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Non-technical summary

Research Question

Comparisons between the price levels of different regions depend to a large extent on the

quality of the underlying price data. Below the basic heading level, these data often have

large gaps. Therefore, stochastic index number methods are used for aggregation into re-

gional price levels. Two of the best known approaches are the Country-Product-Dummy

method (CPD method) and the GEKS method, which is named after its developers (Gini,

Eltetö, Köves and Szulc). The two methods generate identical estimates for regional price

levels if prices are fully available for all products in the regions under analysis. This is no

longer the case once there are gaps in the price data. To date, the literature has given little

attention to the reasons behind this and the effects on price level estimation.

Contribution

The present study expands the existing theoretical basis of the two index number methods.

First, it shows that both the CPD method and the GEKS method can be deduced from the

same stochastic model. Second, the formula of the estimated regional price levels is derived

for a specific case of incomplete price data. The impact of missing prices on price level

estimation is analysed by means of several simulation studies.

Results

Where price data are incomplete, the regional price levels of the CPD method and the GEKS

method are estimated by correction terms which factor prices from other regions into the

calculation. Differences in the estimated price levels of the two index number methods arise

solely through differences in the weighting of these correction terms. Particularly in cases of

highly fragmentary price data, the CPD method exhibits better statistical properties in terms

of estimation efficiency. An application to micro price data from the official consumer price

statistics confirms this result.



Nichttechnische Zusammenfassung

Fragestellung

Vergleiche zwischen den Preisniveaus unterschiedlicher Regionen hängen in hohem Maße

von der Qualität der zugrundeliegenden Preisdaten ab. Unterhalb der Elementarebene wei-

sen diese oftmals große Lücken auf. Für die Aggregation in regionale Preisniveaus werden

deshalb stochastische Indexmethoden eingesetzt. Zu den wohl bekanntesten Vertretern zäh-

len die Country-Product-Dummy-Methode (kurz: CPD-Methode) und die nach ihren Ent-

wicklern (Gini, Eltetö, Köves und Szulc) benannte GEKS-Methode. Beide generieren identi-

sche Schätzwerte für die regionalen Preisniveaus, wenn in den betrachteten Regionen Prei-

se vollständig für alle Produkte vorliegen. Sobald die Preisdaten Lücken aufweisen, ist dies

nicht länger der Fall. In der Literatur sind die Gründe hierfür und die Auswirkungen auf die

Schätzung der Preisniveaus bislang kaum untersucht.

Beitrag

Die vorliegende Studie erweitert die existierenden theoretischen Grundlagen der beiden be-

trachteten Indexmethoden. Es wird zum einen gezeigt, dass sowohl die CPD-Methode als

auch die GEKS-Methode aus demselben stochastischen Modell abgeleitet werden kann. Zum

anderen wird für einen spezifischen Fall lückenhafter Preisdaten die Formel der geschätzten

regionalen Preisniveaus ermittelt. Über verschiedene Simulationsansätze wird der Einfluss

fehlender Preise auf die Schätzung der Preisniveaus untersucht.

Ergebnisse

Die regionalen Preisniveaus der CPD-Methode und der GEKS-Methode werden bei lücken-

haften Preisdaten über Korrekturterme geschätzt, welche die Preise anderer Regionen in die

Berechnung einbeziehen. Unterschiede in den geschätzten Preisniveaus der beiden Index-

methoden entstehen einzig durch eine unterschiedliche Gewichtung dieser Korrekturterme.

Insbesondere bei sehr lückenhaften Preisdaten weist die CPD-Methode bessere statistische

Eigenschaften in Bezug auf die Effizienz der Schätzung auf. Eine Anwendung auf Mikropreis-

daten der amtlichen Verbraucherpreisstatistik bestätigt dieses Ergebnis.
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1 Introduction

In general, index number theory is divided into three primary strands: the test approach

(e.g. Balk, 1995), which relies on a framework of desirable properties for the valuation of

index number methods; the economic approach (e.g. Diewert, 1995), which builds on mi-

croeconomic theory in the context of cost and utility functions; and the stochastic approach

(e.g. Clements, Izan and Selvanathan, 2006), which embeds the index number theory into a

statistical framework. The stochastic approach to index numbers has especially gained in-

creasing attention in recent years. Within the International Comparison Program (ICP), for

example, it is used for the compilation of Purchasing Power Parities (PPPs) in the participat-

ing countries (see Rao and Hajargasht, 2016, pp. 415-416 and World Bank, 2015, pp. 256-257

for the ICP round in 2011 and Diewert, 2010, p. S14 for the ICP round in 2005). More specif-

ically, in the first stage of aggregation, the PPPs are calculated using the two probably best-

known index number methods of the stochastic approach: the Country-Product-Dummy

(CPD) method, originally developed by Summers (1973), and the GEKS method, named af-

ter its authors Gini (1924, 1931), Eltetö and Köves (1964) and Szulc (1964).

