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Non-technical Summary

Research Question

The outbreak of the COVID-19 pandemic set off a worldwide health and economic crisis

of unprecedented proportions. Quickly expanding the capacity for testing, isolation, and

contact tracing has been suggested by several experts to be a crucial step to alleviate the

pandemic’s toll on the economy and mortality. For instance, South Korea has combined

these measures to achieve one of the lowest infection rates in the world. Nevertheless,

other countries, such as the U.S., have been considerably less successful, notwithstanding

sizable investments made in this area. We construct a macro-epidemiological model to

investigate why contact tracing can fail and how this failure can be averted.

Contribution

We study the impact of contact tracing on the course of a pandemic as well as the economy

in a new macro-epidemiological model. We show that contact tracing may be insufficient

to stem the spread of infections because agents fail to internalize that their individual

consumption and labor decisions increase the number of traceable contacts to be tested in

the future. As a methodological contribution, we show how to reconstruct the network of

interactions of confirmed infected cases. Our approach to study contact tracing is general

and can be applied to large class of macro-epidemiological models that feature for instance

multiple sectors or heterogeneous agents.

Results

Contact tracing resolves a critical challenge faced by testing: at the beginning of a pan-

demic spreaders are only a few and are thereby hard to detect. As a result, it is very

challenging for policymakers to prevent the rate of infection from soaring by relying on

testing alone. We show that contact tracing allows policymakers to leverage the knowledge

of the infection chains of the confirmed infected cases to improve the chance of detecting

newly infected agents even at the beginning of a pandemic. Lockdowns or other contain-

ment measures are not needed to quash a surge in the number of infections. Rather, these

measures are only adopted if needed to address the externality associated with consump-

tion and labor that, if left unmitigated, would lead the tracing system to collapse. In such

a case, contact tracing can be used to avoid a health crisis and a deep recession.



Nichttechnische Zusammenfassung

Fragestellung

Der Ausbruch der Covid-19-Pandemie führte zu einer weltweiten Gesundheits- und Wirt-

schaftskrise ungekannten Ausmaßes. Die rasche Ausweitung von Testkapazitäten, Isolie-

rungsmaßnahmen und Kontaktnachverfolgung kann entscheidend dazu beitragen, die pan-

demiebedingte Mortalitätsrate zu senken und den wirtschaftlichen Schaden einzudämmen.

So erreichte beispielsweise Südkorea mit einer Kombination dieser Maßnahmen eine der

niedrigsten Ansteckungsraten weltweit. Andere Länder wie die Vereinigten Staaten hat-

ten dagegen trotz massiver Investitionen in diesem Bereich deutlich weniger Erfolg. Wir

konstruieren ein makroepidemiologisches Modell um zu untersuchen, warum die Kontakt-

nachverfolgung versagen kann und wie diese Situation verhindert werden kann.

Forschungsbeitrag

Der Einfluss der Kontaktnachverfolgung auf den Verlauf einer Pandemie sowie die wirt-

schaftliche Entwicklung wird in einem neuen makroepidemiologischen Modell untersucht.

Es wird aufgezeigt, dass die Kontaktnachverfolgung unter Umständen nicht ausreichen

kann, um die Ausbreitung von Infektionen einzudämmen, weil die Agenten den Ein-

fluss ihrer individuellen Konsum- und Arbeitsentscheidungen auf die Zahl der zukünftigen

nachzuverfolgenden Kontakte nicht internalisieren. Der methodische Beitrag dieser Stu-

die besteht darin, das Netzwerk der Interaktionen bestätigter Infizierter zu rekonstruieren,

um damit die Rolle der Kontaktnachverfolgung zu studieren. Unser Ansatz ist allgemein

gestaltet, sodass er auf eine breite Klasse von makroepidemiologischen Modellen, welche

z.B. multiple Sektoren oder heterogenen Agenten beinhalten, angewendet werden kann.

Forschungsergebnisse

Die Kontaktnachverfolgung bietet eine Lösung für eine wesentliche Herausforderung des

Testens: Zu Beginn einer Pandemie gibt es nur wenige
”
Spreader“, wodurch sie schwer aus-

findig zu machen sind. Dieser Umstand erschwert es, einen raschen Anstieg der Infektionen

allein mithilfe von Tests zu verhindern. Wir zeigen, dass das durch die aktive Kontaktnach-

verfolgung generierte Wissen über Infektionsketten genutzt werden kann, um die Chan-

cen zu erhöhen, Neuinfizierte sogar zu Beginn einer Pandemie zu ermitteln. Lockdowns

und andere Eindämmungsmaßnahmen sind dann nicht erforderlich, um einen sprunghaf-

ten Anstieg der Infektionszahlen zu verhindern. Diese werden nur ergriffen, wenn sie zur

Bewältigung der Externalitäten assoziiert mit den Konsum- und Arbeitsentscheidungen

erforderlich sind, um einem Zusammenbruch des Systems der Kontaktnachverfolgung zu

vermeiden. In einem solchen Fall kann die Kontaktnachverfolgung eine Gesundheitskrise

und eine tiefe Rezession vermeiden.
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Abstract

We study contact tracing in a new macro-epidemiological model in which infected

agents may not show any symptoms of the disease and the availability of tests to

detect asymptomatic spreaders is limited. Contact tracing is a testing strategy that

aims to reconstruct the infection chain of newly symptomatic agents. We show that

contact tracing may be insufficient to stem the spread of infections because agents

fail to internalize that their individual consumption and labor decisions increase the

number of traceable contacts to be tested in the future. Complementing contact

tracing with a timely, moderate lockdown corrects this externality, allowing policy-

makers to buy time to expand the testing scale so as to preserve the testing system.

If the testing capacity is sufficiently large, contact tracing alone can halt the spread

of the virus because it allows policymakers to allocate tests along the reconstructed

infection chains. We provide theoretical underpinnings to the risk of becoming in-

fected in macro-epidemiological models. Our methodology to reconstruct infection

chains is not affected by curse-of-dimensionality problems.
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1 Introduction

The outbreak of the COVID-19 pandemic set off a worldwide health and economic crisis

of unprecedented proportions. Quickly expanding the capacity for testing, isolation, and

contact tracing has been suggested by several experts to be a crucial step to alleviate the

pandemic’s toll on the economy and mortality.1 For instance, South Korea has combined

contact tracing, mass testing, and mild containment measures to achieve one of the

lowest infection rates in the world. Nevertheless, other countries, such as the U.S., have

been considerably less successful, notwithstanding sizable investments made in contact

tracing and mass testing. Dr. Fauci, the director of the National Institute of Allergy

and Infectious Diseases, explained the failure of contact tracing in the U.S. at a Milken

Institute event held in July: “When you have a situation in which there are so many

people who are asymptomatic, that makes that that much more difficult, which is the

reason you wanted to get it from the beginning and nip it in the bud. Once you get what

they call the logarithmic increase, then it becomes very difficult to do contact tracing.

It’s not going well.”

We construct a macro-epidemiological model to explain why contact tracing can fail

and how this failure can be averted. We show that contact tracing can be unsuccessful

because of an externality leading people to entertain economic and social interactions

at rates exceeding policymakers’ ability to trace, test, and isolate the close contacts of

confirmed cases. Complementing contact tracing with a timely, moderate lockdown allows

policymakers to buy time to expand the tracing and testing scale so as to preserve the

viability of the tracing and testing system.

Contact tracing resolves a critical challenge faced by testing: at the beginning of a

pandemic spreaders are only a few and are thereby hard to detect. As a result, it is

very challenging for policymakers to prevent the rate of infection from soaring by relying

on testing alone. We show that contact tracing allows policymakers to leverage the

knowledge of the infection chains of the confirmed infected cases to improve the chance

of detecting newly infected agents even at the beginning of a pandemic (“get it from the

beginning and nip it in the bud”). Hence, lockdowns or other containment measures are

not needed to quash a surge in the number of infections. Rather, these measures are only

adopted if needed to address the externality associated with consumption and labor that,

if left unmitigated, would lead the tracing system to collapse.

As a methodological contribution, we show how to reconstruct the network of inter-

actions of confirmed infected cases, which allows us to study contact tracing in macro-

1For instance, Dr. Anthony Fauci, the director of the National Institute of Allergy and Infectious
Diseases, said in an interview with Dr. Howard Bauchner, the editor of the Journal of the American
Medical Association in April 2020 that: “The keys [to a successful response] are to make sure that we
have in place the things that were not in place in January, that we have the capability of mobilizing
identification – testing – identification, isolation, contact tracing.”
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epidemiological models. Our approach is general and can be applied to a large class

of models. To avoid problems of curse of dimensionality in reconstructing the network,

we assume that consumption and labor interactions of susceptible agents with infected

agents are modeled as a sequence of Bernoulli trials. This assumption allows us to parsi-

moniously characterize agents’ network of interactions using binomial distributions. This

approach implies an infection rate that is isomorphic to one assumed in other macro-SIR

studies.

In the model, agents who become infected do not have any symptoms at first.2 While

they remain asymptomatic, they do not know that they are infected and, therefore, keep

consuming and working exactly as when they were not infected. In doing so, they create

a network of contacts with other agents through which they silently spread the virus.

When they turn symptomatic or when they get tested, these spreaders are detected and

quarantined by the health authorities so that they cannot infect anyone else.

Contact tracing is a testing strategy that aims to reconstruct as much as possible of

the newly symptomatic cases’ infection chain – i.e., the network of interactions that led a

newly symptomatic case to become infected or to infect other agents. This reconstruction

forms the basis to decide who to test. The objective of testing is to detect as many

asymptomatic spreaders as possible and quarantine them. How much of the infection

chain can be reconstructed by health officials defines the efficiency of the contact tracing

technology.

Agents’ consumption and labor decisions have externality on the number of subjects

that health authorities have to trace and test in future periods. Since agents fail to

realize the existence of this externality, their consumption and labor decisions may end

up overburdening the testing system to the point of making it insufficient to contain the

spread of the virus a few periods later. As the risk of becoming infected increases, agents

want to reduce their economic interactions. To this end, they lower their consumption

and labor, causing a severe pandemic recession.

A timely, limited lockdown solves this externality problem, allowing the health au-

thorities to buy time to ramp up their testing capacity. By averting the collapse of the

testing system, the lockdown greatly mitigates the pandemic recession. This is not the

only way to shore up the testing system against the challenges posed by this externality in

consumption and labor. Improving the efficiency of the contact tracing technology makes

the testing system more resilient and reduces the optimal stringency of the lockdown.3

When the epidemiological parameters of the model and the availability of tests are

2Our methodology to reconstruct infections chains to study contact tracing can be straightforwardly
applied to models in which only symptomatic individuals can transmit the virus.

3A redistributive fiscal policy aimed at taxing the symptomatic agents could also be an effective tool
to counter the externality studied in this paper. This policy penalizes risk taking and compensates for
labor productivity losses associated with the symptoms of the disease. We do not study this policy
because redistributive issues are beyond the scope of this paper, whose main objective is to formally
model contact tracing.
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calibrated to match the U.S. data during the COVID-19 pandemic, we find several inter-

esting results. Contact tracing –even a very basic one– considerably improves the ability

of health authorities to control the spread of the pandemic relative to a strategy based

on randomly testing the population. This prediction is in line with empirical findings by

Fetzer and Graeber (2020), who show quasi-experimental evidence that contact tracing

is very effective in containing the spread of the virus. Unlike randomly testing the pop-

ulation, contact tracing exploits the existence of an infection chain connecting the newly

symptomatic agents with the subjects they have infected in the current period. Therefore,

the probability of finding an asymptomatic spreader by testing one contact of a newly

symptomatic person is much higher than the probability of catching an asymptomatic

spreader by randomly testing one subject in the population. We find that random testing

requires an unrealistically large testing capacity to effectively contain the spread of the

virus.

If the contact tracing technology had allowed health officials to trace interactions for

a period of one week (basic contact tracing technology), the pace at which the U.S. built

up its testing capacity at the beginning of the pandemic would have not been fast enough

to stop the rapid spread of the virus. As we emphasized above, agents consume and work

too much as they fail to realize that their individual consumption and labor decisions

have negative externality on the viability of the testing system.

However, the testing system can be preserved by imposing a mild lockdown.4 The

lockdown mitigates the pandemic recession and reduces its death toll. By ensuring the

correct functioning of the testing system, the lockdown prevents the surge in the infection

rate and the ensuing drop in consumption and employment. This result underscores the

existence of exploitable complementarities between lockdowns and testing and the critical

importance of preserving the testing system for a successful management of the pandemic.

Lockdowns are typically enacted in response to flare-ups of infection –often to prevent

hospitals from becoming overburdened. In this paper, we suggest a quite different strategy

that envisions moderate lockdowns as preemptive tools to keep the tracing and testing

system viable while policymakers ramp up the testing scale. Unlike the more common

lockdowns, the type of lockdowns studied in this paper are generally less stringent and

are used preemptively with the objective of moving ahead of the infection curve. Indeed,

we show that a surge in the number of infections is the unequivocal sign that the testing

system is already not working properly.

When we consider a more efficient technology allowing health authorities to trace

contacts that occurred as far back as the previous week (comprehensive contact tracing

technology), economic and health outcomes improve considerably. The comprehensive

tracing technology gives health authorities a second chance to quarantine asymptomatic

4By mild lockdown, we mean a less stringent lockdown than the optimal one in the absence of testing.
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spreaders who could not be traced and tested in the previous periods.5 Managing to lower

the number of asymptomatic spreaders early on reduces the amount of tests needed to be

performed later on. It then turns out that, under this more efficient tracing technology,

the pace at which the U.S. built up its testing capacity would have required introducing

only minimal restrictions on the economy.

Contact tracing has been used to control the spread of a long list of lethal diseases,

such as syphilis, tuberculosis, measles, sexually transmitted infections (including HIV),

blood-borne infections, Ebola, H1N1 (swine flu), Avian Influenza, SARS-CoV (SARS),

and SARS-CoV-2 (COVID-19).6 However, formally modeling contact tracing is very

hard as the number of contacts established by an infected subject quickly explodes as the

number of past periods considered increases.

