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General motivation

Oil price fluctuations have adverse macroeconomic implications

Hamilton (1983, 2009); Kilian (2009); Ravazzolo and Rothman (2013);
Baumeister and Hamilton (2019)

Oil price is a key variable in generating macroeconomic projections and in
assessing macroeconomic risks

Central banks, private sector forecasters and international organizations

But also crucial for how some sectors operate their business

Airlines, utilities and automobile manufacturers

...But the price of oil is not easy to forecast
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Real price of oil
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Motivation

Hamilton (2009) documents that the statistical regularities of changes in
the real price of oil have historically tended to be

permanent
difficult to predict
governed by very different regimes at different points in time

He further argues that the price of oil seems to follow a random walk
without drift

It is widely accepted to either use the current spot price or the price of oil
futures contracts as the forecast of the price of oil.
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Oil Price forecasting literature: point forecasting

Recently academic and professional researchers have explored numerous
alternative models and methods in order to forecast the most likely future
realisation of the oil price

Alquist and Kilian (2010); Alquist et al. (2013); Baumeister and Kilian (2012,
2015); Manescu and Robays (2016); Bernard et al. (2018); Pak (2018);
Garratt et al. (2019); Baumeister et al. (2020)

These papers focus on evaluating point forests and find that

It’s hard to beat a random walk in out-of-sample oil price forecasting
exercises
But careful attention to the economic fundamentals that are driving energy
markets can lead to practical improvements in forecasts
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Distribution of real price of oil ?
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Contribution

We provide a novel quantification approach to forecast uncertainty of the real
price of crude oil using a combination of probabilistic individual model
forecasts.

Our proposed Forecast Density Combination (FDC) model is based on a
probabilistic and econometric interpretation of the Bayesian Predictive
Synthesis (BPS) model due to McAlinn and West (2019) and McAlinn et al.
(2020)

Our combination approach extends earlier approaches that have been applied
to oil price forecasting models, by allowing for three key features

1 Time-varying combination weights
2 Explicitly modeling and estimation of time-varying forecast biases and facets

of miscalibration of individual forecast densities and time-varying
inter-dependencies among models

3 Provide a diagnostic analysis of model set incompleteness and learn from
previous forecast mistakes
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Empirical exercise and results

We provide an extensive set of empirical results about time-varying out-of
sample forecast performance, forecast uncertainty and risk for the real price
of oil.

Data sample covers the period 1974-2018
Out-of sample forecasting evaluation period runs from 1998:1-2018:12
Use real time monthly data (Baumeister and Kilian (2015))

Main findings:

1 Our combination approach systematically outperforms all benchmarks we
compare it to

2 The favourable forecast performance from our combination approach is not
specific to certain time periods

3 Large time variation in the weights attached to each model
4 The combination approach provide clear signals of model set incompleteness

during three crisis periods
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Relation to literature on combining probabilistic forecasts

Combining forecast densities using weighted linear combinations of
prediction models, evaluated using various scoring rules

Hall and Mitchell (2007); Amisano and Giacomini (2007); Jore et al. (2010);
Hoogerheide et al. (2010); Kascha and Ravazzolo (2010); Geweke and
Amisano (2011, 2012); Gneiting and Ranjan (2013); Aastveit et al. (2014)

Complex combination approaches that allows for time-varying weights
with possibly both learning and model set incompleteness

Koop and Korobilis (2012); Billio et al. (2013); Casarin et al. (2015);
Pettenuzzo and Ravazzolo (2016); Del Negro et al. (2016); Aastveit et al.
(2018); McAlinn and West (2019); McAlinn et al. (2020); Takanashi and
McAlinn (2020); Casarin et al. (2020)

No studies on how to quantify forecast uncertainty associated with the
dynamic behaviour of the real price of crude oil.

