
Discussion Paper
Deutsche Bundesbank
No 34/2020

Robust inference in
time-varying structural VAR models:
The DC-Cholesky multivariate stochastic
volatility model

Benny Hartwig
(Goethe University Frankfurt and Deutsche Bundesbank)

Discussion Papers represent the authors‘ personal opinions and do not
necessarily reflect the views of the Deutsche Bundesbank or the Eurosystem.



Editorial Board:  Daniel Foos 
Stephan Jank 
Thomas Kick 
Malte Knüppel 
Vivien Lewis 
Christoph Memmel 
Panagiota Tzamourani 

Deutsche Bundesbank, Wilhelm-Epstein-Straße 14, 60431 Frankfurt am Main, 
Postfach  10 06 02, 60006 Frankfurt am Main 

Tel +49  69 9566-0 

Please address all orders in writing to: Deutsche Bundesbank, 
Press and Public Relations Division, at the above address or via fax  +49 69 9566-3077 

Internet http://www.bundesbank.de 

Reproduction permitted only if source is stated. 

ISBN  978–3–95729–729–7  (Printversion) 
ISBN  978–3–95729–730–3  (Internetversion) 



Non-technical summary

Research Question

Economic interrelationships may be subject to many changes over time. In order to

examine such changes empirically, models for which the parameters can change over time

are often employed. However, one feature of a certain class of these time-varying parameter

models is that the ordering of the model variables can influence the estimated variances

and covariances of the error terms. This sensitivity is problematic in empirical applications

as conclusions may hinge on a selected ordering of variables. This paper examines how

the ordering of the variables can affect the estimated parameters in this model class.

Contribution

The possible effects of alternative variable orderings in this model class have received

virtually no consideration in the literature. This paper demonstrates, however, that the

ordering of variables can play an important role in the estimation results of time-varying

variances and covariances. In this context, it identifies factors that influence the lack of

robustness in the results. In addition, a new model class with time-varying parameters

is proposed for which the estimation results are robust in terms of how the variables are

ordered.

Results

The relative development of the error term variances is a key factor influencing the

estimation results. If the time developments of the individual variances differ significantly,

the estimation results then depend heavily on the ordering of the model variables. As

idiosyncratic variance patterns can certainly be observed empirically in macroeconomic

and financial market variables, many of the previous results may be less robust than

they seem. By contrast, the newly proposed model class in this paper provides robust

estimation results even in such situations.



Nichttechnische Zusammenfassung

Fragestellung

Wirtschaftliche Zusammenhänge können im Laufe der Zeit vielen Veränderungen un-

terworfen sein. Um solche Veränderungen empirisch untersuchen zu können, werden häufig

Modelle genutzt, deren Parameter sich im Zeitablauf ändern können. Eine bestimmte

Klasse dieser zeitvariierenden Parameter-Modelle hat allerdings die Eigenschaft, dass die

geschätzten Varianzen und Kovarianzen der Störterme durch die Anordnung der Mo-

dellvariablen beeinflusst werden kann. Diese Sensitivität ist für empirische Anwendungen

problematisch, da Schlussfolgerungen von der gewählten Variablenanordnung abhängen

können. In dieser Arbeit wird untersucht, wie die Anordnung der Variablen die geschätzten

Parameter in dieser Modellklasse beeinflussen kann.

Beitrag

Die möglichen Effekte von alternativen Variablenanordnungen in dieser Modellklasse

wurden in der Literatur bisher praktisch nicht betrachtet. In dieser Arbeit wird gezeigt,

dass diese Anordnung jedoch eine wichtige Rolle für die Schätzergebnisse von zeitvariie-

renden Varianzen und Kovarianzen spielen kann. Dabei werden Einflussfaktoren für die

fehlende Robustheit der Ergebnisse identifiziert. Außerdem wird eine neue Modellklasse

mit zeitvariierenden Parametern vorgeschlagen, deren Schätzergebnisse robust gegenüber

der Anordnung der Variablen sind.

Ergebnisse

Als entscheidender Einflussfaktor für die Schätzergebnisse kann die relative Entwick-

lung der Varianzen der Störterme identifiziert werden. Falls die zeitlichen Entwicklungen

der einzelnen Varianzen deutliche Unterschiede aufweisen, so hängen die Schätzergebnisse

stark von der Anordnung der Modellvariablen ab. Da idiosynkratrische Varianzmuster

bei makroökonomischen Variablen und Finanzmarktvariablen empirisch durchaus zu be-

obachten sind, könnten viele bisherige Ergebnisse weniger belastbar sein, als sie scheinen.

Die in dieser Arbeit vorgeschlagene neue Modellklasse liefert dagegen auch in solchen

Situationen robuste Schätzergebnisse.
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1 Introduction

Technological innovations, secular trends and policy changes are a few of many fac-
tors that shape economic interactions and business cycles over time. To detect and an-
alyze their dynamic relations, time-varying parameter VARs with Cholesky multivariate
stochastic volatility (TVP-VAR with CMSV) developed by Primiceri (2005) and Cogley
and Sargent (2005) have become a widely established tool in the literature. In fact, a vast
body of empirical research has been generated using this class of models.1

Even though it is well documented that the time-varying covariance matrix may be
sensitive to the ordering of variables in the CMSV model,2 this property is often ignored
and left unchecked in many empirical studies.3 Such an approach, however, runs the
risk of empirical results hinging on a selected ordering of variables and of alternative
estimates leading to different conclusions. This paper argues that this property has not
been sufficiently explored and must not be ignored in empirical applications.

To illustrate the extent of this type of model uncertainty, Figure 1 shows alternative
posterior median estimates of volatilities and covariances of the reduced-form residuals in
Primiceri’s (2005) application.4 The figure shows that estimated covariances are sensitive
and substantially different across alternative orderings of variables. Specifically, estimates
strongly diverge during the stagflation period when the reduced-form residuals exhibit
some mildly non-common volatility pattern. This is an undesirable feature as the impulse
response functions analyzed in Primiceri’s (2005) application depend on both volatilities
and covariances. To understand the nature behind the difference across estimates, this
paper investigates how the ordering of variables affects properties of the time-varying
covariance matrix in the CMSV model.

This paper makes several novel contributions. First, it identifies a time-varying ratio
of reduced-form volatilities as to how alternative orderings impose different dynamic re-
strictions on the time-varying covariance matrix. In the CMSV model, the parameter of
contemporaneous relation evolves linearly for a specific variable ordering. When the order
of variables is exchanged, the implied dynamics of this parameter are nonlinear. They
are determined by the correlation process and a time-varying ratio of volatilities, which is
log-normally distributed. These alternative properties of the state process cannot be well
captured by an analogously set-up CMSV model and, thus, the model imposes alternative
dynamic restrictions on the time-varying covariance matrix.

Moreover, assuming an alternative data generating process that separates volatility
and correlation dynamics, the covariance estimates of a CMSV model are systematically
different across alternative orderings. This occurs due to the ratio of volatilities driving the

1For instance, see the follow-up work of Benati and Surico (2008); Gaĺı and Gambetti (2015) on
U.S. monetary policy; Gali and Gambetti (2009); Benati (2008) on great moderation; Baumeister and
Peersman (2013a); Baumeister and Peersman (2013b) on oil markets; Gambetti and Musso (2017); Prieto,
Eickmeier, and Marcellino (2016) on macro-finance relations; and Mumtaz and Zanetti (2013); Cogley,
Primiceri, and Sargent (2010) on TVP-VARs with more complex CMSV versions.

2See Primiceri (2005); Cogley and Sargent (2005); Asai, McAleer, and Yu (2006).
3 Koop, León-González, and Strachan (2009); Nakajima and Watanabe (2011); Lopes, McCulloch,

and Tsay (2012); Chan, Doucet, León-González, and Strachan (2018); Bognanni (2018) are exceptions.
4Alternative estimates are based on Algorithm 2 in Del Negro and Primiceri (2015) and are obtained

from TVP-VARs with CMSV, in which the order of variables has been exchanged.
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Figure 1: Estimated contemporaneous reduced-form covariance matrices

The figure shows the posterior median of the covariance (cov) and volatility (vol) of the
reduced-form residual of inflation (πt), unemployment (ut) and the interest rate (it) for all
possible orderings in the TVP-SVAR with CMSV.

parameter of contemporaneous relation being inverted in a reordering, which is associated
with different dynamic properties. Monte Carlo simulations show that estimates of the
time-varying covariance matrix in the CMSV model become more distinct, when volatility
is less common and exhibits pronounced idiosyncratic volatility patterns.

The second contribution of this paper is the introduction of the dynamic correla-
tion Cholesky multivariate stochastic volatility (DC-Cholesky MSV or DC-CMSV) model
in the spirit of Engle (2002) as an ordering robust alternative. The DC-CMSV model
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specifies individual processes for volatilities and correlations to model the time-varying
covariance matrix. The correlation dynamics are modelled via a CMSV model on the
standardized data, which features a constant ratio of reduced-form volatilities. Simu-
lations and empirical evidence presented in this paper show that the lack of rotational
invariance becomes an empirically negligible property for the DC-CMSV model.

A notable feature of the DC-CMSV model is that the parameter of contemporaneous
relation is not restricted to evolving linearly but may capture relations between variables
that change nonlinearly over time. Moreover, the DC-CMSV approach can be easily
implemented into existing CMSV routines. Estimation of the model remains simple, as
traditional Kalman filter methods or fast band-precision matrix routines of Chan and
Jeliazkov (2009) can be used for inference purposes.

The third contribution of the paper is to demonstrate that restrictions imposed by
a particular variable ordering on the time-varying covariance matrix may be so decisive
that one may arrive at alternative conclusions. This property is illustrated for Primiceri’s
(2005) and Cogley, Primiceri, and Sargent’s (2010) application.

Regarding Primiceri’s (2005) application, alternative estimates on how U.S. monetary
policy evolved suggest that the interest rate response to inflation and unemployment was
substantially more aggressive during the stagflation period. These estimates are in stark
contrast to those presented in the corrigendum of Del Negro and Primiceri (2015), which
indicate a largely muted response by the Fed. Apart from that, alternative estimates from
a TVP-VAR with DC-CMSV are virtually indistinguishable under all possible orderings.
The results from this newly proposed model suggest that the reaction of U.S. systematic
monetary policy was modestly more aggressive during the stagflation period, which is
consistent with the findings of Sims and Zha (2006).

Estimates from Cogley, Primiceri, and Sargent’s (2010) model are very sensitive to the
ordering of variables, as the introduction of CMSV heteroskedasticity to the time-varying
VAR parameters on top of the residuals introduces substantial parameter uncertainty.
Alternative estimates for inflation-gap persistence suggest that it gradually declined over
the sample and did not significantly increase during the stagflation period. Overall,
estimates from different models considered in this paper suggest that the majority of
empirical evidence provided by Cogley, Primiceri, and Sargent (2010) can be qualitatively
confirmed but that there may be a broad range of possible values.

The findings of this paper relate to several strands in the literature. First, the paper
formalizes when and why the ordering of variables may matter for a data set at hand.
The paper advances the argument of Asai, McAleer, and Yu (2006) and the suggestion
made by Christopher Sims to Cogley and Sargent (2005) on p. 11 by the fact that the
dependence between volatilities and correlations particularly matters when the ratio of
volatilities varies over time. Moreover, evidence provided in this paper suggests that
differences in prior distributions play a subordinate role in explaining the sensitivity of
the estimates. This possibility was discussed by Primiceri (2005) and Bognanni (2018).

Second, this paper is not the first to demonstrate that variable ordering may play a
role in inference. Bognanni (2018) shows for Baumeister and Peersman’s (2013b) appli-
cation that the estimated effects of an oil supply shock on U.S. real activity are sensitive
to the chosen ordering as well. Bognanni’s (2018) argues that the selection of a variable
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ordering is an arbitrary choice and should be considered as an additional source of model
and parameter uncertainty. What the findings of this paper add is that the CMSV model
generally imposes alternative dynamic restrictions on the time-varying covariance matrix.
Thus, estimates from this model should not be used as an input for two-step identified
time-varying structural VARs, as detailed in Primiceri (2005).

Third, estimates of the time-varying covariance matrix from the DC-CMSV model can
be considered as an effective model average over all alternative estimates of the CMSV
model. This is an attractive feature, as approaches proposed by Primiceri (2005) or
Nakajima and Watanabe (2011) suffer from immense or even intractable computational
burdens. These methods need to explore all n! (n factorial) possible models.

