Why does consumption fluctuate in old age and how should the government insure it?

Richard Blundell¹, Margherita Borella², Jeanne Commault³, and Mariacristina De Nardi⁴

April 2021

¹University College London, IFS, and CEPR

²University of Torino, and CeRP-Collegio Carlo Alberto

³Sciences Po

⁴University of Minnesota, Federal Reserve of Minneapolis, CEPR, and NBER

Motivation

- Population is aging in many countries
- > Aging associated with more frequent and severe health problems
- \Rightarrow Older households can face both income and health shocks

How important are these shocks and to what extent are people able to insure against their economic consequences?

► Health shocks :

- Change in **resources** (medical spending, earning capacity)
- Change in ability to derive utility from consumption
- \Rightarrow Changes in utility **should be passed on to consumption** \Rightarrow Whether the response of consumption reflects lack of insurance depends on **why consumption responds**

Contributions

- 1. Measure transitory income and health risk in old age
 - Variance of transitory shocks significant and explains more than half of variance of income growth and health growth
- 2. Estimate pass-through of transitory shocks to consumption
 - Consumption **responds significantly** to both
 - Some heterogeneity across goods and across households
- 3. Determine the share of the response to health shocks reflecting change in income and medical expenses vs. shift in utility
 - Most of the response comes from a shift in utility
 - Modest effect of health shocks on available resources

Plan

Data

- ► Health and Retirement Survey (HRS) Rand version of data ⇒ Income and health data
- Consumption and Activities Mail Survey (CAMS)
 ⇒ Consumption and medical expenditures data
- Both collected biannually: a period is **two years**
- Observation period is 2001-2013
- ► Keep households with head **age 65-90**

Detailed sample selection

Income, health index, and consumption

Income:

Net income

► Health:

- Predicted value from regression of self-reported health (index on 1-5 scale) on objective measures of health
- Avoids capturing fluctuations in self-reported health that are not driven by objective fluctuations

Consumption:

Nondurables: Sum of necessities (food, utilities, and car-related ► expenses), plus expenses on leisure activities and on equipment

Health graphs Detailed income Detailed consumption and medical exp.

Plan

Statistical model and parameters to estimate

▶ We assume (consistent with literature and moments):

log-income and the health index are the sum of a permanent **component** (RW subject to shocks η) and a **transitory shock** (ε)

little about consumption (shocks not anticipated)

- We want to measure:
 - **income and health risk**: $var(\varepsilon^y)$ and $var(\varepsilon^h)$

pass-through of income and health shocks to consumption

$$\frac{cov(\Delta ln(\tilde{c}_{i,t}), \boldsymbol{\varepsilon}_{i,t}^{y})}{var(\boldsymbol{\varepsilon}_{i,t}^{y})} \text{ and } \frac{cov(\Delta ln(\tilde{c}_{i,t}), \boldsymbol{\varepsilon}_{i,t}^{h})}{var(\boldsymbol{\varepsilon}_{i,t}^{h})}$$

• We estimate them with Commault's robust **BPP estimator**

Graph of identification strategy I Identifying restrictions for risk I Identifying restrictions for pass-through

Income and health risk

Incon	ne risk	Health risk		
$var(\boldsymbol{\varepsilon}_t^y)$.088***	$var(\varepsilon_{i,t}^h)$.020***	
	(.005)	,	(.001)	
Obs.	5105	Obs.	5105	
$var(\boldsymbol{\eta}_t^y)$.029***	$var(\eta_{i,t}^h)$.019***	
	(.005)	,	(.002)	
Obs.	3494	Obs.	3494	
$cov(\varepsilon)$	$_{i,t}^{h}, \boldsymbol{\varepsilon}_{i,t}^{y})$.004***	(.002)	

 \Rightarrow Transitory risk **larger than or equal to** permanent risk

Still when assuming large measurement error

⇒ What are these shocks? **Income**: mostly pensions and benefits (smaller but significant variance of shocks) Income risk excluding capital income **Health**: s.d. of $\varepsilon_{i,t}^h = 0.141$

