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Non-technical summary

Research Question

A standard workhorse model for macroeconomic forecasting is the Vector Autoregression (VAR),
where future values for a range of economic variables are predicted based on their past behavior.
However, the COVID-19 pandemic has led to enormous data movements that strongly affect pa-
rameters and forecasts from standard VARs in ways that appear implausible. How can we make
VAR models more robust to extreme outliers, such as those seen at the onset of the pandemic?

Contribution

A simple remedy is to omit extreme outliers from estimation; however, that approach omits any
information from those periods and risks underestimating forecast uncertainty. Alternatively,
researchers might place less weight on extreme observations by using VAR models with time-
variation in the average size (or volatility) of forecast errors. However, when modeling forecast
uncertainty, it is crucial how persistent changes in volatility are assumed to be. We propose VAR
models that combine two types of volatility changes: Extreme and short-lived changes (as seen
at times of economic turbulence), and more long-lasting variations (as seen in post-war data).
More conventional VAR models have focused mostly on longer-lasting variations in volatility.

Results

Predictions of our outlier-augmented VARs for monthly US data are much less sensitive to
outliers in the data than standard VARs. Formal evaluation metrics indicate that our outlier-
augmented VAR model provides the best data fit for the pandemic period, as well as for earlier
subsamples of relatively high volatility. In historical forecasting, our outlier-augmented VAR
schemes fare at least as well as a conventional model.



Nichttechnische Zusammenfassung

Fragestellung

Vektorautoregressive Modelle (VAR-Modelle) leiten Prognosen für mehrere ökonomische Va-
riablen aus deren Verhalten in der Vergangenheit ab. Die COVID-19 Pandemie hat jedoch zu
solch extremen Ausschlägen in ökonomischen Daten geführt, dass die resultierenden Modell-
parameter und Prognosen von VAR-Modellen nicht plausibel erscheinen. Wie lassen sich VAR-
Modelle konstruieren, welche sich angesichts extremer Beobachtungen, wie z.B. zu Beginn der
Pandemie, robuster verhalten?

Beitrag

Man könnte extreme Beobachtungen in der Modellschätzung einfach ignorieren; dieser Ansatz
würde jedoch die Prognoseunsicherheit unterschätzen. Alternativ könnte man extremen Beob-
achtungen weniger Gewicht in der Schätzung zukommen lassen, indem VAR-Modelle einge-
setzt werden, welche Veränderungen in der durchschnittlichen Größe der Prognosefehler (oder
der Volatilität) berücksichtigen. Für die Modellierung der Prognoseunsicherheit ist es dann al-
lerdings entscheidend, welche Annahmen über die Dauerhaftigkeit solcher Änderungen in der
Volatilität getroffen werden. Wir schlagen die Nutzung von VAR-Modellen vor, welche zwei
Arten von Änderungen in der Volatilität berücksichtigen: Extreme aber kurzlebige Änderungen
(wie in Zeiten turbulenter Krisen) sowie langanhaltende Änderungen im Konjunkturzyklus (wie
in Nachkriegsdaten mehrfach dokumentiert). Bisherige VAR-Modelle haben sich meist auf die
Berücksichtigung langanhaltender Änderungen in der Volatilität beschränkt.

Ergebnisse

Prognosen monatlicher US-Daten von VAR-Modellen mit zeitvariabler Volatilität reagieren we-
niger stark auf extreme Ausschläge in den Daten als Standardmodelle. Eine Analyse der Pro-
gnosegüte zeigt, dass unser VAR-Modell mit kurzlebigen Spitzen in der Volatilität die Daten
während der Pandemie, aber auch der früheren Episoden mit hoher Volatilität am besten abbil-
den kann.
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1 Introduction

Bayesian vector autoregressions (VARs) have a successful track record in macroeconomic fore-

casting and structural analysis. However, economic turbulence created by the ongoing COVID-

19 pandemic has posed some basic challenges for estimation and inference with VARs. As

examples of the extreme variability, payroll employment plummeted by about 15 percent from

March to April 2020, a decline nearly 16 times as large as the previous largest monthly de-

cline, and real income rose by about 12 percent in the month, an increase 3 times larger than

the previous record growth rate. These extreme realizations can have strong effects on param-

eter estimates and forecasts generated by conventional constant-parameter VARs. In response,

Schorfheide and Song (2021) suggest ignoring the recent data in estimating VAR parameters,

whereas Lenza and Primiceri (2021) propose a specific form of heteroskedasticity, tuned to the

COVID-19 data, to down-weight observations since March 2020 in the estimation.

Prior to the pandemic, VARs with stochastic volatility (SV) provided more accurate point

and density forecasts than constant-parameter models (see, e.g., Clark (2011), Clark and Ravaz-

zolo (2015), and D’Agostino, Gambetti, and Giannone (2013)). SV models generate time vari-

ation in predictive densities through changes in the variance-covariance matrix of the VAR’s

forecast errors over time. The heteroskedasticity in the form of time-varying error variances

also affects the estimation of slope coefficients in the VAR (at least in finite samples). As an

application of generalized least squares, when extreme realizations are modeled as sudden in-

creases in volatility, heteroskedastic VARs will down-weight the associated observations when

estimating parameters.

A typical SV model assumes changes in volatility to be highly persistent. However, by def-

inition, extreme observations are more reflective of short-lived spikes, not permanent increases,

in volatility. Like Lenza and Primiceri (2021) and Schorfheide and Song (2021), we view the

extreme observations of the COVID-19 period as possible outliers that are characterized by

transient and infrequent increases in volatility, in which case it may be desirable to reduce their

influence on model estimates and forecast distributions.
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This paper develops Bayesian VAR (BVAR) models with SV that feature combinations of

(1) large but infrequent volatility outliers and (2) fat-tailed errors. For the infrequent, large

volatility outlier, we adopt a discrete mixture representation that Stock and Watson (2016) used

in unobserved component models of inflation to accommodate extreme volatility during the

global financial crisis. The Stock-Watson model augments the standard SV specification of a

highly persistent volatility state with an outlier state, acting as scale factor for volatility, that

infrequently and temporarily jumps to values above 1. For the treatment of fat-tailed (rather

than Gaussian) errors in SV, we adopt the Jacquier, Polson, and Rossi (2004) specification of

t-distributed innovations.

With these building blocks, we consider one BVAR with SV specification (SVO) that fea-

tures the infrequent volatility outliers but Gaussian errors. We also consider — and prefer, for

reasons indicated below — a specification (SVO-t) that has both the infrequent volatility out-

liers and fat-tailed errors. We emphasize that our approach is data-based: Our models provide

probabilistic assessments of the timing and scale of realized outliers in the data; we are not

simply restricting recent observations to be outliers. In empirical analysis of the models, we

use a medium-sized data set of 16 monthly variables, in keeping with existing evidence of the

forecast accuracy advantages of medium-sized models (e.g., Carriero, Clark, and Marcellino

(2019) and Koop (2013)).

Our empirical results with common macroeconomic time series show the efficacy of our

proposed SVO and SVO-t specifications for mitigating the influence of COVID-induced outliers

on estimates and forecasts, fitting the data of not only the pandemic period but also earlier

periods, and forecasting out-of-sample in a long period preceding the pandemic. Although both

models succeed in mitigating the influence of COVID-induced outliers and the SVO model fits

historical data better than the slightly more complicated SVO-t specification, the advantages of

SVO-t over SVO in forecasting lead us to favor it in our analysis and recommendation.

