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Research Question

Since the 2001 recession, core inflation has been on average below the Federal Reserve’s

implicit 2% target. This phenomenon has become even more severe in the aftermath of the

2008 recession. In other words, the “conquest of US inflation” that started with the Volcker

disinflation seems to have gone too far. Inflation, instead of stabilizing around the desired 2%

inflation target, has kept falling down. What factors can explain the disinflationary bias and

how can monetary policy bring inflation back to its target?

Contribution

We show that the disinflationary bias is a consequence of a low nominal interest rate en-

vironment in which the central bank follows a symmetric strategy to stabilize inflation. An

asymmetric rule according to which the central bank responds less aggressively to above-

target inflation corrects the disinflationary bias, re-anchors long-term inflation expectations

to the desired two-percent target and reduces the risk of encountering the zero lower bound

in the future. Thus, an apparent paradox emerges: In order to interpret its inflation target

as symmetric, the central bank should follow an asymmetric strategy. This paradox is only

apparent, because the asymmetric strategy corrects for the constraint represented by the zero

lower bound.

Results

The central bank can remove the disinflationary bias and can raise social welfare by com-

mitting to adjust the policy rate less aggressively when inflation is above target than when

inflation is below target. We use our calibrated model to run a counterfactual analysis sho-

wing that if the asymmetric strategy had been adopted in 2000, the U.S. economy would have

not experienced the growing disinflationary bias. Furthermore, the asymmetric rule does not

entail any history dependence or commitment to overshoot the inflation target and can be

implemented with an asymmetric target range.

Non-technical summary



Nichttechnische Zusammenfassung

Fragestellung

Seit der Rezession des Jahres 2001 lag die Kerninflationsrate im Durchschnitt unter dem

von der US-Notenbank (Federal Reserve) implizit anvisierten Inflationsziel von 2%. Dieses

Phänomen ist in der Folge der Rezession von 2008 noch stärker zu Tage getreten. Es scheint,

als sei die
”
Überwindung der US-Inflation“, die mit der Volcker Disinflation begann, über das

Ziel hinausgeschossen. Anstatt sich um den erwünschten Zielwert von 2% zu stabilisieren, fiel

die Inflation immer weiter. Es stellt sich die Frage, mit welchen Faktoren sich diese persistente

Disinflation erklären lässt und wie die Geldpolitik die Inflation wieder an das angestrebte

Inflationsziel annähern kann?

Beitrag

Es wird gezeigt, dass diese Tendenz zur Disinflation die Folge eines Umfelds niedriger no-

minaler Zinssätze ist, in dem die Notenbank eine symmetrische Strategie zur Stabilisierung

der Inflation verfolgt. Eine asymmetrische Vorgehensweise, bei der die Notenbank weniger

aggressiv auf über dem Ziel liegende Inflationsraten reagiert, korrigiert den disinflationären

Verlauf, verankert die langfristigen Inflationserwartungen wieder auf dem angestrebten Ziel-

wert von 2% und verringert die Gefahr, künftig an die Nullzinsgrenze zu stoßen. Es ergibt

sich somit ein scheinbares Paradoxon: Um ihr Inflationsziel als symmetrisch interpretieren

zu können, sollte die Notenbank eine asymmetrische Strategie verfolgen. Dabei handelt es

sich aber lediglich um ein scheinbares Paradoxon, da die asymmetrische Vorgehensweise eine

Korrektur für die sich aus der Nullzinsgrenze ergebende Begrenzung darstellt.

Ergebnisse

Die Notenbank kann der persistenten Disinflation entgegenwirken und die gesellschaftliche

Wohlfahrt steigern, indem sie sich verpflichtet, den Leitzins weniger stark anzupassen, wenn

die Inflation das Inflationsziel überschreitet, als wenn sie es unterschreitet. Anhand eines

kalibrierten Modells wird eine kontrafaktische Analyse durchgeführt, die zeigt, dass die zu-

nehmende persistente Disinflation in der US-Wirtschaft ausgeblieben wäre, wenn im Jahr

2000 eine asymmetrische Strategie beschlossen worden wäre. Darüber hinaus ist die asym-

metrische Vorgehensweise nicht vergangenheitsabhängig und zieht keine Verpflichtung nach

sich, das Inflationsziel zu überschießen. Zudem lässt sie sich auch mit einem asymmetrischen

Zielkorridor umsetzen.
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1 Introduction

Since the 2001 recession, core inflation has been on average below the Federal Reserve’s

implicit 2% target, as shown in Figure 1. This phenomenon has become even more severe

in the aftermath of the 2008 recession. In other words, the “conquest of US inflation”

that started with the Volcker disinflation seems to have gone too far. Inflation, instead

of stabilizing around the desired 2% inflation target, has kept falling down. In a low

nominal interest rate environment, this deflationary bias is a predictable consequence of

a symmetric strategy to stabilize inflation, like the one followed by the Federal Reserve

until the revision of its framework announced in August 2020. A clear indication of this

symmetric approach to the conduct of monetary policy was in the former Statement on

Longer-Run Goals and Monetary Policy Strategy, which read: “The Committee would be

concerned if inflation were running persistently above or below this objective. Communi-

cating this symmetric inflation goal clearly to the public helps keep longer-term inflation

expectations firmly anchored [. . . ]”.

We argue that in the current low interest rate environment, it is advantageous for a

central bank to be more concerned about inflation running below target than about infla-

tion going above target. A low inflation target should be combined with an asymmetric

monetary policy strategy calling for more aggressive actions when inflation is below tar-

get than when inflation is above target. Thus, an apparent paradox emerges: In order to

interpret its inflation target as symmetric, the central bank should follow an asymmetric

strategy. This paradox is only apparent, because the asymmetric strategy corrects for the

constraint represented by the zero lower bound (ZLB). On August 27, 2020, the Federal

Open Market Committee (FOMC) revised its Statement on Longer-Run Goals and Mon-

etary Policy Strategy. In commenting on the revised statement, Vice Chairman Richard

Clarida seems to echo the insights of our paper stating that “[...] the aim to achieve

symmetric outcomes for inflation (as would be the case under flexible inflation targeting

in the absence of the ELB constraint) requires an asymmetric monetary policy reaction

function in a low r* world with binding ELB constraints in economic downturns.”Clarida

(2020).

We obtain our results using a nonlinear quantitative New Keynesian model. Unlike

the standard approach in the literature that studies linearized models with a kink in the

monetary policy reaction function, we solve the fully non-linear specification of the model

with global methods. This approach allows us (i) to take into account the highly nonlinear

effects of macroeconomic volatility and of the low long-run real interest rate on the

deflationary bias and (ii) to study the implications of asymmetric rules and asymmetric

target ranges in general equilibrium models. When the long-run real interest rate is

calibrated to the low values that seem plausible today (Laubach and Williams 2003), the

model predicts that average inflation will remain below target even during expansions.
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Figure 1: Year-to-year PCE core inflation and its ten-year moving average. Unit: Annualized percentage
rates.

Forward-looking price setters anticipate that in the case of a large negative shock the

central bank will be unable to fully stabilize inflation due to the ZLB constraint on

nominal rates. These beliefs bring about deflationary pressures and depress inflation

dynamics even when the economy is away from the ZLB.

A large and increasing deflationary bias is the harbinger of deflationary spirals. De-

flationary spirals represent a pathological situation in which inflation keeps falling un-

boundedly. The deflationary bias arises when the probability of hitting the zero lower

bound is nonzero. To counteract this deflationary pressure, the central bank keeps the

interest rate low even when the economy is healthy and away from the zero lower bound.

This deflationary pressure can become so large that the ZLB becomes binding also in

good states. Lacking the offsetting effects of monetary policy, the real interest rate starts

increasing and, in doing so, depresses aggregate demand, exacerbating the deflationary

pressure. This vicious circle of low inflation, rising real interest rates, and even lower infla-

tion sets the stage for deflationary spirals and implies that no stable rational expectations

equilibrium exists. Given the persistent and increasing deflationary bias observed in the

last twenty years, the US economy might currently be in the proximity of this scenario,

implying that remedying the deflationary bias is an issue of first order importance.

The central bank can remove the deflationary bias and can raise social welfare by

committing to adjust the policy rate less aggressively when inflation is above target than

when inflation is below target. We use our calibrated model to run a counterfactual

analysis showing that if the asymmetric strategy had been adopted in 2000, the U.S.

economy would have not experienced the growing deflationary bias shown in Figure 1.

By removing the deflationary bias, this asymmetric strategy re-anchor long-term inflation
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expectations to the desired two-percent target, reduces the risk of encountering the ZLB

in the future, and makes deflationary spirals less likely. The proposed strategy achieves

all these goals because it raises the probability of inflation on the upside and, in doing

so, offsets the downside risk due to the ZLB, reducing macroeconomic volatility.

In the minutes of the meeting of September 17-18 2019, the Federal Open Market

Committee (FOMC) discussed whether the then long-run framework could be improved

by adopting asymmetric strategies that require to “respond more aggressively to below-

target inflation than to above-target inflation,” in line with what advocated in this paper.

Furthermore, according to the minutes, several participants suggested a target range as

an effective way to communicate this asymmetric strategy. We show that the introduction

of such a range can indeed close the deflationary bias provided that the range itself is

asymmetric around the desired inflation objective. For instance, if the central bank is

committed not to respond to inflation when inflation is within the target range, specifying

a range between 1.5 percent and 3.1 percent will remove the deflationary bias. While the

degree of asymmetry in the range necessary to remove the bias depends on the strength

of the central bank’s in-range response to inflation, the required degree of asymmetry is

generally fairly modest.

Adam and Billi (2007) and Nakov (2008) were among the first to formally show that

the deflationary bias and the corresponding output bias arise in New Keynesian models

in which the nominal interest rate is occasionally constrained by the zero lower bound.

With respect to these papers, we emphasize that the symmetry of standard monetary

policy rules (e.g., the Taylor rule) plays an important role for these biases to arise and

show that adopting an asymmetric strategy can remove these biases.

Basu and Bundick (2015) and Richter and Throckmorton (2015) also document that

New Keynesian models with an occasionally binding ZLB constraint do not admit a

solution when the volatility of the shocks is too large. Unlike those papers, we provide a

graphical proof that no Rational Expectations equilibrium exists for a sufficiently large

volatility of the shocks. We also show that the deflationary bias and the non-existence

of Rational Expectations equilibrium, which we call deflationary spirals, are intertwined.

Finally, unlike those papers, we show that the deflationary spirals can be avoided by

adopting an asymmetric monetary policy strategy.

Kiley and Roberts (2017) and Bernanke et al. (2019) study a set of symmetric rules to

mitigate the severity of recurrent ZLB episodes. Mertens and Williams (2019) evaluate

a large variety of monetary policy rules and conclude that dynamic rules, which make

up for forgone accommodation after the ZLB episode, can eliminate the deflationary

biases and deliver better macroeconomic outcomes than static rules (such as the Taylor

rule). Unlike dynamic rules studied in those papers, the asymmetric strategy we propose

does not rely on history dependence to remove the deflationary bias. Consequently,

the central bank is not committed to engineer deflation following a period of above-
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target inflation. Similarly, the asymmetric strategy does not require the central bank

to overshoot inflation in expansions in order to correct the deflationary bias. Werning

(2011) studies optimal monetary and fiscal policies at the ZLB. Gust et al. (2017b)

show that the deflationary bias can be mitigated if policymakers view output losses as

asymmetric. Nakata and Schmidt (2019) show that the deflationary bias can be mitigated

by appointing a conservative central banker a la Rogoff.