Fourth, the DC-CMSV model is an attractive alternative to (inverted) Wishart stochas-
tic volatility models, which are insensitive to the ordering of variables.5 The caveat of
this model class is however that they allow for less flexible covariance matrix dynamics.
Particularly, they allow for either integrated or simple autoregressive dynamics, but not
for a combination of it or more general processes, see Primiceri (2005).

The rest of this paper proceeds as follows. Section 2 derives some properties of
the CMSV model under alternative orderings and under an alternative data generating
process. Section 3 introduces the DC-CMSV model as a robust alternative. Section 4
conducts a Monte Carlo study to assess properties of the CMSV and DC-CMSV model.
Section 5 reconsiders Primiceri’s (2005) and Cogley, Primiceri, and Sargent’s (2010) ap-
plication in more detail. Section 6 concludes the paper.

2 On Cholesky Multivariate Stochastic Volatility

This section investigates how the ordering of variables affects properties of the time-
varying covariance matrix, Σt, in the Cholesky multivariate stochastic volatility (CMSV)
model. The name of the model is derived from the fact that it specifies the dynamics of
the parameters from the triangular factorization of Σt rather than specifying the dynamics
of Σt directly. Moreover, this section compares the data generating process (DGP) of key
state parameters of the CMSV model with the dynamic correlation multivariate stochastic
volatility (DC-MSV) model of Yu and Meyer (2006). This alternative MSV model specifies
individual volatility and correlation dynamics to span the evolution of Σt, which is denoted
as the volatility-correlation factorization of Σt. The DC-MSV model is chosen as an
alternative data generating process because the time-varying covariance matrix is invariant
to the ordering of variables6 and laws of motion for state parameters are comparable across
both models.

The following analysis is restricted to the bivariate case for tractability reasons. Nev-
ertheless, the properties discussed below are considered to be representative for the n-
dimensional case. This is specifically because the relationship between individual pa-
rameters of Σt and the parameters under these alternative factorizations of Σt does not
fundamentally change in higher dimensions.

5For instance, see Uhlig (1997), Bognanni (2018), and Chan, Doucet, León-González, and Strachan
(2018) in the context of (TVP)-VARs with MSV or Philipov and Glickman (2006) and Asai and McAleer
(2009) in the context of MSV models.

6For proof, see Appendix A.2
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2.1 Some properties of the Cholesky MSV model

Now, the CMSV model is presented, which builds upon Primiceri’s (2005) model.7

Let yt be a vector process of dimension 2 × 1 that is mean zero and has time-varying
covariance matrix Σt of dimension 2× 2.

yt ∼ N(0,Σt) (1)

Then, without loss of generality, the triangular factorization of Σt is given by

Σt = A−1
t DtD

′
tA
′−1
t (2)

where At is a lower triangular matrix and Dt is a diagonal matrix

At =

[
1 0
at 1

]
, Dt =

[
exp (g1,t) 0

0 exp (g2,t)

]
.

It follows that the vector of observables can be rewritten as

yt = A−1
t Dtu

C
t , uCt ∼ N(0, I2) (3)

A decomposition of the covariance matrix resulting in (3) is convenient because it
allows for efficient estimation of covariance matrices, see e.g., Pourahmadi (1999). Prim-
iceri (2005) exploits this fact and proposes modelling the coefficients in (3) rather than
of (1). This is a valid strategy because there is a one-to-one mapping between Σt and its
triangular factorization given by At and Dt. Notice that the ordering of variables in yt,
which determines the structure of At and Dt, is not necessarily related to an identification
scheme but is simply a convenient way to decompose Σt for estimation.

The model’s state parameters are assumed to be Gaussian random walks

gt = gt−1 + εgt , εgt ∼ N(0, G)

at = at−1 + εat , εat ∼ N(0, σ2
a)

where G is a diagonal covariance matrix as proposed by Koop, León-González, and Stra-
chan (2009). This assumption is commonly used in the applied literature and it is made
here to enhance tractability. All innovations are assumed to be jointly normally dis-
tributed with the following variance covariance matrix

V ar

uCtεat
εgt

 =

I2 0 0
0 σ2

a 0
0 0 G

 .
To complete the specification of the model, common prior distributions are assumed

7Around the same time, Tsay (2005) independently introduced the CMSV approach in the financial
econometrics literature, see the survey of Asai, McAleer, and Yu (2006).
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for the initial state parameters and variances

a0 ∼ N(µa, Va), σ2
a ∼ IG(νS, k

2
S),

g0 ∼ N(µg, Vg), σ2
g,i ∼ IG(νg, k

2
G),∀i = 1, 2

Let yt be generated by the CMSV model with Σt. From the triangular factorisation of
Σt, it follows that the mapping from model parameters {g1,t, g2,t, at} to {σ2

11,t, σ
2
22,t, σ12,t, ρt}

the elements and functions of Σt is given by

σ2
11,t = exp (2g1,t), σ2

22,t = exp (2g2,t) + a2
t exp (2g1,t),

σ12,t = at exp (2g1,t) ρt = at
σ11,t

σ22,t

where σ2
ii,t is the variance of the ith element of Σt for i = 1, 2, σ12,t is the covariance, ρt

is the correlation and at is the contemporaneous relation.

Then, the model implied state equation for the correlation process, ρt, is given by

ρt = ρt−1

exp(εg1,t)

exp(εg∗∗2,t )
+ εat

σ11,t

σ22,t

where εg∗∗2,t ≡ log(σ22,t)− log(σ22,t−1).

Property 1 (Σt under CMSV model). Let yt be generated by the CMSV model with Σt,
then

1. the ratio of reduced-form volatilities σ22,t
σ11,t

is time-varying,

2. the correlation ρt evolves nonlinearly,

3. the contemporaneous relation at evolves linearly.

For proof, see Appendix A.1.

These properties give rise to two important considerations when using the CMSV
model as a data generating process. First, the model rules out common reduced-form
volatility dynamics. Second, the assumption of a smoothly evolving contemporaneous
relation implies that correlation patterns may rapidly change when volatility clusters id-
iosyncratically. Stated differently, the model interprets abrupt changes in relative volatil-
ities as the dominant driver of changing correlation.

Let ỹt = Pyt be the vector of variables with exchanged rows where P is a permutation
matrix satisfying P 6= I2 and I2 = P ′P . I2 is the identity matrix. Let Σ̃t = PΣtP

′ be
the covariance matrix with permuted elements. Analogously, the triangular factorsation
of Σ̃t = Ã−1

t D̃tD̃tÃ
′−1
t implies that the mapping from model parameters {g1,t, g2,t, at} to

{g̃1,t, g̃2,t, ãt}, the transformed model parameters for ỹt, is given by

exp(2g̃1,t) = σ2
22,t, exp(2g̃2,t) = σ2

11,t − ã2
tσ

2
22,t, ãt = at

σ2
11,t

σ2
22,t

.
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Then, the model-implied state equation for the analogously defined parameter of
contemporaneous relation, ãt, is given by

ãt = ãt−1

exp (2εg1,t)

exp (2εg∗∗2,t )
+ εat

σ2
11,t

σ2
22,t

,

where εg∗∗2,t ≡ log(σ22,t)− log(σ22,t−1).

Property 2 (Reordering in CMSV model). Let Σ∗t be the time-varying covariance matrix
of an analogously set-up CMSV model on ỹt with model parameters {g∗1,t, g∗2,t, a∗t}, then

• Σ∗t and Σ̃t cannot have the same dynamic structure, and

• the average distance between transformed implied parameters {g̃1,t, g̃2,t, ãt} and
analogously constructed parameters {g∗1,t, g∗2,t, a∗t} increases with the variability of

the ratio of reduced-form variances
σ2
11,t

σ2
22,t

.

For proof, see Appendix A.1.

To put it differently, the ordering of variables induces a dynamic structure in Σt that
cannot be replicated by an analogously set-up CMSV model for any alternative ordering of
variables. The CMSV model therefore imposes different dynamic restrictions on the time-
varying covariance matrix under alternative orderings. As a consequence, the ordering of
variables is a nontrivial choice in the CMSV model.

While Σ∗t and Σ̃t cannot have the same dynamic structure, the dynamics may be
similar or may diverge substantially. This distance depends on the volatility pattern of
the data. Specifically, the distance is smaller when the volatility pattern of the individual
series exhibits strong commonalities. In this incidence, the ratio of reduced-form variances
becomes closer to being roughly constant. However, when there are idiosyncratic volatility
patterns, then this distance grows larger. Notice, an analytical quantification of this
distance is not readily available. Section 4 provides some quantification of this distance by
means of a Monte Carlo simulation with a variety of alternative data generating processes.

Above statements allow for some clarification on remarks that appear in the literature
about properties of the time-varying covariance matrix in the CMSV model. Primiceri
(2005) points out that the ordering of variables matters for Σt because the prior dis-
tribution of Σt is not rotationally invariant. Particularly, he shows that the individual
elements of the covariance matrix have alternative distributions under different orderings
of the variables (see footnote 5). Nevertheless, he suggests that it is not a priori clear how
inference is affected and that the effect might vary from case to case. Relatedly, Bognanni
(2018) argues that the introduction of the dynamic dependence of model parameters in
conjunction with the factorization of the covariance matrix leads to a non-observational
equivalent prior density for Σt.

8 The discussion above clarifies when the ordering of
variables is important for inference. Specifically, it matters when there are idiosyncratic
volatility patterns.

8Primiceri (2005) elaborates on the triangular factorization in the contemporaneous case.
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These results also shed light on the discussion of Asai, McAleer, and Yu (2006)
and a suggestion made by Christopher Sims to Cogley and Sargent (2005) on p. 11.
They conjecture that not separating volatility and correlation dynamics may impose some
dynamic restrictions on the time-varying covariance matrix. Particularly, the CMSV
model rules out common volatility patterns, which induce some nonlinear correlation
dynamics. Also, because volatility patterns are not common, alternative orderings impose
different dynamic restrictions on the time-varying covariance matrix.

2.2 The Cholesky MSV model and the DC-MSV model

Alternatively, the dynamics of Σt in (1) may be modelled by a DC-MSV model in the
spirit of Yu and Meyer (2006). Particularly, this model differs from the CMSV model by
the choice of the factorization for Σt. In particular, it models the dynamics of the covari-
ance matrix by decomposing Σt into individual processes for volatility and correlation,
which is given by

Σt = DtRtDt (4)

where Rt is a correlation matrix and Dt is a diagonal matrix

Rt =

[
1 ρt
ρt 1

]
, Dt =

[
exp (h1,t) 0

0 exp (h2,t)

]
.

It follows that the vector of observables can be written as

yt = Dtu
DC
t , uDCt ∼ N(0, Rt). (5)

A decomposition of the covariance matrix resulting in (5) has been introduced by
Bollerslev (1990) and Engle (2002) as a parsimonious modelling alternative to fully pa-
rameterized multivariate GARCH models for estimating large dynamic covariance ma-
trices. One main distinguishing characteristic between these factorisations is that in (4)
volatilities and correlations are modelled as independent processes, whereas in (2) they
are modelled jointly.

The model’s state parameters are assumed to evolve as Gaussian random walks

ht = ht−1 + ηht , ηht ∼ N(0,W )

mt = mt−1 + ηmt , ηmt ∼ N(0, σ2
m)

ρt =
exp (mt)− 1

exp (mt) + 1
, ηρt ≡ ρt − ρt−1

where W is a diagonal covariance matrix and mt is an auxiliary process that is mapped
into a correlation process using the Fisher transformation. All innovations are assumed
to be jointly normally distributed with the following variance covariance matrix.

V ar

uDCtηmt
ηht

 =

Rt 0 0
0 σ2

m 0
0 0 W

 .
8



To complete model specification, common prior distributions are assumed.

m0 ∼ N(µm, Vm), σ2
m ∼ IG(νm, k

2
m),

h0 ∼ N(µh, Vh), σ2
h,i ∼ IG(νh, k

2
W ),∀i = 1, 2.

Let yt be generated by the DC-MSV model with Σt. From the volatility-correlation
decomposition of Σt, it follows that the mapping from model parameters {h1,t, h2,t,mt}
to {σ2

11,t, σ
2
22,t, σ12,t, ρt, at, ãt}, the elements and functions of Σt, is given by

σ2
11,t = exp (2h1,t), σ2

22,t = exp (2h2,t)

σ12,t = ρt exp (h1,t) exp (h2,t), ρt =
exp (mt)− 1

exp (mt) + 1
,

at = ρt
σ22,t

σ11,t

, ãt = ρt
σ11,t

σ22,t

where σ2
ii,t is the variance of the ith element of Σt for i = 1, 2, σ12,t is the covariance, ρt

is the correlation, at and ãt are the respective parameters of contemporaneous relation
implied under Σt and Σ̃t = PΣtP

′, respectively.