Aastveit, Cross and van Dijk February 25, Bundesbank Workshop 9 / 44



Relation to literature on combining probabilistic forecasts

Combining forecast densities using weighted linear combinations of
prediction models, evaluated using various scoring rules

Hall and Mitchell (2007); Amisano and Giacomini (2007); Jore et al. (2010);
Hoogerheide et al. (2010); Kascha and Ravazzolo (2010); Geweke and
Amisano (2011, 2012); Gneiting and Ranjan (2013); Aastveit et al. (2014)

Complex combination approaches that allows for time-varying weights
with possibly both learning and model set incompleteness

Koop and Korobilis (2012); Billio et al. (2013); Casarin et al. (2015);
Pettenuzzo and Ravazzolo (2016); Del Negro et al. (2016); Aastveit et al.
(2018); McAlinn and West (2019); McAlinn et al. (2020); Takanashi and
McAlinn (2020); Casarin et al. (2020)

No studies on how to quantify forecast uncertainty associated with the
dynamic behaviour of the real price of crude oil.

Aastveit, Cross and van Dijk February 25, Bundesbank Workshop 9 / 44



Relation to literature on combining probabilistic forecasts

Combining forecast densities using weighted linear combinations of
prediction models, evaluated using various scoring rules

Hall and Mitchell (2007); Amisano and Giacomini (2007); Jore et al. (2010);
Hoogerheide et al. (2010); Kascha and Ravazzolo (2010); Geweke and
Amisano (2011, 2012); Gneiting and Ranjan (2013); Aastveit et al. (2014)

Complex combination approaches that allows for time-varying weights
with possibly both learning and model set incompleteness

Koop and Korobilis (2012); Billio et al. (2013); Casarin et al. (2015);
Pettenuzzo and Ravazzolo (2016); Del Negro et al. (2016); Aastveit et al.
(2018); McAlinn and West (2019); McAlinn et al. (2020); Takanashi and
McAlinn (2020); Casarin et al. (2020)

No studies on how to quantify forecast uncertainty associated with the
dynamic behaviour of the real price of crude oil.

Aastveit, Cross and van Dijk February 25, Bundesbank Workshop 9 / 44



Methodology
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Basic structure of FDC

ỹt
′ = (ỹ1t , . . . , ỹn,t) is the forecasted values from i = 1, ...,n models. In a

simulation context ỹit is a draw from the forecast distribution with
density p(ỹit |Iit−1,Mi ).

vt
′ = (v1t , . . . ,vn,t) are latent continuous random variable parameters

that will be used to combine the forecasts

The decomposition of the joint density of yt ,vt , ỹt is:

p(yt |It−1,M) =
∫ ∫

p(yt |vt , ỹt)p(vt |ỹt)p(ỹt|It−1,M)dvtd ỹt, (1)

where It−1 is the joint information set of all models and M the union of all
models.

p(yt |vt , ỹt) is the combination density;

p(vt |ỹt) is a variable parameter density;

p(ỹt|It−1,M) is the joint forecast density of the different models.
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′ = (ỹ1t , . . . , ỹn,t) is the forecasted values from i = 1, ...,n models. In a
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p(ỹt|It−1,M) is the joint forecast density of the different models.

Aastveit, Cross and van Dijk February 25, Bundesbank Workshop 11 / 44



Basic structure of FDC

ỹt
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p(yt |It−1,M) =
∫ ∫
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Structure of our FDC: Choice of the different densities

A key step is to give content to the different densities.

p(yt |vt , ỹt) is labeled the multivariate normal combination density :

p(yt |vt , ỹt) = n(yt |v0t +
n

∑
i=1

vit ỹit ,σ
2
t ), (2)

where time-varying constant v0t in the conditional mean allows for forecast
adjustments to shocks and regime changes in the data. σ 2

t allows for
time-varying volatility.

p(vt |ỹt) is labeled the density of latent time-varying parameter weights
and specified as:

p(vt |vt−1,Σt) = n(vt |vt−1,Σt), (3)

where the parameter Σt = σ 2
t Wt and Wt is a diagonal matrix with elements

wit given in the paper.
p(ỹt|It−1,M) is labeled the joint forecast density of the different models.
Due to the conditional independence assumption it is given as:

p(ỹt|It−1,M) =
n

∏
i=1

p(ỹit |Ii(t−1),Mi ). (4)
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p(ỹt|It−1,M) =
n