2 The Model

In this section, we introduce a quantitative model with the zero lower bound constraint

based on Gust et al. (2017a), who expand the traditional linearized New Keynesian

model (Clarida et al. 2000; Woodford 2003; Gaĺı, 2008). The model is solved with global

methods in its non-linear specification.

2.1 Model description

The economy consists of households, final goods producers, a continuum of monopolistic

intermediate goods firms, a monetary authority, and a fiscal authority. Households buy

and consume the final goods from producers, trade one-period government bonds, and

supply labor to firms. The final goods producers buy intermediate goods and aggregate

them into a homogenous final good using a CES technology. The intermediate goods

firms set the price of their differentiated good subject to price adjustment costs a la

Rotemberg. They demand labor to produce the amount of differentiated goods to be

sold to households in a monopolistic competitive market. Labor is the only factor of

production. The fiscal authority balances its budget in every period. The monetary

authority sets the interest rate for the government bonds.

The economy features preference and monetary policy shocks as well as shocks to

the technological trend of the economy. Preference shocks are included because they are

often found to play a leading role in explaining business cycle fluctuations in estimated

New-Keynesian DSGE models (Smets and Wouters 2007, Christiano et al. 2005, and

Campbell et al. 2012). Furthermore, this is the shock typically used to model zero lower

bound events (e.g. Eggertsson and Woodford 2003). We do not include price markup

shocks for two main reasons. First, these shocks are well-known to give rise to a trade-off

between output and inflation stabilization, which would make it harder to evaluate the

role of the asymmetric rule in mitigating the deflationary bias –which is the main object of

the paper. Second, these shocks are found to play a negligible role in explaining business

cycles in estimated DSGE models and only account for high frequency movements in

inflation that can be attributed to observation errors (Justiniano et al. 2013).
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The Representative Household In every period, the representative household

chooses consumption Ct, labor Ht, and government bonds Bt so as to maximize the

expected discounted stream of utility

E0

∑∞

t=0
βtζdt

[((
Ct − hCA

t−1

)
/Zt
)1−σ

1− σ
− χH

1+η
t

1 + η

]
(1)

subject to the flow budget constraint

PtCt +Bt = PtWtHt +Rt−1Bt−1 + Tt + PtDivt (2)

where CA
t is aggregate consumption, Pt is the price level, Wt is the real wage, Rt is the

gross interest rate, Tt are lump-sum taxes and Divt are real profits from the intermediate

good firms. The parameter h determines the degree of external consumption habits.

Bt denotes the one-period government bonds in zero net supply. Zt denotes the non-

stationary aggregate level of technology and is introduced to allow us to conduct welfare

analysis in a model in which consumption follows a balance growth path. The preference

shock ζdt follows an AR(1) process in logs ln(ζdt ) = ρζ ln(ζdt−1)+σζ
d
εζ
d

t , where εζ
d

t ∼ N(0, 1).

Final Goods Producers Final goods producers transform intermediate goods into

the homogeneous good through the following aggregation technology:

Yt =

(∫ 1

0

Yt(j)
ε−1
ε df

) ε
ε−1

, (3)

where Yt(j) is the consumption of the good of the variety produced by firm j. The price

index for the aggregate homogeneous good is:

Pt =

[∫ 1

0

Pt(j)
1−εdf

] 1
1−ε

, (4)

and the demand for the differentiated good j ∈ (0, 1) is Yt(j) = (Pt(j)/Pt)
−ε Yt.

Intermediate Goods Firms The firm j produces output with labor as the only input

Yt(j) = Zt Ht(j). The aggregate level of technology Zt has a trend growth gt: Zt = gtZt−1.

The growth rate follows a stochastic trend gt, with average ḡ and subject to idiosyncratic

shocks: gt = ḡ + σgεgt , where εgt ∼ N(0, 1). The firm j sets the price Pt (j) of its

differentiated goods j so as to maximize its profits:

Divt(j) = Pt(j)

(
Pt(j)

Pt

)−ε
Yt
Pt
− MCt

(
Pt(j)

Pt

)−ε
Yt −

ϕ

2

(
Pt(j)

ΠPt−1(j)
− 1

)2

Yt, (5)
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subject to the downward sloping demand curve for intermediate goods. The parameter

ϕ > 0 measures the cost of price adjustment in units of the final good.

Policy makers and resource constraint The monetary authority sets the interest

rate Rt responding to inflation and output from their corresponding targets. The mon-

etary authority faces a zero lower bound constraint. The policy rule reads as follows

Rt = max
[
1, RN

t

]
. (6)

RN
t denotes the notional rate that the monetary authority would set without the zero

lower bound constraint

RN
t

R
=

(
RN
t−1

R

)ρR [(Πt

Π

)θΠ( Yt
Y ∗t

)θY ]1−ρR

exp (σmεmt ) . (7)

where Π denote the inflation target that pins down the inflation rate in the trend-

stationary deterministic steady state and Y ∗t is the level of output in the flexible-price

economy. Additionally, the monetary authority faces an iid monetary policy shock, where

εmt ∼ N(0, 1). The inertial component is introduced in the specification of the monetary

rule to help the model explain critical moments in the data. The fiscal authority is

assumed to follow a passive policy rule, moving a lump-sum tax to keep debt on a stable

path.

The resource constraint is Ct = Yt
[
1− .5ϕ (Πt/Π− 1)2].

2.2 Model Solution and Calibration of Parameters

We solve the model with time iterations and linear interpolation as in Richter et al. (2014).

Expectations are evaluated with Gauss-Hermite Quadrature. A detailed description of the

solution method and an assessment of the numerical accuracy is provided in Appendix A.

The model parameters are calibrated using key moments of U.S. quarterly data computed

from 2000:Q1 through 2019:Q4. This period has been characterized by record low interest

rates and by a prolonged period of a binding zero lower bound constraint. Table 1

summarizes the calibration, sources and targeted moments.

The discount factor β is set to 0.9993 to obtain an annualized real interest rate of

1.5%, which is broadly in line with the estimates of Laubach and Williams (2003) for

this period. The Rotemberg parameter ϕ is set to 1000 so that the slope of the New

Keynesian Phillips curve is 0.01. The calibrated value for the demand elasticity ε implies

a steady-state markup of 10 percent. The parameter governing the degree of external

consumption habits is set to 0.5. The inverse Frisch elasticity is set in line with Chetty

6



a) Conventional Parameters Value Target/Source
β Steady state discount rate 0.9993 Real interest rate= 1.5% p.a.
σ Relative risk aversion 1 Log utility
η Inverse Frisch elasticity 1.33 Chetty et al. (2011)
h External consumption habit 0.5 Conventional
ε Price elasticity of demand 11 Mark-up = 10%
χ Disutility labor 1.82 Deterministic SS labor supply = 1
ϕ Rotemberg pricing 1000 Slope of NKPC = 0.01
4 log (Π) Annualized Inflation target 2% Inflation target

b) Specific Parameters Value Moment Data Model
ḡ Trend growth rate 1.0031 µ(∆Y ) Mean GDP growth rate 0.31% 0.31%
θΠ MP inflation response 2.5 µ(Π) Mean inflation rate 1.72 1.72
θY MP output response 0.7 σ(∆Y ) Std. dev. GDP growth rate 0.6 0.6
100σζd Std. dev. preference shock 2.16 σ(Π) Std. dev. inflation 0.6 0.5
100σm Std. dev. MP shock 0.42 ρ(∆Y,Π) Correlation inflation, GDP growth 0.22 0.21
100σg Std. dev. growth shock 0.56 σ(∆Y |R = 0) Std. dev. output growth at ZLB 0.5 0.5
ρζd Persistence preference shock 0.9 σ(Π|R = 0) Std. dev. inflation at ZLB 0.5 0.6
ρR Persistence MP rule 0.7 ρ(∆Y,Π|R = 0) Corr. inflation, GDP growth ZLB 0.30 0.52

Table 1: Benchmark calibration: Parameter values and targeted moments

et al. (2011). The parameter controlling the disutility of labor χ is set to normalize the

steady-state level of employment to unity. We set the inflation target to 2%.1

The remaining eight parameters are set to target selected moments of PCE core infla-

tion and per capita real GDP growth. The steady-state TFP growth rate ḡ is calibrated

to match the average output growth rate. The inflation response of the monetary policy

rule θΠ is pinned down by the annualized average inflation rate of 1.72. The monetary

policy response to output θY is pinned down by the standard deviation of output growth.

The standard deviations of the demand and monetary policy shocks are set to match the

standard deviation of inflation and the correlation between GDP growth and inflation.

In addition to these moments, we target selected moments conditional on a binding zero

lower bound: i) the standard deviation of GDP growth, ii) the standard deviation of

inflation, and iii) the correlation between inflation and GDP growth. To target these

moments, we calibrate the standard deviation of the technological growth rate shock, the

persistence of the preference shock, and the persistence of the monetary policy rule. As

shown in Table 1, the calibrated model does a fairly good job at replicating the moments

we target.

3 Deflationary Bias and Deflationary Spirals

To gain intuition about the causes of the deflationary bias and its relation with the

deflationary spirals, we consider a simplified version of the model presented in the previous

1There is some disagreement about what the Federal Reserve’s effective inflation objective was before
2012 (Shapiro and Wilson 2019). However, there is a strong consensus that the objective has been 2
percent since 2010.
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section. The external consumption habit and the persistence in the monetary policy rule

are shut down, that is h = 0 = ρR = 0. We assume that the central bank does not

respond to the output gap (θY = 0) and that the economy is stationary (g = 1) and

is buffeted only by the preference shock (σg = σm = 0). Furthermore, the preference

shock is assumed to take only two values low (bad state) and high (good state); i.e.,

ζdt ∈
{
ζdL, ζ

d
H

}
with ζdH > ζdL. When the realizations of the preference shock are binary,

equilibrium outcomes can be conditioned on the high or low value of the preference shock

and hence can be characterized by solving a set of nonlinear equations as explained in

greater detail in B. This simplified version of the model is useful for understanding the

causes behind the deflationary bias, when deflationary spirals (i.e., non-existence of stable

rational expectations equilibria) emerge, and why these two outcomes are intertwined.

Once we have established these points, we will go back to the benchmark model and the

calibration introduced in the previous section.

Given the structure of the simplified model, we can partition the model equilibrium

conditions into two blocks of equations, one for the good state and one for the bad state.

In what follows, we focus on the equilibrium in the good state because - as we will see

- this is the state where the deflationary bias arises. The red dashed line in Figure 2

represents the interest rate RH as function of inflation ΠH as implied by the Taylor

rule in the good state, subject to the ZLB constraint. The blue line in the same figure

conflates the restrictions imposed on the inflation rate and the nominal interest rate in

the good state by all the other equations. Importantly, this curve also takes into account

the equilibrium conditions for the bad state because agents in the model are forward

looking. The intersections between the red dashed line and the blue solid line give us the

(stable) Rational Expectations equilibria and their interest rate and inflation outcomes

in the good state. Appendix B describes how these two lines are worked out.