Pass-through to consumption

	In	Income shocks			Health shocks		
	All	Low	Not low	All	Low	Not low	
		wealth	wealth		wealth	wealth	
Nondur.	.109***	.23**	.087**	.173**	.325***	.094	
	(.036)	(.101)	(.039)	(.085)	(.12)	(.112)	
Necessities	.089**	.332***	.046	.082	.321***	041	
	(.04)	(.109)	(.042)	(.089)	(.131)	(.114)	
Leis. & eq.	.105*	21	.16***	.361***	.354*	.365*	
	(.063)	(.175)	(.066)	(.147)	(.212)	(.191)	
Obs.	5105	1000	4105	5105	1000	4105	

Standard errors in parentheses. * at 10%, ** at 5%, *** at 1%

 \Rightarrow Significant pass-through of income shocks (no perfect insurance) \Rightarrow Significant pass-through of health shocks (but not proportional to pass-through of income)

Plan

Model

Standard household maximization problem with:

- Consumption of medical goods, of which a part is paid out-of-pocket
- Utility that is additively separable in nondurable consumption and in medical consumption
- Health-dependent weight on the utility from nondurable consumption and from medical consumption

Decomposition: we use the implication that response of consumption is **additively separable in the effect of resources and in the effect of the change in value of the utility weight**, to measure the two separately

Decomposition results

All	Low wealth	Not low wealth
0.196**	0.381***	0.083
(0.086)	(0.121)	(0.115)
0.023***	0.034*	0.023**
(0.012)	(0.020)	(0.015)
\$11,893	\$5,118	\$15,395
0.173**	0.346***	0.081
(0.086)	(0.121)	(0.112)
4,975	956	4,019
	0.196** (0.086) 0.023*** (0.012) \$11,893 0.173** (0.086)	wealth 0.196** 0.381*** (0.086) (0.121) 0.023*** 0.034* (0.012) (0.020) \$11,893 \$5,118 0.173** 0.346*** (0.086) (0.121)

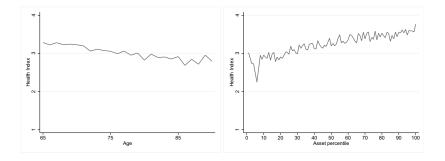
Standard errors in parentheses. * at 10%, ** at 5%, *** at 1%

Effect larger with measurement error Results Effect of shift in utility is **not necessarily homogeneous** by wealth Graph Effect of resources stronger for necessities By goods

Plan

Conclusion

- Substantial transitory income and health risk in old age
- Transitory income shocks are not perfectly insured especially among low wealth and low liquid wealth people
- Transitory health shocks have relatively modest resource consequences, but substantial effect on the utility of consumption
- Policies that could reduce ex-ante the extent of transitory shocks would reduce this risk


Sample selection

- All households with complete information, interviewed in regular interview year in the HRS
- Trim at top and bottom 1% in change of log consumption, income, and medical expenditures
- Demographic controls for: year of birth, year, education, race, region, number of household members, marital status, labor force status (both husband and wife, if present), year interactions.

\Rightarrow 5,105 observations

Health index by age (left panel) and by wealth (right panel) without attrition

Income categories

Income includes:

- earnings (wage/salary income, bonuses/overtime pay/commissions/tips, 2nd job or military reserve earnings, professional practice or trade income)
- capital income (business or farm income, self-employment earnings, business income, gross rent, dividend and interest income, trust funds or royalties, and other asset income)
- pensions (income from all pensions and annuities)
- income from Social Security disability and Supplemental Security income
- income from Social Security retirement and widow benefits
- unemployment benefits and worker's compensation
- veterans benefits, welfare, and food stamps
- alimony, other income, and lump sums from insurance, pension, and inheritance

Consumption categories

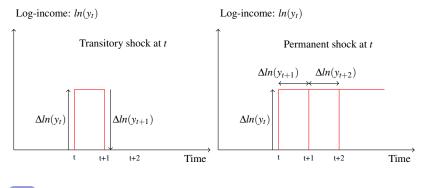
Consumption		
Necessities	Food	Food at home, food away from home
	Utilities	Electricity, water, heat, phone and internet
	Car-related	Car insurance, car repairs, gasoline
Luxuries	Leisure	Trips and vacations, tickets, sport equipment,
		hobbies equipment, contributions to
		charities, gifts
	Equipment	House supplies, house services,
		yard/garden supplies,
		yard/garden services, clothing,
		personal care equipment and services
Medical exp.		
	Drugs	Drugs
	Serv. and sup.	Medical services, medical supplies
	_	

Discussion of statistical model

Income shocks after age 65:

- transitory-permanent process standard for modeling earnings
- no evidence of different dynamics when including pensions, capital, other income
- similar overall results when excluding capital income

