
Discussion Paper
Deutsche Bundesbank
No 09/2022

Existence and uniqueness of solutions
to dynamic models with 
occasionally binding constraints

Tom D. Holden 

Discussion Papers represent the authors‘ personal opinions and do not
necessarily reflect the views of the Deutsche Bundesbank or the Eurosystem.



Editorial Board:  Daniel Foos 
Stephan Jank 
Thomas Kick 
Martin Kliem 
Malte Knüppel 
Christoph Memmel 
Panagiota Tzamourani 

Deutsche Bundesbank, Wilhelm-Epstein-Straße 14, 60431 Frankfurt am Main, 
Postfach  10 06 02, 60006 Frankfurt am Main 

Tel +49  69 9566-0 

Please address all orders in writing to: Deutsche Bundesbank, 
Press and Public Relations Division, at the above address or via fax  +49 69 9566-3077 

Internet http://www.bundesbank.de 

Reproduction permitted only if source is stated. 

ISBN  978–3–95729–877–5 
ISSN  2749–2958



 

Non-technical summary 

Research Question 

The zero lower bound on nominal interest rates is an aggregate occasionally binding 
constraint. Such constraints can lead to the possibility of multiple aggregate outcomes 
consistent with the behaviour of economic agents—“multiple equilibria”. This gives 
beliefs a role to play in selecting between different outcomes. For example, if agents are 
pessimistic, their actions can generate a recession severe enough to force the central bank 
to cut interest rates to the zero lower bound, while relatively optimistic beliefs could be 
consistent with positive interest rates. Central banks would like to avoid the possibility 
of belief-driven recessions by acting in a way that guarantees a unique equilibrium at all 
times. This paper seeks to discover when macroeconomic models have a unique 
equilibrium, despite the presence of aggregate occasionally binding constraints.  

Contribution 

We derive conditions both for existence of equilibria, and for uniqueness, for models with 
occasionally binding constraints. Macroeconomists can apply these conditions to their 
own models to see whether they generate a unique outcome. For example, 
macroeconomists can use these conditions to examine which types of monetary policy 
rules succeed in ruling out belief-driven recessions when there is a zero lower bound on 
nominal interest rates.  

Results 

We apply the conditions we derive to analyse the implications of the zero lower bound 
in standard “New Keynesian” models. We find that under conventional descriptions of 
central bank behaviour, there are generally multiple equilibria. The additional equilibria 
feature long and severe recessions, low inflation, and prolonged periods at the zero lower 
bound. However, if the central bank targets a path for the price level, then uniqueness 
is guaranteed. The only remaining equilibrium spends relatively little time at the zero 
lower bound, and exhibits greater macroeconomic stability. 

  



 

Nichttechnische Zusammenfassung 

Fragestellung 

Die Nullzinsgrenze der nominalen Zinssätze stellt eine gelegentlich bindende Restriktion 
auf aggregierter Ebene dar. Solche Restriktionen können dazu führen, dass mehrere 
aggregierte Ergebnisse mit dem Verhalten der Wirtschaftsakteure im Einklang stehen 
können (auch „multiple Gleichgewichte“ genannt). Deshalb spielen bei der Auswahl 
zwischen unterschiedlichen Ergebnissen auch die Überzeugungen der Akteure eine Rolle. 
Sind diese beispielsweise pessimistisch, können ihre Handlungen zu einer Rezession 
führen, die so stark ist, dass sich die Zentralbank zu einer Senkung der Leitzinsen an die 
Nullzinsgrenze gezwungen sieht. Herrscht hingegen eine relativ optimistische Sichtweise 
vor, so könnte dies mit positiven Zinssätzen im Einklang stehen. Zentralbanken sind 
bestrebt, das mögliche Entstehen von überzeugungsgetriebenen Rezessionen zu 
vermeiden, indem sie so handeln, dass stets ein eindeutiges Gleichgewicht gewährleistet 
ist. Im vorliegenden Beitrag wird untersucht, wann in makroökonomischen Modellen 
auch bei Vorhandensein gelegentlich bindender Restriktionen auf aggregierter Ebene ein 
eindeutiges Gleichgewicht besteht.  

Beitrag 

Wir ermitteln für Modelle mit gelegentlich bindenden Restriktionen, unter welchen 
Bedingungen es zu Gleichgewichten und zu Eindeutigkeit kommt. Makroökonomen 
können diese Bedingungen auf ihre eigenen Modelle anwenden, um zu überprüfen, ob sie 
ein eindeutiges Ergebnis generieren. So lässt sich beispielsweise mithilfe unserer 
Bedingungen untersuchen, mit welchen geldpolitischen Regeln beim Erreichen der 
Nullzinsgrenze der nominalen Zinssätze überzeugungsgetriebene Rezessionen 
ausgeschlossen werden können. 

Ergebnisse 

Mithilfe der von uns aufgestellten Bedingungen wird analysiert, welche Auswirkungen 
die Nullzinsgrenze in neukeynesianischen Standardmodellen spielt. Wir stellen fest, dass 
in Modellen, die auf konventionellen Beschreibungen des Zentralbankverhaltens basieren, 
generell multiple Gleichgewichte existieren. Die zusätzlichen Gleichgewichte zeichnen sich 
durch langwierige und schwere Rezessionen, eine niedrige Inflationsrate und lang 
anhaltende Nullzinsphasen aus. Strebt die Zentralbank allerdings einen bestimmten Pfad 
für das Preisniveau an, ist Eindeutigkeit gewährleistet. In diesem Fall verharrt das einzig 
verbleibende Gleichgewicht nur relativ kurz an der Nullzinsgrenze und weist eine größere 
makroökonomische Stabilität auf. 
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Abstract 
Occasionally binding constraints (OBCs) like the zero lower bound (ZLB) can lead 
to multiple equilibria, and so to belief-driven recessions. To aid in finding policies 
that avoid this, we derive existence and uniqueness conditions for otherwise linear 
models with OBCs. Our main result gives necessary and sufficient conditions for 
such models to have a unique (“determinate”) perfect foresight solution returning to 
a given steady state, for any initial condition. While standard New Keynesian models 
have multiple perfect-foresight paths eventually escaping the ZLB, price level 
targeting restores uniqueness. We also derive equilibrium existence conditions under 
rational expectations for arbitrary non-linear models.  
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1. Introduction
Macroeconomic models are more likely to have multiple equilibria if they include 

aggregate occasionally binding constraints, such as the zero lower bound. With 
multiplicity, non-fundamental changes in beliefs can select equilibria featuring deep 
recessions. To prevent such outcomes, policy makers would like to ensure their actions 
will produce uniqueness. To help with this, this paper supplies existence and uniqueness 
conditions for otherwise linear models with occasionally binding constraints (OBCs). We 
present conditions guaranteeing that for any initial state, the model has a unique perfect 
foresight solution path converging to a point away from the bound. We refer to this as 
“determinacy”. 

For determinacy, news about future positive shocks to the bounded variable (e.g., 
nominal rates) must have a sufficiently positive impact on that variable. When this does 
not hold, there are some initial states from which there exist multiple paths that 
eventually escape the bound. For example, one path may never hit the bound, while 
another does, often with adverse effects. 

To see how this multiplicity is possible, suppose the model’s agents knew the 
economy would escape the bound next period. Then expectations of next period’s 
outcomes would be linear in today’s variables, as the model is linear apart from the 
OBC. However, substituting out these expectations does not leave a linear system in 
today’s variables, due to the OBC. This non-linear system may have two solutions, with 
one featuring a slack constraint, and the other having a binding constraint. Alternatively, 
the non-linear system may have no solution at all, giving non-existence. Without the 
assumption that next period the economy is away from the bound, the scope for 
multiplicity is even greater, and there may be infinitely many solutions. 

Our uniqueness condition is sufficient in all otherwise linear models. It is also 
necessary if the model’s state space is rich enough, or if we want uniqueness for any 
“generalized” perfect foresight exercise. What do we mean by this? A standard perfect 
foresight exercise calculates the model’s path back to steady state given an initial state 
and perhaps some initial shock. However, we might also be interested in the path back 
to steady state in the presence of a known sequence of future “shocks”. This is a 
generalized perfect foresight exercise. It could capture an anticipated tax cut, for 
example. If we want uniqueness for all possible sequences of future shocks, then our 
uniqueness condition is necessary. We also give conditions ensuring that an otherwise 
linear model with OBCs has at least one solution eventually escaping the bound. 

We apply our results to New Keynesian (NK) models with a zero lower bound (ZLB). 
Responding aggressively to inflation is generally insufficient to achieve determinacy in 
the presence of the ZLB. This contrasts with the case without the ZLB, where 
determinacy just requires the Taylor principle to be satisfied (Clarida, Galí & Gertler 
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1997; 2000), meaning interest rates respond more than one for one to inflation. We find 
NK models with a ZLB and an endogenous state variable usually have multiple solutions 
that eventually escape the ZLB, even with a monetary rule that satisfies the Taylor 
principle. However, even a weak response to the price level in the monetary rule is 
sufficient to restore determinacy. 

To relate our perfect-foresight results to rational expectations, we prove 
supplemental results on existence under rational expectations for arbitrary non-linear 
models (not just otherwise linear ones with OBCs). Under mild assumptions, we show 
that for each solution under perfect foresight, there is a corresponding solution under 
rational expectations. This solution approximately follows the dynamics of the solution 
under perfect foresight until a “reset” shock hits, at which point it restarts from time 
zero. Additionally, when there are multiple perfect foresight solutions, we show that there 
are a continuum of rational expectations solutions that switch between them. Thus, 
multiplicity under perfect foresight implies multiplicity under rational expectations. We 
apply these results to otherwise linear models with OBCs, proving existence of a rational 
expectations equilibrium for a broad class of models. 

The next section presents simple examples of multiplicity and non-existence, and 
illustrates our main results. Section 3 provides the key equivalence result enabling us to 
examine models with OBCs via an associated linear complementarity problem. Section 
4 then gives our main results on existence and uniqueness under perfect foresight, with 
applications to NK models. Section 5 provides additional results under rational 
expectations. Finally, Section 6 places our results in the context of the broader literature 
and discusses key assumptions. 

2. Multiplicity in simple models
We start by presenting two simple models with multiple perfect foresight solutions. 

These will make clear why non-uniqueness is so common in models with OBCs. We also 
use these models to introduce our general results, and to illustrate the key ideas behind 
them. Next, we give a demonstration that price level targeting produces uniqueness, 
which is a robust conclusion of our results. We conclude the section by showing that the 
multiplicity we find under perfect foresight is also present under rational expectations.  

We focus on New Keynesian examples due to the continued relevance of the ZLB. 
Other examples of multiplicity of transition paths in NK models are provided by Hebden, 
Lindé & Svensson (2011), Brendon, Paustian & Yates (2013; 2019), and our Appendix 
E. We will also examine the standard three equation NK model in Subsection 4.3.
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2.1. A simple first example 

We consider the simplest possible NK setting. Suppose the central bank follows the 
Taylor-type rule: 

𝑖𝑖𝑡𝑡 = max{0, 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡}, 
where 𝑟𝑟𝑡𝑡 is the real interest rate (not the natural rate), 𝑖𝑖𝑡𝑡 is the nominal interest rate, 
𝜋𝜋𝑡𝑡 is inflation, and 𝜙𝜙 > 1 to ensure the Taylor principle is satisfied. Suppose further that 
the Fisher equation holds: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1. 
Away from the ZLB, combining the two equations implies 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜙𝜙𝜋𝜋𝑡𝑡, which has the 
unique, non-explosive solution, 𝜋𝜋𝑡𝑡 = 0. Thus, 𝜋𝜋 = 0 is one steady state of the model. The 
model has an additional steady state, in which 𝑖𝑖 = 0 and 𝜋𝜋 = −𝑟𝑟, but we will focus on 
solutions returning to the “standard” steady state with 𝜋𝜋 = 0. This is in line with the 
evidence of Gürkaynak, Levin & Swanson (2010) who find that under inflation targeting, 
agents expect a return to the non-deflationary steady state. We also exclude the explosive 
equilibria discussed by Cochrane (2011). 

For simplicity, we consider an economy with exogenous real interest rates, as under 
flexible prices. In particular, suppose 𝑟𝑟𝑡𝑡 = 𝑟𝑟 + 𝜀𝜀𝑡𝑡, with 𝑟𝑟 > 0 and 𝜀𝜀𝑡𝑡 acting as a shock to 
real rates. We assume 𝜀𝜀𝑡𝑡 = 0 for 𝑡𝑡 > 1, meaning the shock can only occur in period 1. 

We seek to solve for 𝜋𝜋𝑡𝑡 for 𝑡𝑡 = 1,2,…. If inflation is to return to the standard steady 
state, then we must have that 𝜋𝜋𝑡𝑡 = 0 for 𝑡𝑡 ≥ 2. To see this, suppose 𝑖𝑖𝑡𝑡 = 0 for some 𝑡𝑡 ≥
2. Then by the Fisher equation 𝜋𝜋𝑡𝑡+1 = −𝑟𝑟, implying 𝑖𝑖𝑡𝑡+1 = 0 by the Taylor rule. By 
induction, 𝑖𝑖𝑠𝑠 = 0 for all 𝑠𝑠 ≥ 𝑡𝑡, contradicting our assumption of a return to the standard 
steady state. Thus, 𝑖𝑖𝑡𝑡 > 0 for all 𝑡𝑡 ≥ 2, so 𝜋𝜋𝑡𝑡 = 0 for 𝑡𝑡 ≥ 2. Hence, from the period one 
Fisher equation and monetary rule: 

𝑟𝑟 + 𝜀𝜀1 = 𝑖𝑖1 = max{0, 𝑟𝑟 + 𝜀𝜀1 + 𝜙𝜙𝜋𝜋1}, 
so: 

0 = max{−𝑟𝑟 − 𝜀𝜀1, 𝜙𝜙𝜋𝜋1} . (1) 
This is a simple linear complementarity problem. It means that −𝑟𝑟 − 𝜀𝜀1 ≤ 0, 𝜙𝜙𝜋𝜋1 ≤ 0 
and either −𝑟𝑟 − 𝜀𝜀1 = 0, or 𝜙𝜙𝜋𝜋1 = 0. These conditions are illustrated in Figure 1. 

If 𝜀𝜀1 < −𝑟𝑟 then (1) has no solution, so the model has no solution returning to the 
standard steady state. In fact, there is no bounded solution in this case.1 If 𝜀𝜀1 = −𝑟𝑟, 
then any 𝜋𝜋1 ≤ 0 is consistent with (1): there is indeterminacy. This is the thick vertical 
line in Figure 1. Finally, if 𝜀𝜀1 > −𝑟𝑟, then 𝜋𝜋1 = 0 is the unique solution. This is the thick 
horizontal line in Figure 1. So, this model has either zero, one or infinitely many solutions 
returning to the standard steady state, depending on the value of the shock. 

 
1  Ensuring 𝑖𝑖1 ≥ 0  when 𝑟𝑟 + 𝜀𝜀1 < 0  requires 𝜋𝜋2 > 0  by the Fisher equation. This leads to explosive 
inflation as 𝜙𝜙 > 1. 
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Figure 1: The solution to equation (1): Inflation in period one as a function of the shock. 
The hatched area shows where −𝑟𝑟 − 𝜀𝜀1 ≤ 0. The shaded area shows where 𝜙𝜙𝜋𝜋1 ≤ 0. 

A value for 𝜋𝜋1 is a solution if and only if it is within both of these areas, and on the border of one of 
them. These points are marked with a thick (rotated L shaped) line. 