Then, model-implied state equations for at and ãt are given by

at = at−1

exp (εh2,t−1)

exp (εh1,t−1)
+ ηρt

σ22,t

σ11,t

, ãt = ãt−1

exp (εh1,t−1)

exp (εh2,t−1)
+ ηρt

σ11,t

σ22,t

where ηρt ≡ ρt − ρt−1.

Under the DC-MSV model, the parameters of contemporaneous relations at and ãt
are driven by the correlation as well as the respective ratio of volatilities σ22,t

σ11,t
and σ11,t

σ22,t
.

These ratios are determined by the ordering of the variables in yt and ỹt. Specifically, they
are defined by the volatility of the variable ordered in the second position in the vector of
variables divided by the one ordered in the first position. Thus, variable orderings play a
particular role for the implied evolution of at and ãt.

Notice, the volatility-correlation decomposition of Σt allows for specifying very general
volatility dynamics. For instance, the DC-MSV model may be set up to feature a purely
idiosyncratic volatility pattern (as specified above) or to exhibit some commonalities or a
completely common volatility pattern.

Property 3 (Σt under DC-MSV model). Let yt be generated by the DC-MSV model
with Σt, then

1. the correlation ρt evolves approximately linearly Gaussian for ρt ∈ (−0.5, 0.5),

2. when the ratio of reduced-form volatilities σ22,t
σ11,t

is constant, then at and ãt are solely

driven by ρt and have the same dynamics up to a scalar,

3. when the ratio of reduced-form volatilities σ22,t
σ11,t

is time-varying, then at and ãt evolve

nonlinearly and have different dynamic properties.

9



For proof, see Appendix A.2.

Comparing the properties of Σt implied by both models, the CMSV model assumes
a linear Gaussian process for the parameter of contemporaneous relation but implies
a nonlinearly evolving correlation process. The DC-MSV model, in contrast, implies
nonlinear dynamics for the parameter of contemporaneous relation and approximately
linear Gaussian dynamics for the correlation in some specified range. In other words, the
correlation process acts somewhat as a degree of freedom in the CMSV model, while the
parameter of contemporaneous relation acquires this role in the DC-MSV model.

Property 4 (DC-MSV, CMSV and implied covariances). Let Σt be generated by the DC-
MSV model. Then, the implied dynamics of the covariance σ12,t, approximated by the
state equations of the CMSV model for yt, is underestimated when the ratio of volatilities
increases; while it is mechanically overestimated, when it is approximated by the state
equations of the CMSV model for ỹt, as the ratio of volatilities is inverted.

For proof, see Appendix A.2.

Therefore, when yt is generated by the DC-MSV model, the covariances implied by
a CMSV model are systematically different across alternative orderings. In particular,
estimates of the CMSV model represent an upper and lower bound of the true covariance
parameter under the DC-MSV model.

Property 5 (Posterior distribution of at and ãt under homoskedasticity). Let yt be gen-
erated by a bivariate dynamic correlation model with constant unitary variances on the
main diagonal. Then, the difference of posterior mean and variance of at and ãt implied
under a respective CMSV model is induced by the likelihood and not the prior. The
difference between the posterior mean and variance of at and ãt depends on the distance
between the sequence of y2

1,t and y2
2,t.

For proof, see Appendix A.2.

Under this alternative data generating process, the implied posterior distribution of
at and ãt is not the same as the data is interpreted differently across alternative orderings
in the CMSV model. For this reason, the model produces different estimates of the time-
varying covariance matrix under alternative orderings. However, the prior distribution of
at and ãt is the same across alternative orderings. This suggests that the posterior distri-
bution of the time-varying covariance matrix should be largely insensitive to the ordering
of variables. Section 4 provides evidence that differences across posterior estimates are
visually negligible.

The property of the CMSV model that prior and posterior distribution of the time-
varying covariance matrix are largely insensitive to the ordering of variables when data
is homoskedastic suggests that one may use the CMSV approach as an ordering robust
data generating process for the correlation process. To construct a fully specified time-
varying covariance matrix, this process for the correlation can be combined with a separate
volatility model in the spirit of Engle (2002). This idea is exploited in the next section to
construct a new multivariate stochastic volatility model that is largely insensitive to the
ordering of variables and may be used for higher dimensional systems of variables.9

9 The DC-MSV model of Yu and Meyer (2006) cannot be easily generalized to higher dimensions
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3 The DC-Cholesky MSV Model

This section presents the details of the dynamic correlation Cholesky multivariate
stochastic volatility (DC-Cholesky MSV or DC-CMSV) model. The DC-CMSV model
uses a separate volatility model for the data and models the correlation dynamics of the
standardized data with the CMSV approach.

Let yt be a n×1 dimensional vector process that is mean zero and has a time-varying
covariance matrix Σt of dimension n× n

yt ∼ N(0,Σt). (6)

Then, Σt may be decomposed into marginal volatilities and correlations by

Σt = DtRtDt

where Dt is a diagonal matrix with volatilities and Rt is a correlation matrix

Dt =


exp (h1,t) 0 . . . 0

0 exp (h2,t)
. . .

...
...

. . . . . . 0
0 . . . 0 exp (hn,t)

 , Rt =


1 ρ2,1,t . . . ρn,1,t

ρ2,1,t 1
. . .

...
...

. . . . . . ρn,n−1,t

ρn,1,t . . . ρn,n−1,t 1

 .

It follows that the vector observables can be rewritten as

yt = Dtεt, εt ∼ N(0, Rt). (7)

Then, an auxiliary positive definite matrix is estimated on the standardized data

εt = A∗−1
t D∗t et, et ∼ N(0, In)

where

A∗t =


1 0 . . . 0

a∗2,1,t 1 . . .
...

...
. . . . . .

...
a∗n,1,t . . . a∗n,n−1,t 1

 , D∗t =


exp (h∗1,t) 0 . . . 0

0 exp (h∗2,t)
. . .

...
...

. . . . . . 0
0 . . . 0 exp (h∗n,t)


for n ≥ 3. Asai and McAleer (2009) present an alternative DC-MSV model that is applicable to higher
dimensions but uses an inverted Wishart process to model correlation dynamics.
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which is transformed to a correlation matrix using the formulas of Engle (2002)

Rt = Q
∗− 1

2
t QtQ

∗− 1
2

t (8)

Qt = A∗−1
t D∗tD

∗′
t At

∗′−1 (9)

Q∗t = diag[vecd(Qt)] (10)

where vecd(Qt) selects the diagonal of Qt.

Let a∗t be the lower off-diagonal elements of A∗t (stacked by rows) and ht and h∗t be the
vector of log volatilities on the diagonal of the matrix Dt and D∗t , respectively. Assume
that the state dynamics evolve as a random walk

ht = ht−1 + εht , (11)

a∗t = a∗t−1 + εa
∗

t , (12)

h∗t = h∗t−1 + εh
∗

t . (13)

All innovations of the model are assumed to be joint normal.

V = V ar



et
εht
εa
∗
t

εh
∗
t


 =


In 0 0 0
0 W 0 0
0 0 S∗ 0
0 0 0 W ∗


where In is an identity matrix, S∗ is a block diagonal matrix, W = diag([σ2

h,1, ..., σ
2
h,n])

and W ∗ = diag([σ∗2h,1, ..., σ
∗2
h,n]) are positive definite matrices.

Assume independent prior distribution for h0, a∗0, h∗0, W , S∗i , W
∗.

h0 ∼ N(µh, Vh), σ2
h,i ∼ IG(νh, k

2
W ),∀i = 1, ..., n,

a∗0 ∼ N(µ∗a, V
∗
a ), Si ∼ IW (ν∗S,i, k

∗2
S · Ii),∀i = 1, ..., n− 1,

h∗0 ∼ N(µ∗h, V
∗
h ), σ∗2h,i ∼ IG(ν∗h, k

∗2
W ),∀i = 1, ..., n.

Next, the Gibbs sampling algorithm for the DC-CMSV model is presented, which
builds on the notation and results from Chan (2017). Stochastic volatility is sampled
using the auxiliary mixture sampler of Kim, Shephard, and Chib (1998).

Algorithm: Gibbs sampling algorithm for the DC-CMSV model
Pick some initial values for h(0), W (0), h

(0)
0 , ε∗(0), a(0), S(0), a

(0)
0 , h(0), W (0) and h

(0)
0 . Then,

repeat the steps from r = 1 to R:

1. Posterior draws from p(s, h,W, h0, ε|y)

• Draw s(r) ∼ (s|y, h(r−1)) (seven point distribution)

• Draw h(r) ∼ (h|y, s(r),W (r−1), h
(r−1)
0 ) (multivariate normal)

• Draw W (r) ∼ (W |h(r), h
(r−1)
0 ) (independent inverse Gamma)

• Draw h
(r)
0 ∼ (h0|y, h(r),W (r)) (independent normal)
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• Draw ε(r) ∼ (ε|y, h(r)) (transform data to standardized normal)

2. Posterior draws from p(a∗, a∗0, S
∗|ε(r), h∗(r−1))

• Draw a∗(r) ∼ (a∗|ε(r), a∗(r−1)
0 , S∗(r−1), h∗(r−1)) (multivariate normal)

• Draw S∗(r) ∼ (S∗|ε(r), a∗(r), a∗(r−1)
0 ) (inverse Wishart)

• Draw a
∗(r)
0 ∼ (a∗0|ε(r), a∗(r), S∗(r)) (multivariate normal)

3. Posterior draws from p(s∗, h∗,W ∗, h∗0|ε(r), a∗(r))

• Draw s∗(r) ∼ (s∗|ε(r), h∗(r−1)) (seven point distribution)

• Draw h∗(r) ∼ (h∗|ε(r), s∗(r),W ∗(r−1), h
∗(r−1)
0 ) (multivariate normal)

• Draw W ∗(r) ∼ (W ∗|h∗(r), h∗(r−1)
0 ) (independent inverse Gamma)

• Draw h
∗(r)
0 ∼ (h∗0|ε∗, h∗(r),W ∗(r)) (independent normal)

In contrast to the traditional Gibbs sampler of the CMSV model, the DC-CMSV sam-
pler first estimates the marginal volatility components of Dt and standardizes the observed
data. Then, a pseudo time-varying covariance matrix is estimated on the standardized
data with the CMSV model. The parameters A∗t and D∗t are then transformed into an
estimate of the time-varying correlation matrix Rt by equations (8)–(10). The draw of
Rt in conjunction with Dt is used to span the evolution of the time-varying covariance
matrix Σt.

Next, some of the merits and drawbacks of the DC-CMSV model are discussed. First,
the posterior distributions of the marginal volatilities are independent of the ordering of
variables. Second, when the process for marginal volatilities is correctly specified, the
posterior distribution of the time-varying correlation matrix is largely insensitive to the
ordering of variables. Consequently, posterior estimates of the time-varying covariance
matrix of the DC-CMSV model are almost insensitive to the ordering of variables. Third
and in contrast to the CMSV model, DC-CMSV model implied parameters of contempo-
raneous relations may capture nonlinear instead of linear dynamics between variables.

Nevertheless, these appealing properties come at the cost of increased computational
complexity. In particular, the computational costs increase on account of the need for
the volatility series to be sampled twice instead of once, i.e. the independent volatilities
and the auxiliary volatilities for the estimation of the correlation matrix. However, the
increased computational complexity of the model remains manageable on modern multi-
core computers as volatility sampling can be parallelized, see Lopes, McCulloch, and Tsay
(2012).

4 Monte Carlo Study

This section conducts a Monte Carlo study to quantify how the ordering of variables
affects the posterior estimates of the time-varying covariance matrix in the CMSV model
and DC-CMSV model when data is homoskedastic and heteroskedastic. Properties of
posterior estimates are characterized by in-sample fit, distance and similarity metrics.
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4.1 Properties of Σt under homoskedasticity

According to Property 5, the posterior mean and variance of at and ãt are driven
apart by the influence of the likelihood and not the prior. To study the importance of
this property, a bivariate dynamic correlation model with a known correlation structure
and unitary variances is assumed as the data generating process to simulate 250 samples
of 1,000 observations each.10 This data generating process has been chosen as it implies
that the prior distribution of at and ãt, as defined in Section 2.2, are the same and that
the evolution of these parameters is solely driven by the evolution of the correlation ρt,
see Property 3.2.