Health shocks after age 65:


- ► No significant effect of health insurance: Black, Espin-Sanchez, French, and Litvak (2017)
- No significant effect of past medical expenses: Brook et al. (1983), Fisher et al. (2003), Finkelstein and McKnight (2008)

Moments

	$\Delta ln(y_t)$	$\Delta ln(y_{t+1})$	$\Delta ln(y_{t+2})$
$cov(\Delta ln(y_t),.)$.215***	088***	008
	(.007)	(.005)	(.005)
$cov(\Delta ln(c_t),.)$.016***	010***	001
	(.003)	(.003)	(.004)
Obs.	5,105	5,105	3,127
	Δh_t	Δh_{t+1}	Δh_{t+2}
$cov(\Delta h_t,.)$.064***	02***	003
	(.002)	(.001)	(.002)
$cov(\Delta ln(c_t),.)$.006***	004**	.005**
	(.002)	(.002)	(.002)
Obs.	5,105	5,105	3,127

Standard errors in parentheses. * at 10%, ** at 5%, *** at 1%

Identification: instrumenting with future growth

Estimating restrictions for income and health risk

Variance of temporary health shocks:

$$var(\boldsymbol{\varepsilon}_{i,t}^{h}) = cov(\Delta h_{i,t}, -\Delta h_{i,t+1})$$

Variance of temporary income shocks:

$$var(\boldsymbol{\varepsilon}_{i,t}^{y}) = cov(\Delta ln(y_{i,t}), -\Delta ln(y_{i,t+1}))$$

• Other parameters:

Variance of permanent income shocks:

$$var(\boldsymbol{\eta}_t^{\boldsymbol{y}}) = cov(\Delta \tilde{\boldsymbol{y}}_t, \Delta \tilde{\boldsymbol{y}}_{t-1} + \Delta \tilde{\boldsymbol{y}}_t + \Delta \tilde{\boldsymbol{y}}_{t+1}).$$

Variance of permanent health shocks:

$$var(\boldsymbol{\eta}_t^h) = cov(\Delta \tilde{h}_t, \Delta \tilde{h}_{t-1} + \Delta \tilde{h}_t + \Delta \tilde{h}_{t+1}),$$

Covariance:

$$cov(\boldsymbol{\varepsilon}_{t}^{h}, \boldsymbol{\varepsilon}_{t}^{y}) = cov(\Delta \tilde{y}_{t}, -\Delta \tilde{h}_{t+1}),$$

$$cov(\boldsymbol{\varepsilon}_{t}^{h}, \boldsymbol{\varepsilon}_{t}^{y}) = cov(\Delta \tilde{h}_{t}, -\Delta \tilde{y}_{t+1}).$$

Back

Blundell, Borella, Commault, De Nardi

Estimating restrictions for covariance with consumption and pass-through

• Again, use future growth as an instrument:

$$cov(\Delta ln(\tilde{c}_{i,t}), \boldsymbol{\varepsilon}_{i,t}^{h}) = cov(\Delta ln(\tilde{c}_{i,t}), -\Delta \tilde{h}_{i,t+1})$$

$$cov(\Delta ln(\tilde{c}_{i,t}), \boldsymbol{\varepsilon}_{i,t}^{y}) = cov(\Delta ln(\tilde{c}_{i,t}), -\Delta ln(\tilde{y}_{i,t+1}))$$

Pass-through coefficients are identified from:

$$\begin{split} \widehat{\phi}_{c}^{\varepsilon^{h}} &= \frac{cov(\Delta ln(\tilde{c}_{i,t}), -\Delta \tilde{h}_{i,t+1})}{cov(\Delta \tilde{h}_{i,t}, -\Delta \tilde{h}_{i,t+1})} = \phi_{c}^{\varepsilon^{h}} \\ \widehat{\phi}_{c}^{\varepsilon^{y}} &= \frac{\tilde{cov}(\Delta ln(\tilde{c}_{i,t}), -\Delta ln(\tilde{y}_{i,t+1}))}{\tilde{cov}(\Delta ln(\tilde{y}_{i,t}), -\Delta ln(\tilde{y}_{i,t+1}))} = \phi_{c}^{\varepsilon^{y}} \end{split}$$

Not possible to estimate the pass-through to permanent shocks without more stringent restrictions