We solve this dimensionality problem by modeling the probability that a susceptible

subject entertains a number of economic interactions with the pool of asymptomatic

infected agents as a sequence of Bernoulli trials. The number of trials depends on how

much susceptible agents consume (work) and the probability of success (i.e., meeting with

an asymptomatic infected subject) is assumed to depend on the share of consumption

(work) of asymptomatic infected people. It follows that the probability for a susceptible

agent to have met a number of infected agents who can have infected them is a binomial

distribution. This binomial distribution allows us to parsimoniously characterize the

endogenous probability of a susceptible agent to become infected in a given period. This

probability turns out to nest that in the canonical SIR model proposed by Kermack

and McKendrick (1927) as the special case in which the virus cannot be spread through

consumption and labor interactions. How we characterize the probability of becoming

infected provides theoretical underpinnings to those macro-epidemiological models where

this probability is assumed.

Moreover, this binomial distribution conveniently summarizes all the necessary infor-

mation to reconstruct the infection chains in our model, which is key to pinning down

agents’ probabilities of being traced and tested. This methodology to reconstruct the

history of interactions relevant for contact tracing is general and can be applied to macro-

epidemiological models with multiple sectors or heterogeneous agents.7

5Under the basic tracing technology, these undetected spreaders will not be traceable via their infection
chain. They can only be detected if they randomly meet one of the subjects who will then develop the
symptoms of the disease. But this is a relatively low-probability event. It is actually worse than that,
since the entire infection chain that each of these undetected spreaders will create going forward becomes
much harder for the health authorities to uncover. This happens because newly infected subjects are
initially asymptomatic and it takes at least one period for them to show symptoms. The comprehensive
tracing technology is not affected by these shortcomings.

6Contact tracing was originally proposed in 1937 by Surgeon General Thomas Parran for the control
of syphilis in the U.S. and was later implemented to control the spread of this virus in the following years
(Parran, 1937).

7See Guerrieri et al. (2020) for an example of multisectoral models to study how an epidemic and
associated lockdowns affect aggregate demand and supply. See Kaplan, Moll and Violante (2020) for an
example of macro-epidemiological models with income and wealth inequalities.
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Related literature Our model is related to the macro-epidemiological literature. This

literature is quickly growing in many different directions. The directions more closely

related to our paper are: analyses of the trade-off between saving human lives and mit-

igating the recession (Gourinchas 2020 and Hall, Jones and Klenow 2020); models to

study optimal lockdowns (Alvarez, Argente and Lippi 2020; Atkeson 2020; Bethune and

Korinek 2020; Farboodi, Jarosch and Shimer 2020; Eichenbaum, Rebelo and Trabandt

2021; Moser and Yared 2020; Piguillem and Shi 2020); models to study more targeted and

smarter policies, such as testing or targeted quarantines, as alternatives to indiscriminate

lockdowns (Acemoglu et al. 2020; Akbarpour et al. 2020; Atkeson et al. 2020; Aum, Lee

and Shin 2021; Azzimonti et al. 2020; Baqaee et al. 2020b; Berger et al. 2020; Bognanni

et al. 2020; Brotherhood et al. 2020; Chari, Kirpalani and Phelan 2020; Eichenbaum, Re-

belo and Trabandt 2020; Favero, Ichino and Rustichini 2020; Galeotti, Steiner and Surico

2020; Glover et al. 2020; Hornstein 2020; Krueger, Uhlig and Xie 2020); studies of the

distributional consequences of various containment policies (Hacıoğlu-Hoke, Känzig and

Surico 2021; Kaplan, Moll and Violante 2020; Lee, Park and Shin 2021); and models to

evaluate the efficacy of public policies –not based on tracing and testing– in controlling

the spread of HIV (Greenwood et al. 2019).

Some of these papers develop models that use a network structure combined with

various types of agents’ heterogeneity to study the spread of the pandemic and its cross-

sectional consequences. While we also use a network to model the spread of infections, our

primary goal is to use the network to model contact tracing. We also show analytically

that our approach to constructing the network is consistent with the SIR and macro-SIR

literatures.

In this paper, we study a novel type of externality that can disrupt the functioning of

the tracing and testing system. Another important departure from the existing literature

is to use the network of agents’ past interactions to keep track of those spreaders who

can be traced and tested. While other papers have studied contact tracing, we believe

to be the first ones to model contact tracing by formally reconstructing this endogenous

network structure. These two contributions are intertwined. In order for the consumption

and labor externalities to matter, the amount of traceable agents who need to be tested

has to be linked to agents’ consumption and labor decisions. In our model, this link

is given by the endogenous network of interactions, which is determined by how much

agents have consumed and how much they have worked in the past periods.

The rest of the paper is organized as follows. In Section 2, we present the model. In

Section 3, we formalize contact tracing. In Section 4, we discuss the solution method

and the calibration of the model. In Section 5, we apply our methodology to study why

contact tracing has been largely ineffective in mitigating the COVID-19 crisis in the US

and what could have been done to make it work. Some extensions are discussed in Section

6. In Section 7, we conclude.
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2 The Model

The model economy is populated by agents who consume and work, firms that hire labor

Nt from agents in a competitive market and produce output according to a linear pro-

duction function in labor and productivity parameter A. The government levies taxes on

consumption and remits transfers to agents. Labor and output are traded in competitive

markets. Health authorities conduct contact tracing, administer tests, and can quaran-

tine agents. Agents become infected through interactions with other agents. Following

Eichenbaum, Rebelo and Trabandt (2021), we assume there are three types of interac-

tions through which the virus spreads out: consumption interactions, work interactions,

and other interactions indepedent of agents’ decisions.

Every period is organized as follows: First, agents consume, work, and engage in

other interactions. Second, agents’ health status can change: agents can get infected or

infected agents can recover or die. Third, health officials can administer tests. Tests

deliver a binary outcome: positive or negative. Tests do not reveal if an agent has never

been infected or has recovered.

There are six types of agents, who differ in their health status. The first type includes

susceptible agents who have not contracted the disease, are not carriers, and are not

immune. Infected agents can be divided into three types: Untested asymptomatic agents

if they have not shown symptoms and have not tested positive, positive-tested agents if

they are asymptomatic but they have tested positive, and symptomatic infected agents

if they have shown symptoms regardless of whether they have previously tested positive.

The remaining two types are the recovered agents, who have developed immunity. They

are the observed recovered agents, who have shown symptoms or have tested positive

and the unobserved recovered agents who have recovered without having ever shown any

symptoms of the disease or having ever tested positive.

Observability of Types’ Health Status. Since the untested asymptomatic individ-

uals are assumed not to show any symptoms of the disease, their health status is not

observed by anyone in the model. The health status of susceptible agents and that of

unobserved recovered subjects is also not observed even if they got tested at the end

of the previous period. This is because tests only say whether the tested individual is

currently infected or not. The health status of positive-tested, symptomatic infected, and

observed recovered agents is publicly observed.

Quarantine. The positive-tested and the symptomatic subjects have their health status

revealed and the health authorities immediately quarantine them.8 Being quarantined

8Untested asymptomatic individuals cannot be quarantined because the health authorities cannot
distinguish them from susceptible agents.
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means two things. First, in quarantine consumption and labor decisions are subject to

restrictions, which are modeled as a consumption tax. Second, quarantined agents are

isolated from other subjects and cannot infect anyone.

Note that we use the word quarantine to mean a containment policy targeted to a

single subject or a subset of subjects who have been uncovered by the government as

potentially capable of spreading the virus. Therefore, quarantine is different from lock-

down, which refers to an economy-wide containment measure, affecting all the subjects

regardless of their health status.

2.1 Meeting Probabilities

The virus in our model spreads out because susceptible agents may meet with untested

asymptomatic agents while consuming, working, or engaging in other non-economic ac-

tivities.9 So it is particularly important to characterize the probability that a susceptible

individual meets with untested asymptomatic subjects. We make the following assump-

tion to characterize this probability.

Assumption 1. Every random interaction of an agent with a set of agents of a specified

type is modeled as a Bernoulli trial.

It then follows that the probability that an individual, who randomly meets n > 0

other agents in a period, meets k-times with agents of a certain type is given by the

binomial distribution B(k, n, p) =
(
n
k

)
pk (1− p)(n−k) , where p is the probability of meeting

with agents of a certain type in one random meeting. In the Bernoullian jargon, there

will be n random trials and in each of these trials the individual meets (success) or does

not meet (failure) with a specified group of people. We make the following assumption

about the probability of meeting with a specified group.

Assumption 2. The probability for an agent to meet with agents of a certain type

a) in one random consumption interaction is given by the share of consumption of the

agents of that type relative to the consumption of non-quarantined agents.

b) in one random working interaction is given by the share of hours worked by the

agents of that type relative to the hours worked by non-quarantined agents.

c) in one random interaction not associated with either consumption or work is given

by the share of agents of that type relative to the population of non-quarantined

agents.

For instance, the probability of meeting an untested asymptomatic subject in one con-

sumption interaction is given by the size of the consumption of untested asymptomatic

9Other infected people – positive-tested and the symptomatic individuals – are quarantined and
cannot infect anyone.

7



people relative to aggregate consumption. In symbols, CA
t /Ct, where CA

t denotes total

consumption of the untested asymptomatic agents and Ct stands for the aggregate con-

sumption of non-quarantined agents. Analogously, the probability for a worker to meet

an untested asymptomatic worker in one hour of work is assumed to be NA
t /Nt, where

NA
t denotes total labor worked by the untested asymptomatic group and Nt stands for

aggregate labor of non-quarantined agents. The probability for an individual to meet

with an untested asymptomatic agent in one non-consumption, non-labor interaction is

assumed to be equal to the share of population who is untested asymptomatic. In sym-

bols, IAt /Popt, where IAt denotes the size of the group of individuals who are untested

asymptomatic and Popt stands for the size of population of non-quarantined agents.

Assumption 3. An individual of health status i who consumes cit units of goods, works nit

number of hours at time t makes ϕC : cit 7→ N ∪ {0} and ϕN : nit 7→ N ∪ {0}, respectively,

number of interactions, where N∪ {0} denotes the set of natural numbers including zero.

The same individual also makes a constant number of ϕO interactions when engaging in

activities other than consumption and labor.

It follows that the total number of interactions a susceptible individual needs to

entertain to consume cst , work nst , and enjoy other activities, is given by ϕC(cst)+ϕN(nst)+

ϕO. This gives us the number of Bernoulli trials due to these three activities in the time

unit. We can think of the mappings ϕC and ϕN as monotonically increasing step functions.

Combining all these assumptions allows us to write the probability for a susceptible

individual to meet k-times with the set of asymptomatic subjects while consuming an

amount cst of goods as follows:

fc,t (k) ≡ B
(
k, ϕC(cst),

CA
t

Ct

)
=

(
ϕC(cst)

k

)(
CA
t

Ct

)k (
1− CA

t

Ct

)ϕC(cst )−k

, (1)

k ≤ ϕC(cst). We can analogously derive the probability for a susceptible individual to

meet k-times with the asymptomatic subjects while working an amount nst of hours

fn,t (k) ≡ B
(
k, ϕN(nst),

NA
t

Nt

)
=

(
ϕN(nst)

k

)(
NA
t

Nt

)k (
1− NA

t

Nt

)ϕN (ns
t )−k

, (2)

k < ϕN(nst). Finally, the probability for any person to meet with people in the asymp-

tomatic group k times while engaging in other types of interactions is given by

fo,t(k) ≡ B
(
k, ϕO,

IAt
Popt

)
=

(
ϕO
k

)(
IAt
Popt

)k (
1− IAt

Popt

)ϕO−k

, (3)

k < ϕO.

Let us denote the number of random interactions due to consumption, work, and other

activities is kc, kn, and ko, respectively. The joint probability for a susceptible individual

8



to have a triplet of random meetings (kc, kn, ko) with untested asymptomatic people is

defined as follows:

ft(kc, kn, ko) ≡ fc,t(kc) · fn,t(kn) · fo,t(ko). (4)

Assumption 4. Conditional on meeting with an untested asymptomatic individual, a

susceptible agent will become infected with probability τ ∈ (0, 1).

Since this probability of getting infected τ is assumed to be the same across the three

different types of interactions (consumption, work, or others), a susceptible individual

entertaining kc+kn+ko interactions with asymptomatic individuals will become infected

with probability 1− (1− τ)kc+kn+ko ; that is, one minus the probability that none of these

interactions turns out to be infectious, i.e., (1− τ)kc+kn+ko .

We can characterize the average probability for a susceptible individual to get infected

conditional on consuming cst and working nst as follows:

τt ≡
ϕC(cst )∑
kc=0

ϕN (ns
t )∑

kn=0

ϕO∑
ko=0

[
1− (1− τ)kc+kn+ko

]
ft(kc, kn, ko), (5)

where ft(kc, kn, ko) denotes the joint binomial distribution defined in equation (4).

The infection rate τt can be approximated to obtain

τt ≈ Ξ

[
ϕc · cst

(
CA
t

Ct

)
+ ϕn · nst

(
NA
t

Nt

)
+ ϕO

(
At
Popt

)]
, (6)

where the coefficient Ξ ≡ − ln (1− τ) (1− τ)k̄c+k̄n+k̄o , with (k̄c, k̄n, k̄o) denote the average

number of interactions at steady state. In Appendix G, we show the steps taken to

approximate τt.

The approximated infection rate τt in equation (6) nests the rate in the canonical SIR

model as the special case in which consumption and labor interactions do not transmit

the virus. It is also isomorphic to other leading macro-epidemiological models, in which

this rate is assumed (e.g., Eichenbaum, Rebelo and Trabandt 2021). Since the infection

rate in equation (6) stems from the choice of modeling economic interactions as binomial

trials (Assumptions 1-4), our paper provides theoretical underpinnings to the infection

rate used in those models.