The data generating process is given by

r1,t = ν1,t

r2,t = ν2,t
,

(
ν1,t

ν2,t

)
∼ N

([
0
0

]
,

[
1 ρt
ρt 1

])
where the process of conditional correlation uses the specification of Engle (2002)

1. Constant: ρt = 0.9,

2. Sine: ρt = 0.5 + 0.4 cos(2πt/200),

3. Fast Sine: ρt = 0.5 + 0.4 cos(2πt/20),

4. Step: ρt = 0.9− 0.5I(t > 500),

5. Ramp: ρt = mod (t/200).

These processes for the conditional correlation were chosen by Engle (2002) as they
exhibit various types of rapid changes, gradual changes, and periods of constancy. Some
of the processes appear to be mean reverting, while others have abrupt changes.

The CMSV model is estimated with fixed hyperparameters (kS, kW ), which are set to
0.1 and common prior distribution. The MCMC estimation produces 35,000 samples of
which 15,000 are reserved for the burn-in period.

The in-sample fit for parameters of interest estimated under different orderings is
measured by the average mean absolute error (MAE). MAE statistics are computed for
the implied correlation ρt from estimates of Σt and for the parameter of contemporaneous
relation at and ãt across alternative orderings. The MAE is defined as

MAE(X
¯ORD, X0) =

1

M

M∑
i

(
1

T

T∑
t

|XORD(i)
t −X0

t |

)
(14)

where XORD(i) denotes the parameter estimate of the model with variable ordering i = 1, 2
for M = 2. ORD(1) and ORD(2) denote the ordering yt = (y1,t, y2,t)

′ and ỹt = (y2,t, y1,t)
′,

respectively. X0 denotes the true value of the parameter.

10A sample size of 1,000 is not yet realistic for macro application, however, it is chosen to mitigate the
effect of a small sample on the estimates.
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The distance between alternative estimates is measured by the mean absolute differ-
ence (MAD) of the parameter of interest. MAD statistics are computed for ρt, at, ãt and
at − ãt. The latter denotes the difference between posterior median estimates of at and
ãt. The MAD is defined as

MAD(XORD(1), XORD(2)) =
1

T

T∑
t

|XORD(1)
t −XORD(2)

t | (15)

Table 1 presents the results from this Monte Carlo simulation. Turning to the in-
sample fit for the estimated parameters, MAE statistics indicate that posterior median
estimates of at and ãt fit the true correlation equally well. Estimates of the implied
correlation ρt, however, are always more precise than estimates for the parameters of
contemporaneous relation. This is not surprising as the CMSV model is designed to
produce valid draws of a covariance matrix and not of a correlation matrix.

Table 1: Precision and discrepancy of posterior median estimates

MAE MAD
ρt at ãt ρt at − ãt at ãt

const 0.016 0.043 0.043 0.008 0.084 0.018 0.019
sine 0.080 0.092 0.091 0.022 0.086 0.035 0.034
fastsine 0.256 0.257 0.257 0.016 0.070 0.020 0.020
step 0.049 0.065 0.066 0.010 0.076 0.018 0.018
ramp 0.106 0.117 0.116 0.023 0.087 0.037 0.037

The table shows the forecast accuracy (MAE) and distance (MAD) for estimated correlation
ρt, the contemporaneous relation at and ãt across different orderings and the difference
between latter parameters at − ãt. A bold figure highlights the lowest statistics for all
parameters considered in each panel and for each DGP in each row.

MAD statistics indicate that the distance between alternative estimates of at and
ãt obtained under different orderings are of the same magnitude. The average distance
among all simulated processes is 0.026, which is rather small. However, the distance
between the difference of estimated posterior medians of at and ãt, at − ãt, is not small,
with an average of 0.08. Thus, estimates of at and ãt exhibit some alternative patterns.
Furthermore, the distance across implied correlation estimates ρt is the smallest among
all considered parameters, at 0.016. This indicates that even though the likelihood drives
pseudo estimates of correlation at and ãt apart, it does not, however, substantially affect
estimates of the implied correlation ρt.

Therefore, this Monte Carlo simulation provides evidence that the estimated corre-
lation of the CMSV model fits the data well and is almost insensitive to the ordering
of variables for homoskedastic data. Here, “almost” means that the distance between
alternative posterior median estimates is small, around or less than 0.025.11

11The chosen level for the threshold is arbitrary, however, an MAD of 0.025 indicates that differences
between correlation estimates are hardly visible on the possible range for ρt ∈ [−1, 1].
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4.2 Properties of Σt under heteroskedasticity

To investigates the sensitivity of the time-varying covariance matrix under heteroskedas-
ticity, stochastic volatility is introduced to the dynamic correlation process. According to
Property 2, the more pronounced the movements in the ratio of reduced-form volatilities
of the data, the more significant dynamic restriction are imposed on the time-varying
covariance matrix in the CMSV model. By construction, the DC-CMSV model integrates
out stochastic volatility before estimating the correlation process. Therefore, the struc-
ture of the model ensures that different degrees of idiosyncratic volatility patterns do not
drive estimates of the time-varying covariance matrix apart.

The process for stochastic volatility follows Asai and McAleer (2009), who assume
very persistent stochastic volatility dynamics for their dynamic correlation model, similar
to the original GARCH specification in Engle (2002). In addition, a scale parameter ci is
introduced to simulate different degrees of idiosyncratic volatility patterns. Specifically,
three different scales are considered ci = {1, 2, 0.5} with i = {BM,H,L}, which are
denoted as benchmark, high volatility, low volatility DGP, respectively. By increasing the
scale of the innovations, the process of stochastic volatilities becomes more nonlinear and,
hence, the ratio of volatilities exhibits more time-variation.

The data generating process for stochastic volatility is defined as

h1,t+1 = 0.98h1,t + η1,t+1

h2,t+1 = 0.95h2,t + η2,t+1
,

(
η1,t

η2,t

)
∼ N

([
0
0

]
, ci
[
0.1662 0

0 0.262

])
then use them for each correlation process,

r1,t = ν1,t exp(0.5h1,t)
r2,t = ν2,t exp(0.5h2,t)

,

(
ν1,t

ν2,t

)
∼ N

([
0
0

]
,

[
1 ρt
ρt 1

])
which are the same as in Section 4.1.

The CMSV model and DC-CMSV model are estimated with fixed hyperparameters
(kS, kW ) and (kW , k

∗
S, k

∗
W ) that are all set to 0.1. The MCMC estimation produces 35,000

samples of which 15,000 are reserved for the burn-in period. Appendix B complements
the presented results with two robustness exercises.12

The in-sample fit of the estimated parameter is evaluated by the MAE. MAE statistics
are computed for estimated correlations and covariances. The sensitivity of estimated
parameters due to alternative orderings is assessed by distance and correlation metrics.
Reported as distance metrics are the MAD and the root mean square difference (RMSD),
which is similarly defined as the MAD. When the RMSD statistic grows substantially

12 In the first exercise, the hyperparameters (kS , kW ) and (kW , k∗S , k
∗
W ) are estimated with the recent

algorithm of Amir-Ahmadi, Matthes, and Wang (2018) to allow for a fair comparison across models and
orderings as well as to control for different degrees of time-variation associated with alternative DGPs.
The second exercise addresses the concern that the random walk transition equation is misspecified as
the true DGP assumes that volatilities and some correlation processes evolve stationary. To control for
this, the models are re-estimated assuming autoregressive laws of motion for volatilities and time-varying
parameters. Overall, the results presented are robust to these sensitivity checks.
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larger than the MAD statistic, then this indicates that there are periods when the distance
between estimated parameters is unusually large.

The similarity of estimated parameters is measured by the correlation of the first
difference of estimated parameters (FD). The first difference rather than the level of the
estimates is used because the latter induces spurious correlation due to common trends
in the level series.

The FD statistics is defined as

FD(XORD(1), XORD(2)) = corr
(

∆X
ORD(1)
t ,∆X

ORD(2)
t

)
where ∆ denotes the first difference operator.

To illustrate the sensitivity of Σt under both models, Figure 2 shows the posterior
median of the ratio of volatilities and parameter of contemporaneous relation for a selected
ordering of variables and both models in the upper panel, and the correlation and the
covariance for a selected model and both orderings in the lower panel for one replication
of the sine correlation process.

The upper panel of the figure shows that the ratio of volatilities is similar across
models and exhibits nonlinear patterns over time. For the parameter of contemporaneous
relation, however, there are marked differences across models. Especially, estimates of the
DC-CMSV model exhibit nonlinear dynamics, which are linked to the movement of the
ratio of volatilities. Moving to the lower panel, estimated correlations and covariances
of the CMSV model exhibit systematic differences across alternative orderings. The esti-
mates especially diverge when the ratio of volatilities suddenly moves substantially. This
happens as the CMSV model cannot properly capture the nonlinear dynamics of the pa-
rameter of contemporaneous relation. Moreover, estimated correlations and covariances
of the DC-CMSV model lie somewhere between alternative estimates of the CMSV model.
According to Property 4, this is to be expected as estimates of the CMSV model can be
regarded as an upper and lower bound of the true comovement parameters when data is
generated from a dynamic correlation model.

Table 2 presents statistics for estimated correlations. The table shows that the DC-
CMSV model produces the most precise correlation estimates for all except the fastsine
correlation process. Here, estimates of the CMSV model are more precise. However, the
in-sample fit of the CMSV model deteriorates substantially for the high volatility DGP,
while the statistics of both models are similar for the low volatility DGP. Moreover, the
absolute value of the in-sample fit statistics for the DC-CMSV model remains similar
under different degrees of idiosyncratic volatility patterns.

Differences between MAD and RMSD statistics for the CMSV model indicate that
there may be periods when there is a considerable distance across alternative correlation
estimates. Particularly, RMSD statistics for the benchmark DGP show that a distance of
0.04 to 0.11 for the estimated correlation path is not unusual. These statistics substantially
inflate and deflate for the high volatility DGP and the low volatility DGP, respectively.
In contrast, analogous statistics for the DC-CMSV model are hardly affected by different
scales of idiosyncratic volatility patterns in the simulated data.

FD statistics are fairly far below one for estimated correlations of the CMSV model.
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Figure 2: Time-varying covariance matrix (sine, benchmark DGP)

0 200 400 600 800 1000

0

0.5

1

1.5

2

0 200 400 600 800 1000
0

2

4

6

DC-CMSV CMSV

(a) ORD(1)

0 200 400 600 800 1000

0

0.5

1

1.5

2

0 200 400 600 800 1000
0

2

4

6

DC-CMSV CMSV

(b) ORD(2)

0 200 400 600 800 1000

-0.5

0

0.5

1

0 200 400 600 800 1000
-4

-2

0

2

4

(c) CMSV

0 200 400 600 800 1000

-0.5

0

0.5

1

0 200 400 600 800 1000
-4

-2

0

2

4

(d) DC-CMSV

The figure shows the posterior median of the ratio of volatilities and contemporaneous
relation for a selected ordering for both models in the upper panel. The lower panel shows
the correlation and the covariance for a selected model for both orderings.

This indicates that changes in estimated correlation paths feature some idiosyncratic
components. For the DC-CMSV model, FD statistics are substantially higher, but are
still not close to one. For the case of constant correlation, the metric is negative, which
suggests that estimated correlation paths move in opposite directions. However, FD
statistics should not be interpreted in isolation. In fact, the low level of MAD and RMSD
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statistics indicates that estimated correlations are indeed very similar for the DC-CMSV
model.

Table 2: Estimated correlation

MAE MAD RMSD FD
CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.040 0.030 0.031 0.025 0.041 0.031 0.307 -0.284
sine 0.096 0.086 0.063 0.018 0.088 0.023 0.559 0.943
fastsine 0.249 0.256 0.082 0.011 0.108 0.014 0.382 0.911
step 0.078 0.061 0.044 0.017 0.065 0.022 0.499 0.768
ramp 0.118 0.110 0.067 0.020 0.096 0.027 0.567 0.942

(a) Benchmark DGP

MAE MAD RMSD FD
CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.060 0.040 0.048 0.025 0.076 0.031 0.304 -0.269
sine 0.118 0.090 0.108 0.015 0.146 0.020 0.278 0.947
fastsine 0.248 0.256 0.144 0.008 0.185 0.011 0.127 0.924
step 0.103 0.067 0.080 0.014 0.120 0.018 0.291 0.788
ramp 0.138 0.114 0.112 0.017 0.154 0.022 0.297 0.945

(b) High Volatility DGP

MAE MAD RMSD FD
CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.030 0.024 0.029 0.023 0.037 0.029 0.139 -0.247
sine 0.086 0.083 0.043 0.021 0.060 0.027 0.772 0.942
fastsine 0.253 0.256 0.039 0.014 0.052 0.017 0.667 0.901
step 0.064 0.057 0.029 0.017 0.040 0.022 0.669 0.792
ramp 0.110 0.108 0.045 0.023 0.066 0.031 0.763 0.940

(c) Low Volatility DGP

The table shows the performance metrics for different scales for innovations to stochastic
volatility. A bold figure highlights the best model in each panel and row.

