Payment System Externalities

Christine A. Parlour Uday Rajan Johan Walden U.C. Berkeley Michigan U.C. Berkeley BerkeleyHaas MICHIGAN ROSS BerkeleyHaas

September, 2020

Motivation

- Banks have (at least) two vital roles in the economy.
 - Accept deposits and make loans.
 - Provide payment services to households.
- We pose the following questions:
- i. How does a bank's role in the payment system affect its lending function?
- ii. How will recent and planned innovations in payment systems affect banks?
 - Focus on Wholesale Central Bank Digital Currency (CBDC).

What we do

- Construct a stylized model of banks that make loans and participate in the payment system.
 - Segmented banking markets + cash-in-advance type constraint.
 - No uncertainty / asymmetric information / insolvency / bank runs.
 - This is a model of a bank in stable or normal times.
- Determine the planning outcome and the equilibrium volume of lending across banks.
- Examine the effects of CBDC on equilibrium.
 - Wholesale-only CBDC reduces settlement cost in the payment system.

Overview of Results

- i. In normal times, a liquidity externality exists across banks.
 - The externality is created by a bank's need to hold liquidity against claims issued by different banks.
- ii. A settlement cost on bank claims reduces the externality, but creates its own friction.
- iii. Wholesale CBDC exacerbates inequality in lending across banks, but raises overall efficiency.

Model

- Households deposit cash
 D in banks
- 2. Central bank creates reserves C
- 3. Banks lend to entrepreneurs using bank claims b

Loans exceed Deposits

- Entrepreneurs buy supplies from households
- 2. Households deposit claims into own bank

Households' Bank \neq Entrepreneurs' Bank

- Interbank borrowing and lending occurs
- 2. Fraction λ of households withdraw cash

Spending generates Liquidity Demand

- 1. Output produced
- 2. Interbank settlement
- 3. Fraction $(1-\lambda)$ of households get cash
- 4. Depositors repaid
- 5. Bank profits paid out to households

Interbank Settlement is Costly

Model Details

- Two banks. Each bank operates as a monopolist in its own zone.
- Each zone has one representative bank, a continuum of entrepreneurs, and a continuum of households.

Households:

- Deposit D per household into the bank, Provide supplies to entrepreneurs.
- Fraction λ of households are impatient, need to consume before output is realized.

Entrepreneurs:

- Obtain loan from bank in home zone to purchase inputs and produce using a concave technology f(k)
- Entrepreneurs need to cross zones to purchase inputs.

Payment System

• Entrepreneurs in zone *i*:

- α_i is the outsourcing propensity.
- Zones differ in outsourcing propensity,
- · Outsourcing propensity is either high or low.
- Ex ante, this is the only difference across zones.

 Households in zone i have interim cash demand that each bank has to satisfy:

Interbank Transfers

- There are two types of interbank transfers:
 - 1. <u>Interim</u>: To meet interim liquidity needs, banks can trade reserves in the interbank market at an interest rate *r*.
 - Here, we assume there are N pairs of zones, N large.
 - So banks act as price-takers in this market.
 - Interest rate r set by market clearing, and establishes the opportunity cost of lending in your own zone.
 - 2. Ex post: Banks transfer reserves to settle net claims owed.
 - One bank may be a net payer, the other may be a net receiver.
 - A net payer at date 3 incurs a deadweight settlement cost au per unit.

Interpretation of τ the transfer cost.

- The time between dates 2 and 3 in the model is large (think commercial loans).
- . We interpret τ as the long term costs of liquidity risk management.
- \bullet au is motivated by a few underlying frictions.
 - Opportunity cost of collateral on outflows in Fedwire, or prefunding obligations in CHIPS.
 - Fedwire imposes fee of 50 bp on uncollateralized daylight overdrafts.
 - Liquidity coverage ratio under Basel III, based on future net outflows.
 - Explicit fees for using system, charged to net payers.
 E.g., Fedwire has fees of up to 82 bp on transfers.
- | au represents costs in the payment system

Market Equilibrium

Nash equilibrium in lending + inter-bank market clears.

Definition

A market equilibrium in the model consists of claims issued by high- and low-outsourcing banks, b_h^* and b_ℓ^* , net borrowing by each bank, z_h^* and z_ℓ^* , and an interest rate in the interbank market, r^* , such that:

- (i) The interim liquidity constraint of each bank *i*, equation, is satisfed.
- (ii) For each bank i, b_i^* and z_i^* maximize its payoff π_i , given the interbank interest rate, r^* , and the claims issued by its matched bank, b_{-i}^* .
- (iii) The interbank loan market clears; that is, $z_h^* + z_\ell^* = 0$.

Planner's Problem

- First-best problem: Planner not subject to settlement cost τ , and can freely transfer reserves across banks.
 - In the planner's solution to the first-best problem, the liquidity constraints bind, and all banks lend the maximal amount.
- Second-Best Problem: Planner also subject to settlement cost au.
 - The bank in the *low-outsourcing* zone ℓ lends more than high zone h.
 - This reduces settlement cost.

Liquidity Externality

Suppose that $\tau=0$, so that there is no settlement cost at date 3, and $\alpha_h>\alpha_\ell$. Then,

- (i) In the second-best planning outcome, bank h issues the same number of claims as bank ℓ .
- (ii) In the unique market equilibrium, bank h issues more claims than bank ℓ .
 - With no settlement cost, in equilibrium production is distorted away from second-best outcome.
 - Bank ℓ has to hold liquidity at date 2 against claims issued by bank h. This reduces lending by bank ℓ .
 - This liquidity externality surfaces in good times.
 - If the outsourcing propensities are sufficiently different, a positive τ dampens the liquidity externality.

Wholesale CBDC

- E.g., Project Jasper (Bank of Canada), Project Ubin (Monetary Authority of Singapore), Stella Project (Bank of Japan and ECB).
- Broadly, all try to move payments to a distributed ledger to reduce settlement costs across banks.
- In our model, corresponds to a reduction in τ .
- Reduction in settlement cost τ implies that liquidity externality has more bite.
- Relative to earlier equilibrium, bank h increases its lending and bank ℓ reduces its lending.
 - If α_h is sufficiently higher than α_ℓ , this moves equilibrium lending amounts even further away from each other.
- In the second-best outcome, amounts lent come closer to each other.

Real Implications of Wholesale CBDC

- Consider the productivity gap (i.e., difference in marginal productivities) across zones.
- Reducing settlement cost increases inequality in lending across zones.
- However, the second-best outcome moves in the opposite direction.
- Important caveat: Overall efficiency improves as au falls.

Proposition

Suppose that $\tau < \bar{\tau}$ and $\alpha > \bar{\alpha}$. Then, with a small decrease in the settlement cost τ :

- (i) The equilibrium inter-zonal productivity gap increases if $b_h^* \geq b_\ell^*$ and decreases if $b_h^* < b_\ell^*$.
- (ii) The inter-zonal productivity gap in the second best outcome decreases.

Conclusion

- We explore how the payment role of banks affects their lending behavior.
 - Stylized model of banks in normal/good times: No distress or insolvency.
- A liquidity externality arises in good times as well.
 - Inter-connectedness requires a bank to hold liquidity against claims issued by other banks.
- Settlement cost of net claims dampens this externality.
- Innovations that reduce the settlement cost (wholesale CBDC) exacerbate inequalities in lending, but improve overall efficiency.