∏
i=1
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t Wt and Wt is a diagonal matrix with elements

wit given in the paper.
p(ỹt|It−1,M) is labeled the joint forecast density of the different models.
Due to the conditional independence assumption it is given as:

p(ỹt|It−1,M) =
n

∏
i=1

p(ỹit |Ii(t−1),Mi ). (4)
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Learning from errors: Forecast errors and model set
incompleteness

The disturbance εt implied by the combination density is given as:

εt = yt − (v0t +
n

∑
i=1

vit ỹit). (5)

It is a weighted combination of forecast errors: yt − ỹit , i = . . .n.
Forecast errors are due to:

Sudden shocks in the series, volatility
Misspecification errors from model set incompleteness

The dynamic behaviour of the individual disturbance εit from model Mi given
as:

εit = yt − (v0,it + vit ỹit), (6)

which indicates the weighted forecast error in the i-the model.
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Structure of our FDC: An econometric interpretation of
Bayesian Predictive Synthesis

The Equation System: a multivariate regression model with generated
regressors ỹt , given as draws from the forecast distributions of the different
models and time-varying parameters vit draws:

yt = v0t +
n

∑
i=1

vit ỹit + εt :: εt ∼ NID(0,σ 2
t ), t = 1, . . . ,T . (7)

where the latent time-varying parameters are specified to follow a Random
Walk learning process:

vit = vit−1 + εvt :: εvt ∼ NID(0,σ 2
vt = σ

2
t wt), i = 0, . . . ,n. (8)

where σ 2
vt is defined via a standard single discount factor specification (see

Prado and West (2010)) and σ 2
t is the residual variance in predicting yt

based on past information and the set of individual forecast distributions.It
follows a beta-gamma volatility model (also based on discounting)
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Road Map of the Probability model as Generalized Linear
State Space System

Time series models

Mi (i = 1, . . . ,n):

ỹit ∼ p(ỹit |Ii(t−1),Mi )

Stochastic volatility model:

εt ∼ NID(0,σ 2
t )

σ 2
t =

δσ2
t−1

γt

γt ∼ Beta( δht−1
2 , (1−δ )ht−1

2 )

ht = δht−1 + 1
↘ ↙

Central equation:

yt = v0t + ∑
n
i=1 vit ỹit + εt

x

Random walk learning for

unrestricted latent variables:

vit = vi(t−1 + εvt

εvt
iid∼N (0,σ 2

vt = σ 2
t wt)

wt = β−1
β

wt−1
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Outline of Algorithm

3 stage Markov Chain Monte Carlo
1 Forecast from n models. Generate draws from the forecast distributions from

the n different models which gives ỹit , i = 1, . . . ,n

2 Latent variable parameters. Using the Kalman/Normal Filter method
(which includes updating) with initial value vi0, i = 1, . . . ,n, generate variable
parameters vit , i = 1, . . . ,n from the RW process.

3 SV parameters. Given draws ỹit , i = 1, . . . ,n, vt , i = 1, . . . ,n, generate draw of
the SV parameters from inverted Gamma distribution.

Forecasting proceeds as follows:

Given a generated vit , i = 1, . . . ,n, a generated SV value, a generated
ỹit , i = 1, . . . ,n and using (7) generate a one step predicted value yt+1.
Repeating this process gives a synthetic sample of future values and a forecast
density at time t + 1.
Very Important feature from this MCMC procedure: The uncertainty in the
generated forecasts from the different models is directly carried forward
in the uncertainty of the combined forecast density. In contrast,
frequentists methods use a two-step method and they suffer from the
generated regressor problem.
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Individual models
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General framework for constructing forecast densities from
individual models

General stochastic volatility model with Student’s t-distributed errors given by

St+h|t − Ŝt+h|t = εt+h|t , εt+h|t ∼ T (µ,eht+h|t ,ν), (9)

ht+h|t = µ + φ(ht+h−1|t −µ) + ζt+h|t , ζt+h|t ∼ NID(0,ω2), (10)

in which |φ |< 1 and Ŝt+h|t is a point forecast of the real price.