Turning to estimated covariances, Table 3 shows that the DC-CMSV model produces
the most precise estimates for almost all considered correlation DGPs considered. MAD
and RMSD statistics indicate that the distance between estimated covariances is small,
while estimates from the CMSV model may exhibit substantial differences. Strikingly,
FD statistics of the DC-CMSV model are very close to one across all different correla-
tion DGPs. Since the marginal volatilities in the DC-CMSV model are by construction
independent of the ordering, these statistics show that estimated covariances are largely
insensitive to the ordering of variables. Moreover, similarity and distance statistics in-
dicate that the estimated covariances of the CMSV model substantially diverge as the
idiosyncratic volatility patterns in the data grow stronger.

Thus, this Monte Carlo simulation provides evidence that CMSV model produces
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Table 3: Estimated covariance

MAE MAD RMSD FD
CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.313 0.285 0.169 0.031 0.240 0.044 0.378 0.970
sine 0.212 0.199 0.102 0.021 0.153 0.030 0.668 0.981
fastsine 0.331 0.331 0.106 0.013 0.159 0.018 0.622 0.990
step 0.248 0.224 0.109 0.021 0.167 0.030 0.566 0.981
ramp 0.232 0.221 0.104 0.024 0.158 0.034 0.642 0.978

(a) Benchmark DGP

MAE MAD RMSD FD
CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.436 0.389 0.207 0.037 0.349 0.057 0.469 0.988
sine 0.288 0.253 0.179 0.021 0.307 0.033 0.572 0.993
fastsine 0.403 0.396 0.210 0.012 0.351 0.019 0.467 0.997
step 0.348 0.301 0.169 0.021 0.299 0.033 0.562 0.994
ramp 0.312 0.281 0.183 0.023 0.313 0.037 0.553 0.992

(b) High Volatility DGP

MAE MAD RMSD FD
CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.238 0.217 0.153 0.026 0.201 0.034 0.192 0.931
sine 0.170 0.163 0.081 0.023 0.114 0.030 0.665 0.963
fastsine 0.296 0.296 0.049 0.015 0.068 0.020 0.768 0.969
step 0.190 0.177 0.089 0.019 0.130 0.026 0.473 0.955
ramp 0.190 0.185 0.085 0.025 0.121 0.034 0.637 0.957

(c) Low Volatility DGP

The table shows the performance metrics for different scales for innovations to of stochastic
volatility. A bold figure highlights the best model in each panel and row.

less precise and more divergent estimates of the time-varying covariance matrix as the
idiosyncratic volatility patterns in the data grow stronger. It also demonstrates for a
variety of data generating processes that estimates of the DC-CMSV model are almost
insensitive to alternative orderings of variables.

5 Empirical Application

This section reviews two empirical applications to illustrate how a particular ordering
of variables may drive conclusions. The first study to be reviewed is on time variation in
U.S. monetary policy by Primiceri (2005) and the second is on inflation-gap persistence
in the U.S. by Cogley, Primiceri, and Sargent (2010). In these studies, different versions
of the CMSV model are used in conjunction with a time-varying parameter VAR model
to study changes in the dynamic relationships between inflation, the unemployment rate
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and the interest rate. Moreover, this section compares these estimates to those coming
from a DC-CMSV model developed in this paper.

5.1 Time variation in U.S. monetary policy

This section reviews the results for Primiceri’s (2005) application in the light of al-
ternative orderings. Figure 1 demonstrates that estimated covariances are sensitive to
alternative orderings and exhibit marked differences during the stagflation period. Since
estimated quantities in the structural analysis depend on the time-varying covariance
matrix, some results may change under alternative orderings.

Before investigating this issue, the estimation of reduced-form time-varying parameter
VAR models and the identification of structural parameters are briefly discussed, building
upon the arguments in Primiceri (2005). Then, details for replicating the structural
analysis using estimated parameters from these alternative VARs are provided. Assuming
that ordering of variables is negligible, note that estimates from these alternative VARs
should imply nearly the same reduced-form dynamics for the data and, thus, give rise to
the same conclusions. The presented procedure is tailored to utilize the replication files
of Del Negro and Primiceri (2015).

Estimation of reduced-form TVP-VAR: Let yt be the vector of endogenous vari-
ables of dimension n × 1 and let ỹt = Pyt be the vector of endogenous variables with
exchanged rows where P is a permutation matrix that satisfies P ′P = In. Assume that
ỹt evolves according to a time-varying parameter VAR model

ỹt = c̃t + B̃1,tỹt−1 + ...+ B̃k,tỹt−k + ũt, ũt ∼ N(0, Σ̃t) (16)

where c̃t is of dimension n×1, B̃i,t, i = 1, ..., k is of dimension n×n and ũt is of dimension
n× 1 or more compactly written in vectorized form

ỹt = X̃ ′tB̃t + ũt, ũt ∼ N(0, Σ̃t) (17)

where X̃ ′t = In ⊗ [1, ỹ′t−1, ..., ỹ
′
t−k] and B̃t = vec([c̃t, B̃1,t, ..., B̃k,t]

′).

To model the evolution of Σ̃t, the CMSV approach is used. Specifically, Σ̃t is decom-
posed by a triangular factorization, which is defined as

Σ̃t = Ã−1
t D̃tD̃

′
tÃ
−1′

t . (18)

It follows that (17) can be rewritten as

ỹt = X̃ ′tB̃t + Ã−1
t D̃tε̃t, ε̃t ∼ N(0, In). (19)

where state parameters and prior distributions are as in Primiceri (2005).

Identification: Next, consider the following structural VAR

ỹt = X̃ ′tB̃t + Ξ̃tε̃t, ε̃t ∼ N(0, In),
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which may differ from (19) because Ξ̃t is not necessarily lower triangular. Assuming that
there are sufficient identification restrictions that meet some regularity conditions, the
parameters in Ξ̃t may be exactly, partially or set identified, see Rubio-Ramirez, Waggoner,
and Zha (2010) and Arias, Rubio-Ramı́rez, and Waggoner (2018).

The first step is to estimate (19) using the algorithms described in Del Negro and
Primiceri (2015), then obtain posterior draws of the reduced-form time-varying VAR
coefficients B̃t’s and time-varying covariance matrices Σ̃t’s in (17). The second step is to
estimate Ξ̃t that satisfies

Ξ̃tΞ̃
′
t = Σ̃t

for each draw of Σ̃t.
13

Replication of structural analysis: Primiceri (2005) identifies a monetary policy
shock by imposing zero restriction on the contemporaneous reaction of inflation and the
unemployment rate. This is a triangular identification scheme for the variable ordering
yt = [πt, ut, it]

′, which he also uses to estimate the parameters in (19) and hence, Ξ̃t =
Ã−1
t D̃t for P = In. Therefore (19) is the structural VAR of interest. However, alternative

estimates of Ξ̃t may be obtained by estimating reduced-form parameters first and then
estimating the structural parameters in Ξ̃t, which is not lower triangular for any other
admissible permutation matrix except the identity matrix.

To replicate the structural analysis for alternative variable orderings, first B̃t’s and
Σ̃t’s in (17) are estimated by making use of (18) and (19). Then, it is useful to reorder all
parameters of the VAR model for ỹt in (17) such that they satisfy the variable ordering
of yt. The reordered reduced-form time-varying parameter VAR model can be obtained
by pre-multiplying (16) by P ′

P ′ỹt = P ′c̃t + P ′B̃1,tPP
′ỹt−1 + ...+ P ′B̃k,tPP

′ỹt−k + P ′ũt, P ′ũt ∼ N(0, P ′Σ̃tP )

which can be rewritten in compact vectorized form as

P ′ỹt = P̄ ′X̃ ′tP̄
′P̄ B̃t + P ′ũt, P ′ũt ∼ N(0, P ′Σ̃tP )

where P̄ = P ⊗ P̂ and P̂ =

[
1 01×(n·k)

0(n·k)×1 [Ik ⊗ P ]

]
. Then, the time-varying parameter VAR

with original coefficient ordering is given by

yt = X ′tBt + ut, ut ∼ N(0,Σt)

where Xt = P̄ ′X̃ ′tP̄
′, Bt = P̄ B̃t, Σt = P ′Σ̃tP and ut = P ′ũt. Then, Ξt is estimated using

a Cholesky decomposition of Σt. A
−1
t and Dt are obtained by solving Ξt = A−1

t Dt.
14

The time-varying parameter VAR model with CMSV (denoted as CMSV-TVP-VAR)
is estimated using Algorithm 2 of Del Negro and Primiceri (2015), which is the approx-
imate mixture sampler for stochastic volatility. In addition, a DC-CMSV version of the

13 Ξ̃t may be estimated by using the algorithms of Arias, Rubio-Ramı́rez, and Waggoner (2018).
14Note Dt = diag[vecd(Ξt)], hence, A−1

t = Ξtdiag[vecd(Ξt)]
−1.
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model is estimated for comparison (denoted as DC-CMSV-TVP-VAR). The Monte Carlo
estimation produces 70,000 draws from the Gibbs sampler, while the first 20,000 are
discarded in the burn-in period.

Estimated reduced-form TVP-VAR models: Before turning to the results of the
structural analysis, it is instructive to assess the sensitivity of the B̃t’s and the Σ̃t’s.
Figures 8 and 9 in Appendix C depict the posterior median of the estimated time-varying
VAR parameters for each variable in the respective column. Alternative estimates for the
B̃t’s of the CMSV-TVP-VAR exhibit some minor differences across alternative ordering
but overall they are rather similar. The estimated VAR coefficients of the DC-CMSV-
TVP-VAR, however, are virtually indistinguishable.

Next, Figures 10 and 11 in Appendix C show the posterior median of the estimated
correlation, covariance, and volatility of the reduced-form residuals. For the CMSV-TVP-
VAR model, the estimated correlation and covariance exhibit pronounced differences dur-
ing the stagflation period. Differences across volatility estimates are, however, rather
small. In contrast, estimates of the DC-CMSV-TVP-VAR model are virtually indis-
tinguishable across alternative orderings. Moreover, estimates of the CMSV-TVP-VAR
model are systematically different across orderings in the sense that they are below or
above estimates of the DC-CMSV-TVP-VAR model, see Property 4. Taking stock, these
properties indicate that potential differences in estimated quantities of the structural
analysis are primarily driven by differences in estimated Σ̃t’s but not B̃t’s.

Revisiting the structural analysis: Having documented general differences across
reduced-form parameter estimates, consequences are analyzed in more detail for two
particular orderings. Specifically, estimates from the original variable ordering y123

t =
[πt, ut, it]

′ and the reverse variable ordering y321
t = [it, ut, πt]

′ are contrasted because dif-
ferences between estimated covariances are the most pronounced.

Figure 3 shows the estimated long-run U.S. systematic interest rate response to infla-
tion and unemployment for both the CMSV-TVP-VAR model and the DC-CMSV-TVP-
VAR model. In particular, the estimates of the former model provide evidence for two
equally plausible but mutually exclusive conclusions as to how U.S. systematic monetary
policy reacted during the stagflation period. Estimates obtained from the original vari-
able ordering, y123

t , provide evidence for a muted response, while those obtained under the
reverse ordering of variables, y321

t , point to a drastically changing and aggressive response.
Thus, the choice of variable ordering may have a substantial effect on the estimates and
may lead to alternative conclusions. This is clearly an undesirable property as estimates
are associated with substantial model uncertainty that cannot be easily controlled for.
Regarding the remaining structural analysis in Primiceri (2005), there are no marked
differences for the other exercises as these do not strongly depend on the estimated co-
variances.15

Furthermore, estimates of the DC-CMSV-TVP-VAR model point to an unambiguous
conclusion under all possible orderings. The estimates suggest that the reaction function
was modestly more aggressive during the stagflation period. This evidence is consistent
with the finding in Sims and Zha (2006), who provide strong evidence for regime switches
in terms of how monetary policy was conducted during the period of stagflation.

15A comparison of all exercises is documented in Appendix C (Figures 12 – 19).
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Figure 3: Long-run U.S. systematic interest rate response
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The figure depicts interest rate response to a 1% permanent increase in inflation at the left
panel (a) and the unemployment rate at the right panel (b) under alternative orderings.