The blue line is upward sloping because a fall in the equilibrium inflation rate in

the good state, ΠH , lowers inflation expectations and hence the nominal interest rate in

the good state, RH .2 The blue line also presents a kink and gets steeper for low values

of inflation in the good state. When inflation in the good state declines, the partial

equilibrium effect is such that expected inflation declines under both states, depressing

inflation in the bad state. When the ZLB is not binding, the central bank responds

by lowering the interest rate in the bad state. However, for sufficiently low levels of

inflation in the good state, the central bank encounters the zero lower bound in the bad

state. The existence of this threshold creates the kink in the blue line. When inflation

is below this threshold, the ZLB constraint is binding in the bad state and any further

decline in inflation in the good state implies an increase in the real interest rate in the

2Next period’s inflation expectations are the weighted average of the equilibrium inflation expectations
in the two states. In symbols, EtΠt+1 = pHH ΠH + (1− pHH) ΠL, where pHH is the probability that
the economy will stay in the good state in the next period and Πi, i ∈ {H,L}, denotes the equilibrium
inflation in the state ζdt+1 = ζi.
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Figure 2: Equilibrium interest rate and inflation when the preference shock is high (good state) for
various volatilities of shocks. The red dashed line in this figure represents the Taylor rule in the good
state, subject to the ZLB constraint. The blue line in the same figure conflates the restrictions imposed
on the inflation rate and the nominal interest rate in the good state by all the remaining equations
–including the equations conditional on the bad state. The intersections between the red dashed line
and the blue solid line are the (stable) Rational Expectations equilibria in the good state. The blue
dashed-dotted line captures the counterfactual case in which we do not impose the ZLB constraint on
the nominal interest rate in the bad state and hence the slope of the blue line does not change.

bad state, which exacerbates the recession and the drop in inflation in the bad state. In

the good state, agents anticipate that the recession and deflation in the bad state will be

more severe and these beliefs determine a steeper decline in inflation expectations and

the nominal interest rate in the good state. For comparison, the blue dashed-dotted line

captures the counterfactual case in which we do not impose the ZLB constraint on the

nominal interest rate in the bad state and hence the slope of the blue dashed-dotted line

does not change.

The four plots of Figure 2 show the equilibrium in the good state for various levels of

volatility (low, medium, high, very high).3 Across the four plots, we can see that as the

volatility of the demand shock increases, the kink in the blue line occurs for larger values

of ΠH , implying that the ZLB becomes a more relevant concern, even if the economy is

3The mean of the binary random variable ζdt is unchanged when we raise its variance throughout
this exercise. We consider scenarios of low volatility (ζdL = 0.975, ζdH = 1.01), medium volatility (ζdL =
0.9062, ζdH = 1.0375), high volatility (ζdL = 0.8375, ζdH = 1.065) and very high volatility (ζdL = 0.7687,
ζdH = 1.0925) with a transition probability of staying in the good state p = 0.9 and that of staying in the
bad state q = 0.75 fixed across these four scenarios.
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currently in the good state.

In the upper left graph of Figure 2, we consider a low-volatility scenario. The volatility

is relatively low and hence the severity of the negative preference shock is contained. In

this case, there are two equilibria in the good state of the economy. One equilibrium

implies that the nominal interest rate is not constrained (the star mark in the plot) and

the other one is constrained by the ZLB (the square mark in the plot) in the good state.4

In what follows, we disregard the equilibrium implying that the ZLB is binding in the

good state and focus on the other equilibrium, corresponding to the star mark in the

plot. In the upper-left plot, the economy is away from the ZLB. Furthermore, in this case

the negative preference shock is too small to make the ZLB constraint binding in the bad

state. This can be seen by observing that the equilibrium of interest, which is denoted

by the star mark in the graph, lies on the flatter part of the blue line.

We now slightly increase the volatility of the preference shock, which implies that the

negative preference shock is now larger than what it was in the previous case. Now the

target equilibrium lies on the steeper part of the blue line, implying that the economy will

go to the ZLB if a negative preference shock will hit tomorrow. These expectations have

important effects on today’s equilibrium outcomes. Now inflation is lower than what it

would have been if the blue line were less steep as in the case in which we do not impose

the ZLB constraint (the dashed-dotted blue line in the graph). We call the lower inflation

rate in the good state due to the binding ZLB constraint in the bad state the deflationary

bias. The magnitude of the deflationary bias is shown in the graph.

A further increase in the volatility of the binary preference shock causes the nominal

rate and inflation to fall further, as illustrated in the lower left graph of Figure 2. Now

the deflationary consequences of hitting the ZLB in the bad state are even more severe.

As a result, the inflation rate in the good state falls further down and the deflationary

bias widens. To respond to this large deflationary bias, the central bank has to drive the

nominal interest rate to the ZLB even in the good state. This can be seen in the graph

where the solid blue line intersects the kink of the red dashed line, implying that the two

equilibria now coincide in the graph and the ZLB is binding in the good state under both

equilibria. Furthermore, note that the deflationary bias is now larger than that in the

previous case.

What happens if the volatility increases even further and the realization of the pref-

erence shock in the bad state becomes even worse? The central bank would like to lower

the nominal interest rate further in the good state in order to mitigate the deflationary

pressures owing to the severe deflation expected in the bad state. However, the binding

ZLB constraint in the good state prevents the central bank from doing so. As a result,

4This result is reminiscent of the two steady-state equilibria characterized in a perfect-foresight en-
vironment in the influential paper by Benhabib et al. (2001). However, the equilibria in upper left plot
are derived in a stochastic environment where agents take into account the probability that the economy
may be hit by preference shocks in future periods.
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the fall in inflation expectations combined with the forced inaction of the central bank

leads to an increase in the real interest rate in the good state, which depresses inflation

expectations even further. We call this vicious circle of lower and lower inflation defla-

tionary spirals. In the lower right graph, the blue solid line and the dashed red line do

not intersect, implying that no stable Rational Expectations equilibrium exists.

Three interesting lessons emerge from the analysis carried out in this section. First,

the deflationary bias emerges when agents expect with some probability that the interest

rate will become constrained by the ZLB in the future. Second, the deflationary bias and

the deflationary spirals are intertwined: deflationary spirals occur when the deflationary

bias is so large that the central bank cannot prevent inflation expectations from spiraling

down. Third, when the deflationary bias widens over time a New Keynesian model solved

globally in its nonlinear specification predicts that the economy will eventually slip into

a deflationary spiral.

4 ZLB Risk and Macroeconomic Biases

The previous section illustrated the origins of the deflationary bias and the link between

the deflationary bias and deflationary spirals. We can now return to our full-fledged

quantitative model described in Section 2. In this section, we provide two formal defini-

tions of deflationary bias and use the calibrated model to quantify the size of the bias for

the U.S. economy.

The Deflationary Bias To define the deflationary bias, it is useful to define the

stochastic steady-state equilibrium of the model.5 We define the deflationary bias as

the difference between the rate of inflation at the stochastic steady-state equilibrium and

the central bank’s inflation target, which coincides with the rate of inflation at the deter-

ministic steady state. The deflationary bias arises when inflation at the stochastic steady

state is lower than the central bank’s target.

Both the deterministic and stochastic steady states define an economy that has not

been hit by shocks for a sufficiently long number of periods so that their variables have

stabilized around their steady-state values and do not vary anymore (unless a shock

suddenly hits). However, in the deterministic steady state, agents fail to appreciate the

macroeconomic risk due to future realizations of the shocks. Instead, in the stochastic

steady state, agents appreciate the macroeconomic risks due to future realizations of the

shocks and adjust their behavior accordingly. While in a linear model these two concepts

of steady-state equilibria lead to the same macroeconomic outcome, in non-linear models

whether agents act in response to future macroeconomic risks matters.

5Some scholars use the terms “risky steady state” to refer to what we call stochastic steady state.
See, for instance, Coeurdacier et al. (2011).
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Figure 3: Macroeconomic distortions due the zero lower bound as the volatility of the preference
shocks varies. Left graph: The inflationary bias due to model’s non-linearities. The red star denotes the
calibrated value of the standard deviation of this shock. The difference between the blue solid line and
the black dot-dashed line captures the deflationary effects of a risk of a recession that pushes the nominal
interest rate to its lower bound. Center graph: the same as the left graph but the bias is computed with
respect to output (level). Right graph: the same as the left graph but the bias is computed with respect
to the real interest rate. The gray area marks the region of the values for the standard deviation of
the preference which trigger deflationary spirals. Units: Inflation and real interest bias is measured in
percentage points of annualized rates while the output bias and the standard deviation of the preference
shocks are in percent.

Unlike the stochastic steady state equilibrium, the deterministic steady-state equi-

librium of our model can be characterized analytically.6 The real interest rate in the

deterministic steady state, r∗, coincides with gβ−1 and captures the long-run level of the

real interest rate in the absence of risk. The deterministic steady state of inflation is

pinned down by the inflation target of the central bank, Π, and can be effectively dealt

with as a parameter. The deterministic steady state is not affected by macroeconomic un-

certainty, which influences the optimal behavior of rational agents in non-linear models.

Such volatility drives a wedge between the outcomes of these two steady-state equilibria

and hence fuels the deflationary bias.

The left graph of Figure 3 shows the difference between the inflation rate at the

stochastic steady state and inflation at the deterministic steady state with (blue solid

line) and without the zero lower bound constraint (black dash-dotted line). Comparing

the blue solid line with the black dash-dotted line allows us to isolate the effects of the

ZLB constraint on the inflation bias. From the figure, it is easy to conclude that when

removing the ZLB constraint, the gap between the deterministic and stochastic steady

state is quite low. Instead, the risk of hitting the zero lower bound can lead to large

discrepancies between the desired and realized levels of inflation.

The red star denotes the deflationary bias that arises for the baseline calibration.

6As shown by Benhabib et al. (2001), there exist two deterministic steady-state equilibria once the
zero lower bound on nominal interest rates is taken into account. The first steady state is characterized
by positive inflation and a positive policy rate. The second steady state is characterized by a liquidity
trap, that is, a situation in which the nominal interest rate is near zero and inflation is possibly negative.
In line with most of the literature studying new-Keynesian models, we focus on the positive-inflation
deterministic steady state.
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Inflation undershoots the central bank’s inflation target by 23 basis points because of

the risk of hitting the ZLB in the future, which is broadly in line with findings in other

empirical papers (e.g., Hills et al. 2019 and Amano et al. 2019). We then study the

effects of an increase in the volatility of the preference shock, the shock that is more

likely to trigger the ZLB. As the macroeconomic volatility increases, the bias widens up

exponentially. A 10 basis-point increase in the standard deviation of preference shocks

causes a 11-basis-points reduction in the model’s long-run inflation rate. Furthermore, it

would take just around an 18 basis-point increase in the standard deviation of preference

shocks to make deflationary spirals possible. Since our calibration targets moments based

on a period of low macroeconomic volatility, these results suggest a concrete risk of

deflationary spirals.

The deflationary bias grows at a faster pace as the standard deviation of the shocks

increases because so does the probability of hitting the ZLB. Appendix C shows how the

probability of hitting the ZLB varies strongly nonlinearly in response to the volatility of

preference shocks. This result can also be inferred by noting that the slope of the black

dash-dotted line, which captures the counterfactual case where the ZLB constraint is not

enforced, is tiny and close to constant.

The Output Bias The center graph of Figure 3 shows the effects of the risk of hitting

the ZLB on the long-run level of output. As before, the long-term output bias due to

the zero lower bound is given by the vertical difference between the blue solid line and

the solid dashed-dot line, which corresponds to the bias when the ZLB constraint is not

imposed. For sufficiently large values of volatility, the output bias is positive (output is

higher than its level at the deterministic steady state equilibrium) because the central

bank conducts an accommodative monetary policy to respond to the deflationary bias.

Since the central bank applies the Taylor principle (θΠ > 1), this expansionary monetary

policy leads to a negative bias in the real interest rate, as shown in the right graph of

Figure 3.