More specifically, as a starting point for our empirical work, we confirm the findings of

Lenza and Primiceri (2021) and Schorfheide and Song (2021) that forecasts generated since
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March 2020 from homoskedastic BVARs are often distorted.1 In general, the recent outliers

cause the forecast paths of some variables to become extreme by historical standards. Instead,

BVARs with time-varying volatility generated better-behaved forecasts. SV, SVO, and SVO-t

estimates all register increases in forecast uncertainty. But while the SV specification sees all

shocks to forecast uncertainty as permanent, the SVO and SVO-t models explicitly allow for

one-off spikes in volatility, resulting in estimates of forecast uncertainty that are still elevated

but, in our subjective assessment, appear less extreme and more reasonable.

As an alternative, we also consider relying on a standard BVAR-SV model but treating as

missing data those observations identified ex-ante as extreme. The methods discussed so far

adjust parameters (including the volatility states) but not the data vector used at the forecast

origin in forming a prediction; treating observations as missing data also alters the jumping-off

point of the forecasts. To identify extreme observations as outliers, we use an ex-ante criterion

known from the literature on dynamic factor models that is based on the distance of a given data

point from the time-series median.2 This approach differs from the SVO and SVO-t approaches,

which estimate the occurrence of outliers jointly with the VAR, by treating the dates of outliers

as known ex-ante. In addition, the missing-data treatment remains agnostic about the specific

stochastic properties of those observations that are pre-selected as outliers. In the COVID-

19 period, this approach also produces much better-behaved forecasts than a constant-variance

BVAR. In forecasting, the biggest difference with the outlier-augmented SV procedures is that

conditioning on the incidence of outliers, while otherwise ignoring any signal from their specific

realization, leads to predictive densities that can be considerably tighter than those from SVO

and SVO-t.

To evaluate which model best characterizes the data in the COVID-19 period and earlier,

we employ predictive Bayes factors (which are based on sums of predictive likelihoods). By

1For example, suppose one uses monthly data through April 2020 to estimate a medium-sized BVAR and
forecast payroll employment growth starting in May 2020. In light of the suggestion of Schorfheide and Song
(2021), we also consider forecasts for the same period but using parameter estimates based on data ending in
February. The forecasts turn out to be strikingly different.

2Following Stock and Watson (2002), applications of dynamic factor models such as McCracken and Ng
(2016) have considered observations to be outliers when they are some multiple of the inter-quartile range away
from the series median.
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this measure, our SVO specification fits the COVID-19 sample the best, with SVO-t next. In

earlier samples, the SVO and SVO-t specifications also fare well in model fit (with SVO ahead).

The advantages of these models are driven by the subsamples of relatively high volatility; the

baseline SV model fits best in the Great Moderation years of 1985 through 2007.

Although to this point we have focused on efficacy in reducing outlier-induced distortions to

forecast distributions, to be broadly effective, it is important that a given method not only helps

reduce such distortions but also forecasts effectively over long periods less affected by outliers.

Accordingly, we conduct an historical assessment of out-of-sample forecast performance with

an evaluation window starting in 1975 and ending in 2017, comparing the accuracy of point and

density forecasts. It turns out that pre-COVID data include outliers; indeed, SVO and SVO-t

detect pre-COVID-19 outliers in macroeconomic and financial time series, whose existence had

been noted before by, among others, Stock and Watson (2002). In forecast accuracy for 1975-

2017, the SVO-t approach modestly outperforms SV. In results presented in a supplementary

online appendix, the SVO-t specification also has one advantage over the SVO model: At longer

horizons, the SVO-t model is modestly better than the SVO in density forecast accuracy. It

is this advantage that leads us to recommend and focus on the SVO-t model over the SVO

specification.

The remainder of this paper proceeds as follows. Section 2 briefly reviews the related liter-

ature not covered above. Section 3 introduces the models and describes their estimation. Sec-

tion 4 describes the data used. Section 5 provides our results. Section 6 summarizes robustness

checks provided in our supplementary online appendix. Section 7 concludes.

2 Related literature

As noted above, the arrival of COVID-19 has prompted a number of studies to consider treating

the extreme observations of the COVID-19 period as outliers. A particular contribution of

our paper is the comprehensive analysis of forecast performance and model fit over a wide set

of macroeconomic and financial variables of BVARs with and without outlier-augmented SV.
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By studying model performance over a relatively long sample of post-war US data, we can

also document the recurring benefits of outlier treatments at times of crisis or other economic

upheavals.

Antolı́n-Dı́az, Drechsel, and Petrella (2021) develop a dynamic factor model for nowcast-

ing, with outliers modeled as additive measurement errors that have t-distributions. Focusing

on euro area inflation, Bobeica and Hartwig (2022) document that pandemic observations can

shift parameter estimates and find some benefits to allowing fat tails in a VAR for the euro area.

In another application to euro area data, Alvarez and Odendahl (2021) find that the pandemic’s

outliers distort VAR estimates and consider alternative approaches to modeling volatility out-

liers.

Prior to the arrival of COVID-19, some studies had already considered VAR specifications

with fat-tailed error distributions. For example, t-distributed shocks were used in BVAR-SV

models by Chiu, Mumtaz, and Pintér (2017) and Clark and Ravazzolo (2015) and estimated

DSGE models, with and without SV, by Cúrdia, Del Negro, and Greenwald (2014) and Chib,

Shin, and Tan (2021). Karlsson and Mazur (2020) and Chan (2020) provide general treatments

of heteroskedasticity in BVAR models with and without SV and fat-tailed error distributions.

Other recent analyses have proposed approaches more geared to specific circumstances of

the pandemic and the estimation of causal (or structural) dependencies. For example, Primiceri

and Tambalotti (2020) and Ng (2021) argue for seeing the COVID-19 period as adding a new

type of shock to the dynamic system of the economy. Assuming that the new COVID-19 shock

has been the dominant source of variation since early 2020, Primiceri and Tambalotti (2020)

derive a set of conditional forecasts for different scenarios of future developments. Instead, Ng

(2021) uses pandemic indicators to “de-covid” data prior to estimation of time series models.

Specifically, in application to a structural VAR, Ng (2021) shows that after accounting for ex-

ogenous COVID-19-related indicators, dynamic responses to other shocks appear similar pre-

and post-COVID-19.
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3 BVAR models

We study VAR models of the following form:

yt = Π0 +Π(L)yt−1 + vt , vt ∼ N(0,Σt) (1)

where yt is a vector of N observables, Π(L) =
∑p

i=1Πi L
i−1 is a pth-order lag polynomial of

VAR coefficients, and vt denotes the VAR’s residuals. We denote the vector of stacked coef-

ficients contained in {Πi}pi=0 as Π. Throughout, we maintain the assumption of time-invariant

transition coefficients Π, which is commonly (and so far successfully) used in forecasting.3

All models are specified with non-conjugate priors for Π and Σt. The models differ mainly in

whether the residuals are homoskedastic, or in the form of their heteroskedasticity. Note that,

in the context of BVAR models, homoskedasticity refers to treating Σt as constant over time,

whereas heteroskedasticity refers to treating Σt as varying over time, with particular stochas-

tic structures so that vt can be seen as mixed Gaussian instead of Gaussian (in our context,

heteroskedasticity does not refer to the conditional variance of vt depending on regressors).