2.2 Agents with Unknown Health Status

As discussed earlier, susceptible, untested asymptomatic, and unobserved recovered in-

dividuals do not know their health status. To keep the model tractable, we assume that

these agents make consumption and labor decisions in the belief that they have never

9



been infected and thereby are susceptible. While this assumption has a behavioral flavor,

it has minimal implications for our conclusions because our analysis is primarily focused

on dynamics at the beginning of a pandemic when the economy is far away from achiev-

ing herd immunity.10 Conditional on the belief of having never been infected, agents’

beliefs about future changes in their health status are model consistent. It follows that

the agents who do not know their health status choose their consumption cst , and labor

nst so as to maximize

V S
t = max

cst ,n
s
t

u (cst , n
s
t) + β

[
(1− τt)V S

t+1 + τt
{
πTP,tV

P
t+1 +

(
1− πTP,t

)
V A
t+1

}]
, (7)

where the utility function u (ct, nt) = ln ct − θ
1/η
n

1/η
t and β denotes the discount factor.

We denoted all the variables in equation (7) with the superscript S because these agents

believe to be susceptible.

These agents expect to be infected with probability τt, which is defined in equation

(5). Conditional on this event, the agents expect with probability πTP,t to test positive at

the end of period t and thereby to receive the utility V P
t+1 of the positive-tested agents

in period t + 1. This value function will be defined in Section 2.3. With probability

(1 − πTP,t), the agents expect to become untested asymptomatic and receive the utility

V A
t+1, which, in period t, is given by

V A
t = u(c̃st , ñ

s
t) + β

[
πISV

IS
t+1 + πRV

UR
t+1 + (1− πIS − πR)

(
πAP,tV

P
t+1 + (1− πAP,t)V A

t+1

)]
,

(8)

where c̃st and ñst denote the optimal solution to the problem in equation (7) since untested

asymptomatic agents do not know their health status. Conditional on becoming untested

asymptomatic in period t + 1, they expect to become infected symptomatic in the next

period with probability πIS and receive utility V IS
t+2 –defined in Section 2.4. They expect

to become unobserved recovered with probability πR and to receive the utility V UR
t+2 , which

is defined for the period t as

V UR
t = u(c̃st , ñ

s
t) + βV UR

t+1 . (9)

The unobserved recovered agents have never showed any symptoms and hence do not

know their health status. Hence, they choose consumption and labor by solving the

problem in equation (7). If the untested asymptomatic agents neither develop symptoms

nor recover, they expect to test positive at the end of period t+ 1 with probability πAP,t+1

and receive the utility function V P
t+2 in the next period.

The probabilities of testing positive for a newly infected, πTP,t in equation (7), and for

10Solving the imperfect information problem under full rationality requires keeping track of when
agents were tested last and thereby is very cumbersome.
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an asymptomatic agent, πAP,t in equation (8), will be characterized in Section 3.

Budget constraint for the non-quarantined agents. The problem is subject to

the budget constraint for non-quarantined agents.

(1 + µLc,t)c
s
t = wSt n

s
t + ΓLt , (10)

where µLc,t denotes a tax on consumption proxying the effects of a lockdown on con-

sumption and labor. By reducing consumption and labor, the lockdown curtails agents’

economic interactions. In doing so, lockdowns reduce the probability for susceptible in-

dividuals to become infected (τt) and, as we shall show, the number of traceable contacts

health authorities have to test at the end of the period. The consumption tax revenue

is rebated to the agents the tax is levied on, ΓLt . The equilibrium wage wSt equals the

agent’s labor marginal productivity.

2.3 Tested-Positive Agents

Tested-positive agents are individuals who know they are infected even though they do

not have symptoms. They choose consumption, cPt and labor nPt so as to maximize

V P
t = max

cPt ,n
P
t

u
(
cPt , n

P
t

)
+ β

[
πISV

IS
t+1 + πRV

OR
t+1 + (1− πIS − πR)V P

t+1

]
, (11)

where the tested-positive individual can develop symptoms with probability πIS and, in

this case, the individual will receive the utility V IS
t+1 in the next period. The health status

of the tested-positive individual can also change to observed recovered with probability

πR and, in this case, the individual will receive the utility V OR
t+1 in the next period. If

the tested-positive individual neither develops symptoms nor recovers, they will remain

in their current status.

Budget constraint for the quarantined agents. Tested-positive agents are subject

to quarantine until they recover. Thus, the maximization problem for these agents is

subject to the following budget constraint

(
1 + µQc + αµLc,t

)
cPt = wPt n

P
t + ΓQt , (12)

where µQc proxies the effects of imposing a quarantine on individuals’ consumption and

labor decisions. Lockdowns are assumed to affect consumption of quarantined subjects

as well. The parameter α ∈ (0, 1) controls the additional effects of lockdown measures

on quarantined agents’ consumption. The tax paid by quarantined agents is rebated to

them, ΓQt .
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2.4 Infected Symptomatic Agents

As the symptoms of the disease are developed, agents observe their health status, which

becomes infected symptomatic. An infected symptomatic subject chooses consumption

cISt and nISt so as to maximize

V IS
t = max

cISt ,nIS
t

u
(
cISt , n

IS
t

)
+ β

[
πRV

OR
t+1 + (1− πR − πD)V IS

t+1

]
, (13)

subject to the budget constraint for quarantined subjects, which is shown for the tested-

positive agents in equation (12). The probability πR denotes the probability that the

health status of the infected symptomatic individual changes to observed recovered and

the individual will receive V OR
t+1 in the next period. The probability πD denotes the

probability that the infected symptomatic individual dies and, in this case, they will get

zero utility forever. If neither events happen, the infected symptomatic individual will

not change their health status in the next period.

The equilibrium wage paid to the agents is determined by the agent’s marginal pro-

ductivity of labor, which is assumed to be lower when the symptoms of the disease are

developed. This penalty on labor productivity is given by φ < 1.

2.5 Observed Recovered Agents (cont’d)

Observed recovered agents are agents who know they have been infected at some point in

the past either because they tested positive or they showed the symptoms of the disease.

Since they have become immune to the virus, their health status will never change again

and their decision problem reads:

V OR
t = max

cOR
t ,nOR

t

u
(
cORt , nORt

)
+ βV OR

t+1 , (14)

subject to the budget constraint for non-quarantined subjects in equation (10).

2.6 The Government Budget Constraint

The government balances its budget in every period by satisfying the conditions

µLc,t
[
Ct + α

(
CIS
t + CP

t

)]
= ΓLt

(
St + IAt +RU

t +RO
t + (1− α)

(
ISt + Pt

))
, (15)

µQc · CIS
t = ΓQt · ISt , (16)

µQc · CP
t = ΓQt · Pt, (17)

where we denote the share of susceptible individuals with St, the share of untested asymp-

tomatic individuals with IAt , the share of symptomatic infected individuals ISt , the share
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of positive-tested individuals with Pt, the share of unobserved recovered with RU
t , and

the share of observed recovered individuals with RO
t . Recall that Ct denotes consumption

of non-quarantined agents. CIS
t ≡ cISt I

S
t and CP

t ≡ cPt Pt stand for total consumption

of the infected symptomatic agents and that of the tested-positive agents, respectively.

There is no fiscal redistribution. The revenue of the lockdown and quarantined taxes are

rebated to the agents these taxes are levied on.11

2.7 Dynamics of Agents’ Types

We now describe the evolution of the six types of agents. The law of motion for the share

of susceptible agents reads St+1 = St − Tt, where Tt denotes the share of newly infected

subjects in period t. This share is defined using the law of large number as follows:

Tt = τt · St, where τt is the expected probability for susceptible individuals to become

infected – defined in equation (5).

The size of untested asymptomatic agents evolves according to the law of motion

IAt+1 = (1− πTP,t)Tt + (1− πAP,t)(1− πIS − πR)IAt , (18)

This set of agents are given by those who were untested asymptomatic IAt at the end

of the previous period and have not developed symptoms, recovered, or tested positive

at the end of the current period. Moreover, subjects who have become infected in this

period, Tt and have not tested positive will also join the set of the untested asymptomatic

subjects in the next period.

The pool of tested positive subjects is given by

Pt+1 = (1− πIS − πR)Pt + πTP,tTt + πAP,t(1− πIS − πR)IAt . (19)

Tested-positive subjects in the current period are people who had this health status at

the end of the previous period and have neither developed symptoms nor recovered. The

infected agents who have just tested positive also join the positive tested pool.

The pool of infected symptomatic people evolves as follows:

ISt+1 = (1− πR − πD)ISt + πIS(IAt + Pt). (20)

A fraction of infected symptomatic agents recovers or dies in the period and the remainder

remain infected symptomatic. Untested asymptomatic and tested-positive agents can

develop symptoms and become symptomatic infected subjects.

The share of unobserved recovered evolves as follows: RU
t+1 = RU

t + πRI
A
t . This

11We abstract from fiscal policy in this study, which is primarily focused on assessing the efficacy of
contact tracing. Bianchi, Faccini and Melosi (2020), Mitman and Rabinovich (2021), and Hagedorn and
Mitman (2020) study how fiscal policy should respond to pandemic recessions.
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health status is an absorbing state and the magnitude of this set of agents is increased

by untested asymptomatic agents who recover in every period. The share of observed

recovered evolves as follows: RO
t+1 = RO

t + πR(Pt + ISt ). This health status is also an

absorbing state and the magnitude of this set of agents increases as tested-positive and

infected symptomatic agents recover.

The measure of population is given by the sum of these six groups. Note that the

population size may vary because infected people die. The share of agents who have died

by period t+ 1 is given by Dt+1 = Dt + πDI
S
t .

The only two variables we have not yet defined are the probability of testing positive

for newly infected agents, πTP,t, and untested asymptomatic agents, πAP,t. The characteri-

zation of these probabilities is the object of the next section.

3 Contact Tracing and Testing

Health officials test subjects whose health status is unknown; that is, susceptible, untested

asymptomatic, and unobserved recovered agents. In our model, an agent can be infected

and remain asymptomatic throughout their entire infection. These agents are undiscov-

ered spreaders who keep infecting susceptible agents until they recover or get quarantined

because they test positive or become symptomatic. Tests do not reveal when a positive

agent was infected or whether a negative agent is still susceptible to getting infected or

has recovered. Results can be false-negative.

Contact tracing is a testing strategy whose aim is to ex-post reconstruct as much as

possible of the newly symptomatic cases’ infection chain; i.e., the network of interactions

that led a newly symptomatic case to become infected or to infect other agents. How

much of the infection chain can be known by health officials defines the efficiency of the

contact tracing technology. We consider two levels of efficiency of the tracing technology:

a basic technology that allows health officials to trace only those contacts that have

occurred during the current week and a comprehensive technology that allows them to

trace contacts up to one week back.

It is useful to resort to a graphical example to illustrate how contact tracing works in

the model. In Figure 1, agent A, who caught the virus in period t − 2, infects agent B

in period t− 1. In the next period, agent A infects further two agents, who are denoted

by C and D. At the same time, agent B also infects agent E. In period t, agent A also

met subject Z, who was however infected by subject V. The gray line connecting subject

A and Z means that this was a non-infectious meeting. The other subjects, who are

denoted by dashed green circles, are agents that were not infected by meeting with one

of the untested asymptomatic subjects, who are denoted by blue solid circles.

Let’s assume that subject A turns symptomatic in period t. The basic tracing tech-

nology would allow health officials to trace the newly infected subjects C, D, and Z.
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Figure 1: Example of an infection chain. The blue solid circles indicate an asymptomatic person.
The green dashed circles are susceptible or recovered agents. The red lines describe an
interaction that leads to an infection, while the gray lines describe an interaction that does
not lead to an infection.

However, subjects B and E, who belong to the same infection chain originated by subject

A, cannot be traced. It is important to note that subject Z does not belong to agent A’s

infection chain as subject Z was infected by subject V. However, subject Z has randomly

met with subject A in period t and is thereby traceable. If the comprehensive tracing

technology is available, then subject B can also be traced.

Let’s suppose that subject B turns symptomatic in period t while subject A is still

untested asymptomatic. The basic technology would discover subject E. By allowing

subject B’s contacts to be traced in the earlier period t−1, the comprehensive technology

allows health authorities to find out that subject A is an asymptomatic spreader. Since

subject A infected subject B, the detection of subject A is called backward tracing. The

basic technology does not allow health authorities to trace backward as it takes at least

one period for newly infected subjects to become symptomatic.

It is important to note that the basic tracing technology can catch asymptomatic

agents who went untested in the previous periods only if these agents meet randomly with

a subject who turn symptomatic in the current period. These random meetings are fairly

rare, as we will show in Sections 3.1 and 4. In contrast, the comprehensive technology

allows the health authorities to leverage the infection chain of the newly symptomatic

agents to detect asymptomatic spreaders that were not caught in previous periods. An

example is the backward tracing of agent A when agent B turns symptomatic. Hence,

the comprehensive technology is more effective in detecting asymptomatic spreaders the

testing system failed to catch in previous periods.

Health authorities could also launch a second round of tests by reconstructing the

network of contacts of those agents who tested positive in the first round. We deal with
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this extension in Section 6.

Testing Probabilities The probability of catching a spreader depends on (i) the prob-

ability of tracing this subject; (ii) the tracing and testing capacity in period t, Υt, relative

to the number of people traceable Et; (iii) the probability of a false negative (πF ). As

we will show, the efficiency of the tracing technology influences the probability of being

traced and the number of traceable subjects in a given period.

Formally, for given efficiency of the tracing technology, the probability that a newly

infected subject infected (i = T ) or an untested asymptomatic subject (i = A) tests

positive in period t is

πiP,t = πiC,t · πT,t · (1− πF ) , i ∈ {T,A}, (21)

where the probability πiC,t denotes the probability of being traced for a subject of type i

and the probability πT,t denotes the probability of being tested conditional on being traced

by the government. As we shall explain, this probability depends on the tracing and

testing capacity Υt, and the number of agents that are traceable Et. This decomposition

implies that a subject has to be traced before being tested. The case in which all the

traced subjects are quarantined is discussed in Section 6.