The CPD method is a simple case of a hedonic regression. It explains the price of some

product by the product itself and the region where that price was observed. In the litera-

ture it is well-known that the GEKS method can be put into a regression approach as well

(e.g. Rao and Timmer, 2003, pp. 498-500). Initially, however, it was designed as a technique

to adjust a set of bilateral index numbers such that these satisfy internal consistency in a

multilateral context. The CPD and GEKS methods might be complemented by the much

less prominent Country-Dummy (CD) method that reaches back to Summers (1973) as well.

Similarly, within a regression framework, it explains the regional price ratio of some product

by the general price level of the regions. A comprehensive survey of these stochastic index

number methods is provided, for example, by Balk (2008) and Auer (2012).

In the literature, the CPD and GEKS methods are typically considered independently of

each other. This, in fact, makes sense because of the different rationale behind their model

specifications. Balk (1981, p. 75), however, pointed out that both methods are closely re-

lated.1 In our paper, we demonstrate that both the CPD and the GEKS methods can be de-

rived from the same stochastic model originally introduced by Summers (1973, p. 5) and Sel-

vanathan and Rao (1992, pp. 338-340). Moreover, we show that the CD method also traces

back to this model. This deeper anchoring of the three multilateral index number methods

into the stochastic approach is this paper’s first contribution.

1 In a temporal framework, Balk (1980, 1981) applied the CPD and GEKS methods to the case of seasonally
unavailable products.
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Below the basic heading level, a spatial price comparison relies exclusively on the prices

that were collected in different regions for a number of products.2 If the price of each prod-

uct is observed in each region, then the available price matrix is said to be complete. For

a complete price matrix, it is known that the CPD method and the GEKS method generate

exactly the same estimates for the regional price levels (e.g. World Bank, 2013, pp. 115-116).

Strictly speaking, this is true when the bilateral price index numbers underlying the GEKS

method are calculated as a Jevons index (henceforth, we use the term GEKS-Jevons method).

A complete price matrix, however, is rarely available. More often there are large gaps in the

price data due to missing prices. In this case, the CPD and GEKS-Jevons methods no longer

produce the same results, although it would be helpful to know how these differences evolve.

Ferrari, Gozzi and Riani (1996) consider a price matrix with two groups of regions. For

the first group of regions the matrix is complete and for each region of the second group

the same prices are missing. The authors show that in this case the CPD method and the

GEKS-Jevons method generate different results, and that the differences are due to different

weights in a correction term. We extend the work of Ferrari et al. (1996) by a more general

scenario of missing prices where all regions exhibit gaps. We show that their results also re-

main valid in this new setting. Now, however, the price level estimates rely not on one but on

two correction terms that are weighted differently between the CPD and the GEKS-Jevons

methods. Moreover, it can be shown that the price levels differ between intragroup com-

parisons (the prices of two regions that belong to the same group of regions are compared)

and intergroup comparisons. For intragroup comparisons, the CPD price levels correspond

to the Jevons index of the two regions under consideration. These further insights into the

calculation of price levels in the case of missing prices are the paper’s second contribution.

Our theoretical derivations draw on a specific case of an incomplete price matrix. To

evaluate the impact of missing prices on the price level estimates also in a more general set-

ting, we conduct a Monte Carlo analysis. For that purpose, we build artificial price data,

randomly introduce gaps into these data sets and apply the CPD and GEKS-Jevons meth-

ods (a similar approach was undertaken by Dikhanov, 2010). This enables us to evaluate

the impact of missing prices on the estimation efficiency separately for both index number

methods and, in addition, to analyse possible differences between them. Not surprisingly,

it turns out that the estimation efficiency in general suffers from an increasing number of

gaps. Moreover, the CPD method slightly outperforms the GEKS-Jevons method in terms of

estimation efficiency under different tested scenarios. These findings are the paper’s third

contribution.