As we show, our models featuring outlier states share a latent state representation in which

residuals are the product of Gaussian shocks and outlier states, but differ in the assumed densi-

ties for the outlier states. One model (SVO) puts more mass on outliers being large events that

increase volatility by more than twofold, whereas another (SVO-t) sees fewer large outliers and

more frequent small outliers. Conventional Markov chain Monte Carlo (MCMC) estimation

procedures for BVAR-SV models can easily be extended to handle the SVO and SVO-t models,

with two extra steps. First, realized outlier states are drawn from their posteriors, conditional on

draws for each variable’s outlier probability. Second, the outlier probability for each variable is

drawn from a (conditional posterior) distribution conditional on the draws of the time series of

outlier states.
3These linear models remain the workhorse of applied forecasting in policy analysis and a benchmark for

research. Beyond linear VARs, Guerrón-Quintana and Zhong (2021) and Huber, Koop, Onorante, Pfarrhofer, and
Schreiner (2020) employ semi- and non-parametric methods to better allow forecasting relationships to adapt to
changing conditions, in particular at times of crisis. Our proposed approach to outliers could also be incorporated
into VARs that feature time-varying regression parameters.
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As noted in the introduction, time-varying volatility in the VAR residuals, vt, can help to

insulate estimation of the transition coefficients Π from the effects of extreme outliers. Intu-

itively, observations with higher residual volatility receive less weight in the estimation of VAR

coefficients. However, down-weighting extreme observations in the estimation of Π will not

completely insulate the resulting forecasts from outliers. Consider the simple case of an AR(1)

model without intercept, where the h-step-ahead forecast is given by yt+h|t = πh yt and yt was

an outlier. Even if the outlier were excluded from estimation of π, it would still have a direct

effect on the forecast yt+h|t. To address these concerns, we also consider a variant of the SV

model that treats pre-specified outliers as missing values, in a way described below.

3.1 Model specification

We consider the following five variants of the VAR model (1). The first four differ in the

specified process for the residuals vt, whereas the last variant treats pre-specified outliers as

missing data. Density forecasts will crucially depend on the assumed dynamics of the variances

in Σt, and we consider different forms of persistence in variance changes, detailed below.

1) CONST: A homoskedastic VAR with vt ∼ N(0,Σ).

2) SV: In this baseline SV model, the VAR residuals can be written as

vt = A−1 Λ0.5
t εt , with εt ∼ N(0, I) , (2)

where A−1 is a unit-lower-triangular matrix, Λ0.5
t is a diagonal matrix of stochastic volatilities,

and Σt = A−1 Λt (A
−1)′. The vector of logs of the diagonal elements of Λt, denoted log λt,

evolves as a random walk with correlated errors:

log λt = log λt−1 + et , with et ∼ N(0,Φ). (3)
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3) SVO: The SVO model is intended to capture outliers as rare, transitory, and large changes

in volatility. The outliers enter the model in a diagonal matrix of scale factors, denoted Ot, with

diagonal elements oj,t that are mutually i.i.d. over all j and t. The outlier oj,t has a two-part

distribution that distinguishes regular observations with oj,t = 1 and outliers for which oj,t ≥ 2.4

Outliers in variable j, j = 1, . . . , N , occur with probability pj and the distribution:

oj,t =


1 with probability 1− pj

U(2, 20) with probability pj,

where U(2, 20) denotes a uniform distribution with support between 2 and 20. Conditional on

Ot and Λt, the VAR residuals are Gaussian in the SVO model. With A−1 and Λ0.5
t specified as

before, the vector of residuals and its covariance matrix take the forms:

vt = A−1 Λ0.5
t Ot εt, Σt = A−1OtΛtO

′
t(A

−1)′.

4) SVO-t: The SVO-t model extends the SVO specification to include one state capturing

rare jumps in volatility and a second state that captures transitory changes in volatility that

are more frequent but less extreme in impact (consistent with draws from the tails of a fat-

tailed distribution).5 Each kind of outlier enters the model in a diagonal matrix of scale factors,

denoted Ot and Qt, with diagonal elements oj,t and qj,t, respectively, that are mutually i.i.d.

over all j and t.

The first kind of outlier, oj,t, is the same as that of the SVO model, with a two-part distri-

bution that distinguishes regular observations and outliers. The second, less extreme, type of

outlier in the SVO-t model is equivalent to having t-distributed VAR residuals (conditional on

Λt and Ot). Following Jacquier, Polson, and Rossi (2004), we let the squares of the diagonal

4The lower bound of 2 on the scale shift in outliers is motivated by seeing outliers as events firmly outside the
typical mass of their otherwise Gaussian distribution (conditional on oj,t).

5The supplementary online appendix includes results for another specification that is nested within the SVO-t
model: a SV specification with fat-tail errors but without the infrequent, large outliers of SVO.
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elements of Qt, qj,t, have inverse-gamma distributions:

q2j,t ∼ IG

(
dj
2
,
dj
2

)
.

The vector of VAR residuals in the SVO-t model and its covariance matrix take the forms:

vt = A−1 Λ0.5
t Ot Qt εt, Σt = A−1Ot QtΛt Q

′
t O

′
t(A

−1)′,

with A−1, Λ0.5
t , and Ot specified as before. The jth residual qj,t · εj,t (adjusted for the rotation

by A−1 and scaling by Λ0.5
t Ot), has a student-t distribution with dj degrees of freedom, since

εj,t ∼ N(0, 1) and dj/qj,t ∼ χ2
dj

.

5) SV-OutMiss: This model applies the standard SV specification for Σt, but ignores a given

set of outlier observations in the VAR estimation altogether by treating them as missing data.

The approach builds on a practice from the literature on dynamic factor models, in which input

data are pruned of extreme observations that are multiples times the inter-quartile range away

from the series median (by replacement with a moment of central tendency). We adopt the

same ex-ante criterion for the identification of outliers — implemented using a threshold factor

of 5 (with similar results for a factor of 10) — and treat these observations as missing data in

estimation and forecasting. Treating pre-identified outlier observations as missing data avoids

specification of their exact stochastic distribution.6 For each missing value, our Bayesian meth-

ods generate a posterior distribution that informs the resulting forecasts. Formally, denote the

history of yt after pruning outliers as zt, and continue the AR(1) example introduced above:

Forecasts are then generated by yt+1|t = πhE(yt|zt) where E(yt|zt) is identical to yt in the no-

outlier case. Similarly, forecast uncertainty is generated based on estimates of SV that condition

only on zt, not potential outliers in the history of yt.

6In the limit, the missing data approach corresponds to a version of attaching additive measurement error to
specific observations, but with infinite variance, whereas the remaining observations are observed without error.
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3.2 Model estimation

Throughout, our VARs include p = 12 lags in a monthly data set, which is described in further

detail in Section 4. Each of our models is estimated with a MCMC sampler, based on the

methods of Carriero, Clark, and Marcellino (2019) (henceforth “CCM”) for estimating large

BVARs, but as corrected in Carriero, Chan, Clark, and Marcellino (2022). As in CCM, we use

a Minnesota prior for the VAR coefficients Π and follow their other choices for priors as far as

applicable, too.