The variable Υt should be interpreted broadly as the intensive margin of tracing and

testing as opposed to the extensive margin, which is determined by the efficiency of the

tracing technology. While the extensive margin affects the number of traceable agents

(πTC,t + πAC,t), the intensive margin, Υt, reflects the government’s capacity of processing

all the necessary information to test these traceable contacts and quarantine those who

test positive. Henceforth, we will refer to Υt as testing capacity because this is how we

will calibrate the model. This choice reflects the absence of data regarding this broader

concept of intensive margin in tracing and testing.

Externality and the Collapse of the Testing System. The magnitude of the vari-

able Υt relative to the number of traceable people, Et, plays the role of a critical bottleneck

that can lead to the collapse of the tracing and testing system in our model. Agents fail

to realize that their consumption and labor decisions have externality on the number of

traceable subjects, Et, health authorities will have to test a few periods later. This is

because of two reasons. First, those agents whose health status is unknown do not appre-

ciate that as they increase their consumption or labor, the overall amount of interactions

in the economy will increase and, thereby, newly symptomatic agents will end up having

more traceable contacts. Second, untested asymptomatic subjects fail to realize that by

consuming or working more, more people will become infected, raising the number of
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newly symptomatic cases in every period.12 A larger number of newly symptomatic cases

enlarges the pool of subjects who met with them and are, thereby, traceable.

This externality may lead the number of traceable contacts Et to rise to the point at

which the testing system collapses, with very severe consequences for the economy. When

the number of traceable contacts largely exceeds the testing capacity, Υt, the probability

for traceable people to be tested, πT,t, falls and, with it, the probability for untested

asymptomatic subjects to test positive, πiP,t, i ∈ {T,A} in equation (21). Consequently,

the number of asymptomatic spreaders starts increasing out of control and the spread

of the virus accelerates. The economy contracts sharply as the heightened probability

of becoming infected, τt, causes non-quarantined agents to want to reduce economic

interactions so as to minimize the probability of catching the virus and dying.13

In the reminder of this section, we will characterize the probability for a newly infected

and an untested asymptomatic subject to be traced (πTP,t and πAP,t, respectively) under

the basic tracing technology and under the comprehensive tracing technology.

3.1 Basic Contact Tracing Technology

The basic contact tracing technology allows health authorities to trace only those contacts

that occur in the current week. It is useful to combine the binomial distributions in

equation (1), (2), and (3) to obtain the probability for an agent who does not know

their health status to meet k-times with the set of untested asymptomatic subjects while

consuming, working, and performing other activities:

ft(k) ≡
k∑
i=0

k−i∑
j=0

fc,t(i)fn,t(j)fo,t(k − i− j). (22)

Conditional on meeting k asymptomatic subjects in period t, the probability that at least

one of these subjects becomes symptomatic in the same period is 1− (1− πIS)k. Hence,

the probability for a subject who does not know their health status to be traced in period

t is

πSC,t = πAC,t = πURC,t =

ϕC(cst )+ϕN (ns
t )+ϕO∑

k=0

[
1− (1− πIS)k

]
ft(k), (23)

implying that the probability of being traced is the same for the three unobserved types:

susceptible (S), untested asymptomatic (A), and unobserved recovered (UR). This is

12This externality would not be eliminated if these subjects knew to be asymptomatic spreaders.
13There is another source of externality in the model. Agents do not internalize that their consumption

and labor decisions affect how many people will become infected in the economy as a whole and, hence,
ultimately their probability of getting infected. Eichenbaum, Rebelo and Trabandt (2021) study the
implications of this externality in great detail. In our model with contact tracing and testing, that
externality does not play any significant role.
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because these agents consume and work the same amount as shown in Section 2.2. As a

result, they will have the same number of total interactions ϕC(cst) + ϕN(nst) + ϕO and

the same probability of meeting with k untested asymptomatic agents.

The probability πAC,t in equation (23) is the sought probability for an untested asymp-

tomatic agent to be traced in period t.

We now work out the probability for a newly infected subject to be traced, πTC,t. Newly

infected subjects are susceptible at the beginning of the period and become infected

because they have met an untested asymptomatic individual. Thus, we have to condition

the probability distribution that a susceptible agent has met k untested asymptomatic

subjects in period t – ft(k) defined in equation (22)– on the fact that the newly infected

agent has met at least one untested asymptomatic subject, i.e., the agent who infected

them. To do so, we apply the Bayes theorem to obtain:

fTt (k) =
ft(k)τ̃(k)

τt
, (24)

where τ̃(k) ≡
[
1− (1− τ)k

]
is the probability to get at least one infectious contact out

of k interactions, and recall that τt stands for the average probability for susceptible

subjects to become infected in period t, which is defined in equation (5). Following the

same reasoning behind the probability in equation (23), we characterize the probability

for a newly infected individual to be traced as

πTC,t =

ϕC(cst )+ϕN (ns
t )+ϕO∑

k=0

[
1− (1− πIS)k

]
fTt (k). (25)

As noted at the beginning of this section where we analyzed Figure 1, an untested

asymptomatic subject can only be traced if they have met a newly symptomatic subject

randomly. The application of the Bayes theorem in equation (24) adjusts the probability

distribution fTt (k) to factor in that the newly infected subject belongs to the infection

chain of an agent who was untested asymptomatic at the beginning of the period. This is

important as this untested asymptomatic agent may turn symptomatic with probability

πIS. The event that the subject who infected the newly infected agent turns symptomatic

is more likely than the joint event that an untested asymptomatic agent has randomly

met another untested asymptomatic agent (
∑

k>1 ft(k)) and the latter agent turns symp-

tomatic. Therefore, an untested asymptomatic is less likely to be traced than a newly

infected agent under the basic tracing technology (πTC,t > πAC,t).

In Figure 11 of Appendix H, we show the unconditional and the conditional distribu-

tions ft(k) and fTt (k) in one simulation where the basic contact tracing technology leads

to a successfully control of the pandemic. As one can see, the probability of catching an

untested asymptomatic subject is dwarfed by the fact that these subjects are very un-
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likely to meet randomly with other untested asymptomatic, who can turn symptomatic.

Conditioning on the fact that newly infected agents have met at least one untested asymp-

tomatic subject causes the mode of the probability fTt (k) to shift from k = 0 to k = 1,

making tracing more likely. This result underscores the importance of exploiting the

existence of the infection chain to increase the chance of detecting newly symptomatic

agents.

Probability of Testing Positive under the Basic Tracing Technology. The basic

contact tracing technology endows health authorities with the list of contacts of the newly

symptomatic agents in period t. Health authorities look at the contacts with individuals

whose health status is unknown (i.e., contacts with observed recovered individuals are

discarded). We call this set of traceable individuals the exposed. The measure of this set

is given by

Et = πSC,t · St + πAC,t · (1− πIS) IAt + πURC,t ·RU
t , (26)

where πSC,t, π
A
C,t, and πURC,t are the probabilities of being traced for the three types of

agents who do not know their health status. These probabilities were defined in equation

(23). We adjusted the share of the untested asymptomatic subjects who were exposed

by taking out those who have revealed symptoms (πISI
A
t ) in period t.

Health authorities do not know the health status of susceptible, untested asymp-

tomatic, and unobserved recovered individuals and hence they cannot tell these three

types of subjects apart when it comes to deciding who to test. Therefore, the probability

of testing a traceable contact does not depend on the contact’s health status and is then

defined as

πt,T = min

(
1,

Υt

Et

)
, (27)

where recall Υt ≥ 0 denotes the testing capacity of policymakers in every period, which

is an exogenous variable. We substitute equations (25) and (27) into equation (21) to

obtain the probability of testing positive for newly infected subjects, πTP,t. Substituting

both the probability πAC,t of equation (23) and the conditional probability of being tested

of equation (27) into equation (21) allows us to pin down the probability of testing

positive for subjects infected in earlier periods, πAP,t. The probabilities πAP,t and πTP,t, in

turn, pin down the dynamics of types in equations (18) and (19) for the basic contact

tracing technology.
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3.2 Comprehensive Contact Tracing Technology

With the comprehensive contact tracing technology, the government can also trace the

contacts that occurred in period t − 1 with subjects who become newly symptomatic

in period t. The objective of this section is to characterize the probabilities for newly

infected and untested asymptomatic subjects to be traced based on contacts established

in period t−1. The probability for these two subjects to be traced based on the contacts

they had in period t is identical to the ones derived before under the basic contact tracing

technology.

To derive these probabilities, it is useful to condition to three types of agents and to

two types of links. The three types are as follows: (i) Type-A agents are asymptomatic

subjects in period t infected earlier than t − 1; (ii) Type-T agents are asymptomatic

subjects in period t who became newly infected in period t− 1; (iii) and Type-S agents

are subjects who became newly infected in period t. These letters are chosen to denote

the health status of asymptomatic subject in period t− 1: A for untested asymptomatic,

T for newly infected, and S for susceptible. Note that the Type-A and Type-T agents

have not tested positive, or recovered, or developed symptoms before testing is performed

in period t.

The two links are as follows: (i) A-links stand for those contacts that the three types

of subjects had in period t − 1 with agents who became infected before period t − 1;

(ii) and T-links mean those contacts that the three subjects had in period t − 1 with

agents that become infected in period t − 1. These letters denote the health status of

the subjects with which the three types of agents have interacted in period t − 1: A

for untested asymptomatic and T for newly infected. We care about these two types of

links because they connect the three types of subjects to those agents who may become

symptomatic in period t.14

Type-A agents: asymptomatic subjects in period t who were infected earlier

than t-1. Since Type-A subjects were already asymptomatic in period t− 1, they may

have infected susceptible individuals in period t − 1 and these individuals may become

symptomatic in period t. Creating their own infection chain raises the probability for

Type-A agents to be traced. Indeed, these additional traceable links create the possibility

of backward tracing, which was illustrated in the graphical example of Figure 1. The

probability for a Type-A subject to have k T-type links in period t− 1 can be written as

14Recall that it takes at least one period for newly infected agents to develop symptoms. Thus, the
probability of meeting in period t − 1 with subjects who will then become newly infected in period t
(Type-S link) does not affect the probability of being traced in period t.
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the sum of binomials

fA,Tt−1 (k) ≡
k∑
i=0

k−i∑
j=0

fA,Tc,t−1(i)fA,Tn,t−1(j)fA,To,t−1(k − i− j), (28)

where the first superscript of the probability distribution f denotes the agent’s type – in

this case A – and the second superscript denotes the links’ type – in this case T-links.

The distributions on the right-hand-side are binomial distributions which are defined as

follows:

fA,Tc,t−1(k) ≡ B
(
k, ϕc

(
cst−1

)
,
[τ + (1− τ)τt−1]CS

t−1

Ct−1

)
, (29)

where the distribution regarding labor-based interactions, fA,Tn,t−1, and that regarding non-

economic interactions, fA,To,t−1, are analogously defined.

The probability [τ + (1− τ)τt−1]
CS

t

Ct
can be decomposed into two parts. The first part

τ
CS

t

Ct
captures the chance for the Type-A agent to meet with a susceptible individual and

to infect them. In this case, the asymptomatic subject has added one more case to their

own infection link which could potentially make them traceable via backward tracing.15

In the example illustrated in Figure 1, this first case corresponds to the infectious meeting

between subject A and subject B.

The second part is the product of the probability of not infecting the susceptible

subject (1 − τ) times the probability that some other asymptomatic agents will infect

the subject in period t − 1 (i.e., the average probability τt−1). Note that in this second

case, the Type-A agent has a random, non-infectious meeting with an agent that will be

infected by someone else. This random, non-infectious meeting creates a traceable link for

the Type-A agent in period t even though this meeting does not belong to Type-A agent’s

infection chain. In the example illustrated in Figure 1, this second case corresponds to the

meeting between subject A and subject I in period t− 1. This meeting is not infectious

as subject I is infected by subject N in the same period.

While both events create a T-link for the A-type agent, in the first case only one event

has to happen (the Type-A agent infects the susceptible subject), whereas in the second

case two events have to jointly happen (the Type-A agent does not infect the susceptible

individual and the susceptible individual becomes infected by meeting another agent).

Thus, the first event is generally more likely than the second chain of events. In our

empirical simulation, backward tracing raises the probability for a Type-A agent to be

traced considerably, while the probability for a Type-A agent to be traced via a random,

non-infectious meeting with an agent that will later become symptomatic is quite tiny.

15The probability τ is the probability of infecting the subject conditional on meeting a susceptible
subject. See Assumption 4.
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Untested asymptomatic subjects in the periods earlier than t − 1 have the following

probability to have met k-times with other asymptomatic subjects who got infected in

periods earlier than t− 1:

fA,At−1 (k) ≡
k∑
i=0

k−i∑
j=0

B
(
i, ϕC(cst−1),

CA
t−1

Ct−1

)
B
(
j, ϕN(nst−1),

NA
t−1

Nt−1

)
B
(
k − i− j, ϕO,

IAt−1

Popt−1

)
.

(30)

Since A-links involve subjects who are already infected, all meetings are random (i.e.,

non-infectious).

Type-T agents: asymptomatic subjects in period t who were infected in period

t-1. The probability for Type-T agents to have k T-links in period t− 1 is

fT,Tt−1 (k) ≡
k∑
i=0

k−i∑
j=0

B
(
i, ϕC(cst−1),

cst−1Tt−1

Ct−1

)
B
(
j, ϕN(nst−1),

nst−1Tt−1

Nt−1

)
(31)

× B
(
k − i− j, ϕO,

Tt−1

Popt−1

)
,

where cst−1Tt−1 and nst−1Nt−1 denote the total consumption and labor of the newly infected

subjects in period t− 1.

The probability for Type-T agents to have k A-links can be constructed from the

probability for Type-A agents to have k A-links, fA,At−1 in equation (30), by applying the

Bayes theorem

fT,At−1 (k) =
fA,At−1 (k) τ̃(k)

τt−1

, (32)

where the variable τ̃(k) is defined in equation (24) and the rate τt is the average infection

rate defined in equation (5). Correcting the distribution fA,At−1 is needed because, unlike

Type-A agents, Type-T agents must have met at least one untested asymptomatic in

period t− 1; i.e., the individual who has infected the Type-T agent.