Obtain draws from the forecast distribution of S̃t+h|t , conditional on the
model estimates

S̃t+h|t = Ŝt+h|t + ε̂t+h|t , εt ∼ T (0,e ĥt+h|t , ν̂), (11)

in which ε̂t+h|t , ĥt+h|t and ν̂ are posterior draws from the estimated
stochastic volatility model.
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Individual forecasting models

No-change model (NC)

Ŝt+h|t = St . (12)

Changes in the price index of non-oil industrial raw materials (CRB)

Ŝt+h|t = St|t(1 + π
h,rm
t −Et [π

(h)
t+h]). (13)

Futures & West Texas Intermediate (WTI) oil futures prices (Futures)

Ŝt+h|t = St|t(1 + f WTI ,h
t − sWTI

t −Et [π
(h)
t+h]), (14)

Aastveit, Cross and van Dijk February 25, Bundesbank Workshop 19 / 44



Individual forecasting models

No-change model (NC)
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Individual forecasting models

Spread & Spread Between the Spot Prices of Gasoline and Crude Oil
(Spread)

Ŝt+h|t = St|t exp(β̂ [sgas
t − sWTI

t ]−Et [π
(h)
t+h]), (15)

Time-Varying Parameter Model of the Gasoline and Heating Oil
Spreads (TVspread)

Ŝt+h|t = St|t exp(β̂1,t [s
gas
t − sWTI

t ] + β̂2,t [s
heat
t − sWTI

t ]−Et [π
(h)
t+h]), (16)

Oil market Vector Autoregression (VAR)

yt = b+
p

∑
i=1

Biyt−i + et , (17)
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Empirical contributions
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Empirical work

Forecast monthly real price of crude oil

Real-time data as in Baumeister and Kilian (2012, 2015)

Training sample: 1992:01-1998:02

Evaluation sample: 1998:03-2017:12

Forecast evaluation: Root Mean Squared Forecast Error (RMSFE), Log
Predictive Score (LPS) and their time behaviour, Time behaviour of weights
and diagnostic measures.

Forecast horizons: h = 1, h = 6, h = 12, h = 24

Consider different model combinations

BPS, BMA, BMA with rolling window weights, and equal weights
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Density and point forecast results relative to a no-change
benchmark, Evaluation sample 1998:03-2017:12

Log Score

Horizon CRB Futures Spread TVspread VAR Equal BMA BMA2 BPS

1 0.46 1.69* -0.55 -3.62 -14.26 -298.95** -297.04** -91.44** -13.23
6 -0.21 3.11 -5.10* -8.14 -29.57** -161.18** -158.22** -2.55* 12.59**

12 -12.50 10.02* -16.56** -19.14** -28.74** -141.46** -139.63** 25.85* 47.73**
24 -32.48** 26.10** -16.91** -35.25** 2.34 -152.15** -142.21** 59.14** 110.96**

RMSFE

Horizon CRB Futures Spread TVspread VAR Equal BMA BMA2 BPS

1 0.95 0.99* 1.00 1.01 0.99 0.96* 0.96* 0.90* 0.97
6 1.06* 0.97* 1.01 1.04 1.05* 0.99 0.99 0.96** 0.89**

12 1.05 0.91** 1.01 1.02 1.04 0.96** 0.96** 0.88** 0.71**
24 1.13** 0.89** 1.07 1.21** 1.01** 0.98 0.97** 0.78** 0.57**

PITS
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Model credible set (MCS) tail probabilities (p-values) for
density (Log Score) and point (RMSFE) forecasts.