For the infrequent outlier components of the SVO and SVO-t models, we follow Stock and

Watson (2016) in placing a beta prior on the outlier probability pj . The prior is set to imply a

mean outlier frequency of once every 4 years in monthly data for SVO estimates and once every

10 years for SVO-t estimates, with precision set to be consistent with 10 years’ worth of prior

observations. For the t-distributed component of the SVO-t model, we follow Jacquier, Polson,

and Rossi (2004) and estimate the degrees of freedom dj for each variable using a uniform

discrete prior with a range of 3 to 40.7

Here we briefly explain the algorithm adjustments needed for the version of the model with

constant variance and the alternative with outlier volatility states. The algorithm includes all

of the same steps given in CCM (as corrected in Carriero, et al. (2022)), except for neces-

sary adjustments to account for the two alternative cases. For the constant-volatility model, an

inverse-Wishart prior for Σ, with a (conditionally) conjugate inverse-Wishart updating step for

the MCMC sampler, replaces the SV block of the model.8

For the SVO-t variant, the following extra steps are added to the original BVAR-SV setup:

Realized outlier states oj,t and qj,t need to be drawn from their posteriors. The step for oj,t

conditions on draws for the outlier probability pj and proceeds analogously to the sampling of

the mixture states needed with the Kim, Shephard, and Chib (1998) approach to the stochastic

volatility states log λt. The step for qj,t takes a draw from an inverse Gamma distribution. A

7The prior mean of pj = 1/(4 · 12) implies about the same variance of oj,t in the SVO model as do our prior
means of pj and dj in the SVO-t model for the combined outlier states oj,t · qj,t (see the supplementary online
appendix).

8The prior for Σ in the constant-variance model is uninformative; that is, we use an improper Wishart with
zero degrees of freedom and scale matrix equal to zero.
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further additional step draws the outlier probability pj for each variable from a (conditional

posterior) beta distribution conditional on the draws of the time series of outlier states. The

algorithm for SVO is a simplified version of that for SVO-t.9

For the SV-OutMiss model, which treats pre-specified outliers as missing values, the MCMC

sampler for the standard SV model is augmented by an additional step that draws the missing

values from a state-space representation of the VAR system using the disturbance smoothing

algorithm of Durbin and Koopman (2002). Computational cost increases substantially with the

SV-OutMiss model, as it requires an additional sequence of Kalman filtering and smoothing

steps. In contrast, the added cost of computing SVO-t or SVO over standard SV is small, since

this model adds only steps for sampling the i.i.d. outlier states.

All results in the paper are based on 1,000 retained draws, obtained by sampling a total

of 1,200 draws with 200 burn-in draws. Unreported comparisons of posteriors obtained under

different starting values indicate satisfactory convergence of the MCMC algorithms.

4 Data

Our data set consists of monthly observations for 16 macroeconomic and financial variables for

the sample 1959:M3 to 2021:M3, taken from the April 2021 vintage of the FRED-MD database

maintained by the Federal Reserve Bank of St. Louis. The variables and their transformation to

logs or log-differences are listed in Table 1. To avoid issues related to the effective lower bound

(ELB) on nominal interest rates, the data set includes only longer-term interest rates and omits

a policy rate measure, like the federal funds rate, which was constrained by the ELB from late

2008 to 2016, and then again starting in March 2020.10

9The ordering of steps in our MCMC sampler reflects the recommendations of Del Negro and Primiceri (2015)
as also implemented by Cúrdia, Del Negro, and Greenwald (2014) (for SV specifications with fat tails) and Stock
and Watson (2016) (for SVO). Specifically, the t-error states, qj,t, are sampled before the SV mixture states, while
draws from oj,t condition on those mixture states so that oj,t and pj are sampled after the SV steps known from
Kim, Shephard, and Chib (1998).

10The related paper by Lenza and Primiceri (2021) does not include any interest rates in its VAR setup. When
simulating forecasts for our longer-rate measures, the 5- and 10-year Treasury yields, individual draws have fallen
below the ELB as well, and the predictive densities were truncated at the ELB in these cases. Due to the dy-
namic nature of the forecast simulation, this truncation also has indirect effects on the predictive densities of other
variables.
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Table 1: List of variables

Variable FRED-MD code transformation Minnesota prior

Real Income RPI ∆ log(xt) · 1200 0
Real Consumption DPCERA3M086SBEA ∆ log(xt) · 1200 0
IP INDPRO ∆ log(xt) · 1200 0
Capacity Utilization CUMFNS 1
Unemployment Rate UNRATE 1
Nonfarm Payrolls PAYEMS ∆ log(xt) · 1200 0
Hours CES0600000007 0
Hourly Earnings CES0600000008 ∆ log(xt) · 1200 0
PPI (Fin. Goods) WPSFD49207 ∆ log(xt) · 1200 1
PCE Prices PCEPI ∆ log(xt) · 1200 1
Housing Starts HOUST log(xt) 1
S&P 500 SP500 ∆ log(xt) · 1200 0
USD / GBP FX Rate EXUSUKx ∆ log(xt) · 1200 0
5-Year Yield GS5 1
10-Year Yield GS10 1
Baa Spread BAAFFM 1

Note: Data obtained from the 2021-04 vintage of FRED-MD. Monthly observations from
1959:M03 to 2021:M03. Entries in the column “Minnesota prior” report the prior mean on
the first own-lag coefficient of the corresponding variable in each BVAR. Prior means on all
other VAR coefficients are set to zero.

In keeping with some work in the factor model literature, the prevalence of outliers can be

roughly gauged by defining an outlier as an observation with distance from the series median

exceeding 5 times the inter-quartile range. As detailed in the supplementary online appendix,

real personal income has regularly displayed outliers over the post-war sample. Many other

series, like payroll growth, exhibit such outliers only over the COVID-19 period, whereas a

few others, like returns on the S&P500, inflation, or the exchange rate between the US dollar

and pound sterling, displayed large outliers only on earlier occasions. Some variables, like the

unemployment rate, have registered outstanding changes since the pandemic’s outbreak, but

without registering explicit outliers by this metric. In some cases, outliers may be attributed

to specific unusual events. For example, industrial production registers a positive outlier in

December 1959, when production bounced back following a strike in the steel industry. More

recently, income transfers from the CARES Act caused personal income to surge in April 2020.
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5 Results

This section presents results on outlier estimates, forecast performance over the pandemic pe-

riod of 2020-21, model fit, and forecast accuracy pre-COVID-19.

5.1 Outlier estimates in 2020-21 and before

As described in Section 3, the SVO-t approach extends the baseline SV model by adding latent

outlier states oj,t and qj,t for each variable j = 1, . . . , N , with the former uniformly distributed

and squares of the latter having an inverse Gamma distribution. The outlier states enrich the

dynamics of the time-varying variance-covariance matrix, Σt, so that volatility can change due

to transitory changes in oj,t and qj,t, as well as the persistent variations induced through the

log-SV terms log λt. The SVO model adds just the state oj,t to a SV model.

The supplementary online appendix reports posterior estimates of the probabilities of large

outliers in the SVO and SVO-t models and for the degrees of freedom for the fat-tail components

of the SVO-t specification. In the SVO model, the posterior mean probability of a large outlier

is greatest for real income, at 3.19 percent, and ranges from about 0.3 percent (housing starts)

to 1.1 percent (nonfarm payrolls and hours) for other variables. In the SVO-t specification that

allows for both small and large outliers, the posterior mean estimate of the degrees of freedom is

3 for about one-half of the model’s variables — implying frequent small outliers — but above 20

(near-Gaussian) for six other variables. In all cases, the estimated probabilities of large outliers

are sharply lower than in the SVO model.