Income risk assuming large measurement error

Incon	ne risk	Health risk		
$var(\boldsymbol{\varepsilon}_t^y)$.044***	$var(\varepsilon_{i,t}^h)$.01***	
	(.002)	,	(.001)	
Obs.	5105	Obs.	5105	
$var(\boldsymbol{\eta}_t^y)$.029***	$var(\eta_{i,t}^h)$.019***	
	(.005)		(.002)	
Obs.	3494	Obs.	3494	
$cov(\varepsilon$	$({}^{h}_{i,t}, {m {arepsilon}}^{y}_{i,t})$.004***	(.002)	

Pass-through with measurement error

	Income shock			Health shock		
	Total	Low w.	High w.	Total	Low w.	High w.
Nondurables	.217***	.46**	.175**	.345**	.65***	.189
	(.073)	(.201)	(.077)	(.171)	(.241)	(.225)
Necessities	.177**	.664***	.092	.164	.642***	082
	(.079)	(.217)	(.085)	(.177)	(.261)	(.227)
Leis & eq.	.209*	421	.32***	.723***	.707*	.73*
	(.126)	(.35)	(.132)	(.293)	(.424)	(.381)
Obs.	5,105	1,000	4,105	5,105	1,000	4,105

Standard errors in parentheses. * at 10%, ** at 5%, *** at 1%

Decomposition results with measurement error

	All All	Low wealth	Not low wealth
$\phi_c^{\varepsilon^h}$.392	.779	.202
-	(.173)	(.243)	(.226)
Contribution of change in resources	0.093***	0.125	0.096**
	(0.042)	(0.040)	(0.040)
Av. change in resources (- 1 health)	\$11,893	\$5,118	\$15,395
Contribution of shift in utility	.299*	.654***	.106
	(.177)	(.265)	(.23)
Obs.	4,975	956	4,019

Standard errors in parentheses. * at 10%, ** at 5%, *** at 1%

Income risk excluding capital income

	All	Low wealth	High wealth
$var(\boldsymbol{\varepsilon}_{i,t}^{y})$.097***	.075***	.103***
,	(.006)	(.01)	(.006)
Obs.	5,052	998	4,054
$var(\eta_{i,t}^y)$.035***	.009	.041***
.,.	(.007)	(.013)	(.008)
Obs.	3,447	654	,793

Standard errors in parentheses. * at 10%, ** at 5%, *** at 1%

Pass-through excluding capital income

	Income shock			Health shock		
	Total	Low w.	High w.	Total	Low w.	High w.
Nondurables	.095***	.186*	.078**	.172**	.325***	.093
	(.036)	(.101)	(.038)	(.085)	(.12)	(.112)
Necessities	.066*	.283***	.027	.082	.321***	041
	(.039)	(.105)	(.041)	(.089)	(.131)	(.114)
Leis & eq.	.12**	182	.174***	.358***	.354*	.36*
	(.06)	(.173)	(.062)	(.147)	(.212)	(.191)
Obs.	5,052	998	4,054	5101	1000	4101

Standard errors in parentheses. * at 10%, ** at 5%, *** at 1%

Pass-through with low and high liquid wealth

	Income shock					
	Not low w. Low liq. High liq.					
Nondurables	.087**	.212***	.047			
	(.039)	(.083)	(.042)			
Necessities	.046	.146	.013			
	(.042)	(.094)	(.047)			
Luxuries	.16***	.312**	.11			
	(.066)	(.151)	(.07)			
Obs.	4174	1247	2927			

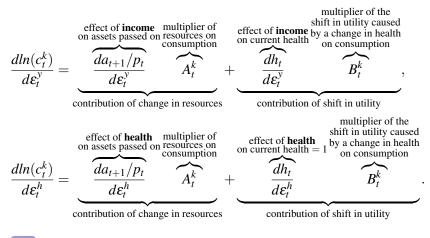
 \Rightarrow the Wealthy Hand-to-Mouth are driving the response of high wealth households to a transitory income shock