Log Score

Hor NC CRB Futures Spread TVspread VAR Equal BMA BMA2 BPS

1 0.95** 1.00** 0.95** 0.95** 0.21** 0.14** 0.00 0.00 0.01 0.01
6 0.36** 0.76** 0.76** 0.36** 0.36** 0.01 0.00 0.00 0.76** 1.00**

12 0.00 0.00 0.09** 0.00 0.00 0.00 0.00 0.00 0.28** 1.00**
24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 1.00**

RMSFE

Hor NC CRB Futures Spread TVspread VAR Equal BMA BMA2 BPS

1 0.18** 0.19** 0.18** 0.18** 0.18** 0.18** 0.19** 0.19** 1.00** 0.18**
6 0.10** 0.09** 0.12** 0.10** 0.09** 0.10** 0.12** 0.12** 0.12** 1.00**

12 0.02* 0.03* 0.03* 0.02** 0.03* 0.03* 0.03* 0.03* 0.03* 1.00**
24 0.01* 0.01* 0.01* 0.01* 0.01* 0.01* 0.01* 0.01* 0.01* 1.00**
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Time patterns of forecast means of cumulative Log
Predictive Scores relative to a no-change model benchmark
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Time patterns of forecast means of Root Mean Squared
Forecast Errors relative to a no-change model benchmark
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Time patterns of forecast means of model weights (vit) in
the FDC model based on BPS

Aastveit, Cross and van Dijk February 25, Bundesbank Workshop 27 / 44



Time pattern of forecast means of intercept (v0t) in the
FDC model based on BPS
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Time pattern of forecast means of variance (σ 2
t ) for the

central equation in BPS model.
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Robustness checks

Alternative oil price series

Our results are robust to using the Brent and West Texas Intermediate (WTI)
prices of crude oil. WTI Brent

Alternative model sets

Our results are robust to including additional individual models as in Alquist
et al. (2013) in the BPS. Models Combinations

Alternative BPS specification

Estimate alternative BPS specification were we shut-off the random walk
learning
Provides comparable results to the main BPS specification at the shorter
horizons, but BPS with random walk learning provide superior results at longer
horizons. No RW learning

Aastveit, Cross and van Dijk February 25, Bundesbank Workshop 30 / 44



Robustness checks

Alternative oil price series

Our results are robust to using the Brent and West Texas Intermediate (WTI)
prices of crude oil. WTI Brent

Alternative model sets

Our results are robust to including additional individual models as in Alquist
et al. (2013) in the BPS. Models Combinations

Alternative BPS specification

Estimate alternative BPS specification were we shut-off the random walk
learning
Provides comparable results to the main BPS specification at the shorter
horizons, but BPS with random walk learning provide superior results at longer
horizons. No RW learning

Aastveit, Cross and van Dijk February 25, Bundesbank Workshop 30 / 44



Robustness checks

Alternative oil price series

Our results are robust to using the Brent and West Texas Intermediate (WTI)
prices of crude oil. WTI Brent

Alternative model sets

Our results are robust to including additional individual models as in Alquist
et al. (2013) in the BPS. Models Combinations

Alternative BPS specification

Estimate alternative BPS specification were we shut-off the random walk
learning
Provides comparable results to the main BPS specification at the shorter
horizons, but BPS with random walk learning provide superior results at longer
horizons. No RW learning

Aastveit, Cross and van Dijk February 25, Bundesbank Workshop 30 / 44



Summary of results

1 Our combination approach systematically outperforms all benchmarks we
compare it to

Gains in relative forecast accuracy are particularly substantial for density
forecast and at longer horizons

2 The favourable forecast performance from our combination approach is not
specific to certain time periods

Large time variation in the relative performance of the various individual
models

3 Considerable time variation in the weights attached to each model

Weights are not restricted to be a convex combination in the unit interval
and can be negative.