We can also provide a closer comparison of the volatility and outlier estimates obtained

from SVO-t and SVO. Focusing on just real income and S&P500 returns in the interest of chart

readability, Figure 1 displays posterior medians of the SV component (i.e., λ0.5
j,t ) and outlier

estimates (oj,t and qj,t) obtained over the full sample, with dark solid lines depicting the actual

forecast-error volatility, including outlier components and shaded areas showing the persistent

SV component. Echoing our discussion of each model’s properties in Section 3, these results

show that the SVO-t specification tends to see outliers as being more moderately sized but
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occurring also more regularly than SVO. For example, in the real income estimates, SVO-

t shows a relatively large number of outliers in the 1970s and 1980s, whereas SVO shows

fewer outliers that are larger in size. With S&P500 returns, SVO shows few outliers before the

COVID-19 period, whereas the SVO-t estimates yield relatively regular, small outliers, with

more variability in the SV estimate (λ0.5
j,t ) in the SVO case than the SVO-t case.

Time variation in Σt affects forecasts through two channels: first, the estimation of VAR

coefficients Π as discussed in Section 3; and second, the projection of uncertainty about future

shocks vt that arises when simulating forward the dynamics of log (λt), as given in (2), to

construct predictive densities. Historical forecast results for 1975 to 2017, discussed below,

suggest that the latter channel is more relevant than the former, as the point forecast accuracy

differences between SV and SVO-t are very small, while the density accuracy differences are

sometimes larger. The outlier states in SVO-t (as well as SVO) allow for volatility spikes to

occur without having to project a persistent increase in uncertainty into the future as SV would

be required to do. To illustrate the effects of this feature, we compare trajectories of volatility

as estimated in quasi-real time over the course of 2020 and early 2021.11

Focusing on the example of payroll growth to limit charts, Figure 2 reports estimates of time

variation in the volatility of forecast errors generated by SV and SVO-t, as well as the persistent

components of Σt imputed from SVO-t when the effects of the outlier states oj,t and qj,t are

ignored. (The online appendix provides results for other variables.) For this counterfactual, we

compute Σ̃t = A−1 Λt (A
−1)′ based on the SVO-t estimates for Λt and A−1. In addition, we

consider the corresponding measures of residual volatility obtained from the SV-OutMiss model

that treats pre-specified outliers as missing data. These estimates show that, over the COVID-19

period, the SVO-t model clearly differentiates between increases in uncertainty that are short-

and longer-lived, which the SV model cannot do. In early 2020, prior to the impact of COVID-

19, volatility estimates from all models were hovering below 10. By April, volatility estimates

from the SV model increased strongly to a peak near 60, but leveled off only somewhat over

11The reported trajectories of volatilities in the VAR residuals, vt, reflect smoothed estimates of the square
roots of the diagonal elements of Σt computed from MCMC estimates for different end-points of the data (that
correspond to different forecast origins in our out-of-sample forecast evaluation).
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the summer, and remained substantially elevated in the fall, near values around 20 in estimates

using data through September 2020. Crucially, at each point in time, the SV model expects

these levels to persist.

In contrast, SVO-t proves both more nimble and more discerning in accounting for the

extreme data seen in the spring with a big jump in overall volatility in April, to a peak of about

90, as shown in Panel (b) of the figure. However, as revealed by comparison with Panel (d),

this jump is largely seen as a transitory result of an outlier (both as it occurred in the spring

and with the hindsight of estimates constructed based on data for the fall). In contrast, in

Panel (d) the persistent component of volatility in the case of SVO-t is seen to have risen no

more than 8-fold over the course of the year, to a peak of roughly 12 before declining. That

is, the SVO-t estimates yield a much smaller rise in the persistent component of volatility than

do the estimates from the SV model. The SV-OutMiss model yields an even smaller increase

in the persistent component of volatility (the only component of volatility in that model); the

estimates from SV-OutMiss shown in Panel (c) have risen by less than 5 times their level at the

beginning of the year, peaking at a variance of about 8 in April 2020.

The more moderate rise in estimates of the persistent volatility component obtained with the

SVO-t specification yields noticeably narrower (and arguably less extreme) uncertainty bands

around forecasts compared to the SV model. In contrast, forecasts that condition on knowledge

of when outliers occurred, but otherwise ignore any further information from their realization

(as in the SV-OutMiss case), lead to particularly narrow uncertainty bands.
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Figure 1: Contributions of outlier adjustments to forecast-error volatilities

Real income
(a) SVO

1960 1970 1980 1990 2000 2010 2020
0

20

40

60

80

100

120

140

160

(b) SVO-t

1960 1970 1980 1990 2000 2010 2020
0

20

40

60

80

100

120

140

160

Total

Persistent SV

S&P 500 returns
(c) SVO

1960 1970 1980 1990 2000 2010 2020
0

50

100

150

200

250

(d) SVO-t

1960 1970 1980 1990 2000 2010 2020
0

50

100

150

200

250

Note: Posterior median estimates per March 2021, of time-varying volatilities in forecast errors
of the indicated variables in three outlier-augmented versions of the VAR-SV model. Dark solid
lines depict the actual forecast-error volatility, including the effects of Ot and Qt as applicable
in each model. The shaded areas depict the component of each variable’s forecast-error volatil-
ity due to the persistent SV component. Specifically, for the SVO-t model, the forecast-error
volatility is given by the square root of diagonal elements of Σt = A−1OtQt Λt Q

′
t OtA

−T ,
whereas the contribution from the persistent SV component follows from Σ̃t = A−1 ΛtA

−T .
For SVO, corresponding computations are performed using only Ot, respectively. These calcu-
lations are performed for every MCMC draw, with the resulting medians reported in the figure.
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Figure 2: Time-varying volatilities since 2020 of payroll growth
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Note: Quasi-real-time trajectories of time-varying volatility in VAR residuals, measured by (the
square roots of) the diagonal elements of Vart (vt) = Σt as implied by each model. Medians
of (smoothed) posterior obtained from different data samples ending at forecast origins as in-
dicated in the figure legend. Panel (d) displays estimates of stochastic volatility for SVO-t that
ignore the contributions from outliers and that are computed from Σ̃t = A−1 ΛtA

−T (i.e., ne-
glecting the Ot and Qt components in the computation of the uncertainty measures shown here,
while including these outliers in estimation of A−1, Λt, etc.). Reflecting the sizable differences
in the size of estimates resulting with and without outlier treatment, different scales are used in
upper- and lower-row panels.
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5.2 Forecasts made in 2020-21

In the months immediately preceding the COVID-19 outbreak, such as January 2020, predic-

tive densities generated from the CONST, SV, SVO, and SVO-t models differ a little, but not

markedly so for most variables. As we now detail, the picture changed significantly in subse-

quent months.

Over the course of March and April, the COVID-19 pandemic sharply affected the economy,

most visibly with the introduction of lockdown measures in the second half of March 2020,

resulting in strong swings among measures of real activity in subsequent months. Figure 3

displays the evolution of forecasts for real income and payroll growth over the months of March,

April, and June generated from our CONST, SV, and SVO-t specifications.12 As noted by Lenza

and Primiceri (2021) and Schorfheide and Song (2021), forecasts generated by homoskedastic

BVARs, like our CONST specification, can display extreme behavior.13 For example, Panel (d)

shows that, following the drop in payroll growth in March and April, the CONST model’s

posterior median forecast for May is about -136 percent (at an annualized rate) and between

-64 and -124 percent for the next few months. The model’s estimated forecast uncertainty is

immense, with a 68 percent uncertainty band that widens to 100 percentage points or more by

the 12-months-ahead horizon.

In contrast, the reaction of point and density forecasts generated by the SV and SVO-t

specifications to the incoming data in spring 2020 is better behaved, particularly with SVO-t.