Analogously to the distribution in equation (24), the application of the Bayes theorem

adjusts the distribution fA,At−1 , which only reflects random meetings, to factor in that every

Type-T agent belongs to the infection chain of an agent who was untested symptomatic

in period t− 1.

Type-S agents: newly infected subjects in period t. Since, unlike Type-A agents,

who can expand their own infection chain in period t − 1, Type-S and Type-T agents

cannot infect anyone in that period, they will have the same probability to have k T-links

in period t− 1: fS,Tt−1 = fT,Tt−1 .
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The probability for Type-S agents to have k A-links in period t−1 can be constructed

starting from the probability for Type-A agents to have k A-links in the same period.

However, we need to take into account that for Type-S agents, none of these meetings

with untested asymptomatic subjects triggered an infection. For this, we use again the

Bayes theorem

fS,At−1 (k) =
fA,At−1 (k) (1− τ̃(k))

1− τt−1

. (33)

Time Adjustments and Active Links. Since tracing is conducted in period t, the

probability distributions for Type-A and Type-T subjects have to be conditioned on

the event that these subjects have remained untested asymptomatic through period t.

Furthermore, some of the A-links are not relevant for traceability and testing in period

t because infected asymptomatic subjects may become symptomatic or recover or test

positive in period t−1. T-links could also become non-relevant for traceability and testing

in period t because some of the newly infected agents test positive at the end of period

t− 1. Therefore, it is convenient to distinguish between total links (or simply links) and

active links, which are those links with infected people who may still reveal symptoms in

period t, making the subjects traceable in that period.

We show how to condition the six probability distributions, f l,it−1, with i ∈
{A, T, S} l ∈ {A, T} on these two events in Appendix A. These adjustments lead to

the probability of being traced in period t for Type-A, Type-T, and Type-S agents be-

cause of the contacts they established in period t − 1. We denote these probabilities by

π1,i
C,t, with i ∈ {A, T, S}. Notationally, these probabilities have the subscript t to remind

that tracing is carried out in period t. The probabilities of being traced for an asymp-

tomatic agent or a newly infected agent through their contacts established in the current

week t are denoted by π0,i
C,t, with i ∈ {A, T} and are the same as πiC,t, with i ∈ {A, T},

derived in Section 3.1.

Probability of Testing Positive under the Comprehensive Tracing Technology.

We use the decomposition in equation (21) to define the probability of being tested

positive at time t through contacts established in the previous period16

πj,iP,t = πj,iC,t · π
j
t,T · (1− πF ), i ∈ {A, T, S} j ∈ {0, 1}, (34)

where j denotes the period t− j when the contacts relevant for tracing were established.

So we combine the probability of being traced, πj,iC,t, with the probability of testing positive

which depends on the ratio of the test availability at time t, i.e., Υt, and the number

of subjects who were exposed either in period t − 1 or in period t. The share of agents

16Note that π0,S
C,t is the probability for a susceptible agent to test positive in period t, which is zero.
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exposed to infected subjects showing symptoms in period t is denoted by E0
t and is

defined exactly as Et in equation (26). We denote the subjects who in period t− 1 have

met agents who become symptomatic in period t, as E1
t , which is formally defined in

Appendix D.

Tests are administered following a Pecking order: First government uses all the avail-

able tests to check the current period’s contacts and if any tests are left, they are used

to test the previous period’s contacts. Pecking order is optimal because subjects who

were untested asymptomatic in the previous period may have recovered before testing is

performed.

The probability of being tested conditional on being traceable in period t is denoted

by π0
t,T and defined in equation (27). Given the Pecking order, the probability of being

tested conditional on being traceable in period t− 1 is given by

π1
T,t = min

(
1,

max (0,Υt − E0
t )

E1
t

)
. (35)

Note that the probability of testing positive defined in equation (34) is conditioned on

the type of the agents in period t−1 (i.e., Type-A, Type-T, and Type-S). Recall that what

we are ultimately interested in is to pin down the dynamics of types in equations (18) and

(19), which requires us to know the average probability for an untested asymptomatic

subject to test positive in period t (πAP,t) and the average probability for newly infected

subjects to test positive in period t (πTP,t).

The average probability for an untested asymptomatic subject in period t to test

positive in the same period under the comprehensive contact tracing technology is

πAP,t =
IAt−1 (1− πIS − πR)

(
1− πAP,t−1

)
IAt

·
[
π0,A
P,t + (1− π0,A

C,t ) · π
1,A
P,t

]
(36)

+
Tt−1

(
1− πTP,t−1

)
IAt

·
[
π0,A
P,t + (1− π0,A

C,t ) · π
1,T
P,t

]
,

where the first expression within square brackets denotes the probability for a Type-A

agent to test positive in period t and the expression within the second square bracket is

the probability for a Type-T subject to test positive in period t.17 The two bits outside

the square brackets weigh the share of Type-A and Type-T with respect to the amount

of untested asymptomatic cases in period t. This adjustment is needed as the transition

in equation (18) is expressed in terms of the size of the untested asymptomatic subjects

at time t.

The average probability for a newly infected subject to test positive in period t under

17It should be noted that these probabilities for Type-A and Type-T to test positive in t reflect the
Pecking order: If an agent is traced via their time-t contacts, they will not be tested via their time-(t−1)
contacts.
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the comprehensive contact tracing technology is given by

πTP,t = π0,T
P,t + (1− π0,T

C,t ) · π
1,S
P,t . (37)

4 Model Solution and Calibration

We use the model to study the response of epidemiological and economic variables follow-

ing a surprise shock that initially infects a tiny share of the population. To this end, we

solve the model iteratively based on a numerical root finder that computes the sequence

of policy functions and the evolution of the measure of agent types for a given number

of periods. This computation is performed for a given sequence of taxes and for a given

initial amount of asymptomatic and symptomatic agents infected by the shock. More

details are in Appendix F.

We use the approximated infection rate in equation (6) to solve the decision problem

of the agents (see Section 2.2) and to compute the dynamics of types in Section 2.7. To

pin down the probabilities of getting tested (πTP,t and πAP,t) in Section 3, we use the exact

definition of the rate τt in equation (5).

The calibrated parameters of the model are summarized in Table 1. The economic

parameters are calibrated based on Eichenbaum, Rebelo and Trabandt (2021). We set

the weekly discount factor to 0.961/52. This number is standard and implies the value

of a statistical life of roughly 10 million 2019 U.S. dollars, which is in line with what

other studies assume (e.g., Eichenbaum, Rebelo and Trabandt 2021).18 Productivity, A,

is set to match a yearly income of $58,000. The scale parameter of labor disutility, θ, is

calibrated so that agents work on average 28 hours per week. The Frisch labor elasticity

ϕ is 0.5.

The epidemiological parameters are calibrated to the recent COVID-19 crisis in the

US. A key epidemiological parameter is τ , which is the probability that one interaction

with an infected subject results in an infection (see Assumption 4). We set this parameter

to 5% based on evidence from the World Health Organization (2020).19 The parameters

ϕC , ϕN , ϕO determine the number of interactions required to support levels of individual

consumption cst , labor nst , and other non-economic activities, respectively. The original

step functions ϕC(ct) and ϕN(nt) are shown in the Appendix H (see Figure 10). We set

the parameters ϕC and ϕN so that consumption- and labor-based transmissions of the

virus account for a share of 1/3 each, when consumption and labor decisions are fixed to

18The present discounted value of a life in current consumption units is V uc = 1
1−βu(c, n)AN , where

V is the discounted value and uc is the marginal utility of consumption.
19This WHO report analyses the probability of an infection for an individual that had close contact

with an individual who tested positive for COVID-19 is between 1% and 5%. The study had identified
around 40,000 people as close contacts and was conducted in mid-February in three Chinese cities with
very active contact tracing.
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Table 1: Calibration

Parameters Sign Value Target / Source
(a) Economic parameters

Discount factor β 0.961/52 Conventional discount factor
Labor disutility θ 0.13% Weekly working hours of 28
Productivity A 39.84 Yearly income 58,000$
Frisch labor elasticity ϕ 0.5 Literature
(b) Epidemiological parameters
Interaction via consumption ϕC 0.99% Consumption-based interactions 33%
Interaction via labor ϕN 0.39 Labor-based interactions 33%
Interaction independently ϕO 10 Basic reproduction number R0 = 2
Probability of infection τ 5% World Health Organization (2020)
Recovery rate πR 7/18 Average recovery rate = 18 days
Symptomatic rate πIS 7/18 Share of symptomatic cases = 50%
Mortality rate πD 0.6% Infection fatality rate = 0.3%
False negative outcome πF 0 False positive probability = 0
Quarantine policy µQ 1 Quarantine lowers C and L by 30%
Productivity symptomatic φ 0.8 Eichenbaum et al. (2020a)
Lockdown effect in quarantine α 0 No impact besides quarantine
Initial infection ε 0.1% Infections March 16 2020

the pre-pandemic level. These targets are chosen consistently with the influenza study

by Ferguson et al. (2006).20 The parameter ϕO is set to target the basic reproduction

number R0, which is the total number of infections caused by one infected person (with

measure zero) in their lifetime in a population where everybody is susceptible and no

containment measures (including testing) are taken.21 We set the basic reproduction

number to 2 in line with the evidence about the early transmission of COVID-19.22 The

calibration implies a total amount of 30 interactions in the pre-epidemic economy, which

is broadly in line with surveillance data from infected agents.23

In line with evidence from the World Health Organization (2020), we choose that

an agent recovers on average after 18 days, which implies πR = 7/18.24 We calibrate

20Eichenbaum, Rebelo and Trabandt (2021) provide an alternative interpretation of the same influenza
study and argue that labor and consumption interactions are only responsible for 1/6 each. While
targeting this lower number would not change our main results significantly, it implies that a plausible
lockdown in our model would fail to push the effective reproduction number below one, which is at odds
with the evidence shown by Wang et al. (2020).

21In our model, the number is defined as R0 =
∑∞
j=0

[
τ1(1− πr − πD)j

]
= τ1

πr+πD
.

22For instance, Li et al. (2020) find a basic reproduction number of 2.2 based on the first 425 confirmed
patients in Wuhan (China), and Zhang et al. (2020) estimate the reproduction number to be around
2.3 using data based on the Diamond Princess cruise ship in Feburary, where a COVID-19 outbreak
occurred.

23For the first nine cases in the U.S., Burke et al. (2020) find that an infected person had up to 45
contacts. Pung et al. (2020) show that a a COVID-19 infected person requires the quarantine of 12
contacts in Singapore in February.

24The WHO reports an average recovery rate of 2 weeks for mild cases and 3 to 6 weeks for severe
cases.
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the probability of developing symptoms, πIS, so that 50% of infected agents develop

symptoms at some point of the pandemic crisis, which is in line with the symptomatic rate

estimated by Baqaee et al. (2020a).25 A key metric in parameterizing a SIR model is the

infection fatality rate, which measures the amount of deaths relative to all infectious cases.

The mortality rate πD is the infection fatality rate divided by the share of symptomatic

agents. This rate is calibrated to target an infection fatality rate of 0.3% based on

Hortaçsu, Liu and Schwieg (2020), who adjust the fatility rate to take into account

unreported infections.26

In the model, symptomatic agents are subject to a labor productivity penalty, φ.

We calibrate the penalty φ = 0.8 based on Eichenbaum, Rebelo and Trabandt (2021).

Furthermore, infected symptomatic agents and tested-positive agents are quarantined,

which is modeled as a tax on consumption, µQc . This tax implies that at steady state the

consumption and labor of a positive-tested agent is lower than those of non-quarantined

(non-recovered) agents by approximately 30%. We assume that quarantined agents are

not affected by the lockdown, that is α = 0. We set the probability of a false negative

outcome πF to zero. The initial share of infected agents ε is set to 0.1% and is divided

evenly between asymptomatic and symptomatic agents. Following Berger et al. (2020),

this can be interpreted as the amount of infections adjusted for unreported cases on

March 16, 2020.

5 Quantitative Analysis of Contact Tracing

To better understand the results shown in this section, it is useful to define an epidemi-

ological variable that gauges the speed at which the virus is spreading: the effective

reproduction number. This number captures how many susceptible people an untested

asymptomatic agent infects on average during the spell of their illness.

The effective reproduction rate is affected by the efficiency of the tracing technol-

ogy, the testing capacity (Υt), the amount of economic interactions that depend on

non-quarantined agents’ decision to consume and work, and the stringency of the con-

tainment policies (lockdowns) put in place by policymakers. An effective reproduction

number above 1 indicates a situation in which the virus is infecting more and more peo-

ple over time, while a number below 1 signifies that the virus is retracting. The effective

25There is mixed evidence about this rate. Based on a population screening in Iceland, Gudbjartsson
et al. (2020) find that 57% of the positive-tested cases report symptoms. However, almost 30% of
negatively tested individuals also report symptoms in the same study. Poletti et al. (2020) find that
74% of positive-tested contacts of indexed COVID-19 cases did not develop symptoms for individuals
below 60 years of age. Nishiura et al. (2020a) suggest a 69% infection rate based on evacuation flights
of Japenese passengers data from China.

26This value is supported by Nishiura et al. (2020b), who find a range of 0.3% to 0.6% with Japanese
data and by Streeck et al. (2020) who estimate 0.36% based on German data. Fernández-Villaverde and
Jones (2020) estimate a higher mortality rate of 1%.
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reproductive number in our model is defined as

RE
t = (1− πTP,t−1)

[
τt + (1− πIS − πR)

(
1− πAP,t

)
τt+1+

(1− πIS − πR)2
(
1− πAP,t

)
(1− πAP,t+1)τt+2 + . . .

]
c. (38)

The effective reproduction number conflates current and future probabilities for non-

quarantined infected agents to be caught. The efficiency of the tracing technology and

the testing capacity (Υt) mainly influence the effective reproduction number by affecting

the probability for newly infected subjects and for untested asymptomatic subjects to

test positive at the end of period t; that is, πTP,t and πAP,t, respectively. Lockdowns lower

the effective reproduction number primarily by reducing the infection rate, τt.