We also adopt our simulation strategy to more realistic price data. For that purpose, we

2 We use the term region in place of countries, cities or any other geographical entity.
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draw on a subset of the micro price data underlying the official Consumer Price Index (CPI)

of Germany. On the basis of these data, we are able to confirm the findings of our first sim-

ulation study. Moreover, we use the product descriptions provided in the data to analyse

how the estimation efficiency reacts to narrower product definitions. This issue has prac-

tical relevance for two reasons. First, with respect to our simulation results, it shows that

one may increase the estimation efficiency with a narrower product definition. Second, it

also reveals that this gain in the efficiency is closely related to the regional volatility of the

prices. More specifically, with low regional price fluctuations, one could rely on relatively

loose product definitions as narrower ones do not significantly enhance the estimation effi-

ciency. This finding may have an important implication for the compilation of regional price

indices in practice. A narrow product definition using CPI data usually entails a lot of data

preprocessing (e.g. Weinand and Auer, 2019, pp. 9-11). Our results indicate that this exten-

sive workload can be reduced when the regional volatility of prices within a basic heading is

taken into account. This is the paper’s fourth contribution.

The remainder of the paper is laid out as follows. Section 2 provides an overview of the

stochastic approach to index numbers in the context of spatial price comparisons below the

basic heading level. Section 3 discusses appropriate error term specifications in the light of

empirical studies on spatial price comparisons. Section 4 presents the theoretical deriva-

tions for a specific case of incomplete price data and the results of our simulation studies

while Section 5 concludes.

2 Stochastic approach to spatial price index numbers

Two central requirements for spatial price comparisons are transitivity and characteristicity

of the price index numbers. They are defined in Section 2.1, along with some other basic

concepts. In Section 2.2, we derive the CPD and CD methods from a stochastic model ini-

tially proposed by Summers (1973) and Selvanathan and Rao (1992) in the context of spatial

price comparisons. Likewise, in Section 2.3, we derive the GEKS method from that model.

2.1 Basic concepts and definitions

Usually, the price levels of more than two regions are compared. A basic requirement of such

multilateral price comparisons is called transitivity. It postulates that P sr , the relative price

level between the regions r and s, should be equal to the product of the price levels P st and

P tr , where t is some arbitrary third region that serves as a bridge (e.g. Rao and Banerjee,

1986, p. 304). Consequently, transitivity ensures the internal consistency of some multilat-

3



eral system of index numbers. A second postulate, initially advocated by Drechsler (1973), is

denoted as characteristicity. It states that the price comparison between two regions r and s

should be based exclusively on information relating to these two regions. Both requirements

play a central role for price comparisons below and above the basic heading level.

Below the basic heading level, neither expenditure weights nor quantity information are

available. In this case, elementary price indices are used for the aggregation of prices into

higher-level indices. An elementary index number formula widely used among statistical

offices is the Jevons (1865) index (e.g. OECD, 2018, pp. 8-9). For the regions r and s, it is

defined by:

Ṗ sr
J =

N∏
i=1

(
pr

i /p s
i

) 1
N , (1)

where pr
i is the price of product i in region r and N the number of products.3

The Jevons index outperforms most other elementary index number formulas under the

axiomatic approach to index numbers and is also (weakly) supported under the economic

approach (e.g. Diewert, 1995, pp. 5-20). In particular, Hill and Hill (2009, p. 198) point out

that the Jevons index numbers are transitive if prices are available for each product and re-

gion. Moreover, from (1), it is obvious that each index number on its own is characteristic.

In practice, however, price information for individual products are frequently missing be-

low the basic heading level. Equation (1) shows that the Jevons index is only applicable to

regionally matched price observations. Thus, price comparisons between different pairs of

regions (e.g. Ṗ st versus Ṗ sr ) might stem from varying sets of matched prices. Consequently,

a multilateral system of bilateral Jevons index numbers would still be characteristic, but no

longer transitive. Taking into account the trade-off between transitivity and characteristic-

ity, the stochastic approach to index numbers offers alternatives to ensure transitivity even

in the event that prices are missing.

Following the stochastic model advocated by Summers (1973, p. 5) and Selvanathan and

Rao (1992, pp. 338-340), the price ratio of product i for regions r and s is defined by the mul-

tiplicative relationship of two terms: the general price level of region r relative to region s,

P sr , and a random component, εr s
i . If transitivity is assumed, P sr can be written as P r /P s

(e.g. Rao and Banerjee, 1986, pp. 304-306). Hence, the logarithm of this multiplicative rela-

tionship can be expressed by

ln
(
pr

i /p s
i

)= ln
(
P r /P s)+usr

i , (2)

where usr
i = lnεsr

i is assumed to be some normally distributed random variable with ex-

3 In the following, we denote bilateral price index numbers by a dot, e.g. Ṗ sr , in order to indicate that the
price index number is not necessarily transitive in a multilateral context.
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pected value 0 and variance σ2 for all products i = 1,2, . . . , N and regions s,r = 1,2, . . . ,R.4

In Appendix A.1.2, it is shown that usr
i is not mutually independent. Instead, it follows that

usr
i = uvr

i −uv s
i . In the following, we show that the stochastic model in (2) serves as a starting

point for the derivation of the CD, the CPD and the GEKS methods, respectively.