It should be noted that absent the ZLB constraint or for sufficiently low volatility of

shocks, there would be a small downward output bias due to to precautionary motives.

However, the positive bias due to the lower bound constraint dominates these other effects

for our benchmark calibration, which is marked by the red star in the plot.

Implications of a low interest rate environment The results that we have dis-

cussed so far rely on the assumption that the long-run real rate of interest is fixed and

equal to 1.5 percent. Figure 4 shows the effects of changing both the standard deviation

of the shocks and the long-term real rate of interest r∗ on the inflationary, output, and

real interest rate biases. The important takeaway from this graph is that for sufficiently

large values of the long-term real interest rate r∗, the deflationary bias disappears. The
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Figure 4: Macroeconomic distortions due the zero lower bound as the standard deviation of preference
shocks varies (x-axis) and for alternative values of the steady-state real rate of interest. Left graph: The
inflationary bias due to the zero lower bound constraint. The red star denotes the calibrated value of
the standard deviation of this shock. Center graph: the same as the left graph but the bias is computed
with respect to output (level). Right graph: the same as the left graph but the bias is computed with
respect to the real interest rate. Units: Inflation and real interest bias is measured in percentage points
of annualized rates while the output bias and the standard deviation of the preference shocks are in
percent.

intuition is straightforward: when the long-term real interest rate is higher, it takes a

bigger shock to make the ZLB constraint binding. Thus, the probability that the ZLB

constraint will become binding falls, leading to a reduction in the deflationary bias (see

Figure 11).

A higher real rate of interest r∗ would make the function of the deflationary bias less

steep and therefore would increase the threshold of the shock volatility that triggers the

deflationary spirals. It is also interesting to notice that an increase in the long-term real

rate of interest of one percentage point more than halves the deflationary bias in our

benchmark calibration, denoted by the red star in the graph. The size of the bias due to

non-linearities in the model other than the ZLB does not vary with the long-term real

interest rate (not shown), suggesting that the long-term macroeconomic biases linked to

a low-interest-rate environment is entirely due to one specific source of non-linearity in

the New Keynesian model: the zero lower bound.

To sum up, the deflationary bias brought about by the risk of hitting the ZLB con-

straint in the future can generate first-order distortions for a central bank that tries to

anchor long-term inflation expectations to its desired target Π. Furthermore, we noticed

that the combination of a low long-term real interest rate, r∗, and moderate macroeco-

nomic risk can trigger the long-run bias in inflation and output or, even worse, deflationary

spirals.

An Alternative Definition of the Deflationary Bias: The Average Bias The

notion of deflationary bias introduced in the previous section can be measured only within

the context of a structural model. A concept of deflationary bias that can be observed
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more directly in the data is the average deflationary bias, which we define as the difference

between the model’s unconditional mean of inflation and the central bank’s inflation

target Π. This alternative definition of deflationary bias does not only reflect the risk of

hitting the ZLB, but it also reflects the inflation outcomes observed when ZLB episodes

actually materialize.

To compute the unconditional inflation bias, we simulate the model for several peri-

ods and then compute the mean of the variables of interest. The behavior of the average

inflationary bias mimics that of the deflationary bias based on the notion of stochastic

steady state as shown in Figure 3. The average deflationary bias predicted by the cali-

brated model is 28 annualized basis points, which is consistent with the deflationary bias

shown in Figure 1.

5 The Asymmetric Rule

We have shown that the deflationary bias induced by the ZLB increases when the real

interest rate r∗ declines or macroeconomic volatility rises. We now turn our attention to

what the central bank can do to address the deflationary bias under the two definitions

introduced in the previous section.

5.1 The Asymmetric Strategy

The policy strategy that we study in this paper implies a smaller response to inflation

when inflation is above target.7 Specifically, we consider the following modified policy

rule:

RN
t

R
=

(
RN
t−1

R

)ρR ([
1Πt<Π

(
Πt

Π

)θΠ
+ (1− 1Πt<Π)

(
Πt

Π

)θΠ]( Yt
Y ∗t

)θY)1−ρR

exp (σmεmt ) ,

(8)

where θΠ denotes the response to inflation when inflation is below target, θΠ stands for

the response to inflation when inflation is above target, and 1Πt<Π is an indicator function

that is equal to one when inflation is below target (Πt < Π). In what follows, we set

θΠ = 2.5 as in the benchmark calibration of Section 2.2 and study how the average and

stochastic steady state biases vary in response to changes in θΠ.

The asymmetric rule (8) allows for an autoregressive component. This is to make sure

that the only difference with respect to the symmetric rule used to calibrate the model

7Alternatively, we can study an asymmetric strategy that implies a stronger response to inflation
when inflation is below target. This strategy would also remove the bias as analyzed in Appendix G.
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Figure 5: Macroeconomic biases due to the ZLB constraint as the central bank varies its response to
positive deviations of inflation from target. The inflation bias (left plot), the output bias (center plot),
and the real interest rate bias (the right plot) are computed by taking the difference between these
variables at the stochastic steady state and their value at the deterministic steady state (blue solid line).
These biases are also computed as the difference between the unconditional mean of these three variables
and their value at the deterministic steady state (red dashed-dotted line). The response when inflation
is below target is always equal to 2.5 as in the benchmark calibration. The red star marks the symmetric
case in which the central bank responds with equal strength to inflation or deflation. Units: The inflation
and the real interest rate biases are expressed in annualized percentage points and the output gap in
percentage points.

– equation (7) – consists of an asymmetric response to inflation. In turn, we allowed for

an autoregressive component in the symmetric rule to match the observed smoothness

in interest rates. As shown in a working paper version of this paper (Bianchi et al.

2019), asymmetric rules can completely close the deflationary bias even if no interest rate

smoothing is embedded in the rule.

The asymmetric rule in equation (8) can be interpreted as a strategy according to

which the central bank is slower in raising rates when inflation goes above target. This

strategy reduces the risk of encountering the zero lower bound and its undesirable effects.

It is therefore particularly effective in a low interest rates environment, like the current

one, in which the biases on key macroeconomic variables can be sizable.

Figure 5 shows how the macroeconomic distortions due to the zero lower bound vary

as a function of the central bank’s response to above-target inflation. We examine the

behavior of the bias away from the zero lower bound (stochastic steady state, the blue

solid line) and its unconditional mean (average bias, the red dashed-dotted line).8 The

red stars denote the distortion under a symmetric rule with a response to inflation equal

to 2.5, as in the benchmark calibration.

We observe that being less aggressive when inflation is above target helps to miti-

gate all three macroeconomic biases shown in three plots of Figure 3. Specifically, for

a response θΠ close to one, the ZLB-driven macroeconomic distortions become negligi-

ble. In a nutshell, to remove the macroeconomic distortions due to the ZLB constraint,

8The average bias is computed by taking the mean of inflation, output, and the real interest based
on a simulation lasting 250,000 periods. We drop the first 50,000 observations to minimize the effects of
initial conditions.
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policymakers need to be willing to be less proactive in increasing the interest rate when

inflation is running above target. This strategy makes deviations of inflation above the

target more likely, offsetting the downside risk of inflation due to ZLB risk. As a re-

sult, the probability and the frequency of the ZLB constraint fall, mitigating or even

eliminating the deflationary bias under either definition.

Importantly, Figure 5 shows that the two concepts of bias move closely together.

This should not be surprising since the driver of the stochastic bias and the average

bias is the same: the probability of hitting the ZLB. Indeed, by substantially reducing

this probability, the asymmetric strategy closes both notions of deflationary bias. By

reanchoring the long-run inflation expectations to the desired target Π, the asymmetric

strategy also makes the deflationary spirals less likely. This is an important point to

which we will return in Section 5.4.

It should be noted that the unconditional deflationary bias (the red dashed line)

is always larger than the deflationary bias (the blue solid line). When computing the

unconditional bias, the zero lower bound is not a mere possibility, but an event that

occasionally occurs and, in fact, depresses the dynamics of inflation. Thus, average

inflation bias is generally even further away from the desired inflation target because the

economy experiences the deflationary pressures associated with the ZLB period.

The Asymmetric Strategy Is Not a Makeup Strategy The asymmetric strategy

proposed in this paper removes the deflationary bias because it raises the probability of

inflation on the upside and, in doing so, offsets the downside risk due to the ZLB. Hence,

our strategy differs from the so-called makeup strategies (e.g., price-level targeting, and

average inflation targeting) that correct the deflationary bias by committing the central

bank to overheat the economy after a ZLB episode. Consequently, makeup strategies

rely on history dependence which – it is often argued – makes these strategies hard to

communicate to the public and possibly risky as policymakers should also commit to

cause deflation if the price level or average inflation have been too high in the past.

While both approaches require the central bank to make some sort of commitment,

the nature of the commitment is very different. The asymmetric strategy commits the

central bank to respond asymmetrically to deviations of inflation from the central bank’s

target with no account for the past dynamics of inflation. The asymmetric strategy

never requires the central bank to engineer an overshooting in inflation or a recession

after a period of above-target inflation. In Appendix D, this important property of the

asymmetric strategy is illustrated using a simulation exercise.

In the academic literature, there has been an ample discussion about the possibility

of increasing the inflation target as a way to avoid the perils of the zero lower bound.

An increase in the target would reduce the possibility of hitting the zero lower bound,

as shown by Coibion et al. (2012). However, Nakamura et al. (2018) show that standard
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models are unreliable when it comes to assess the welfare implications for the optimal

inflation target. Moreover, policymakers have been quite reluctant to reconsider the

target of inflation because they fear losses of reputation and argue that higher inflation

is historically associated with more volatile inflation.

5.2 Counterfactual Analysis of the Asymmetric Rule

So far, the efficacy of the asymmetric rule was studied either in the absence of past

shocks or by simulating the model with shocks drawn from their theoretical Gaussian

distributions - the so-called average deflationary bias. Now we move a step forward and

evaluate whether the asymmetric strategy would have been effective in removing the

deflationary bias observed in the US over the past twenty years.

We use the calibrated model to compute core PCE inflation under the (counterfactual)

assumption that the central bank had adopted the asymmetric rule in the first quarter

2000. First, we use the particle filter (see e.g. Fernández-Villaverde and Rubio-Ramı́rez,

2007) to estimate the structural shocks that explain the time series of real percapita

GDP growth, core PCE inflation, and the federal funds rate using the model with the

symmetric rule (benchmark calibration in Table 1).9 Second we use these estimated

shocks to simulate the model assuming that in the first quarter of 2000, the central

bank (unexpectedly) switches to an asymmetric rule.10 The Appendix H provides further

details on the particle filter and the counterfactual analysis.

This exercise covers the first quarter of 1990 through the fourth quarter of 2019. The

observables are real GDP per capita growth, PCE core inflation, and the effective federal

funds rate. We calibrate the asymmetric rule so as to minimize the gap between the

10-year moving average of inflation in 2019:Q4 and the two-percent inflation target.

In the left plot of Figure 6, we compare core PCE inflation in the data to the counter-

factual series of inflation, which our model with the switch to the asymmetric rule in 2000

predicts when simulated with the estimated shocks. The asymmetric strategy would have

pushed inflation slightly upward throughout the entire sample. The right plot displays

the 10-year moving average of core PCE inflation and the counterfactual inflation. We

observe that counterfactual trend inflation fluctuates symmetrically around two percent.

This finding suggests that the asymmetric strategy would have corrected the observed

downward trend in the average core PCE inflation, shown in Figure 1.