It is important to note that the reproduction number is more sensitive to changes

in the probability for a newly infected agent to test positive, πTP,t−1, than to changes in

the future probability for an untested asymptomatic agent to test positive, πAP,t+k. The

reason is that asymptomatic agents may turn symptomatic or recover in every future

period and, when they do, they will stop infecting other people. The transience of the

status of being asymptomatic, which is captured by the term (1− πIS − πR) in equation

(38), implies that increasing the probability of catching asymptomatic agents further in

the future has decreasing effects on the effective reproduction number. Detecting newly

infected agents (i.e., increasing πTP,t) has the largest (negative) impact on the effective

reproduction number because these subjects are quarantined before having the time to

infect anyone else. This is an important point that helps explain some of the results

shown in this section.

5.1 Contact Tracing with Unlimited Tests

It is interesting to start with a scenario in which tests are always sufficient to cover all

the contacts of newly symptomatic subjects. This scenario sheds light on the efficacy

of the two contact-tracing technologies in the most favorable environment where testing

capacity is never binding. In addition, this exercise will give us a sense of how many tests

would be needed to make contact tracing work at its best.

In this scenario, we also consider random testing as an alternative to contact tracing,

which has been advocated by Romer (2020) among other scholars.27 It is assumed that

random testing is run on a testing capacity of 20% of the initial population over the entire

simulation horizon. This implies a daily testing capacity of close to 10 million daily tests.

To put this number in perspective, in the U.S. the daily testing capacity was around 1

million tests per day in September 2020. We also consider the case in which no testing

27How we formalize random testing in our model is explained in Appendix E.
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Figure 2: Comparison of different testing strategies with unconstrained number of tests for contact trac-
ing. We assume that the amount tests available for random testing is 20% of the entire
population each week.

is performed.

Figure 2 shows the evolution of the key epidemiological, economic, and testing vari-

ables.28 Beginning with the case in which no one is tested (the yellow dashed-dotted line),

28More variables are plotted in Appendix H.
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the pandemic spreads very fast and causes many people to become infected. The pan-

demic crisis fades away when 60% of the population becomes infected and herd immunity

is reached. In total 0.4% of the population dies because of the pandemic. In response to

the surge in the probability of getting infected, agents reduce their interactions by dras-

tically lowering consumption and labor. As a consequence, the economy goes through an

extremely dreadful recession, with aggregate consumption contracting by up to 50%.

The introduction of the basic contact-tracing technology hugely improves outcomes

by slowing down the spread of the virus and by reducing the death toll by more than

50%. See the solid blue line in Figure 2. As the virus spreads less quickly (lower effective

reproductive number), the chances of getting infected are reduced, leading agents to

lower their consumption and labor less dramatically compared to the case of no testing.

The reproduction number quickly drops and eventually falls below 1. As a result, herd

immunity is reached with around 20% of infected agents –three times less than the share

of infected needed in the case of no testing.

While the comprehensive contact-tracing technology (the red dashed line in Figure

2) further mitigates the severe consequences of the pandemic crisis, this improvement is

only marginal relative to what is achieved by the basic tracing technology. Both tracing

technologies require testing at most 4% of the population in a week, which is substantially

less than the number of tests we assume for random testing.

The timing of the testing varies somewhat across these two tracing technologies. The

basic tracing technology requires performing more tests a few periods after the pandemic

has started (around period 30) relative to the comprehensive technology.

While this result may seem odd at first, it is important to recall that the basic tech-

nology is less effective than the comprehensive technology in detecting untested asymp-

tomatic subjects because the basic technology can only trace these subjects through

random meetings. As explained in Section 3.1, this type of meetings are quite rare.29 As

a result, in the lower right panel of Figure 2, the share of untested asymptomatic sub-

jects detected by the basic tracing technology is very low compared to the levels attained

by the comprehensive technology. As a result, in the simulation the effective reproduc-

tion number is initially higher in the case of the basic contact-tracing technology, which

justifies a faster increase in the number of traceable subjects, Et, and hence more tests

performed a few periods after the pandemic has started (around period 30). In short,

under the basic technology, you trace and test fewer people at the onset of the pandemic

and this requires you to test more people later on.

Even though random testing (the black dotted line in Figure 2) is assumed to have

an implausibly large testing capacity, it proves to be fairly ineffective in mitigating the

outcomes of the pandemic. Even if 10 million people could be randomly tested every

29The probabilities of these random meetings in period t = 20 and in period t = 40, when the pandemic
picks up a little, are shown in the left plot of Figure 11 of Appendix H.
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day, the pandemic would lead to a severe contraction and would kill 0.28% of the entire

population –more than twice as many deaths as under the comprehensive contact-tracing

technology.

What explains the spectacular failure of random testing? To answer this ques-

tion, one should look at the two bottom graphs of Figure 2, which show the share of newly

infected asymptomatic subjects (left plot) and the share of untested asymptomatic sub-

jects (right plot) who are detected and quarantined in every period under random testing

and under the two tracing technologies. Even though many more tests are performed, ran-

dom testing can detect only half of the newly infected subjects in every period. Random

testing is quite effective in capturing untested asymptomatic subjects. Even so, random

testing fails to reduce the effective reproduction number, underscoring the importance

of detecting and quarantine the newly infected cases to attain a successful containment

of the virus. This last intuition is reinforced by observing that even though the basic

contact-tracing technology largely fails to detect untested asymptomatic subjects, it fares

relatively well in containing the economic costs and the mortality of the pandemic.

That the probability of catching the newly infected asymptomatic subjects turns out

to be key to controlling the pandemic should not come as a surprise. We already noted

that the reproduction number defined in equation (38) is more sensitive to changes in

the probability for newly infected agents to test positive, πTP,t, than to changes in the

probability for untested asymptomatic subjects to test positive, πAP,t.

Why is contact tracing so successful? By leveraging the information contained

in the reconstructed infection chains, contact tracing allows policymakers to break the

positive relation between the probability of detecting newly infected agents (πTP,t) and

the infection rate τt. In doing so, contact tracing resolves an important challenge faced

by random testing: at the beginning of a pandemic –when the infection rate τt is low

– infected agents who can spread the virus are only a few and are thereby hard to

detect. As explained before, the ability of detecting and quarantining newly infected

agents has a large effect on reducing the effective reproduction number, allowing contact

tracing to nip the pandemic in the bud. Hence, lockdowns are not required to quash a

surge in the number of infections. Rather, these measures are only adopted if needed to

address the externality associated with consumption and labor. The challenges posed by

this externality are shown in the next section where we impose an upper bound on the

number of tests that can be performed in every period.
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5.2 Contact Tracing with Limited Tests

In the previous section, we showed that the basic tracing technology does a great job

in controlling the spread of the virus. The comprehensive tracing technology improves

outcomes only marginally. However, the basic tracing technology calls for a rapid increase

in the testing scale after the thirtieth week of the pandemic. This increase in the number

of tests administered is needed to compensate for the poor performance of this technology

in catching the untested asymptomatic subjects, as reflected in the low value of πAP,t in

the lower right plot of Figure 2. As we will see, if health authorities cannot scale up

their testing ability sufficiently quickly, the basic tracing technology fails to contain the

pandemic.

In this section, we show that this is the case when the testing capacity, Υt, is calibrated

to the amount of tests performed in the U.S. from March 16, 2020, through October 4,

2020. The U.S. health authorities had a daily capacity of only 30,000 tests available at

the onset of the pandemic crisis. This capacity then increased linearly up to 1 million

tests 28 weeks later.30 Afterwards, testing capacity is assumed to increase at a steady

pace until week 52, after which it stays put.

Looking at the third left plot in Figure 3, the basic contact-tracing technology (blue

solid line) requires testing to accelerate after period 30 to compensate for its inability

to catch untested asymptomatic subjects. However, testing capacity is not growing fast

enough and the blue solid line hits the yellow starred line, denoting the U.S. testing scale

(Υt). As testing capacity becomes binding, the testing system collapses, as captured by

the rapid drop in the probability of catching a newly infected subject (πTP,t). As a result,

the effective reproduction number increases as agents cut their consumption and labor in

response to the higher risk of getting infected.

This collapse of the testing system can be averted by introducing a mild lockdown

1 week before the testing capacity would become binding. See the green dashed-dotted

line in Figure 3. By lowering the amount of economic interactions, the lockdown reduces

the number of tests required, preventing the testing capacity Υt (the yellow starred line)

from ever becoming binding. The lockdown greatly mitigates the pandemic recession and

reduces the number of final deaths to half. The reason behind this result is that the

lockdown solves the externality problem – agents fail to internalize the effects of their

consumption and labor decisions on the future viability of the testing system, as explained

in Section 3. By preserving the viability of the testing system, the lockdown prevents the

effective reproduction number from soaring and, in doing so, improves the outcomes of

the pandemic crisis.

The comprehensive tracing technology (the red dashed line in Figure 3) delivers the

30The US conducted between 16 and 22 of March 231,081 tests, which is approximately 33,000 daily
tests. Between 28 September and 4 October, the U.S. conducted 6,936,961 tests, which corresponds
approximately to 991,000 daily tests.
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Figure 3: Comparison of different testing strategies with limited tests: Comprehensive tracing (blue
solid line) is previous and current week tracing, basic tracing (red dashed line) is current week
tracing and in the green dash-dotted basic tracing is combined with a 1 year lockdown. In the
fifth plot, the yellow starred line shows the testing capacity Υt.

best outcome among the considered alternative strategies. This better tracing technology

allows health authorities to detect and isolate roughly 20% of untested asymptomatic

agents in every period via backward tracing (see the bottom right graph). In doing so, this
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technology allows to keep the path of exposed subjects lower, reducing the number of tests

required. Consequently, the number of tests performed does not accelerate after period

30 as in the case of the basic tracing technology. As a result, under the comprehensive

tracing technology, the number of required tests does not become constrained by the

limited testing capacity Υt so early and the testing system remains viable even though

no lockdown is imposed.

Nevertheless, the testing availability becomes binding later on, lowering the proba-

bility of testing asymptomatic subjects, πAt , somewhat in subsequent periods. Because

of the Pecking order, there is no effect on the probability of detecting newly infected

agents, πTt , which, as we have already pointed out, is essential for successful management

of the pandemic. Thus, the effective reproduction number hardly budges and the effects

on consumption and mortality are only moderate.

5.3 The Optimal Stringency of the Lockdown

We now turn our attention to the optimal stringency of the lockdown. The stringency is

captured by the size of the consumption tax µL. The duration of the lockdown is kept

fixed at 26 periods, Tµ = 26.31

Figure 4 shows the impact of different stringency levels of the lockdown under the two

contact tracing technologies assuming unlimited and limited testing capacities. We show

the welfare in the first week, the cumulative deaths, consumption, and labor.

When no lockdown is imposed (µL = 0), the basic tracing technology alone cannot

prevent the collapse of the testing system. As a result, consumption and labor are lower

and total deaths are higher than those under the case of unlimited testing (the green

dashed-dotted line) where, by construction, the testing system cannot collapse. Indeed,

when the lockdown stringency is set to zero (µL = 0), the vertical distance between the

blue solid line and the green dashed-dotted line captures the effects of the collapse of

the testing system on welfare, total deaths, aggregate consumption, and labor. As the

stringency of the lockdown is increased, welfare increases as fewer people will be killed

by the pandemic. However, consumption and labor fall steadily.

As the stringency of the lockdown reaches the threshold µL = 0.18, social welfare

jumps to a higher level as the death toll of the pandemic drops sharply and consumption

and labor rise by a discrete amount. This discrete increase in welfare is due to the

preservation of the testing system achieved by the optimal lockdown policy.

This optimal lockdown allows the government to replicate the outcomes of the unlim-

ited testing capacity (the green dashed-dotted line). This happens because the optimal

lockdown reduces agents’ individual consumption and labor so as to solve the external-

31Our conclusions do not depend on the assumption of keeping the lockdown period fixed, as shown
in Figure 9 of Appendix H where we consider a longer lockdown duration Tµ = 52.
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Figure 4: Comparison of different testing strategies under varying lockdown stringency imposed for the
first 26 weeks. Welfare in week 1, accumulated deaths, aggregate consumption and aggregate
labor averaged over the 250 week horizon are reported.

ity problem threatening the viability of the testing system. By preserving the correct

functioning of the testing system, agents can consume and work more later when more

tests are available and the infection rate does not increase. This result is reflected in the

discrete increase in consumption and employment as the stringency of the lockdown is

raised to its optimal level.

Under the comprehensive tracing technology, the viability of the testing system is not

threatened by the pandemic (the red dashed line). As a result, raising the stringency of

the lockdown (µL) monotonically lowers consumption and employment. However, social

welfare improves as the lockdown reduces the amount of economic interactions, leading

to fewer infected cases and hence to a lower death toll.

Remarkably, lockdowns have virtually no effect on welfare when the tracing technol-

ogy is comprehensive because this more efficient tracing technology effectively shores up

the testing system against the externality problem, as shown in Figure 3. However, a tiny

lockdown is optimal as it corrects the small drop in the probability of catching asymp-

tomatic subjects (πAP,t), shown in Figure 3. Even though this drop is small and, as we

noticed, does not bring about any serious consequences for the economy and mortality,

welfare is negatively affected by that. In the case of comprehensive tracing and unlimited

testing, no lockdown is the optimal choice.
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6 Extensions

Our objective was to construct a macro-epidemiological model to serve as a general

framework to study the efficacy (or lack thereof) of contact tracing and testing. With

this goal in mind, we tried to keep the model as clean as possible. That said, our model

can be extended in a number of interesting directions. We consider three extensions that

can be studied by tweaking our methodology.

