, as predicted by the impulse response coefficients and the current history of shocks,

coincides with what these agents believe about their economy in general and the interest

rate path in particular.

For our purposes, we consider this assumption reasonable for the following reasons.

First, if γ is close to zero, the two sequences
{

Ωn∗
t+s
}T

s=0 and
{

Ω
n∗,e
t+s
}T

s=0 are very close

to each other for all s ∈ {0,1, . . . ,T}. As a result, the sequence
{

Ω̂n∗
t+s
}T

s=0 provides a

required anticipated policy shocks by solving a quadratic programming problem, also leads to the same results
as the other two approaches. However, as in Bodenstein et al. (2013), it assumes the existence of a solution.

68We use MATLAB’s built-in routine intlinprog.
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reasonable approximation of beliefs
{

Ω̂
n∗,e
t+s
}T

s=0 . Motivated by this insight, we simply

use the approach sketched above for the rational-expectations case also for the reflective-

expectations case, enforcing the ELB based only on the unconstrained log-linear realised

sequence
{

Ω̄t+s
}T

s=0 . Second, regardless of whether one considers our conceptual argu-

ment compelling or not, we find that by enforcing the ELB only based on
{

Ω̄t+s
}T

s=0 ,

the resulting sequence
{

Ω̂t+s
}T

s=0 consistent with the ELB constraint is quite close to the

“ELB-consistent” sequence that a nonlinear perfect-foresight solution would deliver.69 This

observation justifies our approach from a practical perspective and underscores our concep-

tual argument.70

Capturing nonlinearities at the ELB Whereas Bodenstein et al. (2013) and Holden

(2016) – as well as Guerrieri and Iacoviello (2015) – use a recursive model formulation

as is common in the DSGE literature, we use the sequence representation described above.

Doing so offers an additional degree of flexibility, given by the shock size hR, that can be

used to improve the accuracy of the model approximation for periods at the ELB. Usually,

the unconstrained model violates the ELB constraint only if the economy experiences a par-

ticularly large shock or a sequence of adverse shocks, likely pushing the economy far away

from the deterministic steady state. A binding ELB constraint would then amplify these

adverse conditions even further, causing a linear approximation in the neighbourhood of the

steady state to possibly deliver a poor performance. As Reiter (2018) highlights, the ap-

proximation proposed by Boppart et al. (2018) may perform better if the impulse response

coefficients are calculated for h-values that are not close to zero. Whether this is indeed the

case depends on how nonlinear the original model is and the properties of the stochastic

processes, which affect the time spent close to the steady state. Regarding the anticipated

monetary policy shocks, one has good reasons to believe that they are strictly positive only

when the economy is far away from the steady state. As a result, it is likely that one can

improve the accuracy of the approximation by choosing hR to keep the difference between

the nonlinear solution path and the local one low for selected model variables of interest,

such as output or inflation, when the economy is at the ELB.

Accuracy of the local solution To assess the numerical performance of our local model

approximation, we compute impulse responses for a large demand shock (εβ ,t = 3σβ ) with

our local method and compare them to impulse responses computed with the nonlinear

approach sketched in Section B.1. Figures 8 to 10 show the results for the case without an

ELB constraint. Although the size of the shock is quite large, the responses of the interest

rate, inflation and output hardly differ across the two solution methods. This observation

69We provide details on the numerical accuracy of the local method at the end of this section.
70We also assume that the monetary policy shocks, unlike shocks to St , are not directly observable by the

agents. They are hence only “pseudo-anticipated shocks”. This assumption reflects that (i) reflective agents
form imperfect expectations about whether the ELB is going to bind or not due to lack of perfect foresight, and
(ii) monetary policy shocks do not constitute an exogenous source of aggregate volatility in the model but are
determined endogenously to enforce a binding ELB.
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holds regardless of assumptions made about cognitive ability and market completeness.

With an ELB constraint (see Figures 11 to 13), we notice some small differences for low

cognitive ability levels, n∗ ∈ {0.5,1,2}. For low n∗-values, beliefs held by agents and actual

outcomes differ to a greater degree. As a result, since Holden (2016)’s approach assumes

perfect foresight, enforcing the ELB via anticipated monetary policy shocks works less

well in this case than for high n∗-values, reflecting that the model departs more from this

assumption. By contrast, when agents are close to being rational, the gap between beliefs

and outcomes shrinks and the impulse responses implied by the two solution methods are

again very close to each other.71 Interestingly, for a given n∗, the local solution approach

works similarly well in the RANK and HANK models with and without an occasionally-

binding ELB. This finding could suggest that our model does not feature sizable nonlinear

interactions between the ELB and household heterogeneity.72

71We use γ = 0.1 for the computations in this paper (see Section B.1). By lowering γ , the gap between beliefs
and outcomes can further be reduced. This in turn lowers the differences between the local and nonlinear im-
pulse responses observed for low n∗-values under an occasionally-binding ELB. However, using lower γ-values
did not affect our qualitative findings and had a negligible effect on our quantitative results, while increasing
the computation time.