2.2. An example with pervasive multiplicity 

While the last example only had multiplicity in a knife-edge case, multiplicity is 
more common in richer models. For example, suppose the central bank responds to 
lagged as well as current inflation.2 This is an easy way of generating some endogenous 
persistence, but almost any state variable would have a similar effect. Assuming 𝑟𝑟𝑡𝑡 is 
now constant, the model becomes: 

𝑟𝑟 + 𝜋𝜋𝑡𝑡+1 = 𝑖𝑖𝑡𝑡 = max{0, 𝑟𝑟 + 𝜙𝜙𝜋𝜋𝑡𝑡 − 𝜓𝜓𝜋𝜋𝑡𝑡−1}, 
where 𝜙𝜙 − 𝜓𝜓 > 1  and 𝜓𝜓 > 0 . These assumptions are sufficient for a determinate 

solution when there is no ZLB. The initial state, 𝜋𝜋0, is given. To simplify presentation, 
we set 𝜙𝜙 ≔ 2, so we need 𝜓𝜓 < 1. Our results are not specific to this case. 

Away from the ZLB, the model’s solution takes the form 𝜋𝜋𝑡𝑡 = 𝐴𝐴𝜋𝜋𝑡𝑡−1, where 𝐴𝐴2 =
𝜙𝜙𝜙𝜙 − 𝜓𝜓, so 𝐴𝐴 = 1 −

√
1 − 𝜓𝜓 ∈ (0,1). We first prove that the model cannot be at the ZLB 

for more than one period, if it is to ever escape the bound. Suppose that for some 𝑡𝑡 ≥ 1, 
𝑖𝑖𝑡𝑡+1 = 0 but 𝑖𝑖𝑡𝑡+2 > 0, i.e., the economy is at the bound in 𝑡𝑡 + 1, but escapes in 𝑡𝑡 + 2. 
Since the economy is away from the bound in 𝑡𝑡 + 2, 𝜋𝜋𝑡𝑡+2 = 𝐴𝐴𝜋𝜋𝑡𝑡+1. Thus, by the Fisher 
equation, 0 = 𝑖𝑖𝑡𝑡+1 = 𝑟𝑟 + 𝐴𝐴𝜋𝜋𝑡𝑡+1, so 𝜋𝜋𝑡𝑡+1 = − 𝑟𝑟

𝐴𝐴. Hence, 𝑖𝑖𝑡𝑡 = 𝑟𝑟 − 𝑟𝑟
𝐴𝐴 = 𝑟𝑟�𝐴𝐴−1

𝐴𝐴 � < 0 which is 
inconsistent with the monetary rule. This contradiction proves that if the economy 
eventually escapes the bound, then for 𝑡𝑡 ≥ 1, 𝑖𝑖𝑡𝑡+1 > 0. In particular, the economy must 
be away from the ZLB in period two, so 𝜋𝜋2 = 𝐴𝐴𝜋𝜋1 and: 

𝑟𝑟 + 𝐴𝐴𝜋𝜋1 = 𝑖𝑖1 = max{0, 𝑟𝑟 + 𝜙𝜙𝜋𝜋1 − 𝜓𝜓𝜋𝜋0}. 
Much like before, this implies: 

0 = max{−𝑟𝑟 − 𝐴𝐴𝜋𝜋1, (𝜙𝜙 − 𝐴𝐴)𝜋𝜋1 − 𝜓𝜓𝜋𝜋0} , (2) 
 

2  Responding negatively to lagged inflation is optimal if firms index to past inflation (Giannoni & 
Woodford 2003). This is one possible justification for a response to lagged inflation. 

𝜀𝜀1 

𝜋𝜋1 
−𝑟𝑟 − 𝜀𝜀1 = 0 

𝜙𝜙𝜋𝜋1 = 0 

𝜙𝜙𝜋𝜋1 ≤ 0 

−𝑟𝑟 − 𝜀𝜀1 ≤ 0 
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Figure 2: The solution to equation (2): Inflation in period one as a function of initial 
inflation. 

The hatched area shows where −𝑟𝑟 − 𝐴𝐴𝜋𝜋1 ≤ 0. The shaded area shows where (𝜙𝜙 − 𝐴𝐴)𝜋𝜋1 − 𝜓𝜓𝜋𝜋0 ≤ 0. 
A value for 𝜋𝜋1 is a solution if and only if it is within both of these areas, and on the border of one of 

them. These points are marked with a thick (wedge shaped) line. 

which is another simple linear complementarity problem. Equation (2)  means −𝑟𝑟 −
𝐴𝐴𝜋𝜋1 ≤ 0 , (𝜙𝜙 − 𝐴𝐴)𝜋𝜋1 − 𝜓𝜓𝜋𝜋0 ≤ 0  and either −𝑟𝑟 − 𝐴𝐴𝜋𝜋1 = 0  or (𝜙𝜙 − 𝐴𝐴)𝜋𝜋1 − 𝜓𝜓𝜋𝜋0 = 0 . We 
plot these conditions in Figure 2. 

Figure 2 shows two solutions exist for large enough values of 𝜋𝜋0. The upward sloping 
thick line captures the “fundamental” solution with 𝜋𝜋𝑡𝑡 = 𝐴𝐴𝑡𝑡𝜋𝜋0 for 𝑡𝑡 ≥ 0. The horizontal 
thick line captures an alternative solution that jumps to the ZLB, with 𝜋𝜋𝑡𝑡 = −𝐴𝐴𝑡𝑡−2𝑟𝑟 for 
𝑡𝑡 > 0 and 𝑖𝑖1 = 0. This alternative solution is at the bound in the first period but escapes 
it in the next, with a gradual return to the standard steady state. Crucially, the 
alternative solution does not require agents to expect convergence to a different steady 
state. This is in contrast to the literature on the consequences of steady-state multiplicity 
(Benhabib, Schmitt-Grohé & Uribe 2001a; 2001b; Schmitt-Grohé & Uribe 2012; Mertens 
& Ravn 2014; Aruoba, Cuba-Borda & Schorfheide 2018). 

The two solutions agree when 𝜋𝜋0 = −𝐴𝐴−2𝑟𝑟 , giving a unique solution. For 𝜋𝜋0 <
−𝐴𝐴−2𝑟𝑟, there is no solution returning to the standard steady state, as the fundamental 
solution violates the ZLB and the alternative solution violates the Taylor rule. Both 
solutions exist and are distinct when 𝜋𝜋0 > −𝐴𝐴−2𝑟𝑟. 

𝜋𝜋0 

𝜋𝜋1 

−𝑟𝑟 − 𝐴𝐴𝜋𝜋1 = 0 

(𝜙𝜙 − 𝐴𝐴)𝜋𝜋1 − 𝜓𝜓𝜋𝜋0 = 0 

(𝜙𝜙 − 𝐴𝐴)𝜋𝜋1 − 𝜓𝜓𝜋𝜋0 ≤ 0 

−𝑟𝑟 − 𝐴𝐴𝜋𝜋1 ≤ 0 
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As we approach the canonical model with 𝜓𝜓 → 0+ , the region of non-existence 
shrinks but the multiplicity region grows until it encompasses the entire state space.3 
The Fisher equation and Taylor rule are the core of all NK models, so it is unsurprising 
that this result generalizes. We have found pervasive multiplicity in all the NK models 
with endogenous state variables we have analysed. While we show in Subsection 4.1 that 
the standard three equation NK model has a unique solution, this is not a robust result. 
With a positive inflation target, price dispersion enters as a state variable, and this is 
sufficient to produce multiplicity. We show examples of this and other multiplicity in NK 
models in Subsection 4.3 and Appendix E. 

2.3. The mechanics of our main results 

Even in such simple models, deriving these multiplicity and non-existence results is 
cumbersome. Our theoretical results provide an easier alternative. To understand how 
they work, it is helpful to begin by looking at the impact of a monetary policy shock in 
the previous model. So, suppose: 

𝑟𝑟 + 𝜋𝜋𝑡𝑡+1 = 𝑖𝑖𝑡𝑡 = max{0, 𝑟𝑟 + 𝜙𝜙𝜋𝜋𝑡𝑡 − 𝜓𝜓𝜋𝜋𝑡𝑡−1 + 𝜈𝜈𝑡𝑡}, 
where 𝜈𝜈𝑡𝑡 is a monetary policy shock with 𝜈𝜈𝑡𝑡 = 0 for 𝑡𝑡 > 1, and where 𝜋𝜋0 is given. The 
solution away from the ZLB must take the form 𝜋𝜋𝑡𝑡 = 𝐴𝐴𝜋𝜋𝑡𝑡−1 + 𝐹𝐹𝜈𝜈𝑡𝑡, with 𝐴𝐴 as before and 
𝐹𝐹 = − 1

𝜙𝜙−𝐴𝐴 < 0. Thus, away from the ZLB, 𝑖𝑖1 = 𝑟𝑟 + 𝐴𝐴2𝜋𝜋0 + 𝐴𝐴𝐴𝐴𝜈𝜈1. Hence, since 𝐴𝐴𝐴𝐴 <
0, a positive monetary policy shock actually lowers nominal interest rates. 

This solution would just touch the ZLB if 0 = 𝑖𝑖1 = 𝑟𝑟 + 𝐴𝐴2𝜋𝜋0 + 𝐴𝐴𝐴𝐴𝜈𝜈1. This happens 
when 𝜈𝜈1 = 𝜈𝜈1

∗ ≔ − 𝑟𝑟+𝐴𝐴2𝜋𝜋0
𝐴𝐴𝐴𝐴 . In this case, 𝜋𝜋1 = 𝐴𝐴𝜋𝜋0 − 𝐹𝐹𝜈𝜈1

∗ = − 𝑟𝑟
𝐴𝐴, so 𝜋𝜋𝑡𝑡 = −𝐴𝐴𝑡𝑡−2𝑟𝑟 for 𝑡𝑡 >

0. Note that a monetary policy shock of this magnitude is a positive innovation (i.e., 
𝜈𝜈1

∗ > 0) if and only if 𝜋𝜋0 > −𝐴𝐴−2𝑟𝑟. Thus, when 𝜋𝜋0 > −𝐴𝐴−2𝑟𝑟: 
𝑟𝑟 + 𝜙𝜙𝜋𝜋1 − 𝜓𝜓𝜋𝜋0 + 𝜈𝜈1

∗ = 0 = 𝑖𝑖1 = max{0, 𝑟𝑟 + 𝜙𝜙𝜋𝜋1 − 𝜓𝜓𝜋𝜋0 + 𝜈𝜈1
∗} 

= max{0, 𝑟𝑟 + 𝜙𝜙𝜋𝜋1 − 𝜓𝜓𝜋𝜋0 + 0}. 
In other words, with 𝜈𝜈1 = 𝜈𝜈1

∗ > 0, there is no observable evidence that a shock has arrived 
at all, since the ZLB means that nominal interest rates should be zero even without such 
a shock. 𝜋𝜋1 = − 𝑟𝑟

𝐴𝐴 satisfies the monetary rule both with the shock 𝜈𝜈1 = 𝜈𝜈1
∗ and also when 

𝜈𝜈1 = 0. Moreover, 𝜋𝜋𝑡𝑡 = −𝐴𝐴𝑡𝑡−2𝑟𝑟 for 𝑡𝑡 > 0 must be an equilibrium in either case. 
This establishes that when 𝜋𝜋0 > −𝐴𝐴−2𝑟𝑟, 𝜋𝜋𝑡𝑡 = −𝐴𝐴𝑡𝑡−2𝑟𝑟 for 𝑡𝑡 > 0 is an equilibrium of 

the model without the shock, as we had already discovered in the previous subsection. 
We have learnt something extra though. The outcome is as if the monetary policy shock 
𝜈𝜈1

∗ hit, whether or not it did in reality. This construction is valid as long as there is a 
positive shock that reduces nominal interest rates to the ZLB. The negative effect of the 

 
3 With 𝜓𝜓 = 0 and constant 𝑟𝑟, there is a unique solution returning to the standard steady state (as with 
𝜓𝜓 = 0, if 𝑖𝑖𝑡𝑡 = 0 for some 𝑡𝑡 > 0, then 𝜋𝜋𝑡𝑡+1 = −𝑟𝑟, so 𝑖𝑖𝑡𝑡+1 = 0 as well). This no longer holds once a shock 
is introduced, as seen above. 
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positive innovation permits such shocks to be “censored” away. This explains why the 
condition for 𝜈𝜈1

∗ to be positive (𝜋𝜋0 > −𝐴𝐴−2𝑟𝑟) should be the same as the multiplicity 
condition we found in the previous subsection (𝜋𝜋0 > −𝐴𝐴−2𝑟𝑟), and why the condition for 
a positive shock to have a negative effect (𝜓𝜓 > 0), should be the same as the condition 
for there to be multiplicity for some 𝜋𝜋0 (𝜓𝜓 > 0). 

This reveals a tight connection between multiplicity and positive shocks having 
negative effects. Indeed, our key uniqueness condition requires that positive shocks to 
the bounded variable have positive effects. The condition calls for strict positivity to 
ensure cases like 𝜓𝜓 = 0  are correctly classified as having multiple solutions. Our 
uniqueness condition also requires that news today about a future positive shock to the 
bounded variable results in the bounded variable being higher in the period the shock 
arrives. This is the natural generalisation for models in which the bound may be hit in 
future periods. More than this, it requires that the impact of news shocks to the bounded 
variable at different horizons be “jointly” positive, in a sense to be made clear in the 
next subsection. 

2.4. Examining our first example through the lens of our main 
results 

We will now analyse our first simple example (from Subsection 2.1) using the general 
results presented in this paper. This illustrates the form of our main results. 

A crucial object for these main results is the “𝑀𝑀” matrix. In the current context, 
the first column of 𝑀𝑀  gives the impulse response of 𝑖𝑖𝑡𝑡 to a contemporaneous monetary 
policy shock, without the bound. The second column of 𝑀𝑀  gives the impulse response 
of 𝑖𝑖𝑡𝑡 to news today that next period there will be a monetary policy shock, again ignoring 
the bound. The third column gives the impulse response of 𝑖𝑖𝑡𝑡 to news today about a 
shock in two periods, and so on. More generally, the first column will be the impulse 
response of the bounded variable to a contemporaneous shock to the equation defining 
that variable, ignoring the bound, and similarly for other columns. In practice, we will 
usually only consider 𝑇𝑇  periods of IRFs, for news shocks out to horizon 𝑇𝑇 − 1, giving a 
𝑇𝑇 × 𝑇𝑇   matrix 𝑀𝑀  . Given this truncation, the 𝑀𝑀   matrix is easy to calculate from a 
solution to the model without the bound. 

To calculate the 𝑀𝑀  matrix for our current model, we start by augmenting the model 
without bound or shocks to 𝑟𝑟𝑡𝑡 by an exogenous forcing process, 𝜈𝜈𝑡𝑡, giving: 

𝑟𝑟 + 𝜋𝜋𝑡𝑡+1 = 𝑖𝑖𝑡𝑡 = 𝑟𝑟 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜈𝜈𝑡𝑡. 
We suppose that the entire path of 𝜈𝜈𝑡𝑡 is known in period one, to enable us to capture 
the effects of news. Thus, the solution must have the form 𝜋𝜋𝑡𝑡 = ∑ 𝐹𝐹𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗

∞
𝑗𝑗=0 . Matching 

coefficients implies that 𝐹𝐹𝑗𝑗 = −𝜙𝜙−(𝑗𝑗+1)  for all 𝑗𝑗 ∈ ℕ , so 𝑖𝑖𝑡𝑡 = 𝑟𝑟 − ∑ 𝜙𝜙−𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗
∞
𝑗𝑗=1  . From 

this, we can read off the columns of the 𝑀𝑀  matrix. The first column is the path of 𝑖𝑖𝑡𝑡 − 𝑟𝑟 
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when 𝜈𝜈1 = 1 and 𝜈𝜈𝑡𝑡 = 0 for 𝑡𝑡 ≠ 1, which is 0,0,…. The second column is the path of 𝑖𝑖𝑡𝑡 −
𝑟𝑟 when 𝜈𝜈2 = 1 and 𝜈𝜈𝑡𝑡 = 0 for 𝑡𝑡 ≠ 2, which is 𝜙𝜙−1, 0,0,…. The third is 𝜙𝜙−2, 𝜙𝜙−1, 0,0,…, 
and so on. Thus, for any matrix size 𝑇𝑇 , the 𝑀𝑀  matrix has a zero diagonal, a strictly 
negative upper triangle, and a zero lower triangle. 