Considering again the payroll growth forecasts shown in Figure 3, the SV model yields very

negative point forecasts for May and the next few months, but not nearly as negative as those

from the CONST model (e.g., the posterior median forecast for May is -17.8 percent and -20.1

percent for the SV and SVO-t models, respectively). The SVO-t model yields point forecasts

fairly similar to those of the SV model, for most variables and forecast origins. That said, the

12For brevity, our discussion will abstract from nuances of the real-time data flow, and simply refer to forecasts
being “made” at (or even “in” the month of) a particular forecast origin, even though the underlying data would
have been available in FRED-MD only in a subsequent month.

13Lenza and Primiceri (2021) consider a slightly smaller VAR system (with six variables covering mostly
employment and price data and observations starting only in 1988) where problems related to COVID-19 already
become apparent with data for March 2020; in our 16-variable system case estimated from data starting in 1959,
the effects of outliers become most apparent by April.
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SV model is prone to some distortion of its estimated forecast uncertainty, particularly early

in the COVID-19 period. In March, April, and June of 2020, the uncertainty bands of the

predictive densities obtained with SV are typically wider than those of not only the SVO-t but

also the CONST specifications. In keeping with the volatility comparisons provided above,

while the observations of 2020 widen the predictive densities of both SV and SVO-t forecasts,

their impact is much greater for the former than for the latter; SVO-t generates much narrower

bands than SV.

Supplementary results in the online appendix compare our preferred SVO-t results to those

for the more restrictive SVO specification.14 While the point forecasts of these specifications are

difficult to distinguish, bigger differences are evident in the predictive densities. The predictive

densities are generally the narrowest with the SVO-t forecasts. The SVO model generally yields

wider densities, although in most cases the differences are less stark in June than March and

April.

In additional forecast results for the pandemic period, we compare results from the SVO-t

specification (which treats outliers as unknown and estimates them) to results from the SV-

OutMiss approach that conditions on knowledge of when and which outliers occurred in the

data. As described above, outliers are observations that are more than 5 times the inter-quartile

range away from their sample median. SV-OutMiss treats these observations as missing data

in estimation of the parameters and volatility states of an otherwise standard VAR-SV model

and also replaces the outliers in the data vectors used to simulate predictive densities at every

forecast origin.

14These additional comparisons also include the SV model with fat tails (SV-t), for which estimates are more
varied. In some cases, the SV-t forecast intervals are very similar to the SVO-t estimates, but in others, the SV-t
intervals are wider than the SVO-t estimates.
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Figure 3: Predictive densities since March 2020 from CONST, SV, and SVO-t
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Note: Medians and 68% uncertainty bands of predictive densities (shaded regions give the bands for the CONST
forecast), simulated out-of-sample at various forecast origins as indicated in each panel.
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Figure 4: Predictive densities since mid-2020
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Note: Medians and 68% uncertainty bands of predictive densities (shaded regions give the bands for the SV-
OutMiss forecast), simulated out-of-sample at various forecast origins as indicated in each panel.
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For these specifications, Figure 4 provides predictive densities for more recent forecast ori-

gins, ranging from September 2020 to March 2021, for growth in payrolls and the unemploy-

ment rate.15 Even almost a year after the onset of the COVID-19 pandemic impacted economic

data, uncertainty bands from SVO-t remain noticeably wider than before the pandemic (results

omitted in the interest of brevity). In most cases, forecast densities obtained from SV-OutMiss,

which treats the timing of outliers as known, are relatively tight. However, exceptions are evi-

dent in the unemployment rate forecasts, with the SV-OutMiss bands wider than those of SVO-t

for forecasts made with data in September and December 2020. Although harder to discern in

the wide scales of the charts necessitated by the extreme realizations of actual data, the point

forecasts produced by the alternative methods tend to be broadly similar at longer forecast hori-

zons, although more sizable differences can occur at shorter horizons.

5.3 Model fit

So which model best characterizes the data in the COVID-19 period? The COVID-19 sample

is too short to permit meaningful inference on the average accuracy of out-of-sample forecasts.

Drawing on precedents such as Geweke and Amisano (2010), we instead consider the basic

metric of predictive Bayes factors: the sums of 1-step-ahead predictive likelihoods. In these

comparisons, we take the SV specification as the baseline and report sums of differences in

predictive likelihoods, such that the more positive (negative) the number, the better (worse)

the fit of a given specification compared to SV (to facilitate comparisons over time, Table 2

includes in parentheses average score differences across time). Particularly with unusual ob-

servations, some care in computing predictive scores is warranted. We follow the recommen-

dations of Krüger, Lerch, Thorarinsdottir, and Gneiting (2021) and use what they characterize

as a mixture-of-parameters approach. As an instance of Rao-Blackwellization, the approach

relies as far as possible on the availability of analytical expressions for predictive likelihoods

conditional on parameter values and latent SV states at each MCMC draw. In computational

15These figures also report realized data and imputed values for lagged outliers obtained from SV-OutMiss. For
better scale, we are showing here results for payroll growth and unemployment rate instead of real income growth.
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Table 2: Log Bayes Factors Relative to SV

Models

Samples SVO-t SVO SV-OutMiss CONST

Full sample
1975:01-2021:02 244.11 334.84 −782.79 −9200.01

(0.44) (0.60) (−1.41) (−16.61)
G Inflation

1975-1984 8.25 33.22 17.38 −250.02
(0.07) (0.28) (0.14) (−2.08)

G Moderation
1985-2007 −41.94 −9.69 −6.64 −385.43

(−0.15) (−0.04) (−0.02) (−1.40)
GFC

2008-2014 21.53 29.50 −56.28 −236.40
(0.26) (0.35) (−0.67) (−2.81)

COVID-19
2020:03-2021:02 225.33 232.59 −739.52 −8167.44

(18.78) (19.38) (−61.63) (−680.62)
COVID-19 since Jul 2020

2020:07-2021:02 3.23 −1.40 −66.19 −617.90
(0.40) (−0.18) (−8.27) (−77.24)

Note: Differences in cumulative log Bayes factors, logL(Mi) − logL(M0), where
logL(Mi) =

∑T1

t=T0
log p(yt+1|yt,Mi) between the different models listed above (Mi) and

the SV model (M0), measured over different subsamples of forecast origins, t. Unless stated
otherwise, samples extend from January to December of the years given. Figures in parentheses
provide average score differences over the indicated samples.

accuracy, we find it to be particularly important to integrate out future values of the transitory

outlier states, instead of characterizing their arrival via Monte Carlo simulation. The supple-

mentary online appendix provides further details on the calculations for each model.

A first issue is how the models compare by this measure of model fit over the COVID-19

sample of March 2020 through February 2021. These estimates are provided in the last row of

Table 2. Over this sample, the best fitting model is SVO, followed by the SVO-t specification.

In an overall fit sense, the data seem to favor a specification allowing infrequent, large outliers,

and the data imply that the fit gain over the SV baseline is large. The SV-OutMiss approach

that rests on identifying outliers ex-ante fits the data of the COVID-19 period much worse,
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with a score difference on the order of -950 log points. Perhaps not surprisingly, the CONST

specification fares the worst over this volatile period. By design, the large advantages of the

SVO and SVO-t specifications over the COVID-19 period are primarily driven by the first few,

most dramatic months of the pandemic; as shown in the last row of entries, when March through

June 2020 are omitted, the fits of these models are very similar to those of the SV baseline. In

earlier periods, these models also gained sizable fit advantages with large data movements.