4 Our combination is robust to model set incompleteness and misspecification

Time-varying intercept component that can adapt during episodes of low
frequency signals
Built-in diagnostic information measures about forecast inaccuracy and/or
model set incompleteness
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Conclusion

We have introduced a basic probabilistic and numerically efficient
Forecast Density Combination model

Our combination approach extends earlier approaches that have been applied
to oil price forecasting models, by allowing for three key features

1 Time-varying and self-learning combination weights.
2 Explicitly modelling and estimation of time-varying forecast biases and facets

of miscalibration of individual forecast densities and time-varying
inter-dependencies among models

3 Provide a diagnostic learning analysis of model set incompleteness and
learn from previous forecast mistakes.

We have provided an extensive set of empirical results about time-varying
forecast uncertainty and risk for the real price of oil
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Knüppel, M. (2015). Evaluating the Calibration of Multi-Step-Ahead Density
Forecasts Using Raw Moments. Journal of Business & Economic
Statistics 33(2), 270–281.

Koop, G. and D. Korobilis (2012). Forecasting Inflation Using Dynamic Model
Averaging. International Economic Review 53(3), 867–886.

Manescu, C. B. and I. V. Robays (2016). Forecasting the Brent Oil Price:
Addressing Time-Variation in Forecast Performance. Technical report.

McAlinn, K., K. A. Aastveit, J. Nakajima, and M. West (2020). Multivariate
bayesian predictive synthesis in macroeconomic forecasting. Journal of the
American Statistical Association 115(531), 1092–1110.

McAlinn, K. and M. West (2019). Dynamic bayesian predictive synthesis in time
series forecasting. Journal of Econometrics 210(1), 155–169.

Pak, A. (2018). Predicting crude oil prices: Replication of the empirical results in
what do we learn from the price of crude oil?. Journal of Applied
Econometrics 33(1), 160–163.

Aastveit, Cross and van Dijk February 25, Bundesbank Workshop 37 / 44



References VI

Pettenuzzo, D. and F. Ravazzolo (2016). Optimal portfolio choice under
decision-based model combinations. Journal of Applied Econometrics 31,
1312–1332.

Ravazzolo, F. and P. Rothman (2013). Oil and U.S. GDP: A Real-Time
Out-of-Sample Examination. Journal of Money, Credit and Banking 45(2-3),
449–463.

Takanashi, K. and K. McAlinn (2020). Predictive properties and minimaxity of
bayesian predictive synthesis.

Aastveit, Cross and van Dijk February 25, Bundesbank Workshop 38 / 44



Tail probabilities (p-values) for the probability integral
transforms (PITs) test in Knüppel (2015). The null
hypothesis is that the PITs are uniformly distributed over
the interval (0,1).

IRAC

Hor NC CRB Futures Spread TVspread VAR Equal BMA BMA2 BPS

1 0.02 0.03 0.03 0.04 0.05 0.33 0.00 0.00 0.00 0.10
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

12 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.02 0.03 0.69
24 0.04 0.04 0.04 0.06 0.05 0.04 0.05 0.06 0.04 0.18

Back
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Density and point forecast results relative to a no-change
benchmark: real WTI price of crude oil.

Log Score

Hor CRB Futures Spread TVspread VAR Equal BMA BMA2 BPS

1 8.80 -2.87 -0.26 -3.40 -21.86 -272.81** -271.68** -55.97** -12.90
6 -3.67 1.05 1.32 -1.27 -27.27** -149.57** -146.63** 0.76* 19.06**

12 -17.10* 9.53 0.15 -9.77 -28.89** -124.31** -122.29** 19.90** 50.27 **
24 -32.77** 18.62* -13.62** -41.23** -8.96 -137.08** -123.97** 57.14** 100.09**

RMSFE

Hor CRB Futures Spread TVspread VAR Equal BMA BMA2 BPS

1 0.91 0.99 1.00 1.02 1.00 0.95** 0.95** 0.90** 0.96
6 1.08* 0.99 1.01 1.03 1.03 0.99 0.99 0.97** 0.88**

12 1.08** 0.92** 1.00 1.01 1.04 0.97** 0.97** 0.94** 0.72**
24 1.17** 0.91** 1.05** 1.18** 1.01 0.97* 0.97** 0.84** 0.60**

Back
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Density and point forecast results relative to a no-change
benchmark: real Brent price of crude oil.