Applied to the current context, our general results give necessary and sufficient 
conditions for there to be a unique perfect foresight solution to the model: 

𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1 = 𝑖𝑖𝑡𝑡 = max{0, 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡} 
for any possible values of 𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3,…. I.e., we want to ensure there is a unique solution 
for any current and anticipated future shocks to real interest rates. Since without the 
bound the unique solution has 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡, this is equivalent to saying we want uniqueness 
for any path the bounded variable might take with the bound removed. This is the form 
taken by our general results. 

The necessary and sufficient condition for this uniqueness is that the 𝑀𝑀  matrix is a 
“P-matrix”. A matrix is a P-matrix if and only if the determinants of all its principal 
sub-matrices are positive (where principal sub-matrices are sub-matrices formed by 
taking the same subset of rows as of columns). For the current model, since 𝑀𝑀  is an 
upper triangular matrix with a zero diagonal, all the principal sub-matrices of 𝑀𝑀  will 
also be upper triangular matrices with zero diagonals. The determinant of a triangular 
matrix is the product of its diagonal elements, so all of the determinants of 𝑀𝑀 ’s principal 
sub-matrices are zero. Thus 𝑀𝑀  is not a P-matrix, so this model does not have a unique 
solution for all possible sequences of shocks to real rates, as we already saw. 

2.5. Uniqueness under price targeting  

In applying our general results to NK models, a robust finding is that a response to 
the price level in the monetary rule is sufficient to produce uniqueness. Examples of this 
are given in Subsection 4.3 and Appendix E. To better understand this result, we 
examine price level targeting in the simple model used in the previous subsection 
(introduced in Subsection 2.1).  We start by modifying the model to include a response 
to the log price level, 𝑝𝑝𝑡𝑡, in the Taylor rule, so it becomes: 

𝑟𝑟𝑡𝑡 + 𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡 = 𝑖𝑖𝑡𝑡 = max{0, 𝑟𝑟𝑡𝑡 + 𝜙𝜙(𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1) + 𝜒𝜒𝑝𝑝𝑡𝑡}, 
where 𝜒𝜒 > 0 controls the strength of the response to the price level, and where 𝑝𝑝0 = 0. 

To find the 𝑀𝑀  matrix for this new model, we need to solve the news shock model: 
𝑟𝑟 + 𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡 = 𝑖𝑖𝑡𝑡 = 𝑟𝑟 + 𝜙𝜙(𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1) + 𝜒𝜒𝑝𝑝𝑡𝑡 + 𝜈𝜈𝑡𝑡, 

where, as before, 𝜈𝜈𝑡𝑡 is an exogenous forcing process whose entire path is known in period 
one. This must have a solution of the form 𝑝𝑝𝑡𝑡 = ∑ 𝐺𝐺𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗

∞
𝑗𝑗=−∞ , where 𝜈𝜈𝑡𝑡 = 0 for all 𝑡𝑡 ≤

0 . By matching coefficients, we can derive closed form expressions for 𝐺𝐺𝑗𝑗 , given in 
Appendix H.1. Furthermore, we show there that for any matrix size 𝑇𝑇 , there exists 𝜒𝜒𝑇𝑇 ∈
(0,∞] such that for all 𝜒𝜒 ∈ �0, 𝜒𝜒𝑇𝑇 �, 𝑀𝑀  (of size 𝑇𝑇 × 𝑇𝑇 ) is a P-matrix. Consequently, a 



9 

weak but positive response to the price level restores determinacy in this model. Since 
all NK models have a Fisher equation and a Taylor rule, it is unsurprising that this 
result is robust across NK models. 

To understand why price level rules robustly produce determinacy, suppose that 
some model includes a monetary rule of the form: 

𝑖𝑖𝑡𝑡 = max{0, 𝑟𝑟 + 𝜋𝜋 + 𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋) + 𝜒𝜒(𝑝𝑝𝑡𝑡 − 𝜋𝜋𝜋𝜋) + other terms}, 
where 𝑟𝑟 is the steady-state real interest rate, 𝜋𝜋 ≥ 0 is the inflation target and 𝜙𝜙 & 𝜒𝜒 are 
non-negative. The rest of the model is unrestricted and could include all the usual 
“DSGE” frictions. 

Assume that in period 0, the price level is on its target path, so 𝑝𝑝0 = 0. Then from 
summing the Fisher equation over periods 1 to ∞, under perfect foresight we have: 

�(𝑖𝑖𝑡𝑡 − 𝑟𝑟 − 𝜋𝜋)
∞

𝑡𝑡=1
= �(𝑟𝑟𝑡𝑡 + 𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡 − 𝑟𝑟 − 𝜋𝜋)

∞

𝑡𝑡=1
= �(𝑟𝑟𝑡𝑡 − 𝑟𝑟)

∞

𝑡𝑡=1
− (𝑝𝑝1 − 𝜋𝜋) + lim

𝑡𝑡→∞
(𝑝𝑝𝑡𝑡 − 𝜋𝜋𝜋𝜋). 

We continue to look for equilibria in which the ZLB does not bind in the limit. Therefore, 
if the central bank is price level targeting, meaning 𝜒𝜒 ≠ 0, then the limit on the right-
hand side is zero.4 Thus, if there were a self-fulfilling jump to the ZLB, making the left 
side negative, then either current and future real interest rates would have to fall by the 
same amount, or the current price level would have to increase. However, with 𝜙𝜙 > 0 
and/or 𝜒𝜒 > 0 , the only way for 𝑖𝑖1  to hit zero is for there to be sharp decline in 𝑝𝑝1 
(assuming that any other terms in the monetary rule are positively correlated with 𝜋𝜋𝑡𝑡, 
as is usually the case). So, for there to be a self-fulfilling jump to the ZLB, current and 
future real rates would have to fall by significantly more than current and future nominal 
rates. But real rates are no way near that responsive to nominal rates in NK models (see 
e.g. Rupert & Šustek 2019). For example, with a standard log-linearized Euler equation, 
𝑟𝑟𝑡𝑡 − 𝑟𝑟  is proportional to 𝑐𝑐𝑡𝑡+1 − 𝑐𝑐𝑡𝑡  (where 𝑐𝑐𝑡𝑡  is log-consumption), so ∑ (𝑟𝑟𝑡𝑡 − 𝑟𝑟)∞

𝑡𝑡=1   is 
proportional to −𝑐𝑐1. Hence, for current and future real rates to fall, current consumption 
would have to rise, at a time when inflation and inflation expectations are low. This is 
ruled out by any standard Phillips curve specification. 

Indeed, sticky prices or wages help price level targeting rules achieve uniqueness. For 
there to be a self-fulfilling jump to the ZLB, inflation must fall sharply. But under a 
price level rule, this means the central bank is committed to make-up inflation in future. 
Given this expected future inflation, firms and workers are less keen to cut prices and 
wages today, making it harder to produce the fall in inflation required for a self-fulfilling 
jump to the ZLB. 

 
4 From combining the Fisher equation and monetary rule we must have that 0 = (𝜙𝜙 − 1) lim

𝑡𝑡→∞
(𝜋𝜋𝑡𝑡 − 𝜋𝜋) +

𝜒𝜒 lim
𝑡𝑡→∞

(𝑝𝑝𝑡𝑡 − 𝜋𝜋𝜋𝜋). If lim
𝑡𝑡→∞

(𝜋𝜋𝑡𝑡 − 𝜋𝜋) ≠ 0, then lim
𝑡𝑡→∞

(𝑝𝑝𝑡𝑡 − 𝜋𝜋𝜋𝜋) = ±∞. Thus lim
𝑡𝑡→∞

(𝜋𝜋𝑡𝑡 − 𝜋𝜋) = lim
𝑡𝑡→∞

(𝑝𝑝𝑡𝑡 − 𝜋𝜋𝜋𝜋) = 0. 
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2.6. Multiplicity under rational expectations 

While the bulk of our paper will focus on perfect foresight solutions, in Section 5 we 
give results under rational expectations. We show that if there are multiple solutions 
under perfect foresight, then there are usually a continuum of solutions under rational 
expectations. These rational expectations solutions switch between neighbourhoods of 
the various perfect foresight ones. Even if we only consider a single perfect foresight 
solution, there can still be a continuum of rational expectations solutions if that perfect 
foresight solution depends on time. We give an example of such a case below. A key 
difference to the prior literature on multiplicity under rational expectations is that jumps 
to the ZLB do not have to be persistent in these equilibria. 

As in the example from Subsection 2.2, we examine the model: 
𝑟𝑟 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝑖𝑖𝑡𝑡 = max{0, 𝑟𝑟 + 𝜙𝜙𝜋𝜋𝑡𝑡 − 𝜓𝜓𝜋𝜋𝑡𝑡−1} 

with 𝜙𝜙 ≔ 2 and 𝜓𝜓 ∈ (0,1). We look for a rational expectations solution of a similar form 
to the perfect foresight solution 𝜋𝜋𝑡𝑡 = −𝐴𝐴𝑡𝑡−2𝑟𝑟 for 𝑡𝑡 > 0 with 𝑖𝑖1 = 0. Since we do not want 
ZLB episodes to be confined to period 1, we will effectively allow for the clock to be 
reset. This will happen with probability 𝛿𝛿 ∈ (0,1). 

In particular, the model has a solution of the following form. Each period, with 
probability 1 − 𝛿𝛿 , 𝜋𝜋𝑡𝑡 = 𝐴𝐴𝛿𝛿𝜋𝜋𝑡𝑡−1 + 𝐵𝐵𝛿𝛿  and 𝑖𝑖𝑡𝑡 = 𝑟𝑟 + 𝜙𝜙𝜋𝜋𝑡𝑡 − 𝜓𝜓𝜋𝜋𝑡𝑡−1 > 0  (away from the 
ZLB), while with probability 𝛿𝛿 , 𝜋𝜋𝑡𝑡 = 𝐶𝐶𝛿𝛿  and 𝑖𝑖𝑡𝑡 = 0  (at the ZLB), where 𝐴𝐴𝛿𝛿 ∈ (0,1) , 
𝐵𝐵𝛿𝛿 < 0 and 𝐶𝐶𝛿𝛿 < 0. This is proven in Appendix H.2, where closed form expressions for 
𝐴𝐴𝛿𝛿, 𝐵𝐵𝛿𝛿 and 𝐶𝐶𝛿𝛿 are derived. As 𝛿𝛿 → 0, these coefficients satisfy 𝐴𝐴𝛿𝛿 → 𝐴𝐴 (as defined in 
Subsection 2.2), 𝐵𝐵𝛿𝛿 → 0 and 𝐶𝐶𝛿𝛿 → −𝐴𝐴−1𝑟𝑟. Thus, this solution converges to the desired 
perfect foresight solution as 𝛿𝛿 → 0 . However, since 𝐵𝐵𝛿𝛿 < 0  for 𝛿𝛿 > 0 , the rational 
expectations solution has a deflationary bias. 

Unlike in the prior literature on sunspot equilibria in ZLB-models (see e.g. Nakata 
& Schmidt 2021), here there is no requirement that ZLB episodes are sufficiently 
persistent. With 𝛿𝛿 small, ZLB episodes will generally last only one period in this model. 
In richer models, ZLB episodes can be much longer. However, their length is determined 
by the model’s persistence and dynamics, not by the parameters governing exogenous 
switches between solution regimes. This difference comes from the fact that the solutions 
we examine are not time invariant. For example, we can think of the model presented 
above as one with a single “regime”. It is only at the ZLB if the regime “clock” says it is 
the model’s first period in that regime. However, the regime clock is reset after the 𝛿𝛿 
shock hits, in a kind of self-transition. 
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3. Equivalence result 
We saw in the previous section that for simple models with occasionally binding 

constraints, solving the model under perfect foresight was equivalent to solving a linear 
complementarity problem (LCP). This section establishes that this is a general result. 
Solving a model with an OBC is always equivalent to solving an LCP. This equivalence 
is behind all our results. It enables us to leverage prior theorems on existence and 
uniqueness for LCPs. 

For now, we assume that there is a single OBC of the form 𝑖𝑖𝑡𝑡 = max{0,… }, where 
𝑖𝑖𝑡𝑡 is the constrained variable (not necessarily interest rates). This covers all OBCs one 
encounters in practice, possibly via a transformation. For example, the Karush-Kuhn-
Tucker (KKT) type constraints 𝑖𝑖𝑡𝑡 ≥ 0 , 𝜆𝜆𝑡𝑡 ≥ 0 , 𝑖𝑖𝑡𝑡𝜆𝜆𝑡𝑡 = 0  hold if and only if 0 =
min{𝑖𝑖𝑡𝑡, 𝜆𝜆𝑡𝑡}  which in turn holds if and only if 𝑖𝑖𝑡𝑡 = max{0, 𝑖𝑖𝑡𝑡 − 𝜆𝜆𝑡𝑡} . It is also 
straightforward to generalize to multiple constraints, or to constraints that bind in steady 
state (see Appendix D.3).  

We continue to look for perfect foresight solutions converging to a steady state with 
𝑖𝑖𝑡𝑡 > 0. We assume throughout that without the bound, the model would be determinate 
around a unique steady state. We take as given the period 0  value of the model’s 
endogenous variables. 

Without loss of generality, the equation containing the bound is of the form: 
𝑖𝑖𝑡𝑡 = max{0, 𝑓𝑓(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝜀𝜀𝑡𝑡)} , (3) 

and the model’s other equations are of the form: 
0 = 𝑔𝑔(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝜀𝜀𝑡𝑡). 

The vector 𝑥𝑥𝑡𝑡  contains the model’s period 𝑡𝑡  endogenous variables, including 𝑖𝑖𝑡𝑡 . The 
vector 𝜀𝜀𝑡𝑡 gives exogenous “shocks”, with the entire path (𝜀𝜀𝑡𝑡)𝑡𝑡=1

∞  known in period one, as 
we are working under perfect foresight. For example, anticipated shocks to interest rates 
may reflect forward guidance. We assume 𝜀𝜀𝑡𝑡 → 0  as 𝑡𝑡 → ∞ , consistent with our 
assumption of an eventual return to steady state. 𝑓𝑓  and 𝑔𝑔  are some differentiable 
functions, later restricted to be linear. 

Now define: 
𝑦𝑦𝑡𝑡 ≔ max{0, 𝑓𝑓(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝜀𝜀𝑡𝑡)} − 𝑓𝑓(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝜀𝜀𝑡𝑡). 