9The policy rule is assumed to be symmetric in line with the previous framework of the Federal
Reserve. The particle filter can estimate the sequence of shocks for non-linear models. We use an
adapted particle filter following Herbst and Schorfheide (2015) and as applied in Aruoba et al. (2018)
and Atkinson et al. (2020), among others.

10Rottner (2021) also uses this two-step procedure, which rests on using the particle filter to estimate
the realizations of the shocks, to conduct counterfactuals.
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Figure 6: Counterfactual (trend) inflation dynamics with an asymmetric monetary policy rule rule.
Year-to-year PCE core inflation and its ten-year moving average in the data relative to a scenario, in
which the central bank adopted an asymmetric rule in 2000:Q1 onwards. The counterfactual scenario
simulates the economy with an asymmetric rule using estimated structural shocks from a particle filter.
Unit: Annualized percentage rates.

5.3 Welfare Analysis

In the previous section, we showed that the central bank would have hit the elusive

inflation target if it had adopted an asymmetric inflation target. We now evaluate the

appeal of the asymmetric strategy by measuring its impact on households’ welfare W0,

defined in equation (1).

Figure 7 shows welfare Wt (left axis) and the inflation bias (right axis) as a function of

the central bank response to above-target inflation in the asymmetric rule. As the central

bank deviates from the symmetric strategy (the red star) by lowering the response to

above-target inflation, welfare increases. The adoption of the asymmetric strategy allows

the central bank to mitigate the deflationary bias, raising long-term inflation expectations

and reducing the probability of falling into the ZLB in the future. The diminished risk of

being constrained by the ZLB lowers macroeconomic volatility, improving welfare. When

this response is close to 1.1, the welfare peaks – denoted by the blue star marker – and

then it declines as the response to positive inflation deviations from target is further

decreased.

It should be noticed that the asymmetric strategy that completely removes the defla-

tionary bias, is suboptimal in that it allows too large and persistent positive deviations

of inflation from the central bank’s target. To see this, note that the optimal asymmet-

ric rule solves the following trade-off. On the one hand, by tolerating some persistent

positive deviations of inflation from its target the central bank manages to mitigate the

deflationary bias. On the other hand, the central bank allows larger positive deviations
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Figure 7: Welfare and inflation bias as the response to positive deviations of inflation from target varies
in magnitude. Welfare bias on the left axis is shown by the blue solid line and is reported on the left axis.
The inflation bias on the right axis is shown by the red dashed-dotted line and is defined as the difference
between the annualized percentage rate of inflation at the stochastic steady state and the annualized
percentage rate of inflation at the deterministic steady state.

of inflation from its target.

Opportunistic Reflation While we showed in Figure 7 that abandoning the symmet-

ric rule to adopt an asymmetric strategy improves welfare, there may be cases in which

it is arguably hard for the central bank to convince the public that it has adopted an

asymmetric strategy. For instance, the central bank could be perceived to be myopic or

unable to fully understand the functioning of the economy. In this case, the central bank

needs an opportunity to show the public its commitment to the new asymmetric rule.

The arrival of a shock that pushes inflation above target is such an opportunity. We call

this scenario opportunistic reflation.

In this scenario, the optimal asymmetric rule widens the output and inflation gaps

in the short run relative to the symmetric rule, whereas it mitigates the macroeconomic

gaps in the long run. However, welfare raises both in the short run and in the longer

run because the welfare gains associated with the mitigation of the macroeconomic biases

outweigh the short-term losses due to the larger inflationary consequences of the shocks.

In Appendix F, we show the effects of an opportunistic reflation with a simulation exercise

and study the implications of a myopic central banker who does not internalize the long-

term benefits of the opportunistic reflation.

5.4 Asymmetric Rules and Deflationary Spirals

As already discussed in Section 4, adopting an asymmetric strategy does not only remove

the deflationary bias but it also lowers the risk for the economy of experiencing deflation-

ary spirals. Since in our model parameters are fixed, welfare is not directly affected by

this risk. Nevertheless, falling into a deflationary spiral may be very costly for the econ-

omy. The gray areas in Figure 8 denote the values of the standard deviation of preference
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Figure 8: Asymmetric Rule and Deflationary Spirals. The left plot: the values of the standard deviation
of preference shocks above which deflationary spirals arise as the above-target response to inflation varies
and the below-target response is set to be equal to 2.5. The right plot: the values of the real long-term
interest rate below which deflationary spirals arise as the above-target response to inflation varies and
the below-target response is set to be equal to 2.5.

shocks and the values of the long-term real interest rate that trigger the deflationary

spirals for any given above-target response to inflation. The bigger the asymmetry in

the parameters of the rule, the larger the macroeconomic uncertainty (the smaller the

real rate of interest) has to be to trigger deflationary spirals. This is because asymmetric

rules lower the risk of encountering the ZLB.

Mertens and Williams (2019) study a rule according to which the Federal Reserve

enforces an upper bound on the federal funds rate to resolve the deflationary bias. This

rule, while correcting the bias, would imply an increase in the probability of inflationary

spirals because effectively monetary policy becomes passive when inflation goes above a

certain level. Therefore, such a rule reduces the risk of deflationary spirals at the cost of

increasing the risk of triggering inflationary spirals. Instead, our asymmetric rule implies

active responses to inflation deviations from the target and hence does not expose the

economy to the risk of indeterminately large increases in inflation.

6 Target Ranges

In a recent meeting, the FOMC focused on two classes of alternative proposals to revisit

the long-run monetary policy framework. The first class involves dynamic strategies that

make up for periods of below-target inflation. The second class is in line with what ad-

vocated in this paper and it includes “those [strategies] that respond more aggressively

to below-target inflation than to above-target inflation,” (minutes of the FOMC meet-

ing, September 17–18, 2019). According to the minutes, several FOMC members also

proposed a specific way to implement the asymmetric strategy: “In this context, several

participants suggested that the adoption of a target range for inflation could be helpful

in achieving the Committee’s objective of 2 percent inflation, on average, as it could
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help communicate to the public that periods in which the Committee judged inflation to

be moderately away from its 2 percent objective were appropriate.” In what follows, we

show that the asymmetric strategy proposed in this paper can in fact be implemented

using target ranges as long as the target range is in itself asymmetric around the inflation

objective.

To illustrate this point, we consider the following policy rule:

RN
t

R
=

(
RN
t−1

R

)ρR ([
1Πt /∈[ΠL,ΠH ]

(
Πt

Π

)θOΠ
+ 1Πt∈[ΠL,ΠH ]

(
Πt

Π

)θIΠ]( Yt
Y ∗t

)θY)1−ρR

exp (σmεmt ) .

(9)

This policy rule prescribes a different response to deviations of inflation from the

objective Π depending on how far inflation is from the desired level. Specifically, when

inflation is inside the target range [ΠL,ΠH ], the central bank adjusts the interest rate

less aggressively than what it does when inflation is outside the target range: θIΠ < θOΠ .11

Such a rule is arguably easy to communicate. For example, if the in-range response θIΠ
is set to zero, the central bank could simply announce that levels of inflation inside the

target range are not reason of concern. However, an asymmetric target range is required

to correct the deflationary bias. To assess the target range, we simplify the model and

consider only preference shocks.12

In the left panel of Figure 9, we fix the in-range response to inflation to zero (θIΠ = 0),

while keeping the out-of-range response unchanged with respect to the benchmark case

(θOΠ = 2.5). We then report the target ranges that remove the deflationary bias (the

solid blue line). Specifically, for each value of the lower bound of the target range, ΠL,

we report on the y-axis the upper bound, ΠH , that corrects the deflationary bias. Thus,

the U-shaped line reported in the panel represents all the pairs [ΠL,ΠH ] such that the

deflationary bias is fully corrected.

We start with a lower-bound ΠL equal to 1.5%. In this case the upper bound needs

to be only slightly larger than 3.0%, implying a modest level of asymmetry around the

2% objective. As the lower bound keeps increasing, the upper bound starts declining,

but the asymmetry always remains. For instance, a target range [1.75%, 2.7%] would also

allow the central bank to remove the deflationary bias. To see this, note that the solid

blue curve is always above the red-dashed line that implies a symmetric target range

around the two-percent target. When the lower bound reaches the 2% objective, the

upper bound is around 2.6%. Thus, a target region [2%, 2.6%] is necessary to achieve the

11The target range rule could also be expressed in deviations from the boundaries of the target range.
We prefer this formulation because it nests both a standard Taylor rule and the asymmetric rule presented
above.

12The standard deviation of the preference shock is set to 2.50% so that the same asymmetric rule
closes the bias in the simplified model.
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Figure 9: The target range required to close the deflationary bias. The left plot: the blue line shows the
lower and upper bounds of the range that closes the deflationary bias when the central bank’s in-range
response to inflation is zero. The dashed red line marks the bounds implied by the symmetric target
range. The right plot: the blue line shows the upper bound of the range as the central bank’s in-range
response to inflation varies on the horizontal axis. The lower bound of the range is fixed to 2 percent.
The vertical red-dashed line is an asymptote that arises when the in-range response to inflation equals
the above-target response to inflation in the asymmetric rule that removes the deflationary bias.

2% objective under the assumption of an in-range response to inflation equal to zero.

It should be noted that a target region with a lower bound equal to the 2% target is

conceptually very similar to the asymmetric rule presented in Section 5. When inflation

is below the objective, the response of the policy rate is strong. When inflation is above

the target the response is weaker, but in a piecewise fashion. The advantage of the target

range is arguably that it preserves the message that excessively high levels of inflation

will not be tolerated.

The gray area of the graph denotes values of the lower bound ΠL that are larger than

the objective 2%. While these target ranges also succeed in eliminating the deflationary

bias, we believe that they are less interesting because they are not so easy to communi-

cate: The target range now excludes the inflation objective (ΠL > Π). Nevertheless, we

review this case for completeness. Once the lower bound become larger than the inflation

objective, the upper bound of the target range starts increasing again. This is consistent

with the results presented so far. Recall that in order to correct the deflationary bias,

a rule needs to feature more tolerance to high inflation than to low inflation. When the

target range is above the desired objective, higher and higher levels of inflation become

progressively acceptable.

The right panel of Figure 9 shows that the amount of asymmetry required to correct

the deflationary bias depends on the strength with which the central bank responds to

inflation inside the target range. In this exercise, the lower bound of the target range is

fixed to 2%. On the x-axis, we report different values of the in-range response to inflation
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θIΠ. For each of them, the y-axis reports the upper-bound ΠH required to remove the

deflationary bias. When the in-range response is equal to zero, the upper bound is around

2.6%, implying only a mild level of asymmetry around the 2% objective: [2%, 2.6%]. How-

ever, as the in-range response θIΠ increases, the required level of asymmetry of the target

range increases. For example, with an in-range response θIΠ equal to 0.5, the required

target range becomes: [2%, 2.74%]. This pattern accelerates as the inside-range response

is raised until the blue line approaches a vertical asymptote. The level of asymmetry goes

to infinity as the in-range response θIΠ approaches one and the target range rule collapses

to the asymmetric rule of Section 5 that removes the deflationary bias. Indeed, the rule

presented in Section 5 can be thought as a degenerate target range rule in which the

upper bound of the target range goes to infinity.