Superspreaders. An interesting extension is to consider the case of superspreaders –

a small number of carriers ending up infecting many individuals. Superspreading may be

linked to subjects who particularly enjoy social activities or have jobs that expose them

to a large number of people every day. It may also be linked to large gatherings. Since

superspreaders seem to have played a key role in spreading the coronavirus, we could

introduce a new type of agents, who either enjoy consumption more or draw less disu-

tility from working than the other set of agents. The presence of superspreader agents

would make contact tracing even more effective than random testing. As one of these

superspreaders starts showing symptoms, policymakers can detect an outsized number of

newly infected agents from tracing the contacts of the superspreader. This is because su-

perspreaders’ infection chain is larger than that of normal spreaders.32 Our methodology

is general and can be applied to models featuring households or firms heterogeneity.

All Exposed Contacts Quarantined. We assumed that health authorities can only

impose a quarantine on people who get traced and tested positive or start developing some

symptoms. We could have assumed instead that all the exposed subjects are quarantined

even if the testing capacity is binding and some of them cannot be tested. This extension

would have made our model less clean by adding a new additional type on top of the

currently featured six types. At the same time, it should be noted that this extension

would not have added much to our analysis, whose objective is to study a new externality

that can explain why contact tracing can fail. For our argument to hold, there just needs

to be a constraint on how many people can be traced and isolated in every period. In

the real world, there are a large variety of such constraints. An example is the health

authorities’ capacity to process all contacts traced by the tracing technology. If the

“logarithmic increase” of infections is not prevented, these processing constraints will

soon become binding. In the presence of this type of constraints, the key externality

studied in this paper will emerge, causing the tracing system to fail. We decided to use

the testing capacity as the key constraint in our model because it is relatively easy to

calibrate.

32If policymakers can observe if an agent is a superspreader, they should first try to trace and test the
superspreaders. This strategy would obviously make contact tracing even more effective.
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Multiple Rounds of Tracing and Testing. We assumed that health officials cannot

perform multiple rounds of testing (i.e., testing the contacts of those who tested positive

in the previous round). While our methodology can be extended to model multiple

rounds of contact tracing and testing, considering this extension in the paper would

not change our main conclusions. With the basic tracing technology, multiple rounds

of testing can provide only a minimal contribution because policymakers can mostly

catch newly infected subjects who did not have time to infect anyone else. With the

comprehensive tracing technology, policymakers can catch untested asymptomatic agents

who had time to infect someone else in the previous period. However, as shown in Section

4, implementing this technology already attains a close-to-optimal control of the virus.

Hence, any gain from performing additional rounds of tracing and testing can only be

incremental.

7 Concluding Remarks

We study contact tracing in a macro-epidemiological model in which some of the infected

agents remain asymptomatic for a number of periods during which they contribute to

spreading the virus. In the model, agents’ consumption and labor decisions have exter-

nality on the number of subjects that will need to be traced and tested. This externality

can threaten the viability of the testing system. A timely, appropriately sized lockdown

can correct the implications of this externality for the economic and death toll of the

pandemic.
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Fernández-Villaverde, Jesús, and Charles I Jones. 2020. “Estimating and Simu-

lating a SIRD Model of COVID-19 for Many Countries, States, and Cities.” National

Bureau of Economic Research.

Fetzer, Thiemo, and Thomas Graeber. 2020. “Does Contact Tracing Work? Quasi-

Experimental Evidence from an Excel Error in England.”

Galeotti, Andrea, Jakub Steiner, and Paolo Surico. 2020. “Merit of Test: Per-

spective of Information Economics.”

Glover, Andrew, Jonathan Heathcote, Dirk Krueger, and José-Vı́ctor Rı́os-

Rull. 2020. “Health versus wealth: On the distributional effects of controlling a pan-

demic.” National Bureau of Economic Research.

Gourinchas, Pierre-Olivier. 2020. “Flattening the Pandemic and Recession Curves.”

University California Berkeley mimeo.

Greenwood, Jeremy, Philipp Kircher, Cezar Santos, and Michele Tertilt.

2019. “An equilibrium model of the African HIV/AIDS epidemic.” Econometrica,

87(4): 1081–1113.

Gudbjartsson, Daniel F, Agnar Helgason, Hakon Jonsson, Olafur T Magnus-

son, Pall Melsted, Gudmundur L Norddahl, Jona Saemundsdottir, Asgeir

Sigurdsson, Patrick Sulem, Arna B Agustsdottir, et al. 2020. “Spread of SARS-

CoV-2 in the Icelandic population.” New England Journal of Medicine.

Guerrieri, Veronica, Guido Lorenzoni, Ludwig Straub, and Ivan Werning.

2020. “Macroeconomic Implications of COVID-19: Can Negative Supply Shocks Cause

Demand Shortages?” National Bureau of Economic Research Working Paper 26918.
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bias Höller, Christine Fuhrmann, Eva Bartok, Ramona Dolscheid, Moritz

Berger, Lukas Wessendorf, et al. 2020. “Infection fatality rate of SARS-CoV-2

infection in a German community with a super-spreading event.” medrxiv.

Wang, Chaolong, Li Liu, Xingjie Hao, Huan Guo, Qi Wang, Jiao Huang, Na

He, Hongjie Yu, Xihong Lin, An Pan, et al. 2020. “Evolving epidemiology and

impact of non-pharmaceutical interventions on the outbreak of Coronavirus disease

2019 in Wuhan, China.” MedRxiv.

World Health Organization. 2020. “Report of the WHO-China Joint Missionon Coro-

navirus Disease 2019 (COVID-19).”

Zhang, Sheng, MengYuan Diao, Wenbo Yu, Lei Pei, Zhaofen Lin, and Dechang

Chen. 2020. “Estimation of the reproductive number of novel coronavirus (COVID-19)

and the probable outbreak size on the Diamond Princess cruise ship: A data-driven

analysis.” International journal of infectious diseases, 93: 201–204.

41



A Comprehensive Contact Tracing Technology

In this appendix we complete the derivation of the probability of testing positive for newly

infected and untested asymptomatic agents under the comprehensive contact tracing

technology.

Conditioning on Type-A and Type-T remaining untested asymptomatic

through period t. Since tracing is conducted in period t, the probability distribu-

tions for Type-A and Type-T subjects have to be conditioned on the event that these

subjects did not test positive at the end of period t − 1 and, thereby, remain untested

asymptomatic through period t.

We rely on the Bayes theorem to condition the probability distributions for Type-A

and Type-T agents on not getting tested at the end of period t− 1 :

fA,At−1|t(k) =
fA,At−1 (k)

{
1−

[
1− (1− πIS)k

]
π0
t−1,T (1− πF )

}
∑ϕc(cst−1)

k=0 fA,At−1 (k)
{

1−
[
1− (1− πIS)k

]
π0
t−1,T (1− πF )

} , (A.1)

and

fT,At−1|t(k) =
fT,At−1 (k)

{
1−

[
1− (1− πIS)k

]
π0
t−1,T (1− πF )

}
∑ϕc(cst−1)

k=0 fT,At−1 (k)
{

1−
[
1− (1− πIS)k

]
π0
t−1,T (1− πF )

} , (A.2)

where
[
1− (1− πIS)k

]
denotes the probability that at least one of the existing T-links

or A-links contacts is with an asymptomatic subject who revealed symptoms in period

t−1, making the other subject traceable. Conditional on being traced in period t−1, the

subject will test positive with probability π0
t−1,T (1 − πF ) at the end of the same period.

As we will formally define later, π0
t−1,T is the probability of being tested at the end of

period t− 1 based on tracing the t− 1 contacts.

All other distributions do not need to be adjusted.33 It is convenient to write:

fA,Tt−1|t(k) = fA,Tt−1 (k), fT,Tt−1|t(k) = fT,Tt−1 (k), fS,Tt−1|t(k) = fS,Tt−1 (k), and fS,At−1|t(k) = fS,At−1 (k).

Active Links Some of the A-links are not relevant for traceability and testing in period

t because infected asymptomatic subjects may become symptomatic or recover or test

positive in period t−1. T-links could also become non-relevant for traceability and testing

in period t because some of the newly infected agents test positive at the end of period

33The distributions fT,Tt−1|t(k) and fA,Tt−1|t(k) do not need to be adjusted. The reasons is that meeting

with newly infected people in period t− 1 does not make Type-T and Type-A agents traceable in period
t − 1 because it takes at least one period for newly infected people to become symptomatic. Testing
Type-S agents in period t − 1 does not affect their probabilities of having k T-links or A-links as the
outcome of these tests is negative (we do not allow for false positive in test outcomes).
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t− 1. Therefore, it is convenient to distinguish between total links (or simply links) and

active links, which are those links with infected people who may still reveal symptoms in

period t and can make the subjects traceable in that period.

Let us start considering the T -links first. The probability that out of k T-links, k of

them will be still active in period t is given by the following binomial distribution:

gi,Tt−1(kt−1|kt−1) = B
(
kt−1, kt−1,

(
1− πTP,t−1(i)

))
, (A.3)

where the probability of success (i.e., the link remains active) is the probability for the

newly infected subjects met by the type A, or Type-T, or Type-S agents of not testing

positive at the end of period t−1; that is, 1−πTP,t−1(i), for each type of agent i ∈ {A, T, S}.
Note that these probabilities depend on the Type i of the agent establishing the contact

with newly infected agents (the T-link). These probabilities are derived in Appendix B.

The final step is then to combine this distribution with the appropriate distribution

f i,jt−1|t(kt−1) –derived in the previous section– to obtain the marginalized probability dis-

tribution of active T-links for each type as follows:

gi,Tt−1(kt−1) =

ϕC(cst−1)+ϕN (ns
t−1)+ϕo∑

k=0

gi,Tt−1(kt−1|k)f i,jt−1|t(k), i ∈ {A, T, S}. (A.4)

As far as the active A-links, it is first important to realize that, unlike T-links, A-links

can also become inactive as infected asymptomatic subjects may become symptomatic or

may recover in period t− 1. Another difference with T-links is that the probability that

the A-link will remain active in period t depends on whether the Type-A, or Type-T,

or Type-S individual is traceable at time t − 1. This is because if Type-A, Type-T, or

Type-S agent is traceable in period t − 1, then at least one of their A-links must have

turned symptomatic in that period. In this case, the probability for the A-link to remain

active is lower because it could have been this very A-link to have made the Type-A,

or Type-T, or Type-S agent traceable.34 The derivation of the distribution of the active

A-links gi,At−1(kt−1) for i ∈ {A, T, S} is tedious and thereby we refer the interested reader

to Appendix C.

Tracing Probabilities. It is convenient to aggregate the distribution of having k active

T-links gi,T and that of having k active A-link as follows:

git−1(kt−1) =

ϕC(cst−1)+ϕN (ns
t−1)+ϕO∑

j=1

gi,Tt−1(j)gi,At−1(kt−1 − j), i ∈ {A, T, S}. (A.5)

34Since it takes at least one period for the newly infected to become symptomatic, this scenario and
the ensuing adjustment to the probability distribution of active links do not apply to the T-links.
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We take the same step shown in equation (25) to compute the probability for each

type (Type-A, Type-T, and Type-S) to be traceable due to one of their t− 1 contacts

π1,i
C,t =

ϕC(cst−1)+ϕN (ns
t−1)+ϕO∑

k=0

[
1− (1− πIS)k

]
git−1(k), i ∈ {A, T, S}. (A.6)

These are the probabilities that Type-A, Type-T, Type-S agents become traceable in

period t because of their contacts in period t − 1. These probabilities are used in the

main text to define the probability of testing positive for these three type of agents. See

equation (34).

B Active T-Links

The objective of this appendix is to derive analytically the probability that a T-link will

become inactive (i.e., no longer relevant for contact tracing), πTP,t−1(i), for the three types

i ∈ {A, T, S}. Since Type-T and Type-S agents cannot infect anyone in period t − 1,

the probability that their T-links will remain active in period t depends on the average

probability that a newly infected person in period t − 1 tests positive at the end of the

same period. In the main text we defined this probability, which we denote with πTP,t−1,

in equation (37).

πTP,t−1(i) = πTP,t−1, i ∈ {T, S}. (B.1)

This is the probability to be used in the conditional distribution of active T-links intro-

duced in equation (A.3) for S-type and T-type agents.

As far as Type-A agents are concerned, the derivation of this probability requires a

bit more work since some of the T-links of these agents are infectious links. Therefore,

the probability for an asymptomatic subject to be tested can be written as the weighted

average of the probability of being tested via one of the infection links the asymptomatic

subject has created at time t− 1, π̃TP,t−1, and the probability for the same subject to be

tested via random meetings, πTP,t−1; that is,

πTP,t−1(A) =
τ

τ + (1− τ) τt−1

π̃TP,t−1 +
(1− τ) τt−1

τ + (1− τ) τt−1

πTP,t−1, (B.2)

where the weights reflect the fraction of infectious T-links. Note that πTP,t−1 is the same

probability for susceptible and newly infected agents to be tested at the end of period

t− 1, which is shown in equation (B.1).

The probability for a Type-A agent to be tested via the infection links they have

created at time t−1, π̃TP,t−1, has not been derived yet. We tackle this problem by looking
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at the probability of being traced from the perspective of a subject that became infected

as a result of meeting the Type-A agent in period t− 1.

With this change of perspective, the probability π̃TP,t−1 can be obtained by taking

three familiar steps. First, we take the step in equation (25) to obtain the probability for

the newly infected agents to be tested at the end of the period:

π̃0,T
C,t−1 =

ϕC(cst−1)+ϕN (ns
t−1)+ϕO∑

k=0

[
1− (1− πIS)k−1

]
fTt−1(k), (B.3)

where, unlike in equation (25), the probability that none of the contacts of the newly

infected agent will become symptomatic, (1− πIS), is to the power of k − 1. This tweak

is motivated by the fact that it is known that the newly infected agent cannot be traced

through the link with the Type-A subject who infected them in period t− 1.35

The second step is to obtain the probability of testing positive conditional on being

traced, which is precisely the familiar step taken in equation (21): π̃0,T
P,t−1 = π̃0,T

C,t−1 ·π0
t−1,T ·

(1−πF ). The third step is familiar too: we have to take into account the possibility that

the agents infected by the Type-A agent in period t − 1 can be tested because of their

contacts in the previous period t−2. Thus, we write π̃TP,t−1 = π̃0,T
P,t−1 + (1− π̃0,T

P,t−1) ·π1,T
P,t−1,

where the probability of being tested because of (non-infectious) contacts that occurred

in the previous period, π1,T
P,t−1, will be defined later.36

C Active A-Links

We now turn to the A-links. It is first important to realize that A-links can also become

inactive because the asymptomatic person on the other end of the link recovers or de-

velops symptoms at the end of the previous period. An additional complication is that

whether the Type-A, or Type-T, or Type-S individual is traceable at time t − 1 affects

the probability that the A-link will remain active in period t.