By construction, 𝑦𝑦𝑡𝑡 ≥ 0. Also note that: 
𝑖𝑖𝑡𝑡 = 𝑓𝑓(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝜀𝜀𝑡𝑡) + 𝑦𝑦𝑡𝑡. (4) 

Despite its simplicity (we have just added and subtracted a term), this result is 
important. It states that the value of the bounded variable is given by its value with the 
constraint removed (but given other endogenous variables), plus an additional positive 
“forcing” term capturing the effect of the constraint. Furthermore, by construction, if 
𝑖𝑖𝑡𝑡 > 0, then 𝑦𝑦𝑡𝑡 = 0 and if 𝑦𝑦𝑡𝑡 > 0, then 𝑖𝑖𝑡𝑡 = 0. Thus, for all 𝑡𝑡, the bounded variable 𝑖𝑖𝑡𝑡 
and the forcing term 𝑦𝑦𝑡𝑡  satisfy the complementary slackness condition, 𝑖𝑖𝑡𝑡𝑦𝑦𝑡𝑡 = 0 . For 
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further intuition, note that when the constraint originally came from the KKT conditions 
𝑖𝑖𝑡𝑡 ≥ 0 , 𝜆𝜆𝑡𝑡 ≥ 0 , 𝑖𝑖𝑡𝑡𝜆𝜆𝑡𝑡 = 0 , so 𝑖𝑖𝑡𝑡 = max{0, 𝑖𝑖𝑡𝑡 − 𝜆𝜆𝑡𝑡} , then 𝑦𝑦𝑡𝑡 = max{0, 𝑖𝑖𝑡𝑡 − 𝜆𝜆𝑡𝑡} − 𝑖𝑖𝑡𝑡 + 𝜆𝜆𝑡𝑡 =
𝜆𝜆𝑡𝑡, meaning 𝑦𝑦𝑡𝑡 recovers the original KKT multiplier. Finally, note there must be some 
period 𝑇𝑇  such that for all 𝑡𝑡 > 𝑇𝑇 , 𝑦𝑦𝑡𝑡 = 0, since we are assuming the model returns to a 
steady state where 𝑖𝑖𝑡𝑡 > 0. 

In the previous section, we analysed models with OBCs via companion “news shock” 
models which removed the OBC but added an exogenous forcing process to the equation 
defining 𝑖𝑖𝑡𝑡. We used this to calculate the 𝑀𝑀  matrix for the simple models analysed there. 
We can do this for our general model by replacing equation (3) with equation (4), but 
where we now treat 𝑦𝑦𝑡𝑡 as an exogenous forcing process. Since we are working under 
perfect foresight, we assume the entire path of 𝑦𝑦𝑡𝑡 is known in period one. We also assume 
there exists some period 𝑇𝑇  such that for 𝑡𝑡 > 𝑇𝑇 , 𝑦𝑦𝑡𝑡 = 0, as this always holds when 𝑦𝑦𝑡𝑡 
arises endogenously from an OBC. 

We now make the following key definitions: 

Definition 1 (𝒚𝒚, 𝒒𝒒, 𝑴𝑴) Under the setup of the preceding text: 
• 𝑦𝑦 ≔ [𝑦𝑦1,… , 𝑦𝑦𝑇𝑇 ]′ is a vector giving the path of the forcing variable. 
• 𝑖𝑖: ℝ𝑇𝑇 → ℝ𝑇𝑇   is a function, where for all 𝑦𝑦 , 𝑖𝑖(𝑦𝑦)  is a vector containing the first 𝑇𝑇  

elements of the path of 𝑖𝑖𝑡𝑡, for the given path of the forcing variable 𝑦𝑦, as determined 
by equation (4). 

• 𝑞𝑞 ≔ 𝑖𝑖(0) is a vector giving the first 𝑇𝑇  elements of the path of 𝑖𝑖𝑡𝑡 when 𝑦𝑦𝑡𝑡 = 0 for all 
𝑡𝑡, i.e. 𝑞𝑞 gives the path 𝑖𝑖𝑡𝑡 would follow were there no bound or forcing process in the 
model. 

• 𝑀𝑀   is a 𝑇𝑇 × 𝑇𝑇   matrix where the first column equals 𝜕𝜕𝜕𝜕(𝑦𝑦)
𝜕𝜕𝑦𝑦1

�
𝑦𝑦=0

 , the second equals 
𝜕𝜕𝜕𝜕(𝑦𝑦)
𝜕𝜕𝑦𝑦2

�
𝑦𝑦=0

, and so on. 

Then, by Taylor’s theorem 𝑖𝑖(𝑦𝑦) = 𝑞𝑞 + 𝑀𝑀𝑀𝑀 + Ο(𝑦𝑦′𝑦𝑦) for small 𝑦𝑦. Henceforth, we restrict 
𝑓𝑓 and 𝑔𝑔 to be linear, in which case this approximation is exact and 𝑖𝑖(𝑦𝑦) = 𝑞𝑞 + 𝑀𝑀𝑀𝑀, with 
only 𝑞𝑞, not 𝑀𝑀 , depending on the initial state. We prove this and establish expressions 
for the elements of 𝑀𝑀   in Appendix D. The proof proceeds by backwards induction, 
starting from the known transition matrix in period 𝑇𝑇 + 1  from which point on the 
economy is away from the bound. 

Note that with 𝑓𝑓 and 𝑔𝑔 linear, the first column of 𝑀𝑀  gives the impulse response to 
a contemporaneous shock to 𝑖𝑖𝑡𝑡, the second column of 𝑀𝑀  gives the impulse response to a 
one period ahead news shock to 𝑖𝑖𝑡𝑡, and so on. 5 This is how we defined the 𝑀𝑀  matrix in 

 
5 The idea of imposing an OBC by adding news shocks is also present in Holden (2010), Hebden, Lindé 
& Svensson (2011), Holden & Paetz (2012) and Bodenstein, Guerrieri & Gust (2013). Laséen & Svensson 
(2011) use a similar technique to impose a path of nominal interest rates, in a non-ZLB context. None 
of these papers formally establish our equivalence result. News shocks were introduced by Beaudry & 
Portier (2006). 
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the previous section. The result 𝑖𝑖(𝑦𝑦) = 𝑞𝑞 + 𝑀𝑀𝑀𝑀 means the path of 𝑖𝑖𝑡𝑡 is its path without 
the OBC or forcing process, plus a linear combination of impulse responses to the “news” 
contained in 𝑦𝑦. 

When 𝑦𝑦  arises endogenously from an OBC, 𝑖𝑖(𝑦𝑦) = 𝑞𝑞 + 𝑀𝑀𝑦𝑦  still holds (shown in 
Appendix D). In effect, the OBC provides “endogenous news” that in periods when the 
bound is hit, 𝑖𝑖𝑡𝑡  will be higher than it would be without the bound. Given the 
complementary slackness conditions for 𝑦𝑦𝑡𝑡 already established, and the positivity of the 
path of the bounded variable 𝑖𝑖𝑡𝑡, we have that 𝑦𝑦 ≥ 0, 𝑞𝑞 + 𝑀𝑀𝑀𝑀 ≥ 0 and 𝑦𝑦′(𝑞𝑞 + 𝑀𝑀𝑀𝑀) = 0. 
These conditions mean that 𝑦𝑦 solves the following linear complementarity problem: 

Definition 2 (LCP) We say 𝑦𝑦 ∈ ℝ𝑇𝑇  solves the LCP (𝑞𝑞,𝑀𝑀) if and only if 𝑦𝑦 ≥ 0, 𝑞𝑞 +
𝑀𝑀𝑀𝑀 ≥ 0 and 𝑦𝑦′(𝑞𝑞 + 𝑀𝑀𝑀𝑀) = 0. 

Recall that we needed to solve a scalar LCP to find the solution to the simple models 
in the last section. We now see that LCPs appear in the solution to models with OBCs 
more generally. In fact, the LCP (𝑞𝑞, 𝑀𝑀) completely characterises the solution of the OBC 
model, as shown in the following key theorem: 

Theorem 1  
1) Suppose 𝑥𝑥𝑡𝑡  is a solution to the model without an OBC in which equation (3)  is 

replaced with equation (4) , with 𝑦𝑦𝑡𝑡  exogenous. Suppose there is some 𝑇𝑇 ≥ 0  such 
that for all 𝑡𝑡 > 𝑇𝑇 , 𝑦𝑦𝑡𝑡 = 0. Then 𝑥𝑥𝑡𝑡 is also a solution to the original model with an 
OBC if and only if 𝑦𝑦 ∈ ℝ𝑇𝑇   solves the LCP (𝑞𝑞,𝑀𝑀)  and for all 𝑡𝑡 > 𝑇𝑇  , 
𝑓𝑓(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝜀𝜀𝑡𝑡) ≥ 0. 

2) Suppose 𝑥𝑥𝑡𝑡 is a solution to the model with an OBC which eventually escapes the 
bound. Then there exists 𝑇𝑇 ≥ 0  such that for all 𝑡𝑡 > 𝑇𝑇  , 𝑓𝑓(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝜀𝜀𝑡𝑡) ≥ 0 . 
Furthermore, there exists a unique vector 𝑦𝑦 ∈ ℝ𝑇𝑇  solving the LCP (𝑞𝑞, 𝑀𝑀), such that 
𝑥𝑥𝑡𝑡 is the unique solution to the model without an OBC in which equation (3) is 
replaced with equation (4), with 𝑦𝑦𝑡𝑡 exogenous. 

The proof (in Appendix D) again relies on backward induction arguments. This theorem 
shows that to solve a model with OBCs under perfect foresight, we just need to guess a 
sufficiently high 𝑇𝑇 , then find a forcing process 𝑦𝑦 solving the LCP (𝑞𝑞, 𝑀𝑀). 

LCPs have been extensively studied in mathematics. See Cottle (2009) for a brief 
introduction, and Cottle, Pang & Stone (2009a) for a definitive survey. LCPs can be 
solved via mixed-integer linear programming (MILP), for which optimised solvers exist. 
This approach is developed into a solution algorithm for models with OBCs in Holden 
(2016). 

Note that if 𝑦𝑦  solves the LCP (𝑞𝑞,𝑀𝑀) , then for any 𝜅𝜅 > 0 , 𝜅𝜅𝜅𝜅  solves the LCP 
(𝜅𝜅𝜅𝜅, 𝑀𝑀). Thus, the properties (existence, uniqueness, difficulty, etc.) of an LCP cannot 
depend on the magnitude of 𝑞𝑞. Recall that 𝑞𝑞𝑡𝑡 gives the value of 𝑖𝑖𝑡𝑡 without the bound or 
the forcing process 𝑦𝑦𝑡𝑡. Hence, for large 𝑡𝑡, 𝑞𝑞𝑡𝑡 will be close to the steady-state level of 𝑖𝑖𝑡𝑡. 
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For example, in models with a ZLB, raising the inflation target will tend to shift 𝑞𝑞 
upwards. Under Calvo-type models with full price and wage indexation, 𝑀𝑀  is unaffected 
by the raised inflation target. Thus, the scale invariance of LCPs implies that the rise in 
𝑞𝑞 will not affect existence or uniqueness in this case. 

Without full indexation, the higher inflation target will alter model dynamics and so 
change 𝑀𝑀 , but these indirect effects are unlikely to increase the chance of uniqueness. 

For one, even without the ZLB, higher inflation targets increase the likelihood of 
indeterminacy (see e.g. Coibion & Gorodnichenko 2011). Furthermore, while the basic 
three equation NK model with a zero inflation target has a unique perfect foresight 
solution (see Subsection 4.3), there is multiplicity under a positive inflation target (see 
Appendix E.2). Thus, raising the inflation target is unlikely to prevent self-fulfilling 
jumps to the ZLB. 

4. Existence and uniqueness results 
We now present our main results on the existence and uniqueness of perfect foresight 

solutions to models that are linear apart from an OBC. Our results exploit the bijection 
between solutions of the model with an OBC and solutions to the LCP. This permits us 
to import the conclusions of the LCP literature. The LCP results all rest on the 
properties of the 𝑀𝑀  matrix. Here we will focus on just two: that of being a P-matrix and 
that of being an S-matrix. The former will be key for uniqueness, and the latter for 
existence. We apply the conditions we derive to New Keynesian models. Supplemental 
results are contained in Appendices C and G. 

We want to establish conditions under which there is a unique solution for any 
possible initial state 𝑥𝑥0 and shocks (𝜀𝜀𝑡𝑡)𝑡𝑡=1

∞ . This guarantees that we will always be able 
to find a unique solution to the generalized perfect foresight exercise of finding a path 
for the model’s variables given an initial state and a known sequence of current and 
future shocks. This is a common exercise due to the interest in “news shocks” and 
anticipated policy changes. Without an OBC, the Blanchard & Kahn (1980) conditions 
are necessary and sufficient for there to be a unique solution to this generalized perfect 
foresight exercise. 

Another reason to be interested in finding the perfect foresight path with anticipated 
shocks is that this gives one way to approximate the solution under rational expectations. 
This is the basis of the original stochastic extended path algorithm of Adjemian & 
Juillard (2013). This algorithm draws multiple samples of future shocks for periods 
1,… , 𝑆𝑆, calculates the perfect-foresight paths conditional on those future shocks, then 
averages over these realised paths.6 This suggests that the conditions under which there 
is a (unique) perfect foresight solution for any possible sequence of future shocks are 
likely to be close to the conditions for existence (and uniqueness) under rational 
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expectations. Indeed, our proof of existence under rational expectations requires 
existence of a perfect foresight solution for all sufficiently small anticipated forcing 
processes. 

How do we relate existence or uniqueness for any possible initial state 𝑥𝑥0 and shocks 
(𝜀𝜀𝑡𝑡)𝑡𝑡=1

∞  to the prior LCP literature? Note that by linearity, for any 𝑇𝑇 ≥ 1, there exists a 
vector 𝑞𝑞0 ∈ ℝ𝑇𝑇  and matrices 𝑄𝑄𝑥𝑥, 𝑄𝑄1,𝑄𝑄2,…, each with 𝑇𝑇  rows, such that for any 𝑥𝑥0 and 
(𝜀𝜀𝑡𝑡)𝑡𝑡=1

∞ : 

𝑞𝑞 = 𝑞𝑞0 + 𝑄𝑄𝑥𝑥𝑥𝑥0 + �𝑄𝑄𝑡𝑡𝜀𝜀𝑡𝑡

∞

𝑡𝑡=1
, 

where 𝑞𝑞 ∈ ℝ𝑇𝑇   is as defined in Definition 1. If for some 𝑆𝑆 ≥ 0 , the 𝑇𝑇  -row matrix 
[𝑄𝑄𝑥𝑥,𝑄𝑄1,… ,𝑄𝑄𝑆𝑆] is rank 𝑇𝑇 , then the vector 𝑞𝑞 will be completely unrestricted: for any 
possible 𝑞𝑞, there will be some initial state 𝑥𝑥0 and shocks 𝜀𝜀1,… , 𝜀𝜀𝑆𝑆 that will result in the 
given 𝑞𝑞. This fits perfectly with the prior LCP literature, which considers existence and 
uniqueness for any possible 𝑞𝑞 ∈ ℝ𝑇𝑇 . 

To simplify the statements of our main results, we make the following definition: 

Definition 3 (Sequential Radius) We say the sequential radius of the model is at 
least 𝑻𝑻  if there exists 𝑆𝑆 ≥ 0 such that the 𝑇𝑇 -row matrix [𝑄𝑄𝑥𝑥, 𝑄𝑄1,… ,𝑄𝑄𝑆𝑆] is rank 𝑇𝑇 . We 
say the sequential radius of the model is infinite if the sequential radius is at least 𝑇𝑇  
for any 𝑇𝑇 ≥ 1. 
Some of our results will require the model’s sequential radius to be sufficiently large. 
Others will assume an infinite sequential radius. Even this is an incredibly weak 
assumption, providing there is at least one shock. For the model of Subsection 2.1, this 
assumption holds with just a real rate shock (as without the bound 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡), or with just 
a monetary policy shock (shown in Subsection 2.4). In fact, the assumption always holds 
for a generic model with at least one shock. This means if you draw a model from an 
absolutely continuous distribution over the space of all 𝑛𝑛-dimensional linear models with 
at least one shock, then the model’s sequential radius will be infinite. Informally, in 
almost all models, all shocks have at least some effect on all variables. Under the mild 
assumption of infinite sequential radius, 𝑞𝑞 is completely unrestricted. Thus, existence 
and uniqueness results on LCPs that hold for all possible 𝑞𝑞 will translate into results for 
OBCs that hold for all possible initial states 𝑥𝑥0 and shocks (𝜀𝜀𝑡𝑡)𝑡𝑡=1

∞ . 
If the reader is uninterested in results that hold for all possible sequences of future 

shocks, and instead only wishes to consider current shocks, then they should work with 

 
6 This is not fully rational, as it is equivalent to assuming that agents act as if the uncertainty in all 
future periods would be resolved next period. However, this appears to be a close approximation to full 
rationality, as demonstrated by Holden (2016). The authors of the stochastic path method now have a 
version fully consistent with rationality (Adjemian & Juillard 2016). 