The consideration of the COVID-19 period of course raises the question of how, earlier in

time, the specifications compare in model fit. For the sample running from 1975 (when our

out-of-sample forecast evaluation of Section 5.4 begins) into 2021, the patterns in model fit line

up with those for the COVID-19 period, but with a bigger advantage of the SVO model. The

SVO model also fares best in two other periods known for relatively high economic volatility:

the 1975-1984 period coinciding with what some have referred to as the Great Inflation and

the 2008-2014 sample of the Great Recession and ensuing slow recovery. The SVO-t model

again has the second best score in the 2008-2014 period, but slips to third best in the 1975-1984

sample. On a per-period basis, the biggest fit advantage of the SVO model over the SVO-t

specification occurs in the COVID-19 sample, when the per-period fit advantage was 0.60 (6

percent), whereas in the Great Inflation, the per-period fit advantage of SVO-t over SVO was

0.21 (2.1 percent). In contrast, over the relatively tranquil period of 1985-2007, key years of the

Great Moderation, the benchmark SV specification fits best. SV-OutMiss fits the data next-best,

because there are few outliers, so that this approach is a small departure from SV. Among the

models featuring some form of SV, allowing frequent, small outliers in the SVO-t model fit the

data worst, with SVO and its large, infrequent outliers not as far off the SV benchmark. Overall,

our approach of extending a SV model to allow infrequent outliers works well by the metric

underlying predictive Bayes factors, achieving its gains in the several historical subsamples that

have featured high volatility.
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5.4 Forecast performance pre-COVID-19

Although our focus is on models that successfully mitigate the influence of enormous data

movements in the COVID-19 pandemic on parameters and forecasts obtained from standard

VARs, applicability of the outlier-augmented BVAR-SVO and BVAR-SVO-t models is not nec-

essarily specific to data from the pandemic. As noted above, individual data series have ex-

hibited occasional outliers before, leading to some earlier studies of the potential benefits of

modeling fat-tailed error distributions and other forms of outliers. Importantly, the preceding

results on model fit show that the BVAR-SVO and BVAR-SVO-t models have advantages over

other models in earlier periods. But the model fit measure is based on 1-step ahead predictive

likelihoods, which leaves open the question of how the models compare in historical forecast

accuracy at longer horizons.

Accordingly, this section provides an evaluation of out-of-sample forecasts made from

1975:M1 through 2017:M12. For brevity, we focus on the forecast accuracy of our SVO-t

specification compared to a conventional SV model; the supplementary online appendix pro-

vides additional comparisons. Specifically, for every forecast origin, each model is re-estimated

based on growing samples of data that start in 1959:M3. All data are taken from the April 2021

vintage of FRED-MD; we abstract from issues related to real-time data collection. The fore-

cast horizons considered extend from 1 to 24 months. We evaluate point and density forecasts

based on root-mean-squared errors (RMSE) and continuous ranked probability scores (CRPS),

respectively, as described in, among others, Clark and Ravazzolo (2015) and Krüger, et al.

(2021). Statistical significance of differences in loss functions is evaluated using the Diebold

and Mariano (1995) and West (1996) test.

Table 3 compares point and density forecasts generated by BVARs with SV and SVO-t

specifications, taking the SV model as the benchmark (see the supplementary online appendix

for RMSE and CRPS levels for the baseline model). Point forecasts generated by the SVO-t

model over the post-war period (and pre-COVID) are generally on par with those from the SV

model, with RMSE ratios in some cases a little below or above 1 but often very close to 1. With

density forecast accuracy as gauged by the CRPS, at shorter horizons the SVO-t specification
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Table 3: Historical Forecast Accuracy Comparison, SVO-t vs. SV

RMSE CRPS

Variable / Horizons 1 3 12 24 1 3 12 24

Real Income 1.01 1.00 1.01∗∗ 0.94 0.99 0.96∗∗∗ 0.94∗∗∗ 0.85∗∗∗

Real Consumption 1.00 1.01 1.00 1.00 1.00 1.00 0.97∗∗∗ 0.90∗∗∗

IP 1.00 0.99 0.99 0.97∗∗ 1.00 0.99∗ 0.96∗∗∗ 0.88∗∗∗

Capacity Utilization 1.01 1.00 0.97 0.96 1.00 1.00 0.99 0.95∗∗

Unemployment Rate 1.00 0.99 0.98 0.98 1.00 1.00 1.00 0.98
Nonfarm Payrolls 0.99 0.99 1.00 0.99 0.99 0.99 0.97∗∗∗ 0.91∗∗∗

Hours 1.00 0.99 0.96∗ 0.98 0.99∗∗ 0.98∗∗ 0.96∗∗∗ 0.90∗∗∗

Hourly Earnings 1.00 1.00 1.01∗ 1.02∗∗ 1.00 0.99∗∗ 0.98∗∗∗ 0.92∗∗∗

PPI (Fin. Goods) 1.00 1.00 1.00 1.01 1.00 0.99 0.98∗∗∗ 0.94∗∗∗

PCE Prices 1.01∗∗ 1.01 1.01∗ 1.03∗∗ 1.01∗∗ 1.01 1.00 0.97∗∗∗

Housing Starts 1.00 1.00 1.00 1.02∗∗∗ 1.00 1.01 1.01∗∗ 1.00
S&P 500 1.01 1.00 1.01 1.01∗∗∗ 1.00 0.99∗∗ 0.97∗∗∗ 0.90∗∗∗

USD / GBP FX Rate 1.00 1.00 1.00 0.88 0.99∗ 0.99∗∗∗ 0.96∗∗∗ 0.89∗∗∗

5-Year yield 1.01∗∗ 1.00 1.00 0.98∗ 1.01∗∗ 1.01 1.00 1.00
10-Year yield 1.00 1.00 1.00 0.99 1.01∗∗ 1.01 1.00 1.01
Baa Spread 0.99∗∗ 1.00 1.00 0.99 0.99∗∗ 1.00 1.00 0.97∗∗∗

Note: Comparison of “SVO-t” against “SV” (baseline, in denominator of relative compar-
isons). Values below 1 indicate improvement over baseline. Evaluation window from 1975:M01
through 2017:M12. Significance assessed by Diebold-Mariano-West test using Newey-West
standard errors with h+ 1 lags.

performs very similarly to the SV baseline, with CRPS ratios very close to 1, occasionally a

bit lower. At the 12 months horizon, SVO-t yields larger gains over SV, ranging from 2 to 6

percent. Bigger gains in accuracy occur at the horizon of 24 months, with improvements as

large as 15 percent. At this horizon, SVO-t improves forecast accuracy for variables including

consumption, industrial production, employment, hours, and stock returns. The SVO-t gains

are largest for real income, the variable most prone to outliers. Overall, consistent use of SVO-t

over the post-war sample improves on the commonly used SV specification, in particular in

terms of density forecasts and for those variables more subject to frequent outliers, such as

personal income.

Although these 1975-2017 forecast results are favorable to our proposed specifications, they

are not necessarily as sharp as Section 5.3’s results on model fit. In addition, the forecast
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results favor the SVO-t model over SVO, whereas the model fits favor SVO. Such a finding is

not necessarily uncommon: Even though model fit as assessed through predictive likelihoods

is elemental to Bayesian evaluation of models, results on fit can differ from some results on

out-of-sample forecast accuracy. One explanation is that, due to the strong curvature of the

predictive likelihood’s log score loss function, the predictive likelihoods are more responsive to

outcomes in the tails; the forecast metrics we use are relatively insensitive to outcomes in the

tails. Our SVO estimates appear to assign a little more predictive mass in the tails compared to

other models. Another factor, noted above, is the forecast horizon. In view of this paper’s focus

on the use of BVAR models for forecasting, the advantages of SVO-t over SVO in forecasting

leads us to favor it in our analysis and recommendation.