If the Type-A, Type-T, or Type-S subject is not traceable in period t − 1, then

no asymptomatic individual they met in period t − 1 turned symptomatic in that pe-

riod. Hence, the probability that the link will remain active in the next period is

(1− πR)
(
1− πAt−1,P

)
. Thus, the probability that kt−1 A-links out of kt−1 total links

35Type-A agents are, by definition, untested asymptomatic in period t. Consequently, the subject
they infected in period t− 1 cannot be traced via their interaction with the Type-A agent. However, the
subject can be traced via other non-infectious interactions they entertained in period t − 1 with other
asymptomatic subjects.

36We know for sure that these contacts at time t− 2 were not infectious because we are conditioning
on an agent being infected by the Type-A agent in period t− 1.
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is given by the following binomial distribution:37

gi,At−1(kt−1|kt−1, Aj = 1) = B
(
kt−1, kt−1, (1− πR)(1− πAt−1,P )

)
i ∈ {A, T, S}, (C.1)

where Aj = 1 means that the Type-A subject is non-traceable at time t − 1. Note that

this probability is the same across the three types of agents considered (Type-A, Type-T,

or Type-S), which are denoted by i.

If the Type-A, Type-T, or Type-S subject is traceable in period t − 1, then at least

one of their A-links must have turned symptomatic in that period. Furthermore, other

asymptomatic subjects might have also become symptomatic and hence the probability

that the link will remain active in the next period is (1− πIS − πR)
(
1− πAt−1,P

)
. All told,

the probability that kt−1 A-links out of kt−1 total links is given by the following binomial

distribution

gi,At−1(kt−1|kt−1, Aj = 2) = B
(
kt−1, kt−1 − 1, (1− πIS − πR)(1− πAt−1,P )

)
i ∈ {A, T, S}.

(C.2)

As before, this probability is the same across the three types of agents considered (Type-

A, Type-T, or Type-S), which are denoted by i.

Then we combine the two distributions using the weight for the agents that are not

traced in period t− 1

gi,At−1(kt−1|kt−1) = ιit−1(k) · g̃i,At−1(kt−1|kt−1) + (1− ιit−1(k)) · ĝi,At−1(kt−1|kt−1), (C.3)

where i ∈ {A, T, S} and ιit−1(k) denotes the weights, which of course depends on the

number of total contacts, k, the agent who met with the untested asymptomatic subject

has entertained as well as the type (A,T, or S) of agent.

Note that the probability of being traced in period t for a susceptible subject via their

contacts made in the same period is πS,0C,t−1(k) ≡ 1 − (1 − πIS)k. So, by the law of large

numbers, the share for non-traceable susceptible agents is as follows:

ιSt−1(k) = (1− πIS)k. (C.4)

The share of non-traceable A-type and T-type subjects can be derived analogously.

However, we need to adjust for the possibility that those traced A-type and T-type agents

do not test positive at the end of period t − 1. In this case, they would no longer been

untested asymptomatic in period t and hence they will no longer be considered A-type

or T-type agents. The share of non-traceable A-type subjects is therefore given by the

37Since the subjects that met the Type-A subject are already untested asymptomatic, they cannot be
infected by the Type-A agent. Thus, her probability of being tested in period t − 1 is just the average
probability of being tested for an untested asymptomatic, πAt−1,P .
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following

ιit−1(k) =
(1− πIS)k

(1− πIS)k + [1− (1− πIS)k]
(
1− π0

t−1,T (1− πF )
) , i ∈ {A, T}. (C.5)

This adjustment relies on the probability of testing positive conditional on being traced

(π0
t−1,T (1− πF )).

At last, we take the step made in equation (A.4) and obtain the marginalized proba-

bility distribution of active A-links for the three types: gi,At−1(kt−1) for i ∈ {A, T, S}.

D Comprehensive Technology: Exposed in the Pre-

vious Period

The measure of the subjects who, in period t−1, were exposed to the newly symptomatic

individuals is defined below:

E1
t =(1− π0,A

C,t )

[
IAt−1 (1− πIS − πR)

(
1− πAP,t−1

)
IAt

π1,A
C,t +

Tt−1

(
1− πTP,t−1

)
IAt

π1,T
C,t

]
(1− πIS)IAt

(D.1)

+ (1− π0,S
C,t )π

1,S
C,tSt + (1− π0,R

C,t )

[
RA
t−1

RA
t

π1,R
C,t +

πRI
A
t−1

RA
t

π1,RA
C,t

]
RA
t ,

where πR,1C,t is the probability to be traced for a Type-R agent, which is defined as an agent

who became unobserved recovered in period t − 1 or earlier. πRA,1C,t is the probability to

be traced for a Type-RA agent, which is defined as an agent who became an unobserved

recovered agent in period t and hence was an asymptomatic agent in t−1. This equation

takes into account that the agents of a group may have different histories of interactions

due to changes in their health status. For instance, there is a difference for untested

asymptomatic agents who became newly infected in the previous period and the ones

who already were infected in the previous period. This is captured by the two terms in

the first square bracket of equation (D.1).

The derivation π1,R
C,t for the Type-R agent is the same as for the Type-S agents πS,1C,t

with one difference. The contacts with untested asymptomatic agents in period t− 1 do

not need to be adjusted in contrast to Type S-Agents because the Type-R agent cannot

change their health status. This implies that the adjustment in equation (33) is not

needed and, thereby, fR,At−1 (k) = fA,At−1 .

The derivation π1,RA
C,t for a Type-RA agent is exactly the same as for a Type-A agent

with two exceptions. First, the Type-RA agent recovers and becomes an unobserved

recovered agent independent of getting tested. For this reason, we can skip the time

adjustment in equation (A.1) so that fRA,At−1|t (k) = fA,At−1 . Second, the share of non-traceable
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subjects does not depend on the probability of getting tested. Replacing equation (C.5)

with ιRAt−1 = (1−πIS)k captures this difference. The remaining steps are the same as both

types have been asymptomatic agents in the previous period.

Finally, the probability to be traced for susceptible agents due to previous period

contacts is the same regardless of whether they get infected in period t. Hence this

probability is equal to the probability for an S-type agent to be traced, which is denoted

by π1,S
C,t .

E Random Testing

An alternative to a contacting tracing strategy would be to test the population randomly,

a strategy that has been also actively discussed. In this strategy, the probability of getting

tested is the same for the susceptible, untested asymptomatic, and unobserved recovered

agents. As before, we assume that agents that are either infected, tested-positive or

observed recovered. This can be interpreted as an extreme case of contact tracing, in

which every agent gets traced, which can be written is

πiC,t = 1, i ∈ {A, S, T,RU}. (E.1)

As every agents get traced, the number of subjects to be tested is very large. The

pool of agents that the government tests is given as

Et = St + At +RU
t . (E.2)

The government has the amount of tests Υt available. Therefore, the probability of

getting tested conditionally on being traced depends on the amount of tests Υt relative

to the pool Et:

πiP,t = min

(
1,

Υt

Et

)
, i ∈ {A, T}. (E.3)

We can plug equations (E.1) and (E.3) into equation (21) to evaluate the probability of

testing positive for newly infected subjects, πTP,t, and subjects infected in earlier periods,

πAP,t.

F Model Solution

Solution Algorithm The solution algorithm solves the model iteratively based on a

numerical root finder relying on perfect foresight expecations. It computes the sequence

of policy functions {nRt , nISt , nPt , nROt }Tt=1 for T = 250 weeks for a given sequence of taxes
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{µc,t}Tt=1 and given initial asymptomatic and symptomatic infected agents: {IA1 , IS1 }. The

algorithm is summarized below:

1. Solve the model for the pre-pandemic economy.

2. Guess a path for the sequence of labor {nRt , nISt , nPt , nROt }Tt=1.

3. Based on the guessed path, solve for consumption, labor, the marginal utilities and

intraperiod utility of the susceptible, infected symptomatic, tested-positive, and

observed recovered agents, that is {cit, λit, uit}Tt=1, i ∈ {S, IS, P,OR} and the lump

sum transfer from consumption taxes {ΓLt }Tt=1.38

4. Calculate the interactions of agents (e.g. for susceptible agents ft(k)) based on their

consumption and labor decisions. This allows us to calculate the probability of get-

ting infected τt (for details see paragraph below) and also the probabilities of getting

tested for newly infected πTc,t and untested asymptomatic agents πAc,t. Crucially, the

latter objects depends on the tracing technology and the testing capacity. In case of

the comprehensive tracing technology, the amount of active links from the previous

period (e.g for susceptible agents with T-type agents gS,Tt−1(k)) need to be calculated.

Based on these objects, the evolvement of the different groups can be computed by

forward iteration so that the sequences {St, Tt, IAt , Pt, ISt , RU
t , R

O
t , Dt, Popt}Tt=1 are

obtained.

5. Iterate backwards to solve the utility of the different agents, that is

{V S
t , V

A
t , V

UR
t , V P

t , V
IS
t , V OR

t }Tt=1.

6. Calculate the marginal utility of consumption for a susceptible λst based on the

utilities of the different groups, the probability to get infected, and the probability

to get tested.

7. To solve for the sequences pf {nRt , nISt , nPt , nROt }Tt=1, use a numerical root finder

that minimizes the error in budget constraint for the positive-tested and infected

symptomatic agents, the government budget constraint for the lockdown taxes, and

the first order condition with respect to labor of susceptibles in each period t.

8. Update the path for the sequence of labor slowly and repeat steps 3 - 7 until

convergence of {nRt , nISt , nPt , nROt }Tt=1.

38To be precise, the marginal utility of susceptibles is actually calculated later in step 6 as it depends
on the testing probabilities.
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G The Individual Risk of Getting Infected

The probability of getting infected τt as a function of consumption and labor decisions

enters the decision problem of the susceptible, untested asymptomatic, and unobserved

recovered agents. See Section 2.2. This probability, which is defined in equation (5),

depends on the non-differentiable functions ϕc(c
s
t) and ϕn(nst) and introduces ridges and

cliffs in the value function V s
t of the agents, making the solution to the optimization prob-

lem very challenging. To improve the speed and the reliability of the solution algorithm,

it is convenient to take the following two steps.

First, we linearly approximate the probability of getting infected conditional on a sus-

ceptible individual entertaining k interactions around the average number of interactions

at steady state (k̄c, k̄n, k̄o) and obtain

p = 1− (1− τ)kc+kn+ko

≈ − ln (1− τ) (1− τ)k̄c+k̄n+k̄o︸ ︷︷ ︸
Ξ

· (kc + kn + ko) (G.1)

Note that Ξ is just a constant that depends on parameters and the average number of

trials k̄ is implied by the calibration of the structural parameters of the model.

We then characterize the expected probability for a susceptible individual to get in-

fected conditional on consuming cst and working nst as before using the joint distribution

defined in equation (4) and, after some straightforward manipulations, we use the defini-

tion of mean of a binomial distribution to obtain

τt =

ϕC(cst )∑
kc=0

ϕN (ns
t )∑

kn=0

ϕO∑
ko=0

Ξ · (kc + kn + ko) fc,t(kc) · fn,t(kn) · fo,t(ko),

= Ξ

[
ϕc(c

s
t)

(
CA
t

Ct

)
+ ϕn(nst)

(
NA
t

Nt

)
+ ϕO

(
At
Popt

)]
(G.2)

Second, we consider a linear approximation of the functions ϕc(c
s
t) ≈ ϕc · cst and

ϕn(nst) ≈ ϕn · nst . Plugging these linear functions into equation (G.2) leads to equation

(6).

H Additional Figures
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Figure 5: Comparison of different testing strategies with unconstrained number of tests for contact trac-
ing: No testing (blue solid), basic tracing (red dashed) corresponds to current week contact
tracing, comprehensive tracing (green dash-dotted) corresponds to current and previous week
contact tracing and random testing (black dotted) has tests available for 20% of the entire
population each week.
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Figure 6: Comparison of different testing strategies with unconstrained number of tests for contact trac-
ing: No testing (blue solid), basic tracing (red dashed) corresponds to current week contact
tracing, comprehensive tracing (green dash-dotted) corresponds to current and previous week
contact tracing and random testing (black dotted) has tests available for 20% of the entire
population each week. The graphs capture different statistics related to testing.
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Figure 7: Comparison of different testing strategies with limited tests: Comprehensive tracing (blue
solid line) is previous and current week tracing, basic tracing (red dashed line) is current week
tracing and in the green dash-dotted basic tracing is combined with a 1 year lockdown.
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Figure 8: Comparison of different testing strategies with limited tests: Comprehensive tracing (blue
solid line) is previous and current week tracing, basic tracing (red dashed line) is current week
tracing and in the green dashed-dotted basic tracing is combined with a 1 year lockdown. In
the first plot, the yellow starred line shows the testing capacity Υt.
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labor averaged over the 250 week horizon are reported.
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Figure 11: Probability distributions for an agent who does not know their health status to meet with
untested asymptomatic subjects k times. The left plot graphs the distribution ft(k) defined
in equation (22) and concerns susceptible agents, who do not turn out to become infected in
the period, untested asymptomatic agents, and unobserved recovered agents. The right plot
graphs the distribution fTt (k) obtained by applying the Bayes theorem as shown in equation
(24) and concerns the newly infected agents. The distributions are obtained in period 20 (blue
bars) and 40 (white bars) of the simulation in which we assume basic tracing technology and
unlimited testing capacity (Section 5.1).
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