16 

a modified “sequential radius at least 𝑇𝑇 ” definition, which only looks at the rank of the 
matrix [𝑄𝑄𝑥𝑥,𝑄𝑄1]. 

4.1. General uniqueness results 

We now present our main uniqueness results. The principal definition follows: 

Definition 4 (P-matrix) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  is a P-matrix if and only if for all 𝑧𝑧 ∈
ℝ𝑇𝑇×1 with 𝑧𝑧 ≠ 0, there exists 𝑡𝑡 ∈ {1,… , 𝑇𝑇}, such that 𝑧𝑧𝑡𝑡(𝑀𝑀𝑀𝑀)𝑡𝑡 > 0. Equivalently, 𝑀𝑀  is 
a P-matrix if and only if all of the principal sub-matrices of 𝑀𝑀   have positive 
determinants.  (Cottle, Pang & Stone 2009b) 
Clearly, all symmetric positive definite matrices are P-matrices, so this definition 
captures a broader notion of positivity for an arbitrary matrix. Additionally, the diagonal 
of any P-matrix must be positive. In the context of models with a ZLB, this means that 
if 𝑀𝑀  is a P-matrix then positive monetary policy shocks must increase nominal interest 
rates. Additionally, news about future positive monetary shocks must lead to higher 
nominal interest rates in the period the shock actually hits. Recall that in Subsection 
2.3 we found that multiplicity was driven by positive monetary policy shocks having 
negative effects. Thus, it is unsurprising that some type of positivity of the responses of 
the bounded variable to shocks is key for uniqueness. In fact: 

Theorem 2 The LCP (𝑞𝑞,𝑀𝑀) has a unique solution for all 𝑞𝑞 ∈ ℝ𝑇𝑇 , if and only if 𝑀𝑀  is a 
P-matrix. If 𝑀𝑀   is not a P-matrix, then for some 𝑞𝑞  the LCP (𝑞𝑞, 𝑀𝑀)  has multiple 
solutions. 
(Samelson, Thrall & Wesler 1958; Cottle, Pang & Stone 2009b) 

To see why being a P-matrix is the correct notion of positivity, suppose that 𝑦𝑦 and 
𝑦𝑦 ̃ both solved the LCP (𝑞𝑞, 𝑀𝑀) . Thus, for all 𝑡𝑡 ∈ {1,… , 𝑇𝑇} , 0 = 𝑦𝑦𝑡𝑡(𝑞𝑞 + 𝑀𝑀𝑀𝑀)𝑡𝑡 =
𝑦𝑦𝑡̃𝑡(𝑞𝑞 + 𝑀𝑀𝑦𝑦)̃𝑡𝑡, so: 
(𝑦𝑦 − 𝑦𝑦)̃𝑡𝑡�𝑀𝑀(𝑦𝑦 − 𝑦𝑦)̃�

𝑡𝑡
= (𝑦𝑦 − 𝑦𝑦)̃𝑡𝑡�(𝑞𝑞 + 𝑀𝑀𝑀𝑀) − (𝑞𝑞 + 𝑀𝑀𝑦𝑦)̃�

𝑡𝑡
 

= 𝑦𝑦𝑡𝑡(𝑞𝑞 + 𝑀𝑀𝑀𝑀)𝑡𝑡 + 𝑦𝑦𝑡̃𝑡(𝑞𝑞 + 𝑀𝑀𝑦𝑦)̃𝑡𝑡 − 𝑦𝑦𝑡𝑡(𝑞𝑞 + 𝑀𝑀𝑦𝑦)̃𝑡𝑡 − 𝑦𝑦𝑡̃𝑡(𝑞𝑞 + 𝑀𝑀𝑀𝑀)𝑡𝑡 ≤ 0 
as 𝑦𝑦𝑡𝑡, 𝑦𝑦𝑡̃𝑡, 𝑞𝑞 + 𝑀𝑀𝑀𝑀 and 𝑞𝑞 + 𝑀𝑀𝑦𝑦 ̃must all be non-negative. Hence, if we define 𝑧𝑧 = 𝑦𝑦 − 𝑦𝑦,̃ 
then we have that for all 𝑡𝑡 ∈ {1,… , 𝑇𝑇}, 𝑧𝑧𝑡𝑡(𝑀𝑀𝑀𝑀)𝑡𝑡 ≤ 0. If 𝑀𝑀  is a P-matrix, this implies 
that 𝑧𝑧 = 0 so 𝑦𝑦 = 𝑦𝑦,̃ meaning the solution is unique.7 Informally, 𝑀𝑀  being a P-matrix 
guarantees positive shocks to 𝑖𝑖𝑡𝑡 increase 𝑖𝑖𝑡𝑡 enough on average that one cannot have the 
kinds of self-fulfilling jumps to the bound we saw in Section 2.  

The direct approach to assessing whether 𝑀𝑀  is a P-matrix involves checking the 
positivity of the determinants of all 𝑀𝑀 ’s 2𝑇𝑇  principal sub-matrices. Since this is rather 
onerous, in Appendix C.1 we present both easier to verify necessary conditions, and 
easier to verify sufficient conditions. These give a fast answer one way or the other in 
most cases. See Appendix C.4 for a practical guide to checking the various conditions. 

 
7 This argument just follows that of Cottle, Pang & Stone (2009b). 
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Note that if 𝑀𝑀  is not a P-matrix for some 𝑇𝑇 , then 𝑀𝑀  will not be a P-matrix for any 
larger 𝑇𝑇 , so to show multiplicity it suffices to show that 𝑀𝑀  is not a P-matrix for some 
small 𝑇𝑇 . 

Using Theorem 1, we can apply Theorem 2 to models with an OBC, giving: 

Corollary 1 Consider an otherwise linear model with an OBC. Let 𝑇𝑇 > 0. Then: 
1) If 𝑀𝑀  is a P-matrix, then for any 𝑥𝑥0 and (𝜀𝜀𝑡𝑡)𝑡𝑡=1

∞  there exists a unique path (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  

satisfying the model’s equations from period 1  to 𝑇𝑇   and satisfying the model’s 
equations without the OBC (i.e. with the max removed) from period 𝑇𝑇 + 1 on. 

2) [Implied by 1.] If 𝑀𝑀  is a P-matrix, and (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  satisfies the model’s equations, with 

𝑖𝑖𝑡𝑡 > 0 for 𝑡𝑡 > 𝑇𝑇 , then (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  is the unique solution for which 𝑖𝑖𝑡𝑡 > 0 for 𝑡𝑡 > 𝑇𝑇 . 

Furthermore, suppose the model’s sequential radius is at least 𝑇𝑇 , then: 
3) If 𝑀𝑀  is not a P-matrix then there exists 𝑥𝑥0 and (𝜀𝜀𝑡𝑡)𝑡𝑡=1

∞  (with finitely many non-zero 
elements) such that there are multiple paths (𝑥𝑥𝑡𝑡)𝑡𝑡=1

∞  satisfying the model’s equations 
from period 1 to 𝑇𝑇  and satisfying the model’s equations without the OBC (i.e. with 
the max removed) from period 𝑇𝑇 + 1 onwards. 

This is our most important result. Parts (1) and (2) give sufficient conditions for 
uniqueness. These do not require us to be considering anticipated shocks, or for the 
model to have a sufficiently large sequential radius. Thus, they are universal conditions, 
both across models and across different types of perfect foresight exercises. The second 
part is particularly powerful, as having solved for a perfect foresight path, we know a 𝑇𝑇  
large enough such that 𝑖𝑖𝑡𝑡 > 0 for 𝑡𝑡 > 𝑇𝑇 . To ensure that it is the unique such solution, 
we just need to check that the 𝑀𝑀  matrix for that 𝑇𝑇  is a P-matrix. The first part is also 
helpful, as with large 𝑇𝑇  we expect the model to be permanently away from the bound 
by 𝑇𝑇 + 1, thanks to the model’s mean reversion without the OBC. Even if it is not, 𝑇𝑇 =
1000 quarters may be practically equivalent to 𝑇𝑇 = ∞, as it stretches the plausibility of 
rational expectations to suppose outcomes today depend on conditions in 250 years’ 
time. 

Part (3) of the corollary gives a necessary condition for uniqueness, under the 
assumption that the model’s sequential radius is large enough, and that we want 
uniqueness for all possible sequences of future shocks. We have already argued that both 
of these assumptions are mild and reasonable. Given these assumptions, part (3) implies 
the existence of multiple perfect foresight paths not violating the bound for at least the 
first 𝑇𝑇   periods, if 𝑀𝑀   is not a P-matrix. For large enough 𝑇𝑇  , this generally implies 
multiple solutions to the model with the bound. In any case, as before 𝑇𝑇 = 1000 (say) 
may be equivalent to 𝑇𝑇 = ∞ in practice. 

An added reason for relying on finite 𝑇𝑇  results is that technological changes are likely 
to make many OBCs obsolete. For example, a move to electronic cash would mean the 
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ZLB is no longer a constraint. If agents believe this will happen within 250 years, then 
taking 𝑇𝑇 = 1000 quarters would be appropriate. 

4.2. Uniqueness in purely forward or backward looking models 

We can derive stronger results for purely forward-looking or purely backward-looking 
models. A model is purely forward-looking if it has no state variables (𝑡𝑡 − 1 dated terms) 
other than the exogenous shock processes. For example, the basic three equation NK 
model is purely forward-looking. A model is purely backward-looking if it does not 
contain any future (𝑡𝑡 + 1) dated or expectational terms. Models in which agents have 
adaptive, not rational expectations, are purely backward-looking. Additionally, some 
indeterminate models may be transformed into determinate backward-looking models 
with an extra “sunspot” shock, via the method of Farmer, Khramov & Nicolò (2015). 
See Appendix E.4 for an example. 

For purely forward-looking models, the 𝑀𝑀  matrix will always be upper triangular: 
anticipated shocks to the bounded equation have effects even before they hit, but the 
period after they hit the economy is back to steady state. For purely backward-looking 
models, the 𝑀𝑀  matrix will always be lower triangular: anticipated shocks have no effect 
until the period they hit but may continue having effects after this. Since the determinant 
of a triangular matrix is the product of its diagonal entries, and principal sub-matrices 
of triangular matrices are triangular, this simplifies checking whether 𝑀𝑀  is a P-matrix. 

Furthermore, both for purely forward-looking models and for purely backward-
looking models, the diagonal of the 𝑀𝑀  matrix is constant. Every element of 𝑀𝑀 ’s diagonal 
just gives the contemporaneous response of the bounded variable, 𝑖𝑖𝑡𝑡, to a (hypothetical) 
shock to the equation that defines it. So, in a ZLB context, each element of the diagonal 
of the 𝑀𝑀  matrix is equal to the contemporaneous response of nominal interest rates to 
a unit, i.i.d, monetary policy shock (ignoring the bound). This further simplification 
enables results that just depend on 𝑀𝑀1,1: 

Corollary 2 Consider a purely forward-looking otherwise linear model with an OBC. 
Then: 
1) If 𝑀𝑀1,1 > 0, then for any 𝑥𝑥0 and (𝜀𝜀𝑡𝑡)𝑡𝑡=1

∞  with 𝜀𝜀𝑡𝑡 → 0 as 𝑡𝑡 → ∞, there exists a unique 
path (𝑥𝑥𝑡𝑡)𝑡𝑡=1

∞  satisfying the model’s equations and eventually escaping the bound.8 
Furthermore, suppose the model has at least one 𝑡𝑡-dated shock with a non-zero impact 
on 𝑖𝑖𝑡𝑡 (if the model has a shock to the bounded equation, then 𝑀𝑀1,1 ≠ 0 is sufficient for 
this), then: 

 
8 Existence of a path escaping the bound comes from the fact that if we only impose the bounds for 𝑇𝑇  
periods, then 𝑖𝑖𝑇𝑇+1 is linear in the shock, and the shock is converging to 0, meaning 𝑖𝑖𝑇𝑇+1 must be away 
from the bound for large enough 𝑇𝑇 . 
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2) If 𝑀𝑀1,1 ≤ 0 , then for any 𝑥𝑥0 , there exists (𝜀𝜀𝑡𝑡)𝑡𝑡=1
∞   with 𝜀𝜀𝑡𝑡 = 0  for 𝑡𝑡 > 1  and with 

multiple paths (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  satisfying the model’s equations and eventually escaping the 

bound. 
We give a weaker result for purely backward-looking models in Appendix E.4. 

Corollary 2 gives an alternative proof that the model of Subsection 2.1 has multiple 
solutions. It is a model for which 𝑀𝑀1,1 = 0, since in the model, monetary policy shocks 
have no contemporaneous effect on interest rates when the ZLB is removed. With the 
real interest rate shock included, it then satisfies the conditions for the corollary’s second 
result. 

4.3. Uniqueness and multiplicity in New Keynesian models 

The most important consequence of Corollary 2 is that it implies the three equation 
NK model always has a unique solution when the Taylor principle is satisfied. Including 
a monetary policy shock 𝜈𝜈𝑡𝑡, but no other shocks, the model is given by: 

𝜋𝜋𝑡𝑡 = 𝜅𝜅𝑦𝑦𝑡𝑡 + 𝛽𝛽𝜋𝜋𝑡𝑡+1, 
𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡+1 − 𝜎𝜎−1(𝑖𝑖𝑡𝑡 − 𝜋𝜋𝑡𝑡+1 + log 𝛽𝛽), (5) 

𝑖𝑖𝑡𝑡 = max�0, − log 𝛽𝛽 + 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜙𝜙𝑦𝑦𝑦𝑦𝑡𝑡 + 𝜈𝜈𝑡𝑡�, 
where 𝜋𝜋𝑡𝑡  is inflation, with a zero inflation target, 𝑦𝑦𝑡𝑡  is the output gap and 𝑖𝑖𝑡𝑡  is the 
nominal rate, and where the parameters 𝛽𝛽 , 𝜅𝜅 , 𝜎𝜎 , 𝜙𝜙𝜋𝜋  and 𝜙𝜙𝑦𝑦  are all finite and non-
negative. See e.g. Woodford (2003) for further details on the model. We assume 
𝜅𝜅(𝜙𝜙𝜋𝜋 − 1) + (1 − 𝛽𝛽)𝜙𝜙𝑦𝑦 > 0 to ensure determinacy without the ZLB (Bullard & Mitra 
2002). To verify the conditions of Corollary 2 we just need to check the sign of 𝑑𝑑𝑖𝑖1

𝑑𝑑𝜈𝜈1
, 

ignoring the ZLB, when 𝜈𝜈𝑡𝑡 = 0 for all 𝑡𝑡 ≠ 1. Standard calculations give: 
𝑑𝑑𝑖𝑖1
𝑑𝑑𝜈𝜈1

= 𝜎𝜎
𝜎𝜎 + 𝜅𝜅𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑦𝑦

∈ (0,1), 

thus 𝑀𝑀1,1 > 0 for this model, implying uniqueness by Corollary 2. 
Superficially, this may look like robust determinacy. 𝑀𝑀  would remain a P-matrix 

even if we reduced all of the elements of its diagonal by some small amount. But recall 
that the determinant of a triangular matrix is the product of its diagonal entries. For 
this model, with an 𝑀𝑀  matrix of size 𝑇𝑇 , this gives det𝑀𝑀 = � 𝜎𝜎

𝜎𝜎+𝜅𝜅𝜙𝜙𝜋𝜋+𝜙𝜙𝑦𝑦
�

𝑇𝑇
, which tends 

to 0 as 𝑇𝑇 → ∞. So, while 𝑀𝑀  is a P-matrix no matter its size, as 𝑀𝑀  gets larger, it gets 
arbitrarily close to not being a P-matrix. Thus, the determinacy here is still a knife-edge 
result: for large 𝑇𝑇 , a small change in the elements of 𝑀𝑀  can be enough to push 𝑀𝑀 ’s 
determinant below zero. 