Pass-through to out-of-pocket medical expenses

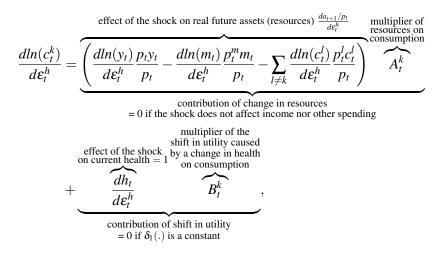
	Income shock			Health shock		
	All	Low w.	High w.	All	Low w.	High w.
Med. exp.	.074	.026	.082	607***	-1.22***	291
	(.099)	(.295)	(.103)	(.231)	(.354)	(.29)
Drugs	.012	.117	006	607***	948***	431
	(.104)	(.285)	(.111)	(.242)	(.37)	(.308)
Serv. & sup.	108	215	089	048	292	.078
	(.145)	(.4)	(.155)	(.358)	(.537)	(.452)
Obs.	5105	1000	4105	5105	1000	4105

- No response to an income shock
- Significant response to a health shock but modest level change (equivalent to \$ 1,571 for a 1 unit change in health)
- Driven by low-wealth households (equivalent to \$ 2,517 for a 1 unit change in health among low-wealth households)

Pass-through excluding long-term institutionalized


Excluding obs **if head or spouse spend more than 100 days in institution over two years** (drop 77 observations of first diff)

	Health shock			
	All	Low w.	High w.	
Nondurables $\phi_c^{\varepsilon^h}$.167*	.294***	.102	
	(.086)	(.118)	(.113)	
Necessities	.07	.272**	033	
	(.089)	(.13)	(.114)	
Luxuries	.382***	.389*	.378**	
	(.147)	(.215)	(.191)	
Obs.	5028	976	4052	


Very similar results

Expressions of the elasticities in this model

Expressions of the pass-through coefficients in this model

Expression of income elasticity $dln(c_t^k)/d\varepsilon_t^y$ with similar A_t^k and B_t^k Back

Blundell, Borella, Commault, De Nardi

Analytical expressions of the multipliers

$$A_{t}^{k} = \frac{E_{t}\left[\frac{dc_{t+1}^{k}}{da_{t+1}} - \frac{u''(c_{t+1}^{k})}{-u''(c_{t}^{k})} \frac{\delta_{k}(h_{t+1})}{\delta_{k}(h_{t})} \frac{s_{t+1}(\pi_{t+1}^{h})}{s_{t}(\pi_{t}^{h})} \frac{p_{t}^{k}}{p_{t}^{k} + p_{t+1}^{k}}\right]\beta(1+r)}{c_{t}^{k} + \frac{c_{t}^{k}p_{t}^{k}}{p_{t}}E_{t}\left[\frac{dc_{t+1}^{k}}{da_{t+1}} - \frac{u''(c_{t+1}^{k})}{-u''(c_{t}^{k})} \frac{\delta_{k}(h_{t+1})}{\delta_{k}(h_{t})} \frac{s_{t+1}(\pi_{t+1}^{h})}{s_{t}(\pi_{t}^{h})} \frac{p_{t}^{k}}{p_{t}^{k} + p_{t+1}^{k}}\right]\beta(1+r)}$$
$$B_{t}^{k} = \frac{\frac{\delta_{k}^{k}(h_{t})}{\delta_{k}(h_{t})} \frac{u'(c_{t}^{k})}{-u''(c_{t}^{k})}}{c_{t}^{k} + \frac{c_{t}^{k}p_{t}^{k}}{p_{t}}E_{t}\left[\frac{dc_{t+1}^{k}}{da_{t+1}} - \frac{-u''(c_{t+1}^{k})}{-u''(c_{t}^{k})} \frac{\delta_{k}(h_{t+1})}{\delta_{k}(h_{t})} \frac{s_{t+1}(\pi_{t+1}^{h})}{s_{t}(\pi_{t}^{h})} \frac{p_{t}^{k}}{p_{t}^{k} + p_{t+1}^{k}}\right]\beta(1+r)}$$

Estimators

We make homogeneity assumptions to use two additional restrictions:

• These restrictions can identify A^k and B^k

Decomposition results by goods

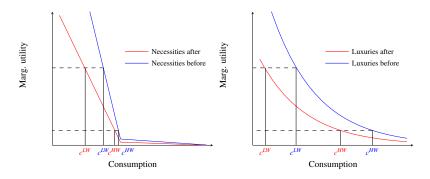


Figure: Effect of a shift in the weight put on utility for a linear and an exponential utility functions and for low-wealth and high-wealth households