Summarizing, a target range can be an effective way to implement an asymmetric

policy strategy. However, the target range needs to be asymmetric around the desired

objective for inflation. The extent of the asymmetry depends on the response to inflation

inside the target range. In the benchmark case of a zero response inside the range, we show

that the range needed to remove the deflationary bias is only modestly asymmetric. An

asymmetric target range is arguably easy to communicate. For example, if the in-range

response is set to zero, the central bank could simply announce that levels of inflation

inside the target range are not reason of concern. At the same time, a target range

allows the central bank to preserve the message that excessively high inflation will not

be tolerated. As such, this asymmetric target range can be viewed as a good compromise

between those policymakers who prefer a hawkish approach toward inflation stabilization

and those who hold more dovish positions.

7 Conclusions

In an environment in which monetary policy faces the risk of encountering the zero

lower bound, inflation tends to remain persistently below target, even if monetary policy

is not constrained. We provide a proof of the non-existence of Rational Expectations

equilibrium that arises when either long-run real interest rates or the volatility of shocks

make the deflationary bias sufficiently large. An asymmetric strategy –according to which

the central bank reacts less aggressively to positive deviations of inflation from its target

than to negative deviations– can effectively remove this deflationary bias, improve social

welfare, and reduce the risk for the economy to fall into highly costly deflationary spirals.

We use a counterfactual simulation to show that this asymmetric rule would have removed

the deflationary bias observed in the United States over the past twenty years.
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A Non-linear Solution Method

The model features a trend in the level of technology so that the model is detrended to

induce stationarity. We outline the solution to the detrended model, where detrended

variables are defined as follows X̃ = Xt
Zt

.

Solving the representative household’s problem yields the Euler equation

1 = βRtEt
[
ζdt+1

ζdt

λt+1

λt

1

Πt+1gt+1

]
, (10)

where λt =
(
C̃t − hC̃t−1/gt

)−σ
is the adjusted multiplier on the budget constraint, Πt =

Pt/Pt−1 is gross inflation, and the labor supply

W̃t = χHη
t λ
−1
t . (11)

The firm j produces output with labor as the only input

Ỹt(j) = Ht(j) (12)

The firm j sets the price Pt (j) of its differentiated goods j so as to maximize its profits:

Divt(j) = Pt(j)

(
Pt(j)

Pt

)−ε
Yt
Pt
−MCt

(
Pt(j)

Pt

)−ε
Yt −

ϕ

2

(
Pt(j)

ΠPt−1(j)
− 1

)
Yt, (13)

subject to the downward sloping demand curve for intermediate goods. The parameter

ϕ > 0 measures the cost of price adjustment in units of the final good.

The first order condition is

(ε− 1)

(
Pt(j)

Pt

)−ε
Yt
Pt

= ε MCt

(
Pt(j)

Pt

)−ε−1
Yt
Pt
− ϕ

(
Pt(j)

ΠPt−1(j)
− 1

)
Yt

ΠPt−1(j)
+

ϕEtΛt,t+1

(
Pt+1(j)

ΠPt(j)
− 1

)
Pt+1(j)

ΠPt(j)

Yt+1

Pt(j)
(14)

where the stochastic discount factor Λt,t+1 is

Λt,t+1 = βEt

[(
ζdt+1

ζdt

)(
λt+1

λt

)
1

gt+1

]
(15)

In equilibrium all firms choose the same price. Thus, the New Keynesian Phillips curve

is

[
ϕ

(
Πt

Π
− 1

)
Πt

Π

]
= (1−ε)+ε MCt+ϕβEt

[(
ζdt+1

ζdt

)(
λt+1

λt

)(
Πt+1

Π
− 1

)
Πt+1

Π

Ỹt+1

Ỹt

]
(16)
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The monetary authority sets the interest rate Rt responding to inflation and output

from their corresponding targets. The monetary authority faces a zero lower bound

constraint. The policy rule reads as follows

Rt = max
[
1, RN

t

]
, (17)

RN
t =

(
RN
t−1

)ρR [R(Πt

Π

)θΠ( Ỹt
Ỹ

)θY ]1−ρR

exp (σmεmt ) . (18)

where RN
t denotes the notional rate that the monetary authority would set without the

zero lower bound constraint, Π and Y denote the inflation target which pins down the

inflation rate in the deterministic steady state and the natural detrended output level,

which is the level output that would arise if prices were flexible.

The resource constraint is

Ct = Yt

[
1− ϕ

2

(
Πt

Π
− 1

)2
]

(19)

The model is solved with global methods. The agents take the presence of the zero

lower bound into account and form their expectations accordingly. Therefore, the pos-

sibility of hitting the zero lower bound in the future affects potentially the equilibrium

outcome in times of unconstrained monetary policy. We use time iteration with piece-

wise linear interpolation of policy functions as in Richter et al. (2014).13 Expectations

are calculated using numerical integration based on Gauss-Hermite quadrature.

The state variables Xt are C̃A
t−1, RN

t−1, εmt , gt and ζdt while the policy variables are Πt

and labor Ht:

Πt = g1(C̃t−1, R
N
t−1, ε

m
t , gt, ζ

d
t ) (20)

Ht = g2(C̃t−1, R
N
t−1, ε

m
t , gt, ζ

d
t ) (21)

where g = (g1, g2) and gi : R1 → R1. To solve the model, we approximate the unknown

policy functions with piecewise linear functions g̃i that can be written as:

Πt = g̃1(C̃t−1, R
N
t−1, ε

m
t , gt, ζ

d
t ) (22)

Ht = g̃2(C̃t−1, R
N
t−1, ε

m
t , gt, ζ

d
t ) (23)

The time iteration algorithm to solve for the policy functions is summarized below:

1. Define a discretized grid for the states
{[
C,C

]
,
[
RN , R

N
]
,
[
g, g
]
, [εm, εm] ,

[
ζd, ζ

d
]}

and the integration nodes ε =
{[
εg,I , εg,I

]
,
[
εm,I , εm,I

]
,
[
εζ
d,I , εζ

d,I
]}

.

13This approach can handle the non-linearities associated with zero lower bound.
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2. Guess the piece-wise linear policy functions g̃(C̃t−1, R
N
t−1, ε

m
t , gt, ζ

d
t ).

3. Solve for all time t variables for a given state vector ζdt . The policy variables are:

Πt = g̃1(C̃t−1, R
N
t−1, ε

m
t , gt, ζ

d
t ) (24)

Ht = g̃2(C̃t−1, R
N
t−1, ε

m
t , gt, ζ

d
t ) (25)

so that the remaining variables are given as:

Ỹt = Ht (26)

C̃t = Ỹt(1− 0.5ϕ

(
Πt

Π
− 1

)2

) (27)

RN
t =

(
RN
t−1

)ρR [R(Πt

Π

)θΠ( Ỹt
Ỹ

)θY ]1−ρR

exp (σmεmt ) (28)

Rt = max
[
1, RN

t

]
(29)

λt =
(
C̃t − hC̃t−1/gt

)−σ
(30)

Wt = χHη
t λ
−1
t (31)

MCt = W̃t (32)

Calculate the state variable for period t+ 1 at each integration node i:

ζd,it+1 = exp
(
ρζ log(ζdt ) + εζ

d,i
t+1

)
(33)

git+1 = ḡ + εg,it+1 (34)

εm,it+1 = εm,it+1 (35)

For each integration node git+1, ε
m,i
t+1ζ

i,d
t+1, calculate the policy variables and solve for

output and consumption:

Πi
t+1 = g̃1(C̃t, R

N
t , ε

m,i
t+1, g

i
t, ζ

d,i
t ) (36)

H i
t+1 = g̃2(C̃t, R

N
t , ε

m,i
t+1, g

i
t, ζ

d,i
t ) (37)

Ỹ i
t+1 = H i

t+1 (38)

C̃i
t+1 = Ỹ i

t+1(1− 0.5ϕ

(
Πi
t+1

Π
− 1

)2

) (39)

Calculate the errors for the Euler Equation and the New Keynesian Phillips curve

err1 = 1− βRtEt

[ζdt+1

ζdt

λt+1

λt

1

Πt+1gt+1

]
(40)
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Figure 10: Histogram of the residual errors in the Euler equation and New Keynesian Phillips Curve
based on a simulation of 200000 periods. The residual errors, which are displayed on the vertical axis, is
transformed with the common logarithm.

err2 = ϕ

(
Πt+1

Π
− 1

)
Πt

Π
− (1− ε)− εMCt− (41)

βEtϕ

(
ζdt+1

ζdt

)(
λt+1

λt

)(
Πt+1

Π
− 1

)(
Πt+1

Π

)
Ỹt+1

Ỹt

where the expectations are numerically integrated across the integration nodes. The

nodes and weights are based on Gaussian-Hermite quadrature.

4. Use a numerical root finder to minimize the errors for the equations.

5. Update the policy functions until the errors at each point of the discretized state

are sufficiently small.

We discretize the two endogenous state variables RN and C̃ in 11 evenly-spaced points

with bounds at ±2% and ±3.75% around their respective deterministic steady state. The

preference shock ζdt is discretized in 15 evenly-spaced points with bounds chosen to be

±6σζ
d

around the deterministic steady state. The remaining two shocks gt and εmt are

discretized in 7 evenly-spaced points, where the bounds are chosen to be ±3σg and ±3σm,

respectively, around the deterministic steady state. This results in a total of 88935 nodes.

The Gauss-Hermiture quadradutre nodes provides the integration nodes
[
εg,i, εm,i, εζ

d,i
]

and the corresponding weights ξ(i) for all integration nodes i ∈ {1, 2, . . . , I}. We use 9

nodes for the preference shock, 5 nodes for the monetary policy shock and 5 nodes for

the growth shocks so that we evluate the expectations using I = 225 weighted points.

An overview of the numerical accuracy is provided in Figure 10, where the distribution

of the residual error of the Euler equation and the New Keynesian Phillips Curve for the

baseline economy with the zero lower bound and symmetric monetary policy based on a

simulation of 20000 periods is shown.

31



B A Model with Binary Realizations of the Shock

In this binary case, we treat the Taylor rule in the good state and all the other remaining

equilibrium equations separately. Using different candidates of inflation for the good state

(ΠH), we calculate two nominal interest rates for the good state RH1(ΠH) and RH2(ΠH).

The first one stems from the Taylor rule, while the other one results from the other

remaining equations.

The candidate for the nominal interest rate RH1(ΠH) resulting from of the Taylor rule

in the good state reads as follows:

RH1 = max

[
1, R

(
ΠH

Π

)θΠ]

This equation corresponds to the red line in Figure 2.

The other equilibrium equations in the good state give another solution for the nominal

interest conditionally on ΠH . The remaining equations in the good state are given as:

1 = βRH2
[
(1− p) ζ

d
L

ζdH

(CH

CL

)σ 1

ΠL
+ p

1

ΠH

]
, (42)

Y H = HH , (43)

MCH = χHH
t

η
cH

σ
, (44)

CH = Y H(1− ϕ
(

ΠH

Π
− 1

)2

/2) (45)

ϕ

(
ΠH

Π
− 1

)
ΠH

Π
= (1− ε) + εMCH (46)

+ ϕβ

[
(1− p) ζ

d
L

ζdH

(CH

CL

)σ(ΠL

Π
− 1

)(
ΠL

Π

)
Y L

Y H
+ p

(
ΠH

Π
− 1

)(
ΠH

Π

)]

Since the good-state equilibrium outcomes depend on the bad state, we have to solve for

the equilibrium in the bad state. An equilibrium in the bad state satisfies the following

equations:

RL = max

[
1, R

(
ΠL

Π

)θΠ]
(47)

1 = βRL
[
(1− q)ζ

d
H

ζdL

(CL

CH

)σ 1

ΠH
+ q

1

ΠL

]
, (48)

Y L = HL, (49)

MCLA = χHL
t

η
cL

σ
, (50)

CL = Y L(1− ϕ
(

ΠL

Π
− 1

)2

/2) (51)
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Figure 11: The risk of the zero lower bound. Left graph: Expected frequency of the zero lower bound as
the variance of preference shocks varies and for different values of the long-run real rate. The frequency
is in percentage points and it is computed as the ratio between the number of periods spent at the zero
lower bound and the total sample size (200,000). Right graph: Probability of hitting the zero lower
bound in the next year conditional on being at the stochastic steady state in the current period for
different values of the variance of preference shocks and of the steady-state real rate. The probability is
expressed in percentage points.