In particular, we prove in Appendix H.3 that for any small 𝜀𝜀 > 0, for sufficiently 
large 𝑇𝑇 , increasing or decreasing a single element of 𝑀𝑀  by 𝜀𝜀 is sufficient to make the 
determinant of the resulting matrix negative. The proof relies on the following property 
of the model without the ZLB: if 𝜈𝜈𝑠𝑠 = 1 and 𝜈𝜈𝑡𝑡 = 0 for all 𝑡𝑡 ≠ 𝑠𝑠, then for sufficiently 
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large 𝑠𝑠, ∑ (𝑖𝑖𝑡𝑡 + log 𝛽𝛽)∞
𝑡𝑡=1 < 0 and this inequality remains strict in the limit as 𝑠𝑠 → ∞. 

In other words: the sum of the IRF of interest rates to a distant, positive monetary “news 
shock” is actually negative and bounded away from zero. The cumulated endogenous 
response of the policy rate to the contraction caused by the bad news is actually larger 
than the shock that caused the contraction. This is another example of problems caused 
by positive shocks to the bounded equation having a negative effect. 

How do things change if we include a response to the price level in the monetary 
rule? In particular, we consider adding a “+𝜒𝜒𝑝𝑝𝑡𝑡” term to the rule, where 𝑝𝑝𝑡𝑡 is the log 
price level and 𝑝𝑝0 = 0. This implies a zero target for log prices. By the determinant’s 
continuity, for a small enough response to the price level, 𝜒𝜒, 𝑀𝑀  must remain a P-matrix 
for any finite 𝑇𝑇 . Now note the Euler equation (5) may be rewritten in terms of the price 
level as: 

𝑖𝑖𝑡𝑡 + log 𝛽𝛽 = (𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡) + 𝜎𝜎(𝑦𝑦𝑡𝑡+1 − 𝑦𝑦𝑡𝑡). 
Taking the sum of both sides over time, much as in Subsection 2.5, then gives: 

�(𝑖𝑖𝑡𝑡 + log 𝛽𝛽)
∞

𝑡𝑡=1
= �(𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡)

∞

𝑡𝑡=1
+ 𝜎𝜎 �(𝑦𝑦𝑡𝑡+1 − 𝑦𝑦𝑡𝑡)

∞

𝑡𝑡=1
 

= −𝑝𝑝1 − 𝜎𝜎𝑦𝑦1 + lim
𝑡𝑡→∞

𝑝𝑝𝑡𝑡 + lim
𝑡𝑡→∞

𝑦𝑦𝑡𝑡 = −𝑝𝑝1 − 𝜎𝜎𝑦𝑦1, 

Hence, the only way we could have ∑ (𝑖𝑖𝑡𝑡 + log 𝛽𝛽)∞
𝑡𝑡=1 < 0 would be if 𝑝𝑝1 + 𝜎𝜎𝑦𝑦1 > 0. But 

as the period of the anticipated shock, 𝑠𝑠 → ∞, we must have that 𝑝𝑝1 → 0 and 𝑦𝑦1 → 0, 
since for determinate models, the current response to distant news decays to zero as the 
time to the shock’s realisation goes to infinity (see Appendix H.4). Hence, with any 
response to the price level, ∑ (𝑖𝑖𝑡𝑡 + log 𝛽𝛽)∞

𝑡𝑡=1 → 0 as the period of the anticipated shock, 
𝑠𝑠 → ∞, unlike in the case with a standard monetary rule. Thus, a response to the price 
level produces more robust uniqueness than a standard monetary rule.  

This is confirmed by our numerical findings from a variety of richer models in 
Appendix E. For example, if we augment the Smets & Wouters (2007) model with a ZLB 
on nominal interest rates,9 and set its parameters to their estimated posterior-modes, 
then for 𝑇𝑇 ≥ 9 , 𝑀𝑀   is not a P-matrix, so the model will possess multiple solutions. 
However, with a monetary rule including a response to the price level,10 𝑀𝑀  is a P-matrix 
even with 𝑇𝑇 = 1000. Hence, there is a unique solution conditional on escaping the bound 
after at most 250 years. 

As an example of multiplicity in the Smets & Wouters (2007) model, Figure 3 plots 
two different solutions following the combination of shocks that are most likely to 
produce negative interest rates for a year without the ZLB.11 This combination is 

 
9 The monetary rule has the form 𝑖𝑖𝑡𝑡 = max{0, 𝜌𝜌𝑖𝑖𝑖𝑖𝑡𝑡−1 + (1 − 𝜌𝜌𝑖𝑖)(⋯ ) + ⋯}, where the … are as in the 
original paper. 
10 We use the rule 𝑖𝑖𝑡𝑡 = max�0, 𝜌𝜌𝑖𝑖𝑖𝑖𝑡𝑡−1 + (1 − 𝜌𝜌𝑖𝑖) log�𝑃𝑃𝑡𝑡

𝑌𝑌𝑡𝑡
𝑌𝑌𝑡𝑡−1

��, where 𝜌𝜌𝑖𝑖 is as in the original model, 𝑌𝑌𝑡𝑡 is 
real GDP and where the price level 𝑃𝑃𝑡𝑡 evolves according to log 𝑃𝑃𝑡𝑡 = log 𝑃𝑃𝑡𝑡−1 + log�Π𝑡𝑡

Π �. 
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dominated by expansionary supply shocks, reducing prices (positive productivity and 
negative mark-up). For both solutions, the dashed line shows the response ignoring the 
ZLB, for reference. 
 

 

  

Figure 3: A “good” solution (left 4 panels) and a “bad” solution (right 4 panels), following 
a mixture of unexpected period-1 shocks to the Smets & Wouters (2007) model 

All variables are in logarithms. Inflation and nominal interest rates are annualized. The precise 
combination of shocks is detailed in Footnote 11. In all plots, dashed lines show the path the economy 

would have followed without the ZLB. 

These solutions have radically different consequences. The “good” solution remains 
close to the path the economy would have taken without the ZLB. Given the dominance 
of expansionary shocks, output and consumption expand, at least after the initial impact. 
However, in the “bad” solution, despite the identical impulse, the economy is at the ZLB 
for much longer. With the economy at the ZLB, interest rates are higher than they would 
be according to the usual monetary rule. This acts as if there were a series of anticipated 
contractionary monetary policy shocks. Consequently, demand-type dynamics dominate, 
and output, consumption & inflation all fall together. The longer ZLB spell is sustainable 
as there is a combination of anticipated contractionary monetary policy shocks that 
jointly lower nominal interest rates, since 𝑀𝑀  is not a P-matrix. 

4.4. Existence results 

We conclude this section by deriving results on solution existence without also 
requiring uniqueness. In this case, the key property is being an S-matrix: 

 
11 We find the vector 𝑤𝑤 that minimises 𝑤𝑤′𝑤𝑤 subject to 𝑟𝑟̅ + 𝑍𝑍𝑍𝑍 ≤ 0, where 𝑟𝑟 ̅is the steady state interest 
rate, and columns of 𝑍𝑍 give four periods of the IRF of interest rates to the given shocks. This gives: 
productivity, 3.56  s.d.; risk premium, −2.70  s.d.; government, −1.63  s.d.; investment, −4.43  s.d.; 
monetary, −2.81 s.d.; price mark-up, −3.19 s.d.; wage mark-up, −4.14 s.d.. 
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Definition 5 (S-matrix) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  is called an S-matrix if there exists 𝑦𝑦 ∈
ℝ𝑇𝑇  such that 𝑦𝑦 > 0 and 𝑀𝑀𝑀𝑀 ≫ 0. Note: all P-matrices are S-matrices. 
Again, this captures a type of positivity of 𝑀𝑀  . It is considerably weaker than the 
condition of being a P-matrix required for uniqueness. In a model with a ZLB it would 
be satisfied, for example, if raising rates today raised rates at all horizons thanks to the 
model’s persistence. (This corresponds to taking 𝑦𝑦 = [1,0,0,… ]′.) We can check whether 
a matrix is an S-matrix in time proportional to 𝑇𝑇 2.37, by solving a linear programming 
problem (see Appendix B). This is identical to the computational complexity of matrix 
multiplication (up to a scaling factor). 

The property of being an S-matrix is closely related to the feasibility of an LCP: 

Definition 6 (Feasibility) We say 𝑦𝑦 ∈ ℝ𝑇𝑇  is feasible for the LCP (𝑞𝑞, 𝑀𝑀) if and only 
if 𝑦𝑦 ≥ 0 and 𝑞𝑞 + 𝑀𝑀𝑀𝑀 ≥ 0. We say a path (𝑥𝑥𝑡𝑡)𝑡𝑡=1

∞  is feasible for a model with an OBC 
given initial state 𝑥𝑥0 and shocks (𝜀𝜀𝑡𝑡)𝑡𝑡=1

∞ , if when equation (3) is replaced by equation 
(4) , with 𝑦𝑦𝑡𝑡  exogenous, there is some (𝑦𝑦𝑡𝑡)𝑡𝑡=1

∞   with 𝑦𝑦𝑡𝑡 ≥ 0  for all 𝑡𝑡 , such that (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  

solves the model with equation (4), and 𝑖𝑖𝑡𝑡 ≥ 0 for all 𝑡𝑡. 
By definition, if an LCP has a solution, then it is feasible. Likewise, if a model with an 
OBC has a solution, then it is feasible. If a monetary policy maker could make credible 
promises about (positive) future monetary policy shocks, then feasibility would be 
sufficient to allow the policy maker to ensure a solution. 

If 𝑀𝑀  is an S-matrix then feasibility is guaranteed: 

Proposition 1 The LCP (𝑞𝑞, 𝑀𝑀)  is feasible for all 𝑞𝑞 ∈ ℝ𝑇𝑇   if and only if 𝑀𝑀   is an S-
matrix. If the LCP (𝑞𝑞,𝑀𝑀) has a solution for all 𝑞𝑞 ∈ ℝ𝑇𝑇 , 𝑀𝑀  is an S-matrix. (Cottle, Pang 
& Stone 2009b) 
Moreover, in most cases one encounters in practice, an LCP is solvable whenever it is 
feasible, i.e., whenever 𝑀𝑀  is an S-matrix. This has immediate practical consequences: if 
𝑀𝑀  is an S-matrix for some 𝑇𝑇 , then we are likely to be able to solve all the size 𝑇𝑇  LCPs 
we encounter in simulating the model, whatever the model’s path without the bound 
(𝑞𝑞).  

Additionally, from Theorem 1, we have: 

Corollary 3 Let 𝑇𝑇 > 0. Consider an otherwise linear model with sequential radius of at 
least 𝑇𝑇 . Then if 𝑀𝑀  is not an S-matrix, there exists 𝑥𝑥0 and (𝜀𝜀𝑡𝑡)𝑡𝑡=1

∞   such that: 
1) There is no path (𝑥𝑥𝑡𝑡)𝑡𝑡=1

∞  with 𝑥𝑥𝑡𝑡 satisfying the model’s equations from period 1 to 𝑇𝑇  
and satisfying the model’s equations without the OBC (i.e., with the max removed) 
from period 𝑇𝑇 + 1 onwards. 

2) [Implied by 1.] There is no path (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞   satisfying the model’s equations which 

escapes the bound after at most 𝑇𝑇  periods. 
Since large 𝑇𝑇   may be equivalent to 𝑇𝑇 = ∞  for all practical purposes, this result is 
already a helpful guide to the non-existence of relevant solutions. For example, for the 
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Smets & Wouters (2007) model considered in the previous subsection, 𝑀𝑀  is not an S-
matrix even with 𝑇𝑇 = 1000, so even allowing for 250 years at the bound is not enough 
to guarantee existence. However, under the price targeting rule from Footnote 9, 𝑀𝑀  is 
an S-matrix with 𝑇𝑇 = 1000. 

We can also directly obtain results on the existence or feasibility of solutions when 
the constraint is imposed for all periods (i.e., 𝑇𝑇 = ∞). Proposition 1 implies that the 
infinite LCP (𝑞𝑞,𝑀𝑀) is feasible for all 𝑞𝑞 ∈ ℝℕ+  if and only if 𝜍𝜍 ≔ sup

𝑦𝑦∈[0,1]ℕ+
inf

𝑡𝑡∈ℕ+
(𝑀𝑀𝑀𝑀)𝑡𝑡 > 0. 

It turns out that we can bound this quantity, as in Appendix H.4 we prove: 

Proposition 2 Given an otherwise linear model with an OBC, there exist easy to 
calculate, non-trivial bounds 𝜍𝜍, 𝜍𝜍, such that 𝜍𝜍 ≤ 𝜍𝜍 ≤ 𝜍𝜍. 

This enables us to derive existence results for models with OBCs despite the infeasible 
infinite dimensional problem that defines 𝜍𝜍. In particular: 

Corollary 4 Suppose that 𝜍𝜍 > 0. Then for any 𝑥𝑥0 and (𝜀𝜀𝑡𝑡)𝑡𝑡=1
∞   the model with an OBC 

has a feasible path (a necessary condition for existence of a solution). Conversely, suppose 
𝜍𝜍 = 0  and that the model’s sequential radius is infinite. Then there is some 𝑥𝑥0  and 
(𝜀𝜀𝑡𝑡)𝑡𝑡=1

∞  with which the model has no solution. 
Importantly, this result gives existence conditions without any dependence on 𝑇𝑇  . It 
answers the question: are there states and anticipated shocks for which there is no 
solution that eventually escapes the bound? This is true for the Smets & Wouters (2007) 
model for example, for which we have 𝜍𝜍 = 0 to numerical precision. However, under the 
price targeting rule considered previously, 𝜍𝜍 > 0.009, so the model always has a feasible 
path. Thus, under this rule, if the central bank can commit to future positive monetary 
policy shocks, then the central bank can ensure a solution exists that eventually escapes 
the bound. This gives “infinite 𝑇𝑇 ” evidence on the performance of price targeting to 
supplement the finite 𝑇𝑇  evidence of the last subsection. 

5. Multiplicity under rational expectations 
So far, we have concentrated on multiplicity under perfect foresight. Perfect foresight 

exercises allow us to analyse the model’s response to probability zero (“MIT”) shocks, 
assuming no other shocks arrive in future. If the initial shock is much larger than the 
regular shocks that hit the economy, then the relative error from ignoring future 
uncertainty may be moderate. Both the financial crisis and the Covid recession were 
large shocks that were considered very unlikely a priori, so perfect foresight analysis may 
be appropriate for them. Additionally, the extended path method of Fair & Taylor (1983) 
provides a way of approximately simulating a stochastic model by repeatedly solving 
perfect foresight exercises. A recent prominent example of its use is Christiano, 
Eichenbaum & Trabandt (2015). 
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However, we are also interested in model dynamics that properly account for 
uncertainty. This requires examining rational expectations solutions. In this section, we 
show that given multiple perfect foresight solutions, we can construct sunspot rational 
expectations solutions that shift between them. We focus on describing the general form 
of these solutions, leaving the details of existence conditions to the full treatment in 
Appendix F. 