5.2 Inflation-gap persistence in the U.S.

Next, the sensitivity of Cogley, Primiceri, and Sargent’s (2010) empirical results are
investigated using the replication files in the AEJ: Macroeconomics. The focus of this
study differs from most applications of CMSV-TVP-VARs in that it uses this class of
models to summarize reduced-form dynamic properties of variables. Specifically, the study
is concerned with inflation-gap persistence but also report measures of trend-inflation,
volatility, the conditional expectation of inflation based on unemployment news as well
as Phillips correlations.

Cogley, Primiceri, and Sargent (2010) extend the TVP-VAR model of Cogley and
Sargent (2005) by introducing heteroskedasticity to the time-varying VAR parameters,
the B̃t’s. These models are denoted as the CPS-TVPSV-VAR and the CS-TVP-VAR,
respectively. Both models differ from the CMSV-TVP-VAR of Primiceri (2005) by the
fact that they assume a constant lower triangular matrix of contemporaneous relations
Ã−1 instead of time-varying Ã−1

t in (18).16 Note, the authors estimate their model with
the variable ordering y123

t = [it, ũt, πt]
′, where ũt is the logit of the unemployment rate,

i.e. which is the reverse ordering as compared to Primiceri’s (2005) application.17

Figure 4 shows posterior median estimates of the R2
j,t statistics, which are used as

16By restricting the parameters of contemporaneous relations to being constant, the model-implied
process for the correlation is solely determined by the volatility pattern and the selected ordering of
variables. Recall that a reordering of variables leads to inversion for the ratio of volatilities.

17 Cogley, Primiceri, and Sargent (2010) select this ordering as they follow Cogley and Sargent (2005),
who document that this ordering minimizes the drift in the B̃t’s.
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Figure 4: R2
j,t statistics

The figure depicts the posterior median for R2
j,t statistics based on the CPS-TVPSV-VAR,

with estimates for GDP inflation shown in the left panel and those for PCE inflation shown
in the right panel.

a measure of inflation-gap persistence, for GDP inflation and PCE inflation obtained
under all possible orderings of the variables. The graph shows that alternative esti-
mates may lead to a different conclusion as to how inflation-gap persistence in the U.S.
evolved during the stagflation period. Particularly, estimates from the alternative order-
ing y321

t = [πt, ũt, it] for GDP inflation suggest that persistence declined gradually over
time. This is in stark contrast to the estimates coming from y123

t which indicate that
persistence significantly surged during the Great Inflation period and declined after 1980.
In addition to qualitative patterns differing, quantitative differences across estimates are
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substantial. For instance, estimated persistence ranges from 0.6 up to around one for the
one-step ahead horizon of both GDP inflation and PCE inflation in the mid-1970s. This
marked difference in estimates arises due to estimates of trend-inflation and volatility
being substantially different, see Figures 20 and 22 in Appendix D.

Based on this evidence, the question of how much the introduction of CMSV het-
eroskedasticity induces sensitivity to the estimates arises. To answer this question, es-
timates from three alternative models are considered. For the first two models, het-
eroskedasticity for innovations of the B̃t’s is shut-off. The first model is the CS-TVP-VAR
of Cogley and Sargent (2005) and the second is a DC-CMSV version of the CS-TVP-VAR,
denoted as the DC-CMSV-TVP-VAR. The third model assumes independent volatility dy-
namics for the innovations of the B̃t’s and assumes DC-CMSV for the VAR residuals.18

This model is denoted as the DC-CMSV-TVPSV-VAR.

Figure 5 shows posterior medians of R2
j,t statistics for GDP inflation for the variable

ordering y123
t and y321

t , with homoskedastic and heteroskedastic innovations for B̃t’s in
the left panel (a) and the right panel (b), respectively. Estimates of R2

j,t statistics from
the CS-TVP-VAR and the DC-CMSV-TVP-VAR in panel (a) indicate that the ordering
of variables has a limited effect on the estimated path and magnitude of inflation-gap
persistence.19 Thus, shutting off CMSV heteroskedasticity for innovations of the B̃t’s
eliminates the bulk of model and parameter uncertainty for this quantity of interest.
Apart from that, estimates from both models suggest that inflation-gap persistence in
the U.S. surged during the stagflation period and dropped significantly after the 1980s,
confirming the result in Cogley, Primiceri, and Sargent (2010).

Next, estimates from the DC-CMSV-TVPSV-VAR in panel (b) show that estimated
inflation-gap persistence is substantially lower and exhibits a moderately different pattern
around the stagflation period. Particularly, it features less stickiness in terms of the level
shifts depicted in panel (a). Also, notice that for the CPS-TVPSV-VAR reduced-form
estimates are affected not only by variable ordering but also by parameter ordering. For
instance, when innovations of the parameter of constants, c̃t’s, have different volatility
patterns, then exchanging the order of parameters affects estimates as well. Therefore,
this comparison illustrates that modelling heteroskedasticity via the CMSV approach may
lead to very different estimates of B̃t’s and Σ̃t’s, which may eventually alter inference on
reduced-form properties for variables of interest.

Appendix D presents further sensitivity analysis across models for trend-inflation,
volatility, the adjustment of inflation expectation to unemployment news and Phillips
correlations. Overall, estimated quantities of the CPS-TVPSV-VAR model exhibit some-
times subtle and sometimes substantial differences across alternative variable orderings.
Comparing these results with those coming from the CS-TVP-VAR of Cogley and Sargent
(2005), most ambiguity between estimates vanishes. It only remains relevant for quan-
tities that involve estimates of the covariances such as conditional inflation expectations
and Phillips correlations. Furthermore, estimates from these alternative models indicate
that most of the empirical evidence provided by Cogley, Primiceri, and Sargent (2010)
can be qualitatively confirmed but that there may be a broad range of possible values.

18Independent volatility processes instead of a full time-varying covariance matrix for the parameter
innovations are assumed to limit model and computational complexity.

19Estimates from alternative orderings are similar.
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Figure 5: R2
j,t statistics

(a) Homoskedastic innovations for B̃t’s (b) Heteroskedastic innovations for B̃t’s

The figure depicts posterior median of R2
j,t statistics for GDP inflation from TVP-VARs

with homoskedastic and heteroskedastic parameter innovations for B̃t’s at the left panel (a)
and the right panel (b), respectively.

6 Conclusion

This paper studied the consequences of exchanging the order of variables on the dy-
namic properties of the time-varying covariance matrix in the CMSV model. The paper
found that alternative dynamic restrictions are imposed on the time-varying covariance
matrix when the ratio of reduced-form volatilities is time-varying. Simulations demon-
strated that the stronger the idiosyncratic volatility pattern in the data, the more di-
vergent the estimates of the time-varying covariance matrix. The DC-CMSV model was
proposed as a robust alternative, which produces almost rotationally invariant estimates
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of the time-varying covariance matrix. An important feature of the DC-CMSV model is
that the parameters of contemporaneous relation may evolve nonlinearly. For the two em-
pirical applications considered, it was illustrated that variable orderings may substantially
affect estimates and may give rise to alternative conclusions.

The results of this paper suggest that the ordering of variables is a nontrivial choice
when estimating a time-varying covariance matrix via the CMSV approach. Moreover,
the sensitivity of the estimates documented in this paper is likely to be present in other
empirical applications as well since it is not uncommon for financial and economic time
series to exhibit individual volatility dynamics. For this reason, estimates based on the
CMSV model should be interpreted with some caution and may not as robust as they
seem. In addition, the relatively small costs of computing a more robust estimate using
the DC-CMSV model seem worthwhile for the purposes of most empirical applications.

The finding that specific assumptions about the state dynamics coupled with the cho-
sen factorization of the time-varying covariance matrix may impose different restrictions
across alternative variable orderings may not only be limited to this state space model.
The linear dynamic factor model with time-varying factor loadings and stochastic volatil-
ity may also suffer from similar restrictions. Future research should investigate whether
rotational non-invariance in this class of models may be also driven by an overly restrictive
evolution of the state or factor dynamics.
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A Proofs

A.1 Some properties of the Cholesky MSV model

Proof of Property “Σt under CMSV model” .

Subproof of Claim (1). Define bt =
σ2
11,t

σ2
22,t

. Then,

σ2
22,t = exp(2g2,t) + a2

t btσ
2
22,t

=
1

1 + bta2
t

exp(2g2,t)

=
1

1 + bt(at−1 + εat )
2

exp(2g2,t−1) exp(2εg2,t)

=
1 + bta

2
t−1

1 + bt(at−1 + εat )
2
σ2

22,t−1 exp(2εg2,t). (20)

Using σ2
11,t = btσ

2
22,t, it follows that

σ2
11,t =

1 + bta
2
t−1

1 + b(at−1 + εat )
2
σ2

11,t−1 exp(2εg2,t). (21)

However, the state equation for σ2
11,t is given by

σ2
11,t = σ2

11,t−1 exp(2εg1,t). (22)

Combining (21) with (22) gives

1 + bta
2
t−1

1 + bt(at−1 + εat )
2
σ2

11,t−1 exp(2εg2,t) = σ11,t−1 exp(2εg1,t)

1 + bta
2
t−1

1 + b(at−1 + εat )
2

exp(2εg2,t) = exp(2εg1,t). (23)

Since εat is independent of {εg1,t, ε
g
2,t}, bt must be time-varying to ensure that this equation

holds in every period. Thus, the ratio of volatilities is not constant. �

Subproof of Claim (2). The correlation ρt depends on reduced-form parameters by

ρt = at
σ11,t

σ22,t

= at−1
σ11,t−1

σ22,t−1

exp(εg1,t)

exp(εg∗∗2,t )
+ εat

σ11,t

σ22,t

= ρt−1

exp(εg1,t)

exp(εg∗∗2,t )
+ εat

σ11,t

σ22,t

(24)
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where εg∗∗2,t ≡ log(σ22,t) − log(σ22,t−1). Then, because the ratio of volatilities is time-
varying and log-normally distributed, it follows from (24) that the correlation evolves
nonlinearly. �

Subproof of Claim (3). Follows directly from the definition. �

Proof of Property “Reordering in CMSV model”.

Under Σ̃t, the true parameter ãt is given by

ãt = at
σ2

11,t

σ2
22,t

.

Then, the transition equation for the implied contemporaneous relation parameter, ãt is
given by

ãt = ãt−1

exp (2εg1,t)

exp (2εg∗∗2,t )
+ εat

σ2
11,t

σ2
22,t

,

where εg∗∗2,t ≡ log(σ22,t)− log(σ22,t−1).

The time-varying ratio of reduced-form variances implies that ãt evolves nonlinearly.
Specifically, the transition from ãt−1 to ãt is leveraged or dampened by the innovations to
stochastic volatility as well as the ratio of variances itself. In contrast, the state equation of
ã∗t is a Gaussian random walk. Consequently, the true dynamics of ãt cannot be obtained
by the state equation of ã∗t . Hence, the dynamic structures induced into Σ∗t and Σ̃t are
different.

The parameters under the CMSV model set up analogously for Σ̃∗t are given by

σ̃∗222,t = exp(2g̃∗2,t), σ̃∗211,t = exp(2g̃∗1,t) + (ã∗t )
2 exp(2g̃∗2,t)

σ̃∗12,t = ã∗t σ̃
∗2
22,t, ρ̃∗t =ã∗t

σ̃∗22,t

σ̃∗11,t

Since the ratio of variances cannot be constant for this DGP, the dynamic path of these
parameters departs from the dynamic path of the true parameters

σ̃12,t = ãtσ̃
2
11,t = σ12,t, ρ̃t = at

σ11,t

σ22,t

= ρt,

as the variability of the ratio of variances increases.

A.2 The Cholesky MSV model and the DC-MSV model

Property 6 (Rotational invariance of Σt under DC-MSV model). Let yt be generated
by the DC-MSV model with covariance matrix Σt. Define the vector of variables with
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exchanged rows ỹt and the permuted covariance matrix Σ̃t = PΣtP
′. Analogously, define

Σ̃∗t = D∗tR
∗
tD
∗
t , the covariance matrix of ỹt = Pyt where P is a permutation matrix. Then,

Σ̃t = Σ̃∗t , i.e. the reduced-form parameters of Σt are independent of the ordering of the
variables.

Proof. If Σ̃t = Σ̃∗t , then P ′Σ̃∗tP = P ′D∗tPP
′R∗tPP

′D∗tP since Dt = P ′D∗tP (D∗t is diago-
nal) and Rt = P ′R∗tP = R∗t (R∗t is symmetric). It follows that Σt = P ′Σ̃∗tP .

Proof of Property “Σt under DC-MSV model”.