Decomposition results by goods

	All	Necessities	Leis. & eq.
$\overline{\phi_c^{\varepsilon^h}}$	0.196**	0.1	0.379***
	(0.086)	(0.090)	(0.148)
Contribution of change in resources	0.023***	0.014**	0.021
	(0.012)	(0.001)	(0.015)
Av. change in resources (-1)	\$11,893	\$7,000	\$10,500
Resources multiplier (\$1,000)	0.002***	0.002**	0.002
	(0.001)	(0.001)	(0.001)
Contribution of shift in utility	0.173**	0.086	0.358***
	(0.090)	(0.121)	(0.148)
Obs.	4,975	4,971	4,971

Standard errors in parentheses. * at 10%, ** at 5%, *** at 1%

Consumption categories

Consumption		
Necessities	Food	Food at home, food away from home
	Utilities	Electricity, water, heat, phone and internet
	Car-related	Car insurance, car repairs, gasoline
Luxuries	Leisure	Trips and vacations, tickets, sport equipment,
		hobbies equipment, contributions to
		charities, gifts
	Equipment	House supplies, house services,
		yard/garden supplies,
		yard/garden services, clothing,
		personal care equipment and services
Medical exp.		
	Drugs	Drugs
	Serv. and sup.	Medical services, medical supplies

Estimators

Variance of temporary income shocks:

$$var(\boldsymbol{\varepsilon}_{i,t}^{y}) = cov(\Delta ln(y_{i,t}), -\Delta ln(y_{i,t+1}))$$

Variance of temporary health shocks:

$$var(\boldsymbol{\varepsilon}_{i,t}^{h}) = cov(\Delta h_{i,t}, -\Delta h_{i,t+1})$$

Variance of permanent shocks and covariances between shocks estimated with different instruments

Identification strategy and estimators

Again, use future growth as an instrument:

$$cov(\Delta ln(\tilde{c}_{i,t}), \varepsilon_{i,t}^{h}) = cov(\Delta ln(\tilde{c}_{i,t}), -\Delta \tilde{h}_{i,t+1})$$

$$cov(\Delta ln(\tilde{c}_{i,t}), \varepsilon_{i,t}^{y}) = cov(\Delta ln(\tilde{c}_{i,t}), -\Delta ln(\tilde{y}_{i,t+1}))$$

Pass-through coefficients are identified from:

$$\begin{split} \widehat{\phi}_{c}^{\varepsilon^{h}} &= \frac{cov(\Delta ln(\tilde{c}_{i,t}), -\Delta \tilde{h}_{i,t+1})}{cov(\Delta \tilde{h}_{i,t}, -\Delta \tilde{h}_{i,t+1})} = \phi_{c}^{\varepsilon^{h}} \\ \widehat{\phi}_{c}^{\varepsilon^{y}} &= \frac{cov(\Delta ln(\tilde{c}_{i,t}), -\Delta ln(\tilde{y}_{i,t+1}))}{cov(\Delta ln(\tilde{y}_{i,t}), -\Delta ln(\tilde{y}_{i,t+1}))} = \phi_{c}^{\varepsilon^{y}} \end{split}$$

Not possible to estimate the pass-through to permanent shocks without more stringent restrictions

Estimators

We make homogeneity assumptions to use two additional restrictions:

$$\phi_{c^{k}}^{\varepsilon^{h}} \approx \underbrace{\left(\phi_{y}^{\varepsilon^{h}} \frac{p_{t}y_{t}}{p_{t+1}} - \phi_{m}^{\varepsilon^{h}} \frac{p_{t}^{m}m_{t}}{p_{t+1}} - \sum_{l \neq k} \phi_{c^{l}}^{\varepsilon^{h}} \frac{p_{t}^{l}c_{t}^{l}}{p_{t+1}}\right) A^{k}}_{\text{contribution of change in resources}} = 0 \text{ if the shock does not affect income nor other spending}} = 0 \text{ if } \delta_{1}(.) \text{ is a constant}}$$

$$\phi_{c^{k}}^{\varepsilon^{y}} \approx \underbrace{\left(\frac{p_{t}y_{t}}{p_{t+1}} - \phi_{m}^{\varepsilon^{y}} \frac{p_{t}^{m}m_{t}}{p_{t+1}} - \sum_{l \neq k} \phi_{c^{l}}^{\varepsilon^{y}} \frac{p_{t}^{l}c_{t}^{l}}{p_{t+1}}\right) A^{k}}_{\text{contribution of change in resources}} = 0 \text{ if the shock does not}}$$

$$(3)$$

$$\phi_{c^{k}}^{\varepsilon^{y}} \approx \underbrace{\left(\frac{p_{t}y_{t}}{p_{t+1}} - \phi_{m}^{\varepsilon^{y}} \frac{p_{t}^{m}m_{t}}{p_{t+1}} - \sum_{l \neq k} \phi_{c^{l}}^{\varepsilon^{y}} \frac{p_{t}^{l}c_{t}^{l}}{p_{t+1}}\right) A^{k}}_{\text{contribution of change in marginal utility}} = 0 \text{ if } \delta_{1}(.) \text{ is a constant}}$$