5.1. Construction of sunspot solutions 

Our results here will apply to any non-linear dynamic model, not just otherwise 
linear models with occasionally binding constraints. Let 𝑥𝑥𝑡𝑡 be a vector of the model’s 
endogenous variables, with 𝑥𝑥𝑡𝑡 ∈ 𝒳𝒳 ⊆ ℝ𝑛𝑛 . Similarly, let 𝜀𝜀𝑡𝑡  be a vector of the model’s 
exogenous i.i.d. shocks, with 𝜀𝜀𝑡𝑡 ∈ ℰ ⊆ ℝ𝑚𝑚, where 0 ∈ ℰ. We assume that with probability 
1 − 𝜎𝜎, 𝜀𝜀𝑡𝑡 = 0, while with probability 𝜎𝜎, 𝜀𝜀𝑡𝑡 is drawn from a probability distribution over 
ℰ with measure 𝓅𝓅. This distribution may be either continuous or discrete. Thus, 𝜎𝜎 = 0 
corresponds to the perfect foresight case, while when 𝜎𝜎 = 1 , the distribution of 𝜀𝜀𝑡𝑡  is 
unrestricted. We assume 𝑡𝑡 dated variables are known at 𝑡𝑡. There is no requirement that 
either 𝑥𝑥𝑡𝑡 or 𝜀𝜀𝑡𝑡 be in any sense “minimal”. For example, 𝜀𝜀𝑡𝑡 may contain non-fundamental 
shocks with no impact on the value of the model’s equations, except perhaps through 
beliefs. 

We assume that at any point in time, the economy can be in any one of a set 𝐾𝐾 of 
“regimes”. Both the policy functions, and the model’s equations may differ across these 
regimes. Thus, these regimes can capture both switching sunspot solutions (with differing 
policy functions but identical model equations) and switching model properties (with 
the model equations switching). If the model equations do not vary over 𝐾𝐾, then in the 
limit as uncertainty disappears, these regimes will capture |𝐾𝐾| different perfect foresight 
solutions to the model. (𝐾𝐾 may be finite or countably infinite.) We denote the regime in 
period 𝑡𝑡 by 𝑘𝑘𝑡𝑡. Within each regime, the policy functions and model equations may be a 
function of the length of time the economy has been in the current regime, denoted by 
𝑠𝑠𝑡𝑡. 𝑠𝑠𝑡𝑡 = 1 in the first period in a new regime, 𝑠𝑠𝑡𝑡 = 2 in the second, and so on. 

At the start of each period a binary “transition shock” is realised. With probability 
1 − 𝛿𝛿, the transition shock does not hit, and the economy will remain in the regime it 
was in last period. However, with probability 𝛿𝛿, the economy is hit with the transition 
shock, and transitions to another regime according to the period 𝑡𝑡 Markov transition 
matrix Ω𝑡𝑡 ≔ �𝜔𝜔𝑘𝑘,𝑙𝑙

(𝑡𝑡) �
𝑘𝑘,𝑙𝑙∈𝐾𝐾

. 𝜔𝜔𝑘𝑘,𝑙𝑙
(𝑡𝑡) ∈ [0,1] gives the probability of transitioning from regime 𝑘𝑘 

to regime 𝑙𝑙 at the start of period 𝑡𝑡, conditional on the transition shock hitting. Rows of 
Ω𝑡𝑡 sum to 1. If 𝜔𝜔𝑘𝑘,𝑘𝑘

(𝑡𝑡) ≠ 0 for some 𝑘𝑘, then if 𝑘𝑘𝑡𝑡−1 = 𝑘𝑘, there is a 𝛿𝛿𝜔𝜔𝑘𝑘,𝑘𝑘
(𝑡𝑡)  chance of remaining 

in regime 𝑘𝑘 at 𝑡𝑡 but with the “clock” reset, as if the economy had just arrived at regime 
𝑘𝑘. We assume that for all 𝑡𝑡 ∈ ℤ, 𝑘𝑘, 𝑙𝑙 ∈ 𝐾𝐾, 𝜔𝜔𝑘𝑘,𝑙𝑙

(𝑡𝑡) = 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠𝑡𝑡,𝜀𝜀𝑡𝑡
(𝑥𝑥𝑡𝑡−1) where 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒:𝒳𝒳 → [0,1] 
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for all 𝑘𝑘, 𝑙𝑙 ∈ 𝐾𝐾 , 𝑠𝑠 ∈ ℕ+  and 𝑒𝑒 ∈ ℰ . This allows transition probabilities to be 
deterministic functions of the current state and shock. 

We assume that the model’s equations (first order conditions, laws of motion, etc.) 
are in the general form: 

0 = 𝔼𝔼𝑡𝑡𝒻𝒻𝑘𝑘𝑡𝑡,𝑠𝑠𝑡𝑡,𝜀𝜀𝑡𝑡
(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1), 

where 𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒:𝒳𝒳
3 → ℝ𝑛𝑛 for all 𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+, 𝑒𝑒 ∈ ℰ. We impose no stability requirement 

beyond 𝑥𝑥𝑡𝑡 ∈ 𝒳𝒳 . The rational expectations solutions we find will be near to a 
corresponding perfect foresight one, so by limiting the perfect foresight equilibria 
considered, we can rule out explosive equilibria. Such equilibria could also be ruled out 
by bounding 𝒳𝒳. 

Given some 𝜎𝜎 and 𝛿𝛿, we write ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿) :𝒟𝒟𝑘𝑘,𝑠𝑠 → 𝒳𝒳 for the (unknown) policy function in 

the 𝑠𝑠 th period in regime 𝑘𝑘  with shock 𝑒𝑒 , meaning that for all 𝑡𝑡 , 𝑥𝑥𝑡𝑡 = ℊ𝑘𝑘𝑡𝑡,𝑠𝑠𝑡𝑡,𝜀𝜀𝑡𝑡

(𝜎𝜎,𝛿𝛿) (𝑥𝑥𝑡𝑡−1) . 

𝒟𝒟𝑘𝑘,𝑠𝑠 ⊆ 𝒳𝒳 is the 𝑥𝑥-domain of definition of the policy functions, taken to be independent 
of 𝜎𝜎 and 𝛿𝛿. This may be less than then entire space due to non-existence in some areas. 

Our goal is to establish existence of the policy function for some 𝜎𝜎 > 0 and 𝛿𝛿 > 0. 
To be a solution, for all 𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+, 𝑒𝑒 ∈ ℰ and 𝑥𝑥 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠, these policy functions must 
satisfy: 

0 = (1 − 𝛿𝛿)(1 − 𝜎𝜎)𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒 �𝑥𝑥,ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥),ℊ𝑘𝑘,𝑠𝑠+1,0

(𝜎𝜎,𝛿𝛿) �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥)�� 

+(1 − 𝛿𝛿)𝜎𝜎 �𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒 �𝑥𝑥,ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥),ℊ𝑘𝑘,𝑠𝑠+1,𝜀𝜀

(𝜎𝜎,𝛿𝛿) �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥)��𝑑𝑑𝓅𝓅(𝜀𝜀)

ℰ
 

+𝛿𝛿(1 − 𝜎𝜎) �𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥)𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒 �𝑥𝑥,ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥),ℊ𝑙𝑙,1,0

(𝜎𝜎,𝛿𝛿) �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥)��

𝑙𝑙∈𝐾𝐾
 

+𝛿𝛿𝛿𝛿 �𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥)�𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒 �𝑥𝑥,ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥),ℊ𝑙𝑙,1,𝜀𝜀

(𝜎𝜎,𝛿𝛿) �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥)��𝑑𝑑𝓅𝓅(𝜀𝜀)

ℰ𝑙𝑙∈𝐾𝐾
. (6) 

This equation just encodes the rules for transitioning between regimes already discussed. 
When 𝜎𝜎 = 0  and 𝛿𝛿 = 0 , all future uncertainty disappears, and we are left with 

perfect foresight solutions. Setting 𝜎𝜎 = 0 and 𝛿𝛿 = 0 in equation (6) gives: 

0 = 𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒 �𝑥𝑥,ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(0,0) (𝑥𝑥),ℊ𝑘𝑘,𝑠𝑠+1,0

(0,0) �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(0,0) (𝑥𝑥)�� . (7) 

These are the standard equations defining perfect foresight policy functions. In this case, 
the regime never changes from its initial value, and so “clock time”, 𝑠𝑠, gives actual time, 
𝑡𝑡 . The perfect foresight iteration 𝑥𝑥𝑡𝑡 = ℊ𝑘𝑘,𝑡𝑡,𝜀𝜀1𝟙𝟙[𝑡𝑡=1]

(0,0) (𝑥𝑥𝑡𝑡−1)  may converge to a different 

steady state in different regimes, or for different initial states 𝑥𝑥0 and first period shocks 
𝜀𝜀1. It may also cycle rather than converging. We assume these perfect foresight policy 
functions are known. 

Under further technical conditions, outlined in Appendix F, we then have the 
following: 
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Theorem 3 Under the conditions outlined in the text above and in Appendix F, there 
exists 𝛾𝛾 > 0  and 𝜉𝜉 ∈ (0,1)  such that for all 𝜎𝜎 < 𝜉𝜉  and 𝛿𝛿 < 𝜉𝜉 , there exists a policy 
function �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

(𝜎𝜎,𝛿𝛿)�
𝑘𝑘∈𝐾𝐾,𝑠𝑠∈ℕ+,𝑒𝑒∈ℰ

 that solves the model (equation (6)). Moreover: 

sup
𝑘𝑘∈𝐾𝐾,𝑠𝑠∈ℕ+,𝑒𝑒∈ℰ,𝑥𝑥∈𝒟𝒟𝑘𝑘,𝑠𝑠

�ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥) − ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

(0,0) (𝑥𝑥)�
2

≤ 𝛾𝛾 max{|𝜎𝜎|, |𝛿𝛿|}. 

We prove this in Appendix H.6. Note that the proof is constructive, so this could form 
the basis of an effective algorithm for computing global solutions to non-linear rational 
expectations models. Theorem 3 is a powerful tool for proving the existence of rational 
expectations equilibria for general non-linear models. It implies that if there are multiple 
solutions under perfect foresight (so |𝐾𝐾| > 1), then there are generally a continuum of 
solutions under rational expectations, parameterized by the 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒 functions. Even if 
|𝐾𝐾| = 1, then there can still be a continuum of solutions under rational expectations if 
the one perfect-foresight solution is not time invariant, as in the example from Subsection 
2.6. 

One immediate corollary of Theorem 3 is that if ℰ is compact, |𝐾𝐾| is finite and for 
all 𝑘𝑘, 𝑙𝑙 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+ and 𝑒𝑒 ∈ ℰ, 𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒 is linear, independent of 𝑠𝑠 and also linear in 𝑒𝑒, and 
𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒 is Lipschitz, then providing each regime has a non-explosive solution, there is a 
solution under rational expectations for small enough 𝜎𝜎 and 𝛿𝛿. This gives existence for 
endogenous regime switching linear models under weaker assumptions than in e.g. 
Barthélemy & Marx (2017), though the stronger conditions in that paper are also 
sufficient for local uniqueness. 

5.2. Application to otherwise linear models with an OBC 

We now apply Theorem 3 to otherwise linear models with an OBC. We restrict 
attention to models that always have a unique solution to obtain clean results. However, 
Theorem 3 applies more broadly to models with OBCs under more involved conditions. 
For example, it applies to the model of Subsection 2.2, confirming the results of 
Subsection 2.6. 

Suppose then that we have an otherwise linear model with an OBC, and that for 
any 𝑇𝑇 > 0, the associated 𝑇𝑇 × 𝑇𝑇  𝑀𝑀  matrix is a P-matrix. Suppose we are given a closed 
and bounded set ℰ ⊆ ℝ𝑚𝑚 giving the support of the shock distribution, with 0 ∈ ℰ, and 
a non-empty, closed and bounded set 𝒳̃𝒳 ⊆ ℝ𝑛𝑛 such that 𝑥𝑥𝑡𝑡 should be supported at least 
on 𝒳̃𝒳, but may have larger support. 𝒳̃𝒳 could capture the space of economically relevant 
conditions. We suppose that for any initial state 𝑥𝑥0 ∈ ℝ𝑛𝑛, and initial shock 𝜀𝜀1 ∈ ℰ, with 
𝜀𝜀𝑡𝑡 = 0  for 𝑡𝑡 > 1 , there is a perfect foresight solution under those conditions that 
eventually escapes the bound and returns to the given steady state. Other than this 
restriction, the bounds may be arbitrarily large, so may not be overly restrictive in 
practice. Then we prove the following result in Appendix H.7: 
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Corollary 5 Under the conditions of the preceding text, there exists a compact set 𝒳𝒳 ⊆
ℝ𝑛𝑛  with 𝒳̃𝒳 ⊆ 𝒳𝒳 , and there exists 𝑇𝑇 ∗ ∈ ℕ , such that for any initial state 𝑥𝑥0 ∈ 𝒳𝒳  and 
initial shock 𝜀𝜀1 ∈ ℰ, with 𝜀𝜀𝑡𝑡 = 0 for 𝑡𝑡 > 1, there is a unique perfect foresight solution 
satisfying 𝑖𝑖𝑡𝑡 > 0  for 𝑡𝑡 > 𝑇𝑇 ∗ , and this solution remains within 𝒳𝒳 . Furthermore, if the 
distribution of the shock has sufficient mass at 0, then the model also has a rational 
expectations solution that remains within the set 𝒳𝒳. As the mass at 0 converges to 1, 
the rational expectations policy function converges to the perfect-foresight one. 

Any purely forward looking otherwise linear model with an OBC and 𝑀𝑀11 > 0 
satisfies the conditions of this corollary, by Corollary 2. Thus, Corollary 5 applies to the 
three equation New Keynesian model presented in Subsection 4.3. This proves the 
existence of a rational expectations solution to this model, providing the shocks are 
bounded with sufficient mass at 0. This equilibrium remains close to the perfect foresight 
one escaping the bound, so it does not get stuck in the deflationary steady state. While 
equilibria of this model have been exhibited computationally in prior work, it is 
reassuring to have a theoretical guarantee of their existence. It can be hard to distinguish 
numerically between non-existence and mere approximation error. 

6. Further discussion 
To see the broader relevance of our various results, in this section we further examine 

them in the context of the prior literature. We start by providing further justification 
for our imposition of a fixed terminal condition under perfect foresight. We then look at 
our assumption that the model is linear apart from the OBC and discuss our uniqueness 
and multiplicity results. We go on to provide additional context for our results on 
existence. We finish with a discussion of the benefits of price level targets. 

6.1. Our terminal condition 

Our perfect foresight results are conditional on the economy returning to a given 
steady state about which the economy is locally determinate. For ZLB models, this 
means the steady state with positive inflation, unless the model is augmented with a 
sunspot equation following Farmer, Khramov & Nicolò (2015) (see Appendix E.4). This 
is in contrast to the prior literature, beginning with Benhabib, Schmitt-Grohé & Uribe 
(2001a; 2001b), and developed by Schmitt-Grohé & Uribe (2012), Mertens & Ravn 
(2014) and Aruoba, Cuba-Borda & Schorfheide (2018), amongst others. In this literature, 
indeterminacy comes from the fact that agents place positive probability on the economy 
converging towards the deflationary steady state. 

A priori, it is unclear whether agents should place positive probability on the 
economy converging to deflation. Firstly, the central banks of most major economies have 
announced (positive) inflation targets. Thus, convergence to a deflationary steady state 
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would represent a spectacular failure to hit the target. As argued by Christiano and 
Eichenbaum (2012), a central bank may rule out the deflationary equilibria in practice 
by switching to a money growth rule following severe deflation, along the lines of 
Christiano & Rostagno (2001) and Christiano & Takahashi (2018). Furthermore, Richter 
& Throckmorton (2015) and Gavin et al. (2015) present evidence that the rational 
expectations deflationary equilibrium is unstable (under policy function iteration) if 
shocks are large enough, making it much harder for agents to coordinate upon it. Finally, 
a belief that inflation will eventually return to the vicinity of its target appears to be in 
line with the empirical evidence of Gürkaynak, Levin & Swanson (2010). It is thus an 
important question whether there are still multiple equilibria when agents believe the 
economy will eventually return to the standard steady state. 