Subproof of Claim (1). For g : m→ ρ and m ∈ [−1.1, 1.1] we have ρ = g(m) ∈ [−0.5, 0.5].
On this interval, the MSE of a linear regression of ρ on m is 5.5e-5. Figure 6 compares
the linear prediction for ρ on the interval for m ∈ [−5, 5]. The figure indicates that when
|m| > 1.1, the approximation error increases substantially as the function g becomes more
nonlinear. Thus, for ρ ∈ (−0.5, 0.5), the mapping g(m) is approximately linearly and the
innovations are approximately Gaussian.

Figure 6: Fisher transformation: mapping between ρ and m
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Subproof of Claim (2). The transition equations for the implied contemporaneous rela-
tions under the two alternative orderings at and ãt are given by

at = at−1

exp (εh2,t−1)

exp (εh1,t−1)
+ ηρt

σ22,t

σ11,t

, ãt = ãt−1

exp (εh1,t−1)

exp (εh2,t−1)
+ ηρt

σ11,t

σ22,t

where ηρt ≡ ρt − ρt−1. Then, when the ratio of reduced-form volatilities is constant, that
is, σ22,t

σ11,t
= c ∀t, c > 0, it follows that

at = at−1 + ηρt c, ãt = ãt−1 + ηρt
1

c
, (25)

Thus, the dynamic evolution of at and of ãt are driven by the correlation process. Since
ãt = at

1
c2

, the dynamic evolution of ãt and of at are the same up to a positive scalar. �
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Subproof of Claim (3). When the ratio of reduced-form volatilities is time-varying, then
the transition from at−1 to at is nonlinear as it is scaled by the log-normally distributed
ratio of volatilities. Then, after a reordering of variables, the influence of the ratio of
volatilities on the contemporaenous relation is inverted. This means that the distance
from at−1 to at and from ãt−1 to ãt is not symmetric. Therefore, at and ãt obey different
nonlinear dynamics. �

Proof of Property “DC-MSV, CMSV and implied covariances”.

The true dynamic structure for the contemporaneous relation is given by

at = at−1

exp (ηh2,t)

exp (ηh1,t)
+ ηρt

exp (h2,t)

exp (h1,t)
. (26)

This equation substantially differs from the linear Gaussian process of a∗t . Specifically, it
features state dependent time-varying parameters, non-normal and heteroskedastic inno-
vations that may leverage or dampen the transition from at−1 to at.

To quantify the impact of these nonlinearities, the equation is linearized using a first
order Taylor series expansion with information up to t − 1, i.e. a0 = at−1, ηρ,0 = 0,
ηh,0i = E(ηhi,t) = 0 and h0

i = hi,t−1 for i = 1, 2. The linearization is given by

at = at−1 + (at−1 + ηρt
exp(h2,t−1)

exp(h1,t−1)
)(ηh2,t − ηh1,t) + ηρt

exp(h2,t−1)

exp(h1,t−1)
. (27)

This linearization features an approximation error, except when the innovations to stochas-
tic volatility offset each other, i.e. the ratio of volatilities is constant.

The approximation error is defined as

errort = at − ât (28)

where at and ât denote the resulting parameter under (26) and (27), respectively. The
bias associated with this linear transition function is given by

biast = 1{at>at−1}(ât − at)− (1− 1{at>at−1})(ât − at) (29)

where 1{at>at−1} is an indicator function, which ensures the correct sign of the bias.20

Figure 7 illustrates the quantitative effects of innovations to stochastic volatility and of
innovations to correlation on the approximation error and the bias for two initial points
(at−1 = 0, ρt−1 = 0) and (at−1 = 0.5, ρt−1 = 0.5) with exp (h2,t−1)

exp (h1,t−1)
= 1.21 The true

parameter at moves on an exponential hyperplane while the first order approximation

20For instance, when the true value falls and the approximate value falls by even more but both remain
positive, then the transition is overstated. However, a bias function without sign correction assigns a
negative value, indicating underestimation.

21 Notice the surface plots for a positive value of at−1 are a reflection for negative value of at−1.
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ât moves on a linear hyperplane, which touches the true hyperplane from below (above,
indefinite) for positive (negative, zero) values of at−1.

For the first point, when there are non-offsetting innovations to stochastic volatility,
then the approximation error is non-negative (non-positive) as the true value at is above
(below) the initial value at−1. Consequently, the bias is negative in either direction. In
other words, the first order approximation underestimates any transition from this point.
For the second point, the approximation error is, in general, non-negative since the first
order approximation touches the exponential hyperplane from below. Thus, when the
ratio of volatilities increases, the true value increases and the first order approximation
underestimates this transition. In contrast, it generally overestimates the transition when
the ratio of volatilities decreases.

Note that when the linear approximation in (27) is further restricted to exhibit ho-
moskedastically and normally distributed innovations, then these dynamic restrictions
become tighter such that the approximation error and the bias become larger.

Next, when the order of variables is changed, then ãt has a similar functional form as
at in (26), but the ratio of volatilities is inverted

ãt = ãt−1

exp (ηh1,t)

exp (ηh2,t)
+ ηρt

exp (h1,t)

exp (h2,t)
.

Consequently, when the ratio of volatilities increases then the equation of a∗t under-
estimates the true transition of at in the original ordering, while the dynamic equation of
ã∗t mechanically overestimates the true transition of ãt in the alternative ordering.

The covariance terms σ∗12,t and σ̃∗12,t are proportional to {a∗t , g∗1,t} and {ã∗t , g̃∗2,t}, re-
spectively. h1,t = g∗1,t and h2,t = g̃∗2,t are left unrestricted. It follows that the bias in the
contemporaneous parameter carries over to the covariance terms.
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Figure 7: Approximation error and bias of linearization
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Panel (I): Approximation error
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Panel (II): Bias

The figure shows the approximation error and the bias for two initial values of

(at−1 = 0, ρt−1 = 0) and (at−1 = 0.5, ρt−1 = 0.5) with
exp (h2,t−1)
exp (h1,t−1)

= 1. The x-axis

and the y-axis show the range of the innovations to correlation and of the ratio of volatility.

37



Proof of Property “Posterior distribution of at and ãt under homoskedasticity”.

Assume that yt is generated by[
y1,t

y2,t

]
∼ N

([
0
0

]
,

[
1 ρt
ρt 1

])
.

Define for yt and ỹt = Pyt, where P is a permutation matrix exchanging rows, the
respective covariance matrices Σt = A−1

t DtD
′
tA
−1′

t and Σ̃t = Ã−1
t D̃tD̃

′
tÃ
−1′

t . In addition,
assume the variance of the first element on the diagonal of Dt and D̃t is equal to one. The
parameters associated with yt are {1, gt, at} and those with ỹt are {1, g̃t, ãt}. Due to the
special structure of the DGP, it follows that the prior distribution of at = ãt and gt = g̃t
is invariant to rotation of variables.22

Turning to inference, suppose the posterior draw for the initial value a0 = ã0, the
variance of the time-varying parameter S = S̃ and the variance of the transformed second
variable gt = g̃t ∀t.

Using the results in Chan (2017), the posterior distribution of a is given by

(a|y,D, a0, S) ∼ N(K−1
a ā, K−1

a )

where

Ka =



2
S

+ y1,12

exp(g1)
− 1
S

0 0 . . . 0

− 1
S

2
S

+ y1,22

exp(g2)
− 1
S

0 . . . 0
...

. . . . . . . . . . . . 0
...

. . . . . . − 1
S

2
S

+
y1,T−1

2

exp(gT−1)
− 1
S

0 0 0 0 − 1
S

2
S

+
y1,T

2

exp(gT )


, ā =



a0
S
− y1,1y2,1

exp (g1)

− y1,2y2,2
exp (g2)

...
−y1,T−1y2,T−1

exp (gT−1)

−y1,T y2,T
exp (gT )

 .

while the posterior distribution of ã is given by

(a|ỹ, D, a0, S) ∼ N(K̃−1
a

˜̄a, K̃−1
a )

where

K̃a =



2
S

+ y2,12

exp(g1)
− 1
S

0 0 . . . 0

− 1
S

2
S

+ y2,22

exp(g2)
− 1
S

0 . . . 0
...

. . . . . . . . . . . . 0
...

. . . . . . − 1
S

2
S

+
y2,T−1

2

exp(gT−1)
− 1
S

0 0 0 0 − 1
S

2
S

+
y2,T

2

exp(gT )


, ˜̄a =



a0
S
− y2,1y1,1

exp (g1)

− y2,2y1,2
exp (g2)

...
−y2,T−1y1,T−1

exp (gT−1)

−y2,T y1,T
exp (gT )


Then, since ā = ˜̄a but Ka 6= K̃a unless y2

1,t = y2
2,t ∀t, it follows that the posterior

22Notice that this does not imply that the elements in Σt and Σ̃t have the same distribution.
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distribution of a and ã is different. Note that the backward solutions for the individual
elements in a and ã differ, whereas they add up to the same sum in the time-invariant
case.23 Consequently, the likelihood information leads to a rotationally non-invariant
posterior distribution for the time-varying parameter.

23If a is time-invariant, then Ka = 1
exp (2g2)

∑T
t=1 y

2
1,t and K̃a = 1

exp (2g1)

∑T
t=1 y

2
2,t with exp (g1) =

exp (g2) and
∑T

t=1 y
2
1,t =

∑T
t=1 y

2
2,t implies that Ka = K̃a. ā = ˜̄a as ā = 1

exp (2g2)

∑T
t=1 y1,ty2,t

˜̄a = 1
exp (2g1)

∑T
t=1 y1,ty2,t. Hence, the posterior distribution of a and ã is the same under alterna-

tive orderings of the variables.
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B Additional Monte Carlo simulation

B.1 Robustness: estimated hyperparameters

The influence of the hyperparameters on the innovation variance is different across
models, orderings and alternative DGPs. Thus, it is not clear whether this prior spec-
ification for the hyperparameters resembles a fair model comparison. For this reason,
the CMSV and DC-CMSV models and their hyperparamaters are re-estimated using the
algorithm of Amir-Ahmadi, Matthes, and Wang (2018).

Tables 4 – 5 show the results for all three DGPs. Overall, the choice of the hyper-
parameters has a limited effect on the results as the posterior median of the estimated
hyperparameters is close to, generally, slightly smaller than the chosen hyperparameters.
Broadly speaking, the performance metrics improve slightly in all dimensions and for both
models.
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Table 4: Estimated correlation

MAE MAD RMSD FD
CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.041 0.030 0.029 0.023 0.038 0.029 0.371 -0.219
sine 0.098 0.086 0.064 0.018 0.090 0.023 0.534 0.942
fastsine 0.245 0.256 0.087 0.008 0.115 0.010 0.390 0.931
step 0.081 0.062 0.045 0.016 0.068 0.021 0.493 0.795
ramp 0.119 0.110 0.068 0.020 0.098 0.027 0.546 0.942

(a) Benchmark DGP

MAE MAD RMSD FD
CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.061 0.039 0.048 0.025 0.076 0.031 0.308 -0.216
sine 0.119 0.089 0.106 0.015 0.146 0.020 0.275 0.945
fastsine 0.244 0.257 0.142 0.006 0.185 0.008 0.176 0.936
step 0.105 0.068 0.080 0.015 0.121 0.019 0.287 0.801
ramp 0.139 0.113 0.111 0.018 0.154 0.023 0.296 0.944

(b) High Volatility DGP

MAE MAD RMSD FD
CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.030 0.024 0.024 0.021 0.031 0.026 0.296 -0.181
sine 0.087 0.083 0.043 0.020 0.061 0.026 0.748 0.942
fastsine 0.251 0.256 0.051 0.010 0.067 0.012 0.587 0.926
step 0.066 0.057 0.029 0.015 0.042 0.019 0.671 0.826
ramp 0.111 0.108 0.046 0.023 0.068 0.030 0.742 0.942

(c) Low Volatility DGP

The table shows the performance metrics for different scales for innovations to stochastic
volatility. A bold figure highlights the best model in each panel and row.