ϕ

(
ΠL

Π
− 1

)
ΠL

Π
= (1− ε) + εMCL (52)

+ ϕβ

[
(1− q)ζ

d
H

ζdL

(CL

CH

)σ(ΠH

Π
− 1

)(
ΠH

Π

)
Y H

Y L
+ q

(
ΠL

Π
− 1

)(
ΠL

Π

)]

Equations (42) to (47) give us a solution for the nominal interest rate RH2(ΠH). The

nonlinear root solver is applied at this step as this system cannot be solved analytically.14

The mapping of ΠH to RH2 corresponds to the blue solid line in Figure 2. To calculate

a hypothetical economy without a zero lower bound in the bad state, we we assume that

the ZLB constraint is not binding in that state. This gives us the dash-dotted blue line

in Figure 2.

An equilibrium for the economy exists for a given inflation in the good state ΠH if

RH1(ΠH) = RH2(ΠH). This corresponds to an intersection of the red and the blue line in

Figure 2. Looping over ΠH allows to check the existence of equilibria and find all possible

solutions of the economy with binary realizations of the preference shock.

14To handle the kink in the Taylor rule in the low state, we use a guess and verify approach in practice.
First, we solve the whole system assuming that the Taylor rule is not binding in the bad state. We keep
the results if the result does not violate the zero lower bound in the bad state. Then, we guess that
zero lower bound is binding in the bad state and keep the results if this is indeed the bad-equilibirum
outcome.
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C The Probability of Hitting the ZLB

The left plot of Figure 11 shows the percentage of periods spent at the ZLB when the

model is simulated for a long period of time (200,000 periods).15 In technical jargon, this

is the ergodic probability of being constrained by the ZLB. As shown in the figure, this

probability is affected by how volatile the preference shocks are (x-axis). The different

lines are associated with different assumptions about the long-run annualized real rate

of interest r∗ = gβ−1. Our benchmark calibration for this parameter is 1.5 percent. The

red stars on the lines denote the calibrated standard deviation of the preference shock.

A lower long-term real interest rate raises the expected frequency of the ZLB as

it shrinks the central bank’s room of maneuver to counter the deflationary effects of

recessionary shocks. We are closer to the bound on average so the central bank is expected

to hit the lower bound more often. Note that the expected frequency of the ZLB as a

function of macroeconomic volatility grows at an increasing speed as the long-term real

interest rate r∗ falls. Symmetrically, a given drop in the long term real interest rate r∗

implies larger increases in the probability of encountering the ZLB if the volatility of the

shock is higher. Thus, the more volatile shocks are and the lower r∗ is, the higher the

expected frequency of the ZLB, with the two effects reinforcing each other.

The graph on the right shows how likely it is for monetary policy to become con-

strained by the ZLB in the next year conditional on being currently at the (stochastic)

steady state. As for the expected frequency of the ZLB, we study how this probability

varies as we change the standard deviation of the preference shocks and the steady-state

real rate of interest r∗. The larger the volatility of the shock, the more likely it is that

the ZLB will be binding in the next year. It should be noted that the probability rises

exponentially with the volatility of the shock. Lowering the long-term real rate of interest

leads to similar results.

The worrying finding highlighted by both graphs is that in a low real-interest rate

environment (low r∗, black dashed lines) the two functions are very steep. This means

that even a small increase in the volatility of the shocks can lead to substantial increases

in the probability of encountering the zero lower bound. Recall that our benchmark

calibration for the .volatility of the preference shock is arguably very low for the U.S.,

given that it was chosen to match the level of volatility during the Great Moderation. The

results above imply that even a small increase in macroeconomic volatility may lead agents

to believe that the ZLB constraint has become a pervasive problem for monetary policy.

These beliefs cause serious macroeconomic biases and distortions and can potentially lead

to deflationary spirals

15Fernández-Villaverde et al. (2015) discuss the challenge to capture the length and duration of a zero
lower bound spell.
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Figure 12: Simulations of inflation and nominal interest rate during an artificial recession. The economy
is at its stochastic steady state in period 0, 1, and 2. From period 3 through period 4, the economy is hit
by a three-standard-deviation negative preference shock in every period. Starting from period 5 no more
shocks occur and the economy evolves back to its stochastic steady-state equilibrium. Units: percentage
points of annualized rates.

D The Asymmetric Strategy is Not a Makeup Strat-

egy

In this appendix we will show that the asymmetric strategy does not require the central

bank to engineer an overshooting in inflation after a ZLB episode as makeup strategies

(e.g., price-level targeting, average inflation targeting. etc.) do. To this end, we simulate

the economy under a sequence of negative shocks large enough to bring the economy to

the zero lower bound for a certain number of periods. We assume that the central bank

is following the asymmetric rule that removes the deflationary bias. Figure 12 shows

the path for the endogenous variables. We assume that the economy is initially at its

stochastic steady states. In period 3 and 4, negative demand shocks hits the economy.

The size of each shock is three standard deviations. Starting from period 9 no more

shocks occur and the economy slowly goes back to the stochastic steady state.

In the left plot of Figure 12, the ZLB is binding after the negative preference shocks

hit the economy. After the ZLB period, no more shocks hit the economy and the central

bank lifts the nominal interest rate off the ZLB constraint. In the right plot of Figure 12,

the dynamics of inflation in the simulation is reported. Inflation falls as the economy is hit

by the negative preference shocks. As the effects of these shocks fade away, the inflation

rate converges to the desired two-percent inflation target. Note that inflation converges

to the desired target from below because the central bank does not try to overshoot its

inflation target as it would have done if it had adopted a makeup strategy.

35



0.5 1 1.5 2

Standard Deviation of Preference Shocks

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

Inflation Bias

D
ef

la
tio

na
ry

 S
pi

ra
ls

ZLB Constraint
No ZLB constraint
Benchmark Calibration

0.5 1 1.5 2

Standard Deviation of Preference Shocks

0

0.05

0.1

0.15

Output Bias

D
ef

la
tio

na
ry

 S
pi

ra
ls

0.5 1 1.5 2

Standard Deviation of Preference Shocks

-0.25

-0.2

-0.15

-0.1

-0.05

Real Interest Rate Bias

D
ef

la
tio

na
ry

 S
pi

ra
ls

Figure 13: Average macroeconomic biases as the volatility of the preference shock varies. The bias is
computed by taking the mean of inflation, output, and the real interest based on a simulation lasting
250,000 periods. We drop the first 50,000 observations to minimize the effects of initial conditions. The
biases are reported on the same scale used in Figure 3.

E The Average Bias

Figure 13 reports the average bias as the volatility of the preference shock varies. The

average bias is computed by taking the mean of inflation, output, and the real interest

based on a simulation lasting 250,000 periods. We drop the first 50,000 observations to

minimize the effects of initial conditions.

While the average deflationary bias is always larger, it turns out to be highly correlated

with the other definition of deflationary bias based on the notion of stochastic steady-

state equilibrium. When it comes to the behavior of output and the real interest rate, the

bias is largely gone (unless the economy gets very close to deflationary spirals and then

the output bias opens up). When looking at the average bias for the real interest rate,

there is a countereffect that pushes the bias to be positive. This countereffect is brought

about by the presence of the ZLB itself that truncates the left tail of the distribution

of the nominal interest rate. Thus, the negative bias that arises away from the zero

lower bound is compensated by the fact that at the zero lower bound the central bank

cannot further lower the interest rate, making the effective real interest rate too high.

Importantly, the two phenomena are just the two sides of the same coin: The negative

bias away from the zero lower bound is generated by the deflationary pressure that arises

exactly because at the zero lower bound the central bank is not able to lower the interest

rate to mitigate the fall in inflation.

F Opportunistic Reflation

We investigate the implications for welfare and the macroeconomic outcomes of a central

bank pursuing an opportunistic reflation with a simulation exercise. Let us assume that

the economy is initially at the stochastic steady state associated with the symmetric rule
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Figure 14: The dynamics of welfare, the output gap, and the inflation gap after a two-standard-
deviation positive preference shock hits the economy in period 1. Two cases are reported: the case in
which the central bank adopts the optimal asymmetric rule and conducts an opportunistic reflation of
the economy (solid blue line) and the case in which the central bank does not take this opportunity and
sticks to the symmetric rule (red dashed-dotted line). In both cases, the economy is initialized at its
stochastic steady state. Units: Inflation gap is measured in percentage points of annualized rates while
the output bias is expressed in percentage points.

when it gets hit by a positive preference shock that boosts consumption and aggregate

demand. The central bank receives now the opportunity to show to the private sector

that it is willing to commit to the optimal asymmetric rule by responding less aggressively

to the inflation consequences of this shock. It is assumed that by observing the muted

response to inflation, the private sector immediately believes that the central bank will

follow the asymmetric rule forever.

In Figure 14, we show the impulse response function of welfare and the macroeconomic

gaps (inflation and output) to a two standard deviation positive preference shock under

the symmetric rule and under the optimal asymmetric rule. The output gap is measured

in deviations from the flexible price economy whereas the inflation gap is expressed in

deviations from the central bank’s two-percent target. The optimal asymmetric rule raises

the output and inflation gaps in the short run relative to the symmetric rule whereas it

mitigates the macroeconomic gaps in the longer run. Welfare is reported in the left graph

of Figure 14, which shows that the optimal asymmetric rule raises welfare both in the

short run and in the longer run.

Why is welfare higher in every period when the central bank adopts the asymmetric

rule even though this rule causes output and inflation gaps to widen more at the begin-

ning? Welfare does not depend only on the current inflation and output gaps but it is

also affected by the expected discounted stream of welfare gains that will be accrued over

time. The short-term responses of social welfare to a two-standard-deviation positive

preference shock implies that the long-term welfare gains associated with the mitigation

of the macroeconomic biases outweigh the short-term welfare losses.16

16Under the asymmetric rule, the weaker systematic response to inflation raises agents’ long-run un-
certainty about inflation and hence, everything else being equal, lowers welfare in the long-run. However,
in our model these losses are dominated by the gains from removing the deflationary bias.
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Figure 15: Welfare gains/losses from carrying out an opportunistic reflation as the size of the inflation-
ary shock varies under different assumptions about how forward looking the central banker is. The left
plot shows the myopic central banker’s case and the different lines refer to different degrees of myopia;
that is, the horizon k the central banker cares about when computing welfare gains/losses. The right plot
shows the case of the benevolent central banker who maximizes the households’ utility and thereby cares
about the welfare gains at all horizons. Welfare gains/losses are computed as the difference between the
welfare associated with adopting the optimal asymmetric rule and the welfare associated with sticking
to the benchmark symmetric rule in the period when the inflationary shock hits the economy.