Log Score

Hor CRB Futures Spread TVspread VAR Equal BMA BMA2 BPS

1 9.60 -9.42 -1.79 -4.48 -20.36 -287.40** -291.81** -59.30** -12.72
6 -5.55 7.13 -9.98** -9.95 -36.89** -145.58** -141.07** 10.97 11.19*

12 -16.57 -6.33 -32.86** -34.75** -31.60** -146.00** -144.41** -4.04 36.99**
24 -28.30** 12.26 -24.95** -36.92** 4.96 -154.73** -142.82** 48.66** 112.71**

RMSFE

Hor CRB Futures Spread TVspread VAR Equal BMA BMA2 BPS

1 0.92* 1.05 1.01 1.03 1.01 0.96** 0.95** 0.92** 0.98
6 1.08* 1.02* 1.02 1.03* 1.05 1.00 1.00 0.97** 0.90**

12 1.04 0.96** 1.02 1.02 1.04 0.97** 0.97** 0.92** 0.73**
24 1.15** 0.92** 1.09** 1.15** 1.02 0.99 0.98* 0.87** 0.57**

Back
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Robustness with different regression specifications. Density
and point forecast results relative to a no-change
benchmark.

Log Score

Hor CAD/USD ER - log TW ER - log TBILL3M - level M1 - log INF TBILL10M - level TBILLSpread - level

1 -6.66 -4.60 -109.06 -3.73 -0.06 -108.53 -251.14
6 -27.87 -27.49 -157.65 3.10 -1.61 -157.82 -295.13

12 -28.55 -27.76 -212.13 -5.01 -7.93 -211.66 -311.89
24 -12.30 5.10 -256.35 -1.05 5.33 -257.31 -280.10

RMSFE

Hor CAD/USD ER - log TW ER - log TBILL3M - level M1 - log INF TBILL10M - level TBILLSpread - level

1 1.06 1.04 2.16 1.02 1.00 2.15 2.79
6 1.07 1.04 2.73 1.02 0.99 2.74 3.19

12 1.03 1.00 3.67 1.05 0.99 3.67 3.89
24 1.09 1.02 4.78 1.14 0.99 4.78 4.05

Back
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Combinations with additional individual models. Density
and point forecast relative to a no-change benchmark

TWER, M1, Inf & TBILL3M TWER, M1 & Inf

Log Score

Hor Equal BMA BMA2 BPS Equal BMA BMA2 BPS

1 -647.53 -750.36 -326.40 -22.85 -756.87 -752.60 -314.82 -20.20
6 -346.21 -419.78 -38.84 7.58 -452.92 -453.99 -35.56 4.83

12 -287.90 -321.44 16.38 40.99 -349.10 -331.26 13.27 39.13
24 -245.44 -319.30 64.22 98.36 -326.98 -322.14 64.88 99.32

RMSFE

Hor Equal BMA BMA2 BPS Equal BMA BMA2 BPS

1 0.97 0.97 0.91 0.98 0.98 0.98 0.91 0.98
6 1.00 0.99 0.96 0.86 0.99 0.99 0.96 0.89

12 0.91 0.93 0.88 0.72 0.97 0.97 0.89 0.73
24 1.13 1.00 0.79 0.60 1.00 0.99 0.78 0.61

Back
Aastveit, Cross and van Dijk February 25, Bundesbank Workshop 43 / 44



Robustness using BPS specification with regression
combination weights and intercept. Density and point
forecast results relative to a no-change benchmark.

No RW Learning No RW Learning

Hor Log Score RMSFE Log Score RMSFE

1 -3.69 0.92 -13.23 0.97
6 11.38 0.96 12.59 0.89

12 7.95 0.92 47.73 0.71
24 29.72 0.84 110.96 0.57

Back
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