• These restrictions can identify A^k and B^k

Analytical expressions of the multipliers

$$A_{t}^{k} = \frac{E_{t} \left[\frac{dc_{t+1}^{k}}{da_{t+1}} - \frac{u''(c_{t+1}^{k})}{-u''(c_{t}^{k})} \frac{\delta_{k}(h_{t})}{\delta_{k}(h_{t})} \frac{s_{t+1}(\pi_{t+1}^{h})}{s_{t}(\pi_{t}^{h})} \frac{p_{t}^{k}}{p_{t+1}/p_{t+1}}\right] \beta(1+r)}{c_{t}^{k} + \frac{c_{t}^{k} p_{t}^{k}}{p_{t}} E_{t} \left[\frac{dc_{t+1}^{k}}{da_{t+1}} - \frac{u''(c_{t+1}^{k})}{-u''(c_{t}^{k})} \frac{\delta_{k}(h_{t})}{\delta_{k}(h_{t})} \frac{s_{t+1}(\pi_{t+1}^{h})}{s_{t}(\pi_{t}^{h})} \frac{p_{t}^{k}}{p_{t+1}/p_{t+1}}\right] \beta(1+r)}$$
$$B_{t}^{k} = \frac{\frac{\delta_{k}^{\ell}(h_{t})}{c_{t}^{k}} - \frac{u''(c_{t}^{k})}{\delta_{k}(h_{t})} \frac{u'(c_{t}^{k})}{s_{t}(\pi_{t}^{h})} \frac{s_{t+1}(\pi_{t+1}^{h})}{p_{t+1}^{k}/p_{t+1}}} \beta(1+r)}{c_{t}^{k} + \frac{c_{t}^{k} p_{t}^{k}}{p_{t}} E_{t} \left[\frac{dc_{t+1}^{k}}{da_{t+1}} - \frac{u''(c_{t+1}^{k})}{-u''(c_{t}^{k})} \frac{\delta_{k}(h_{t+1})}{\delta_{k}(h_{t})} \frac{s_{t+1}(\pi_{t+1}^{h})}{s_{t}(\pi_{t}^{h})} \frac{p_{t}^{k}}{p_{t+1}^{k}/p_{t+1}}\right] \beta(1+r)}$$

Income and health risk excluding capital income

	All	Low wealth	High wealth
$var(\boldsymbol{\varepsilon}_{i,t}^{y})$.097***	.075***	.103***
·)·	(.006)	(.01)	(.006)
$var(\eta_{i,t}^y)$.035***	.009	.041***
· <i>y</i>	(.007)	(.013)	(.008)
$var(\varepsilon_{i,t}^h)$.02***	.035***	.017***
·)·	(.001)	(.004)	(.001)
$var(\eta_{i,t}^h)$.019***	.032***	.016***
· <i>y</i>	(.002)	(.005)	(.002)
$cov(\boldsymbol{\varepsilon}_{i,t}^h, \Delta ln(y_{i,t}))$.004**	.003	.004**
	(.002)	(.004)	(.002)

Standard errors in parentheses. * at 10%, ** at 5%, *** at 1%

Pass-through excluding capital income

	Income shock			Health shock		
	Total	Low w.	High w.	Total	Low w.	High w.
Nondurables	.095***	.186*	.078**	.172**	.325***	.093
	(.036)	(.101)	(.038)	(.085)	(.12)	(.112)
Necessities	.066*	.283***	.027	.082	.321***	041
	(.039)	(.105)	(.041)	(.089)	(.131)	(.114)
Leis & eq.	.12**	182	.174***	.358***	.354*	.36*
	(.06)	(.173)	(.062)	(.147)	(.212)	(.191)
Obs.	5139	1017	4122	5101	1000	4101

Standard errors in parentheses. * at 10%, ** at 5%, *** at 1%