6 Robustness checks

This section provides a brief overview of a few model robustness checks. The supplementary

online appendix provides additional detail and results on these and some other checks.

Common outlier: With the COVID-19 pandemic inducing extreme volatility in a number of

variables, some may view it as plausible that the outlier is common to all variables, rather than

independent across variables as in the SVO specification. Some other work, such as Lenza

and Primiceri (2021), has developed models in which the pandemic induces a common shift in

volatility in an otherwise homoskedastic VAR. Accordingly, we have also considered a spec-

ification in which the outlier state is common to all variables, in which case the time-varying

variance-covariance matrix of the VAR residuals is given by Σt = ō2tA
−1 Λt (A

−1)′, where ōt

denotes a scalar outlier state. Our estimates indicate that making the outlier common seems to

have no advantages. In historical estimates, the common-outlier specification registers virtually

no outliers prior to the COVID-19 pandemic. Instead, the common-outlier specification sees

outliers only in the early stages of the pandemic period, from March through June 2020, when a

good number of variables experienced enormous realizations at the same time, but none in late

2020 or early 2021.
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Capturing the pandemic period with dummy variables: As another simple approach to condi-

tioning on knowledge of when and which outliers occurred in the data, particularly the timing

of the COVID-19 pandemic, we consider an otherwise standard BVAR-SV model with sepa-

rate dummy variables (with wide priors assigned to each dummy coefficient) added to represent

each month of the sample since COVID’s outbreak in March 2020. By soaking up all infor-

mation contained in data since the onset of the pandemic, the dummy approach generates point

forecasts comparable to our outlier-augmented SV models. But because the dummy approach is

conditioned on ex-ante knowledge that all COVID-19-related data points are highly unusual, its

forecast densities are much tighter than those derived from our more agnostic outlier-augmented

SV models or the SV-OutMiss specification.

Variable ordering: In VARs with stochastic volatility specified as in equations (1) through (3),

variable ordering affects estimates. Recent work by Arias, Rubio-Ramirez, and Shin (2021) has

shown that ordering choices in VARs with time-varying parameters and SV can affect out-

of-sample forecasts. In particular, in their results, ordering has little effect on point forecasts

but measurable effects on density-related measures, including the standard deviation of the

predictive density and the length of prediction intervals.

The relatively large number of variables in our model means a very large number of possible

orderings. Accordingly, we have investigated sensitivity to variable ordering with an approach

meant to be broad but streamlined to be computationally tractable (if still demanding). Our

basic metric for sensitivity is the distance between predictive densities obtained in one ordering

versus another. We assess the distance and its significance with the potential scale reduction

factor (PSRF) of Gelman and Rubin (1992). In particular, we compare predictive densities

generated from the VAR-SVO model at different forecast origins around and during the onset

of the COVID-19 pandemic, December 2019, March and April 2020, and March 2021. For each

of these origins, we randomly draw 640 different orderings of the model’s 16 variables, estimate

each model, and form forecast densities. We then compute a Gelman-Rubin scale reduction test

for each variable at each horizon (1 to 24 months ahead). Overall, these results suggest small
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ordering effects in our forecasts: The vast majority of Gelman-Rubin statistics are under 1.2.

Model stability: The unusual developments of the pandemic inevitably raise a question as to

whether it represents a break in conventional business cycle dynamics and time series models.

Our results treat the VARs as stable, taking various steps to limit the influence that extreme

observations can have on model estimates. Although it would be ideal to formally test model

stability, the sample since March 2020 is too short to permit formal inference with conventional

tests or metrics.

As a simple and feasible alternative, we examine the stability of recursive estimates of the

BVARs from January 2020 through the end of our sample in 2021. To assess the significance

of a change in each coefficient, we take the January 2020 posterior for each coefficient as a

reference point. For the sake of comparability, we standardize the change in the posterior means

obtained at subsequent forecast origins, by dividing the changes by January’s posterior standard

deviation. Broadly, these results indicate that — except for the CONST case — there are at

most only fairly limited changes in some coefficients, while the vast majority of coefficients

show little change. By our simple measures of significance, the CONST specification is quite

prone to some coefficient change, most sizably for some economic activity indicators. In the SV

specifications, coefficient change appears much less significant. The SVO and SVO-t models

show changes in intercepts for some variables, but otherwise, estimates look to be broadly stable

over the period.

7 Conclusion

We study an outlier-augmented stochastic volatility specification for Bayesian VARs. Our work

is prompted by the enormous 2020-21 movements in many macroeconomic time series due

to the COVID-19 pandemic. As recognized by recent studies such as Lenza and Primiceri

(2021) and Schorfheide and Song (2021), these outliers have strong, and sometimes outsized,

effects on forecasts made with standard constant-variance VARs. Our proposed specifications

extend to BVARs the earlier work of Stock and Watson (2016) in the context of unobserved
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component models of inflation, and it is related to SV models with t-distributed errors developed

by Jacquier, Polson, and Rossi (2004). The SVO model features stochastic volatility, and an

outlier-state treatment, and our preferred SVO-t specification augments SVO with fat-tailed

shocks. Although we focus on Bayesian VARs, our outlier treatments can be readily applied

to other time series models, including unobserved component models, factor models, factor-

augmented VARs, and DSGE models.

Although estimates of VARs with time-varying volatility tend to down-weight high-volatility

observations, the resulting forecasts can be better insulated from outliers. As shown in Sec-

tion 5.2, BVARs with time-varying volatility generate point forecasts that are less distorted than

in the constant-variance case. But a conventional SV model expects all changes in volatility

to be persistent, so that it extrapolates huge forecast uncertainty from the initial COVID-19

shocks. In contrast, SVO and SVO-t models fit sharp spikes in current volatility while adapting

their uncertainty forecasts more moderately.

An alternative approach could be to pre-screen the data to identify outliers based on a simple

measure of historical norms, and then treat these variable-specific outliers as missing observa-

tions in an otherwise conventional VAR with SV. Forecasts from this missing-data approach

(SV-OutMiss) neglect the possible arrival of future outliers. In contrast, our outlier-augmented

SV models provide a coherent treatment of extremes in the data by modeling the occurrence of

outliers as stochastic events, with unknown timing. Accordingly, the resulting forecast densities

fully reflect the uncertainty emanating from the presence of outliers in the data.

To evaluate which model best characterizes the data in the COVID-19 period, forecast ac-

curacy could, of course, be a natural metric. However, the sample is too short to support formal

inference on the basis of average forecast accuracy. Instead, we employ predictive Bayes fac-

tors. By this measure, our SVO specification fits the COVID-19 sample the best, with SVO-t

next. The neglected arrival of future outliers in the SV-OutMiss model incurs a sizable penalty

in the predictive Bayes factors. Over the entire evaluation sample since 1975, the SVO speci-

fication again fares best. The gains of the outlier-augmented SV model are driven by various

episodes of relatively high volatility in the data; in contrast, the baseline SV model fits well

30



only in the Great Moderation years of 1985 through 2007. We also conduct an evaluation of

out-of-sample forecast performance for a pre-pandemic sample starting in 1975 and ending in

2017. We compare the accuracy of point and density forecasts, as measured by RMSE and

CRPS, from standard VARs against our proposed SVO-t specification. Even in the pre-COVID-

19 period, our outlier-augmented SVO-t model forecasts the data, on balance, a little better than

a conventional VAR-SV model.
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