

Predictably Unequal The Effects of Machine Learning on Credit Markets

Authors: Andreas Fuster, Paul Goldsmith-Pinkham, Tarun Ramadorai, Ansgar Walther

Discussant: Tobias Berg, Frankfurt School of Finance and Management

Frankfurt, September 2020

Summary

Machine learning

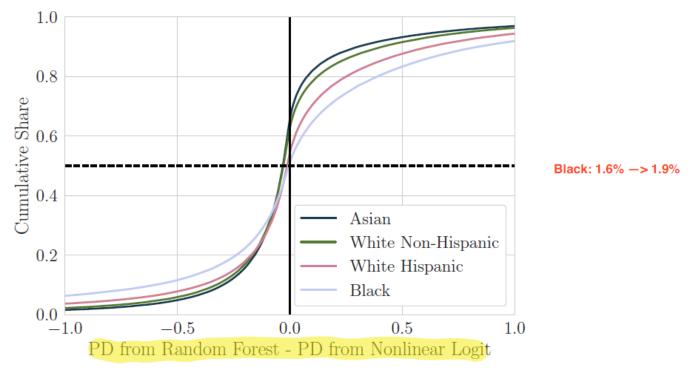
- = better prediction of creditworthiness
- = different prediction of creditworthiness
- → Who benefits/who loses?

Using U.S. mortgage data from 2009-2013

- Black and Hispanic borrowers less likely to gain
- Attributable to flexibility, not triangulation

Dispersion PD ↑, Black-PD ↑

Figure 5: Comparison of Predicted Default Probabilities Across Models, by Race Groups



- General: Dispersion in PD increases
- Black borrowers: PD: 1.6% → 1.9% (mean PD increases)

Equilibrium model: Black acceptance rate \, black rates \

Table 7: Equilibrium Outcomes

		Accept (%)		Mean SATO (%)		SD SATO (%)
		(1) NL	(2) RF	(3) NL	(4) RF	(5) (6) NL RF
	Asian White Non-Hispanic	92.4 90.3	93.3 91.1	-0.108 -0.083	-0.123 -0.090	0.274 0.322 0.296 0.356
	White Hispanic	85.6	86.4	-0.031	-0.008	0.333 0.414
+1.6PP	Black	77.7	79.3	0.022	0.060	4bps 461
	Other	88.9	89.5	-0.083	-0.088	0.296 - 0.360
+0.9PP	Population	89.8	90.7	-0.081	-0.086	-0.5bps 360
	Cross-group SD	2.165	2.098	0.020	0.029	

Results are not black and white: Rejected blacks benefit from larger variance of prediction

What I like about the paper

- FinTech-Lending
 - More/better data
 - Better methodology
- Host of papers on effects of more/better data
- Little known about effects of better methodology

- New topic, important question, large market
- Fundamental insight beyond specific setting:
 - Conceptual framework
 - Illustration of equilibrium effects

#1: Provocative Interpretation

- "Black and Hispanic borrowers are disproportionately less likely to gain from the introduction of machine learning."
- "The majority of the predictive accuracy gains [...] can be attributed to the increased flexibility" (and not to triangulation)
- Provocative interpretation: Current use of coarse logistic models discriminates against Whites and subsidizes Black and Hispanic Borrowers

#2: Should Homer Simpson receive a loan?

- "No Loan Again, Naturally" (Simpsons 2009)
 - Homer throws a party using home equity loan
 - Defaults on his loan, loses house
 - Gets rescued by Ned Flanders
- Deeper question: Worse rating = loser of new rating method?
 - PD=1% for everyone
 - PD=0.9%/1.1% → 1.1%-type = losers of new rating method
 - PD=0%/100% → Are the 100%-PDs really losers? Or saved by new rating method from private bankruptcy?
- Rating method with maximum variance (PD=0/1)
 - Seems hard to argue that there are losers
 - Seems hard to argue that this is bad for risk averse applicants

#3: Better model = more lending?

Rough signal Better signal (e.g. FICO) (e.g. ML) Receive cheap loan Willing to lend at pooling Receive expensive price: Better information \rightarrow loan less lending Not willing to lend at Rejected pooling price: Better information \rightarrow more lending

#3: Better model = more lending?

- Pooling price: willing to lend or not?
 - If yes, then better model leads to less lending
 - If no, then better model leads to more lending
 - See Proposition 4 in Pagano and Japelli (1993)
 - See Section 3.2. in Berg et al. (2020), On The Rise in FinTechs. We find more lending for applicants with scarce data after introduction of digital footprint
- Equilibrium price and quantities highly depend on whether pooling price leads to unraveling
- Conceptual discussion in paper is great, with one exception:
 Should discuss implications of Pagano and Japelli (1993), Proposition 4
 - Data set only includes accepted loans = loans where pooling price does not lead to unraveling
 - Statements on quantity and price could be different if you look at full set of applications
 - Currently rejected borrowers should benefit most from better prediction

Summary

- Important topic, important contribution
- I personally very much enjoyed the conceptual discussion

- It will surely become a very impactful paper
- Suggestion to the audience: Read it!