2.2 CPD method and Country-Dummy method

Taking the sum over all regions s = 1, . . . ,R in Equation (2) and rearranging leads to

ln pr
i = lnP r + 1

R

R∑
s=1

ln
(
p s

i /P s)+ 1

R

R∑
s=1

usr
i . (3)

Although the price p s
i on the right-hand side of the equation is initially known, the price

level P s is not. Therefore, the arithmetic average of the logarithmic price to price level ratios,
1
R

∑R
s=1 ln

(
p s

i /P s
)
, is also unknown. We denote this term by lnπi . From an economic point

of view, it represents the average deflated price of product i . This interpretation reveals sim-

ilarities to the “international price” of the Geary-Khamis method.5 In addition, we define
1
R

∑R
s=1 usr

i = ur
i . Consequently, (3) can be rewritten as

ln pr
i = lnP r + lnπi +ur

i . (4)

Equation (4) represents the logarithmic form of the CPD method’s underlying model (Sum-

mers, 1973, p. 10). It explains the price of product i in region r , pr
i , by region r ’s general price

level P r and product i ’s general value πi . Because ur
i is a linear combination of the distur-

bances usr
i in (2), it follows a normal distribution with expected value 0. The variance of the

disturbances is assumed to be identical among the regions and products in the original form

of the CPD method.

In order to transform (4) into a standard regression model, we introduce for each region

t (t = 1, . . . ,R) the dummy variable regiont and for every product j ( j = 1, . . . , N ) the dummy

variable product j :

regiont =
1 if r = t

0 if r 6= t
and product j =

1 if i = j

0 if i 6= j
. (5)

4 In order to derive the CCD index (see Caves, Christensen and Diewert, 1982) under the stochastic approach,
Selvanathan and Rao (1992, pp. 338-340) assume heteroskedastic disturbances. In the context of intertem-
poral price comparisons, Clements and Izan (1981, pp. 745-746) show that the Divisia index can be derived
from (2) under plausible specifications of the error term.

5 Geary (1958) and Khamis (1972) included country and product specific quantities in the definition of the
international price. If the quantities are identical across countries, the definition simplifies to 1

R

∑R
s=1 p s

i /P s .
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Defining αt = ln
(
P t /k

)
and β j = ln

(
k ·π j

)
, with k being some constant, we can express

Equation (4) by

ln pr
i =

R∑
t=1

αt regiont +
N∑

j=1
β j product j +ur

i ∀ r = 1, . . . ,R and i = 1, . . . , N . (6)

Equation (6) can be viewed as a linear regression model, albeit one suffering from perfect

multicollinearity. Furthermore, we are interested in estimates of the price levels P t . Since

αt = ln
(
P t /k

)
, we first need to specify k. Both problems can be simultaneously solved by

specifying k in terms of the parameter αt .

If we define region t = 1 (or some other region) as the base region that serves as a refer-

ence for the price levels of the other regions, that is, k = P 1, it follows thatα1 = ln
(
P 1/P 1

)= 0.

As a consequence, α1region1 = 0 for all observations. Therefore, the term α1region1 can be

dropped from Equation (6):

ln pr
i =

R∑
t=2

αt regiont +
N∑

j=1
β j product j +ur

i ∀ r = 1, . . . ,R and i = 1, . . . , N . (7)

Perfect multicollinearity is removed. The parameters αt are estimated using ordinary least

squares (OLS). The corresponding estimator, α̂t , is defined as the logarithmic price level rel-

ative between region t and the base region. By definition, these estimated price levels satisfy

the requirement of transitivity (e.g. Rao and Banerjee, 1986, pp. 304-306). Alternatively, we

could avoid perfect multicollinearity in (6) by setting
∑R

t=1α
t = 0. Consequently, α̂t would

express the logarithmic price level of region t relative to the unweighted average price level

of all regions. Diewert (2004, pp. 6-8) describes an elegant way of estimating the parameters

αt in this setting.

Alternatively to the approach outlined above, one can set in Equation (2) region s as a fix

reference for product i ’s price ratios:

ln
(
pr

i /p s
i

)= ln
(
P r /P s)+usr

i ∀ r ∈ R∗
s and i = 1, . . . , N (8)

where R∗
s = {r ∈ N+ | r ≤ R, r 6= s}. Equation (8) represents the Country-Dummy method.