The opportunistic reflation involves a trade-off between short-term and long-term

macroeconomic stabilization. Hence, a myopic central bank may refrain from seizing this

opportunity as welfare costs are mostly front-loaded.17 To further investigate this issue,

we tweak the welfare function 1 to study the behaviors of a myopic central banker who

only cares about the welfare gains accrued up to a finite time horizon k. The welfare of

the myopic central banker is denoted by W̃ k
0 , which is defined as follows:

W̃ k
0 = E0

k∑
t=0

βtζdt

[
C1−σ
t

1− σ
− χH

1+η
t

1 + η

]
(53)

The left plot of Figure 15 shows the myopic central bank’s welfare gains from carrying

out an opportunistic reflation following a positive preference shock as the size of the

shock varies. The gains are computed by taking the difference of the welfare under

the asymmetric rule and welfare under the benchmark symmetric rule at the time the

inflationary shock hits the economy. The level of asymmetry is the one we find to be

optimal for the non-myopic central banker. The different lines are associated with four

degrees of the central banker’s myopia, which is captured by the relevant horizons k = 4,

8, and 12 quarters. The shorter the horizon k, the more myopic the central banker. The

gains are shown as a function of the size of the shock. The myopic central banker’s gains

decline as the size of the preference shocks increases and, hence, the short-run response

of inflation to the shock is more pronounced. The speed of this decline increases as the

myopia of the central banker becomes less severe.

17In what follows, a myopic central bank can also be interpreted as a conservative central bank that
cares too much about the short-term inflation consequences of its actions.
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If the relevant horizon is less or equal than four quarters (k ≤ 4), gains are negative

for all positive shock sizes. Such high levels of myopia dissuade the central bank from

seizing the opportunity of reflating the economy as the policymaker is more allured by

the short-run welfare gains, which stem from mitigating the immediate inflationary con-

sequences of the shock. If the myopic central bank has a horizon of two years, it will

opportunistically reflate the economy if the standard deviation of preference shocks is

lower than two. Lower degrees of myopia (higher k) lead the central bank to carry out

the opportunistic reflation even when the magnitude of the shock is large and the likely

short-run inflationary consequences of the shock are considerable.

The right plot of Figure 15 shows the welfare gains from opportunistic reflation for the

case of the non-myopic/benevolent central banker (k −→ ∞). In this case, the optimal

asymmetric rule dominates the symmetric rule if the size of the shock is less than 6 times

the calibrated standard deviations of the shocks (i.e., 100σζd = 1.175). We consider this

value as fairly high, which suggests that opportunistic reflation increases the economy’s

welfare by removing the deflationary bias, as long as the central bank internalizes the

long term benefits of the policy.

Finally, if no opportunity to reinflate the economy occurs, the central bank can im-

plement the asymmetric strategy by cutting the rate more aggressively when inflation is

below target. This action shows to the public that the central bank has credibly adopted

an asymmetric strategy. Appendix G shows that this alternative asymmetric strategy

also removes the deflationary bias by lowering the probability of hitting the ZLB.

G Strategic Interest Rate Cuts

We showed that if the central bank seizes the opportunity of reflating the economy by

adopting an asymmetric rule after an inflationary shock arises, social welfare generally

increases. If no opportunity to reflating the economy arises, the central bank can still

remove the deflationary bias and improves welfare by cutting more aggressively the in-

terest rate if inflation is below target while clarifying that the response to inflation above

target is unchanged.

This alternative asymmetric rule also eliminates the macroeconomic biases. The upper

panels of Figure 16 report the behavior of the macroeconomic biases defined with respect

to the stochastic steady state (blue solid lines) and the observable averages (red dashed

lines) as the response to below-target inflation, θΠ, varies. The response to positive

deviations of inflation from the target is the same as in the symmetric rule (θΠ = 2.5).

The red star denotes the distortions under a symmetric rule (θΠ = θΠ = 2.5) as in the

baseline calibration. The response to inflation below target that zeroes the biases is

approximately 4.3.

The effects of adopting this asymmetric rule on the probability of hitting the ZLB
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Figure 16: Macroeconomic biases due to risk of hitting ZLB under the asymmetric rule. The biases are
computed relatively to the stochastic steady state (blue solid line) or the average inflation (red dashed-
dotted line) and are shown in the upper panels. The output gap is expressed in percentage points and
inflation gap is expressed in percentage points of annualized rates. The lower panels show the expected
frequency of the ZLB (left) and the risk of hitting the ZLB in the next four quarters (right) as the
response to inflation below target varies. The frequency is in percentage points and it is computed
as the ratio between the number of periods spent at the zero lower bound and the total sample size
(200,000). The probability of hitting the zero lower bound in the next period is conditional on being at
the stochastic steady state in the current period and is expressed in percentage points.

and the frequency of ZLB episodes is ambiguous ex ante. On the one hand, lowering

more vigorously the nominal interest rate to fight against deflationary pressures could

increase the probability of hitting the zero lower bound. On the other hand, committing

to respond more aggressively to negative deviations of inflation from target eliminates the

deflationary bias and thereby raises the long-term nominal interest rate. Higher nominal

rates cause the likelihood of hitting the ZLB to fall. As shown in the lower panels of Figure

16, the asymmetric rule that allows the central bank to remove the macroeconomic bias

(θΠ = 4.3) lowers the probability of hitting the ZLB and the expected frequency of ZLB

episodes.

H Particle Filter and Counterfactual Analysis

In this part, we provide further details on the algorithm for the particle filter, specifiy

the measurement equation in detail and show some additional results.
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We estimate the sequence of shocks with the the adapted particle filter outlined in

Herbst and Schorfheide (2015) and Aruoba et al. (2018). We also illustrate how to use

the estimated shocks to conduct then a counterfactual policy analysis.

Measurement Equation For the estimation of the shocks, we use a measurement

equation that connects the observables to the non-linear model outcomes:

Yt = h(Xt) + νt, (54)

where Yt are the observables, Xt are the state variables and the measurement error νt

follows a normal distribution νt ∼ N (0,Σν).
18 The function h maps the state variables

to the observables. In our context, the observables are the quarterly growth rate of GDP

per capita, the annualized PCE core inflation rate and the annualized Federal Funds rate,

so that the observation equation can be written asGDP Growth Per Capita

PCE Core Inflation Rate

Federal Funds Rate

 =


100 Ỹt−Ỹt−1/gt

Ỹt−1/gt

400 (Πt − 1)

400 (Rt − 1)

+ νt (55)

where the variance Σν of the measurement error is set to 5% of the sample variance of

the data. Our sample covers 1990:Q1 to 2019:Q4 so that the number of periods T is 140.

Algorithm The description of the algorithm follows in large part (in particular step 1

and 2) Atkinson et al. (2020) and Rottner (2021) and is included for completeness. Before

moving to the algorithm, it is helpful to define the structural shocks as εt ≡ {εζ
d

t , ε
g
t , ε

m
t }

and the state variables as Xt ≡ {C̃t−1, R
n
t−1, ζ

d
t , gt, ε

m
t }. The number of particles Q is set

to 100000.

1. Initialization: A sequence of random shocks for 25 periods for each particle is

drawn: {νt,q}0
−24 ∀q ∈ {1, . . . , Q}. Starting from the stochastic steady state, we

use this sequence to simulate the economy forward. This provides then the starting

point for the state variables.

2. Recursion: This step is repeated for periods t = 1, . . . , T

(a) The structural shocks are drawn from an adapted proposal distribution:

εt,q ∼ N (εt, I) , (56)

which is derived as follows:

18The measurement error is necessary to avoid a degeneracy of the likelihood.
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i. The solution of the model for the average state vector Xt−1 =

1/Q
∑Q

q=1 Xt−1,q and a guess of εt is used to update Xt and calculate the

observables of the model as defined in equation (55).

ii. The measurement error νt as defined in equation 55 is then calculated,

which follows a multivariate normal distribution σν . This gives us then

the probability of observing the measurement error:

p(νt|Xt) = (.5π)−n/2|σν |−0.5 exp
(
−0.5ν ′tσ

−1
ν νt

)
, (57)

where n is the number of observables. This would be 3 as we include

output growth, inflation and the nominal interest rate.

iii. The probability of observing Xt conditional on the average state vector

Xt−1:

p(Xt|Xt−1) = (.5π)−n/2 exp (−0.5ε′tεt) , (58)

iv. The proposal distribution is determined by the εt that maximizes

p(νt|Xt)p(Xt|Xt−1) ∝ exp
(
−0.5ν ′tσ

−1
ν νt

)
exp (−0.5ε′tεt) , (59)

We use a numerical root finder to determine εt.

(b) The drawn shocks εt,q are used to simulate the economy one period forward to

obtain the new state variables Xt,q based on Xt−1,q.

(c) The measurement error νt,m is calculated for all particles, which can be used

to determine the incremental weights of each particle q:

wt,q =
p(νt,q|Xt,q)p(Xt,q|Xt−1,q)

g(Xt,q|Xt,q−1)
∝

exp
(
−0.5ν ′t,qσ

−1
ν νt,q

)
exp

(
−0.5ε′t,qεt,q

)
exp (−0.5(εt,q − εt)′(εt,q − εt))

(60)

(d) The particles are resampled based on their normalized weights, which are given

as

Wt,q =
wt,q∑Q
q=1wt,q

(61)

We resample the particles based on their weights and obtain the distribution

of state variables Xt.
19

19The particle filter can approximate the log-likelihood function of the model, which is given as ln(L) =∑T
t=1 ln(lt) with ln(lt) = ln

(
1
Q

∑Q
q=1 wt,q

)
.
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Figure 17: Comparison of the observables (quarter-to-quarter real per capita GDP growth rate, quarter-
to-quarter PCE core inflation and the federal funds rate). The solid blue line is the median and the
shaded area is the 68% CI. The dash-dotted black line is the median for counterfactual scenario with an
asymmetric rule. Units: Annualized rate for inflation and the interest rate

3. Counterfactual: The particle filter estimates the sequence of shocks
{
{εt,q}Qq=1

}T
t=1

with its normalized weights
{
{Wt,q}Qq=1

}T
t=1

. We now return to the point of ini-

tialization and use the estimated shock series to propagate the economy forward

(we also use the obtained weights from step 2 to resample the state vector Xt,q.)

However, we now use the asymmetric rule from 2000:Q1 forward to propagate the

economy. This gives us now a counterfactual path for the observable variables of

growth rate of real GDP per capita, PCE core inflation and the Federal Funds Rate.

Additional results Figure 17 shows the dynamics of the observables (quarter-to-

quarter real per capita GDP growth rate, quarter-to-quarter PCE core inflation and the

federal funds rate).20 The solid blue line is the filtered median with its 68% confidence

interval (blue shaded area) and the red line is the data. The model can captures the

dynamics of the observables. The filtered median tracks well the period of a binding ZLB

as the median suggests a binding zero lower bound most of the time between 2009:Q1

and 2015:Q4.21 The black dash-dotted scenario shows the counterfactual with an asym-

metric rule. This highlights how an asymmetric rule can push inflation upwards. We use

this filtered results as input for the counterfactual analysis of trend inflation under an

20Instead of directly moving from the initialization to the recursion, we additionally estimate the
sequence of shocks from 1985:Q1 1985:Q1 to 1989:Q4 to better initialize the particle filter.

21We leave the federal funds rate unchanged, which implies that the particle filter needs to use the
measurement error to capture a zero lower bound episode. The results are robust to setting the federal
funds rate to zero for the period from 2009:Q1 until 2015:Q4.
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asymmetric rule as shown in Figure 6. For this picture, we map the quarter-to-quarter

counterfactual to a year-to-year inflation measure.
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