41



Table 5: Estimated covariance

MAE MAD RMSD FD
CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.314 0.288 0.155 0.030 0.224 0.042 0.445 0.976
sine 0.215 0.200 0.102 0.021 0.154 0.030 0.666 0.983
fastsine 0.330 0.331 0.112 0.010 0.170 0.014 0.607 0.993
step 0.251 0.225 0.107 0.020 0.165 0.028 0.591 0.985
ramp 0.235 0.222 0.105 0.024 0.161 0.035 0.636 0.979

(a) Benchmark DGP

MAE MAD RMSD FD
CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.438 0.393 0.202 0.038 0.344 0.059 0.486 0.987
sine 0.292 0.255 0.177 0.021 0.308 0.033 0.566 0.993
fastsine 0.401 0.395 0.207 0.009 0.353 0.014 0.472 0.998
step 0.353 0.303 0.169 0.021 0.303 0.034 0.557 0.994
ramp 0.316 0.283 0.182 0.024 0.315 0.039 0.544 0.991

(b) High Volatility DGP

MAE MAD RMSD FD
CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.238 0.219 0.134 0.024 0.177 0.032 0.349 0.956
sine 0.172 0.165 0.077 0.022 0.109 0.029 0.689 0.967
fastsine 0.295 0.296 0.062 0.011 0.085 0.014 0.738 0.983
step 0.192 0.178 0.082 0.017 0.119 0.023 0.574 0.970
ramp 0.192 0.185 0.082 0.024 0.119 0.034 0.649 0.961

(c) Low Volatility DGP

The table shows the performance metrics for different scales for innovations to stochastic
volatility. A bold figure highlights the best model in each panel and row.
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B.2 Robustness: stationary state dynamics

Another concern might be misspecification of the volatilities. The true DGP assumes
stationary volatility dynamics. This form of misspecification may affect the ability of
the DC-CMSV model to control for heteroskedasticity of the data, which is important to
obtain almost rotationally invariant estimates. Therefore, both models are re-estimated
assuming a stationary law of motion for volatility and parameter of contemporaneous
relation.

Tables 6 – 7 show the results for all three DGPs. The statistics indicate that the main
result is not affected, however, some features stand out. The estimated covariance and
value-at-risk are slightly more accurate than those in the main results. However, distance
and similarity metrics indicate more distinct estimates. This result is the consequence
of a more distinct posterior distribution of the parameter of contemporaneous relation
under an autoregressive process. Nevertheless, all estimates are broadly similar under the
DC-CMSV model.
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Table 6: Estimated correlation

MAE MAD RMSD FD
CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.041 0.028 0.028 0.029 0.038 0.036 0.437 -0.370
sine 0.101 0.092 0.065 0.021 0.092 0.027 0.508 0.901
fastsine 0.224 0.229 0.118 0.046 0.157 0.058 0.470 0.694
step 0.081 0.063 0.047 0.022 0.069 0.028 0.486 0.700
ramp 0.121 0.114 0.070 0.027 0.100 0.035 0.526 0.875

(a) Benchmark DGP

MAE MAD RMSD FD
CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.063 0.035 0.048 0.033 0.078 0.042 0.348 -0.345
sine 0.122 0.095 0.111 0.019 0.151 0.024 0.249 0.903
fastsine 0.235 0.232 0.165 0.041 0.215 0.052 0.226 0.702
step 0.106 0.069 0.084 0.022 0.125 0.028 0.281 0.694
ramp 0.141 0.118 0.116 0.025 0.160 0.032 0.275 0.877

(b) High Volatility DGP

MAE MAD RMSD FD
CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.030 0.023 0.025 0.024 0.032 0.031 0.364 -0.368
sine 0.090 0.088 0.043 0.023 0.060 0.029 0.730 0.905
fastsine 0.215 0.226 0.092 0.052 0.120 0.065 0.650 0.688
step 0.065 0.058 0.031 0.020 0.043 0.026 0.656 0.740
ramp 0.113 0.111 0.046 0.029 0.068 0.038 0.725 0.878

(c) Low Volatility DGP

The table shows the performance metrics for different scales for innovations to stochastic
volatility. A bold figure highlights the best model in each panel and row.
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Table 7: Estimated covariance

MAE MAD RMSD FD
CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.314 0.286 0.152 0.038 0.217 0.053 0.519 0.934
sine 0.215 0.201 0.101 0.024 0.152 0.034 0.685 0.977
fastsine 0.311 0.303 0.158 0.052 0.243 0.076 0.517 0.804
step 0.249 0.224 0.107 0.027 0.162 0.037 0.639 0.977
ramp 0.235 0.222 0.105 0.032 0.160 0.045 0.650 0.957

(a) Benchmark DGP

MAE MAD RMSD FD
CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.440 0.394 0.195 0.051 0.331 0.082 0.547 0.951
sine 0.293 0.257 0.181 0.025 0.312 0.040 0.573 0.990
fastsine 0.394 0.367 0.236 0.053 0.408 0.088 0.437 0.874
step 0.353 0.303 0.170 0.031 0.301 0.049 0.590 0.988
ramp 0.317 0.284 0.185 0.033 0.319 0.053 0.551 0.980

(b) High Volatility DGP

MAE MAD RMSD FD
CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.236 0.216 0.139 0.029 0.183 0.038 0.414 0.900
sine 0.171 0.164 0.076 0.024 0.105 0.032 0.724 0.956
fastsine 0.264 0.266 0.125 0.053 0.174 0.072 0.555 0.735
step 0.190 0.176 0.088 0.022 0.124 0.029 0.626 0.961
ramp 0.191 0.185 0.083 0.031 0.117 0.042 0.671 0.922

(c) Low Volatility DGP

The table shows the performance metrics for different scales for innovations to stochastic
volatility. A bold figure highlights the best model in each panel and row.
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C Revisiting Primiceri’s (2005) application

C.1 Sensitivity of reduced-form parameters

Figure 8: Estimated B̃t’s (CMSV-TVP-VAR)

Inflation Unemployment Interest rate

The figure depicts the posterior median of the time-varying VAR parameters for each equa-
tion in the respective column for all possible variable orderings obtained from the CMSV-
TVP-VAR.
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Figure 9: Estimated B̃t’s (DC-CMSV-TVP-VAR)

Inflation Unemployment Interest rate

The figure depicts the posterior median of the time-varying VAR parameters for each equa-
tion in the respective column for all possible variable orderings obtained from the DC-
CMSV-TVP-VAR.
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Figure 10: Estimated Σ̃t’s (CMSV-TVP-VAR)

The figure shows the posterior median of the correlation (corr), the covariance (cov) and
the volatility (vol) of the reduced-form residual of inflation (πt), unemployment (ut) and
the interest rate (it) for all possible orderings obtained from the CMSV-TVP-VAR.
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Figure 11: Estimated Σ̃t’s (DC-CMSV-TVP-VAR)

The figure shows the posterior median of the correlation (corr), the covariance (cov) and
the volatility (vol) of the reduced-form residual of inflation (πt), unemployment (ut) and
the interest rate (it) for all possible orderings obtained from the DC-CMSV-TVP-VAR.
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C.2 Sensitivity of structural analysis

Figure 12: Replication of Figure 1

DC-CMSV-TVP-VAR CMSV-TVP-VAR

Panel (I): Original ordering, y123
t = [πt, ut, it]

′

Panel (II): Reverse ordering, y321
t = [it, ut, πt]

′

The figure depicts the posterior mean, 16th and 84th percentiles of the standard deviation
of (a) the residuals of the inflation equation, (b) the residuals of the unemployment equation
and (c) the residuals of the interest rate equation or monetary policy shocks.
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Figure 13: Replication Figure 2

DC-CMSV-TVP-VAR CMSV-TVP-VAR

Panel (I): Original ordering, y123
t = [πt, ut, it]

′

Panel (II): Reverse ordering, y321
t = [it, ut, πt]

′

The figure depicts (a) impulse response of inflation to monetary policy shocks in 1975:I,
1981:III, and 1996:I, (b) difference between the responses in 1975:I and 1981:III with 16th
and 84th percentiles, (c) difference between the responses in 1975:I and 1996:I with 16th
and 84th percentiles, (d) difference between the responses in 1981:III and 1996:I with 16th
and 84th percentiles.
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Figure 14: Replication Figure 3

DC-CMSV-TVP-VAR CMSV-TVP-VAR

Panel (I): Original ordering, y123
t = [πt, ut, it]

′

Panel (II): Reverse ordering, y321
t = [it, ut, πt]

′

The figure depicts (a) impulse response of unemployment to monetary policy shocks in
1975:I, 1981:III, and 1996:I, (b) difference between the responses in 1975:I and 1981:III
with 16th and 84th percentiles, (c) difference between the responses in 1975:I and 1996:I
with 16th and 84th percentiles, (d) difference between the responses in 1981:III and 1996:I
with 16th and 84th percentiles.
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Figure 15: Replication Figure 4

DC-CMSV-TVP-VAR CMSV-TVP-VAR

Panel (I): Original ordering, y123
t = [πt, ut, it]

′

Panel (II): Reverse ordering, y321
t = [it, ut, πt]

′

The figure depicts the interest rate response to a 1% permanent increase in inflation with
16th and 84th percentiles. (a) Simultaneous response, (b) response after 10 quarters, (c)
response after 20 quarters, (d) response after 60 quarters.
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Figure 16: Replication Figure 5

DC-CMSV-TVP-VAR CMSV-TVP-VAR

Panel (I): Original ordering, y123
t = [πt, ut, it]

′

Panel (II): Reverse ordering, y321
t = [it, ut, πt]

′

The figure depicts the interest rate response to a 1% permanent increase in inflation.
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Figure 17: Replication Figure 6

DC-CMSV-TVP-VAR CMSV-TVP-VAR

Panel (I): Original ordering, y123
t = [πt, ut, it]

′

Panel (II): Reverse ordering, y321
t = [it, ut, πt]

′

The figure depicts the interest rate response to a 1% permanent increase in the unemploy-
ment rate with 16th and 84th percentiles. (a) Simultaneous response, (b) response after 10
quarters, (c) response after 20 quarters, (d) response after 60 quarters.
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Figure 18: Replication Figure 7

DC-CMSV-TVP-VAR CMSV-TVP-VAR

Panel (I): Original ordering, y123
t = [πt, ut, it]

′

Panel (II): Reverse ordering, y321
t = [it, ut, πt]

′

The figure depicts the interest rate response to a 1% permanent increase in the unemploy-
ment rate.
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Figure 19: Replication Figure 8

DC-CMSV-TVP-VAR CMSV-TVP-VAR

Panel (I): Original ordering, y123
t = [πt, ut, it]

′

Panel (II): Reverse ordering, y321
t = [it, ut, πt]

′

The figure depicts a counterfactual historical simulation drawing the parameters of the
monetary policy rule from their 1991-1992 posterior. (a) Inflation, (b) unemployment.

57



D Revisiting Cogley, Primiceri, and Sargent’s (2010)

application

Figure 20: Trend inflation

The figure depicts the posterior median for trend inflation based on the CPS-TVPSV-VAR,
with estimates for GDP inflation shown in the left panel and those for PCE inflation shown
in the right panel.

Figure 21: Trend inflation

(a) Homoskedastic innovations for B̃t’s (b) Heteroskedastic innovations for B̃t’s

The figure depicts the posterior median for trend inflation of the GDP deflator from TVP-
VARs with homoskedastic and heteroskedastic parameter innovations for B̃t’s in the left
panel (a) and the right panel (b), respectively.
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Figure 22: Inflation volatility

The figure depicts the posterior median for inflation volatility based on the CPS-TVPSV-
VAR, with estimates for GDP inflation shown in the left panel and those for PCE inflation
shown in the right panel.
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Figure 23: Inflation volatility

(a) Homoskedastic innovations for B̃t’s (b) Heteroskedastic innovations for B̃t’s

The figure depicts the posterior median for inflation volatility of the GDP deflator from
TVP-VARs with homoskedastic and heteroskedastic parameter innovations for B̃t’s in the
left panel (a) and the right panel (b), respectively.
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Figure 24: The effect of unemployment news on expected inflation

The figure depicts the posterior median for expected inflation based on a one standard
deviation increase of the logit of the unemployment rate based on the CPS-TVPSV-VAR,
with estimates for GDP inflation shown in the left panel and those for PCE inflation shown
in the right panel.
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Figure 25: The effect of unemployment news on expected inflation

(a) Homoskedastic innovations for B̃t’s (b) Heteroskedastic innovations for B̃t’s

The figure depicts the posterior median for expected GDP price deflator inflation based on
a one standard deviation increase of the logit of the unemployment rate from TVP-VARs
with homoskedastic and heteroskedastic parameter innovations for B̃t’s in the left panel (a)
and the right panel (b), respectively.
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Figure 26: Conditional and unconditional Phillips correlations

The figure depicts the posterior median for conditional and unconditional Phillips correla-
tions based on the CPS-TVPSV-VAR, with estimates for GDP inflation shown in the left
panel and those for PCE inflation shown in the right panel.
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Figure 27: Conditional and unconditional Phillips correlations

(a) Homoskedastic innovations for B̃t’s (b) Heteroskedastic innovations for B̃t’s

The figure depicts the posterior median for conditional and unconditional Phillips correla-
tions from TVP-VARs with homoskedastic and heteroskedastic parameter innovations for
B̃t’s in the left panel (a) and the right panel (b), respectively.
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