In addition, our results have important implications even without assuming a return 
to the standard steady state. Our examples in Subsection 4.4 and Appendix E show that 
for standard NK models with endogenous state variables, there is a positive probability 
of arriving in a state of the world from which there is no perfect foresight path returning 
to the non-deflationary steady state.12 Hence, if we suppose that in the presence of risk, 
agents deal with uncertainty by integrating over the space of possible future shock 
sequences, as in the original stochastic extended path algorithm of Adjemian & Juillard 
(2013),6 then such agents would likely place positive probability on tending to the “bad” 
steady state.13 This rationalises the beliefs needed to sustain multiplicity in the prior 
literature. 

As switching to a price level target would remove the non-existence problem, it could 
also help ensure beliefs about long-run inflation remain positive, removing this source of 
indeterminacy. Given a credible central bank, it seems natural that agents should expect 
a return to the standard steady state if it is possible, as it always is under a price level 
target. This suggests that a price level target will succeed in producing a unique outcome, 
despite the existence of a deflationary steady state. 

6.2. Other non-linearities, and our uniqueness and multiplicity 
results 

A limitation of our results is that they only apply to otherwise linear models, 
excluding other non-linearities. We argue here for the importance of these results despite 

 
12  If the LCP (𝑞𝑞, 𝑀𝑀)  is not feasible, then for any 𝑞𝑞 ̂≤ 𝑞𝑞  the LCP (𝑞𝑞,̂ 𝑀𝑀)  will also not be feasible. 
Consequently, if 𝑞𝑞 is a draw from an absolutely continuous distribution, then if there are some 𝑞𝑞 for 
which the model has no solution satisfying the terminal condition, then there is no solution with positive 
probability. 
13 The lack of a solution tending to the standard steady state does not imply the existence of a solution 
tending to the deflationary one. However, given the indeterminacy of the deflationary steady state, it is 
easier to find a solution returning there in general. 
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this limitation. We also discuss how the tools of this paper could be applied to non-linear 
models. 

Bodenstein (2010) showed that linearization can exclude equilibria. Additionally, 
Boneva, Braun & Waki (2016) show that there may be multiple solutions to a non-linear 
NK model with ZLB, converging to the standard steady state, even though the linearized 
version of their model (with a ZLB) has a unique equilibrium. Thus, any multiplicity we 
find is strictly in addition to the type found by those authors. Moreover, note the 
multiplicity found in a simple linearized model in Brendon, Paustian & Yates (2013) is 
also found in the equivalent non-linear model in Brendon, Paustian & Yates (2019). This 
is suggestive evidence for the continued relevance of our results in the fully non-linear 
case. 

In fact, the tools of this paper can be used to analyse the properties of perfect-
foresight models with nonlinearities other than an occasionally binding constraint. Recall 
that we showed 𝑖𝑖(𝑦𝑦) = 𝑞𝑞 + 𝑀𝑀𝑀𝑀 + Ο(𝑦𝑦′𝑦𝑦)  as 𝑦𝑦′𝑦𝑦 → 0 , where 𝑀𝑀   is defined in terms of 
partial derivatives of the path (see Definition 1). We did not need to impose linearity to 
derive the complementary slackness constraints on 𝑦𝑦. Thus, in a fully non-linear perfect 
foresight context, we can still use the tools we develop here to look at the (first order 
approximate) properties of perfect foresight problems in which 𝑦𝑦 does not become too 
large in the solution (which usually means that 𝑞𝑞 does not go too negative). In particular, 
we do not need to linearize before deriving 𝑞𝑞 or 𝑀𝑀 , so we can preserve accuracy even 
though only large shocks might drive us to the bound. In this fully non-linear case, 𝑀𝑀  
will be a function of the initial state. 

Furthermore, studying multiplicity in otherwise linear models is an independently 
important exercise. Firstly, macroeconomists have long relied on existence and 
uniqueness results based on linearization of models without occasionally binding 
constraints, even though this may produce spurious uniqueness in some circumstances.14 
Secondly, it is nearly impossible to find all perfect foresight solutions in general non-
linear models, as this is equivalent to finding all the solutions to a huge system of non-
linear equations. Even finding all the solutions to large systems of quadratic equations 
is computationally intractable. At least if we have the full set of solutions to the otherwise 
linear model, we may use homotopy continuation methods to map these solutions into 
solutions of the non-linear model. Furthermore, finding all solutions under uncertainty 
is at least as difficult in general, as the policy functions are also defined by a large system 
of non-linear equations. The proof of Theorem 3 gives one way to map perfect foresight 
policy functions into rational expectations ones, via certain fixed-point iterations. 
Thirdly, Christiano and Eichenbaum (2012) argue that the additional equilibria of 

 
14 Perturbation solutions are only valid within some domain of convergence, so even the results of e.g. 
Lan & Meyer-Gohde (2013; 2014) do not mean that first order determinacy implies global determinacy. 
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Boneva, Braun & Waki (2016) may be mere “mathematical curiosities” due to their non-
e-learnability. This suggests that the equilibria that exist in the linearized model are of 
independent interest, whatever one’s view on this debate. Finally, our main results for 
NK models imply non-uniqueness, so concerns of spurious uniqueness under linearization 
will not be relevant in these cases. 

Indeed, our choice to focus on otherwise-linear models under perfect-foresight, with 
fixed terminal conditions, has biased our results in favour of uniqueness for three distinct 
reasons. Firstly, because there are many more solutions under rational expectations than 
under perfect foresight, as we showed in Section 5 (under mild conditions). Secondly, 
because there are potentially other solutions returning to alternate steady states. 
Thirdly, because the original fully non-linear model may have yet more solutions. It is 
thus even more surprising that we still find multiplicity under perfect foresight in 
otherwise linear NK models with a ZLB. 

However, we are certainly not the first to look at multiplicity in otherwise linear 
models with OBCs. Hebden, Lindé & Svensson (2011) propose a simple way to find 
multiplicity: hit the model with a large shock, and see if one can find more than one set 
of periods such that being at the bound during those periods is an equilibrium. In 
practice, this suggests first seeing if there is a solution that finally escapes the bound 
after one period, then seeing if there is one that finally escapes the bound after two 
periods, and so on.15 This procedure may succeed in finding an example of multiplicity, 
and thus proving that the original model does not possess a unique solution. However, 
it cannot work completely generally as the multiplicity may only arise in very particular 
states, or may feature multiple spans at the bound. 

Like us, Jones (2015) presents a uniqueness result for models with occasionally 
binding constraints. He shows that if one knows the set of periods in which the constraint 
binds, then under standard assumptions, there is a unique path in which the constraint 
binds in those periods. However, the multiplicity for models with OBCs stems from there 
being multiple sets of periods at which the model could be at the bound. Our results are 
not conditional on knowing in advance the periods at which the constraint binds. 

Finally, uniqueness results have also been derived in the Markov switching literature. 
Examples include Davig & Leeper (2007), Farmer, Waggoner & Zha (2010; 2011) and 
Barthélemy & Marx (2019). These papers assume regime switching is exogenous. This 
prevents their application to OBCs, which generate endogenous regime switches. 
Determinacy results with endogenous switching were derived by Barthélemy & Marx 
(2017) assuming regime transition probabilities are a smooth function of the state. These 

 
15 This is tractable in our context, as it is easy to constrain the MILP representation of the LCP problem 
to be at the bound in the final period. The “DynareOBC” toolkit takes this approach. See Holden (2016) 
for further details. 
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results are not directly applicable to OBCs as OBCs produce jumps in regime transition 
probabilities. 

6.3. Existence and non-existence 

We also produced conditions for the existence of a perfect-foresight solution to an 
otherwise linear model with a terminal condition. These results provide new intuition for 
the prior literature on existence under rational expectations, which has found that NK 
models with a ZLB might have no solution at all if the variance of shocks is too high. 
For example, Mendes (2011) derived analytic results on existence as a function of the 
variance of a demand shock, and Basu & Bundick (2015) showed the quantitative 
relevance of such results. Existence conditions in a simple NK model with discretionary 
monetary policy and a two-state Markov shock were derived in close form by Nakata & 
Schmidt (2019). They show that the economy must spend a small amount of time in the 
low real interest rate state for the equilibrium to exist, which again links existence to 
variance. Our rational expectations existence results have a similar flavour, with the 
shock distribution required to have sufficient mass at 0. 

While most of our results are not directly related to the variance of shocks, as we 
work under perfect foresight, they are nonetheless linked. We showed that the existence 
of a perfect foresight solution depends on the path taken by nominal rates without the 
bound (𝑞𝑞). Many of our results assumed that this path was arbitrary thanks to the 
model’s sequential radius being sufficiently large. However, in a model with a small 
number of bounded shocks, and no “news” shocks, not all paths are possible for nominal 
rates without the bound. The more shocks are added, and the wider their support, the 
larger will be the space of paths for nominal interest rates ignoring the ZLB. Hence, the 
more likely will be solution non-existence for a positive measure of such paths. This helps 
to explain the literature’s prior results. Indeed, our proof of existence under rational 
expectations requires the existence of a perfect foresight solution for any sequence of 
sufficiently small, anticipated future shocks. 

Prior work by Richter & Throckmorton (2015) and Gavin et al. (2015; Appendix B) 
relates a kind of eductive stability (the convergence of policy function iteration) to other 
properties of the model. Non-convergence of policy function iteration is suggestive of 
non-existence, though not definitive evidence. 

It is also possible to establish existence by finding a solution to the model, perhaps 
conditional on the initial state. Under perfect foresight, the methods described in Holden 
(2010; 2016) are a possibility, and the method of Guerrieri & Iacoviello (2015) (extending 
Jung, Teranishi & Watanabe (2005)) is a prominent alternative. Under rational 
expectations, policy function iteration methods have been used by Fernández-Villaverde 
et al. (2015) and Richter & Throckmorton (2015), amongst others. However, solution 



32 

algorithms cannot help us establish non-existence: non-convergence of a solution 
algorithm does not imply non-existence.16 Furthermore, if the problem is solved globally, 
there could still be an area of non-existence outside of the grid on which the model was 
solved. If we wish to guide policy makers in how they should act to ensure existence in 
any state, then there is an essential role for results on global existence, like those 
presented in this paper. 

6.4. Price level targeting 

Our results suggest that given belief in an eventual return to inflation, the central 
bank can produce a determinate equilibrium if it switches to targeting the price level, 
rather than the inflation rate. The welfare benefits of this could be substantial, given the 
severe recessions associated with prolonged ZLB episodes. See Appendix E.3 for some 
suggestive calculations. 

There is of course a large literature advocating price level targeting already. Vestin 
(2006) made an important early contribution by showing that its history dependence 
mimics the optimal rule, a conclusion reinforced by Giannoni (2014). Eggertsson & 
Woodford (2003) showed the particular desirability of price level targeting in the presence 
of the ZLB, since it produces inflation after the bound is escaped. A later contribution 
by Nakov (2008) showed that this result survived taking a fully global solution, and 
Coibion, Gorodnichenko & Wieland (2012) showed that it still holds in a richer model. 
More recently, Basu & Bundick (2015) have argued that a response to the price level 
ensures equilibria exists even when shocks have large variances, avoiding the problems 
stressed by Mendes (2011). Our argument is distinct from these; we showed that in the 
presence of the ZLB, inflation targeting rules are indeterminate, even conditional on an 
eventual return to inflation, whereas price level targeting rules produce determinacy, in 
the sense of the existence of a unique perfect-foresight path returning to the standard 
steady state. 

Our results are also distinct from those of Adão, Correia & Teles (2011) who showed 
that if the central bank is not constrained to respect the ZLB out of equilibrium (i.e. for 
non-market-clearing prices),17 and if the central bank uses a rule that responds to the 

 
16 Holden (2016) is an exception. This algorithm always converges, either producing a solution, or a 
proof of non-existence. 
17 Bassetto (2004) gives a precise definition of this. The distinction is between constraints that hold for 
any prices (e.g., agent first order conditions), and constraints that hold only for the market clearing 
prices (e.g., market clearing conditions). The contention of Bassetto (2004) is that the ZLB is in the 
latter category—the central bank can promise negative nominal interest rates off the equilibrium path, 
which gives determinacy without negative rates actually being required. (Negative rates provide an 
infinite nominal transfer, entirely devaluing nominal wealth, so pushing up prices and preventing 
negative rates ever being called for.) Bassetto notes how dangerous it would be to rely on such infinite 
transfers given the possibility of misspecification. 
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right hand side of the Euler equation, then a globally unique equilibrium may be 
produced, even without ruling out explosive beliefs about prices. Their rule has the 
flavour of a (future) price-targeting rule, due to the presence of future prices in the right-
hand side of the Euler equation. We assume though that the central bank must satisfy 
the ZLB even out of equilibrium (i.e., for all prices), which makes it harder to produce 
uniqueness. However, in line with the bulk of the NK literature, we maintain the standard 
assumption that explosive paths for inflation are ruled out,18 an assumption which the 
rules of Adão, Correia & Teles (2011) do not require. 

Somewhat contrary to our results, Armenter (2018) shows that in a simple otherwise 
linear NK model, if the central bank pursues Markov (discretionary) policy subject to 
an objective targeting inflation, nominal GDP or the price level, then the presence of a 
ZLB produces additional equilibria quite generally. This contrast between our results 
and those of Armenter (2018) is driven by the fact that we focus on equilibria converging 
to the standard (non-deflationary) steady state. We argued in Subsection 6.1 for the 
reasonableness of this assumption. Whereas under inflation targeting there are multiple 
paths converging to the standard steady state, under a price level target (PLT), the path 
is unique. Thus, a PLT is certainly ruling out many equilibria. 

Armenter (2018) points out that with a PLT there are still other perfect foresight 
equilibria that never converge to a steady state. These feature interest rates converging 
to zero, and a permanently falling price level. Since prices are an endogenous variable 
under a PLT, falling prices can never be a steady state. This is already in marked contrast 
to the situation under an inflation target, in which the other equilibria feature 
convergence to a true deflationary steady state. Standard practice has been to discard 
the many non-bounded equilibria of NK models. This selection criterion would thus rule 
out the non-convergent equilibrium discussed by Armenter (2018). While Cochrane 
(2011) questions this selection criterion, it may be justified by appeal to escape clause 
rules (Christiano & Takahashi 2018), learning (Evans & McGough 2018), or to 
infinitesimal frictions in memory or coordination (Angeletos & Lian 2021). We leave the 
application of these selection criteria to our context to future work. 

In other related work, Duarte (2016) considers how a central bank might ensure 
determinacy in a simple continuous time new Keynesian model. Like us, he finds that 
the Taylor principle is not sufficient in the presence of the ZLB. He shows that 
determinacy may be produced by using a rule that holds interest rates at zero for a 
history dependent amount of time, before switching to a max{0,… } Taylor rule. While 
we do not allow for such switches in central bank behaviour, we find a key role for history 
dependence, through price targeting. 

 
18  Note that the unstable solutions under price level targeting feature exponential growth in the 
logarithm of the price level, which also implies explosions in inflation rates. 
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7. Conclusion 
Determinacy conditions are crucial for understanding the behaviour of the models 

we work with in macroeconomics. This paper provides the first general theoretical results 
on existence and uniqueness for otherwise linear models with occasionally binding 
constraints, given terminal conditions. Applying our results, we showed that multiplicity 
is the norm in New Keynesian models, but that a response to the price level can restore 
determinacy. Our conditions may be easily checked numerically using the “DynareOBC” 
toolkit we provide.19 
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