72We only consider an MIT shock and therefore do not capture the type of interactions studied by Schaab
(2020) and Fernández-Villaverde et al. (2021) for HANK models with aggregate risk.
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Figure 8: Response of Rt to a contractionary demand shock (without ELB)
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Notes: Responses are computed under the IT rule and expressed in percentage deviations from steady state.
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Figure 9: Response of Yt to a contractionary demand shock (without ELB)
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Figure 10: Response of Πt to a contractionary demand shock (without ELB)
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Figure 11: Response of Rt to a contractionary demand shock (with ELB)
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Figure 12: Response of Yt to a contractionary demand shock (with ELB)
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Figure 13: Response of Πt to a contractionary demand shock (with ELB)
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C Appendix: Additional results

ELB incidence Inflation (%) Output (%)

Policy rule
Freq.
(%)

Avg. duration
(quarters)

Avg. Std. Avg. Std.

IT 16.29 5.60 1.94 0.64 -0.07 1.10
AIT4 14.31 5.80 1.97 0.59 -0.05 1.06
AIT8 13.99 5.67 1.98 0.59 -0.05 1.06

Table 6: Results for RE-HANK model with real household debt

ELB incidence Inflation (%) Output (%)

Policy rule
Freq.
(%)

Avg. duration
(quarters)

Avg. Std. Avg. Std.

IT 20.60 6.92 1.94 0.95 -0.12 1.19
AIT4 17.26 6.67 1.98 0.79 -0.07 1.15
AIT8 16.82 6.42 1.99 0.77 -0.06 1.15

Table 7: Results for RE-RANK model with different price / wage indexation (ιp = ιw = 0.9)

ELB incidence Inflation (%) Output (%)

Policy rule
Freq.
(%)

Avg. duration
(quarters)

Avg. Std. Avg. Std.

IT 16.90 5.57 1.92 0.71 -0.08 1.12
AIT4 14.49 5.80 1.96 0.63 -0.05 1.08
AIT8 14.12 5.64 1.97 0.63 -0.05 1.07

Table 8: Results for RE-HANK model with different price / wage indexation (ιp = ιw = 0.9)

ELB incidence Inflation (%) Output (%)

Policy rule
Freq.
(%)

Avg. duration
(quarters)

Avg. Std. Avg. Std.

IT 17.28 5.58 1.92 0.67 -0.09 1.17
AIT4 15.08 5.90 1.96 0.60 -0.06 1.10
AIT8 14.72 5.75 1.97 0.60 -0.05 1.10

Table 9: Results for RE-HANK model with countercyclical income risk (ζ =−1)

ELB incidence Inflation (%) Output (%)

Policy rule
Freq.
(%)

Avg. duration
(quarters)

Avg. Std. Avg. Std.

IT 15.90 5.31 1.95 0.63 -0.07 1.06
AIT4 13.85 5.72 1.97 0.58 -0.05 1.03
AIT8 13.52 5.59 1.98 0.58 -0.04 1.02

Table 10: Results for RE-HANK model with procyclical income risk (ζ = 1)
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Figure 14: ELB episode under reflective expectations (n∗ = 1)
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Notes: IRFs are for a large demand shock (εβ ,t = 5σβ ) and in percentage deviations from steady state.
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Figure 15: ELB episode under reflective expectations (n∗ = 2)
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Notes: IRFs are for a large demand shock (εβ ,t = 5σβ ) and in percentage deviations from steady state.
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Figure 16: ELB episode under reflective expectations (n∗ = 3)
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Notes: IRFs are for a large demand shock (εβ ,t = 5σβ ) and in percentage deviations from steady state.
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Figure 17: Results for RANK model with only one type of non-rational agent
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Figure 18: Results for HANK model with only one type of non-rational agent
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Figure 19: Results for BR-RANK without interest rate smoothing (ρR = 0)
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Figure 20: Results for BR-HANK without interest rate smoothing (ρR = 0)
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