It assumes that any product-specific price ratio between two regions r and s can be ex-

plained by the overall price level relative of these regions. The disturbances usr
i remain a

normally distributed random variable with expected value 0 and variance σ2. As pointed

out by Summers (1973, p. 10), it follows that cov
(
usr

i , usv
i

) = 1
2σ

2 for regions r 6= v . If addi-

tionally cov
(
usr

i , usr
j

)
= cov

(
usr

i , usv
j

)
= 0 for products i 6= j is assumed, the disturbances are

autocorrelated blockwise (see Appendix A.1.2 for a formal proof).
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In addition to the dummy variable regiont in (5), we need to define a second dummy

variable that refers to the price of region s in the price ratio ln
(
pr

i /p s
i

)
. For that purpose, we

introduce for each region t (t = 1, . . . ,R) the dummy variable

âregiont =
1 if s = t

0 if s 6= t
. (9)

The two dummy variables, regiont and âregiont , are complemented by the additional param-

eter of region t ’s logarithmic price level, αt . Defining αt = ln
(
P t /P 1

)
, the regression model

of the CD method can be expressed by

ln
(
pr

i /p s
i

)= R∑
t=2

αt
(
regiont − âregiont

)
+usr

i ∀ r ∈ R∗
s and i = 1, . . . , N . (10)

Since α1 = ln
(
P 1/P 1

)= 0, it follows that α1
(
region1 − âregion1

)
is not included in (10). Due to

the known autocorrelation structure, the remaining parameters α2, . . . ,αR are estimated us-

ing generalised least squares (GLS). They express the logarithmic price level relative between

region t and the base region t = 1. Moreover, they are transitive in a multilateral context. In

comparison to (7), it is worthwhile to note that the lower number of model parameters is

exactly compensated by a lower number of observations. As a result, the degrees of freedom

in models (7) and (10) are identical.

Subtracting the definition of product i ’s price in region r = 1, ln p1
i = lnP 1 + lnπi +u1

i ,

from Equation (4) and rearranging yields the CPD’s regional price level with

ln
(
P r /P 1)= ln

(
pr

i /p1
i

)− (
ur

i −u1
i

)
.

From (4), it is known that ur
i = 1

R

∑R
s=1 usr

i and u1
i = 1

R

∑R
s=1 us1

i . Consequently, ur
i −u1

i can be

written as 1
R

∑R
s=1

(
usr

i −us1
i

)
. In Appendix A.1.2, it is shown that usr

i −usv
i = uvr

i . Similarly,

usr
i −us1

i = u1r
i applies. As a result, the previous equation can be rewritten as (8), the CD

method’s price level, ln
(
P r /P 1

)
, relative to region s = 1. This suggests that the CPD and CD

methods are equivalent approaches and, therefore, should give equal price level estimates.

In the case of a complete price matrix, the CPD and CD method’s price level estimator,

exp
(
α̂t

)
, is defined as a geometric average of the price ratios between region t and the base

region (see, for example, Rao and Hajargasht, 2016, pp. 418-419, and Appendix A.1 for the

derivation of that result).6 Consequently, the estimated price levels coincide with the Jevons

index in (1). Furthermore, it follows that the CPD estimator for product j ’s general value, β̂ j ,

6 Kennedy (1981, p. 801) recommends calculating P t by exp
(
α̂t −0.5v̂ar

(
α̂t

))
instead of exp

(
α̂t

)
in order to

reduce the upward bias that would arise from the convex transformation exp
(
α̂t

)
.
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is defined by 1
R

∑R
t=1 ln

(
p t

j /exp
(
α̂t

))
.7 This expression is already known from (3). It reveals

that the prices of product j are deflated by the respective regional price levels.

2.3 GEKS method

Following Hill (2008, p. 3), the GEKS method is not a price index in the proper sense. Strictly

speaking, it is a two-stage technique to convert a set of bilateral price index numbers into a

multilateral system of transitive index numbers. The first stage encompasses the calculation

of the bilateral index numbers, Ṗ sr , for each regional pair r and s. These, however, may

lack transitivity, with the result that they differ from the multilateral index numbers, P sr .

For that reason, the second stage incorporates an adjustment of the characteristic bilateral

into transitive multilateral index numbers. Drechsler (1973, p. 28) points out that the GEKS

method is designed with the aim of keeping this adjustment as small as possible with respect

to the trade-off between characteristicity and transitivity. A mathematical formulation of

this optimisation problem can be found in Hill and Timmer (2006, pp. 368-369) and Rao and

Timmer (2003, pp. 497-500).

In the following, we demonstrate that the multilateral GEKS-Jevons method, like the CPD

method, can be derived from the stochastic model defined in (2). Taking the sum over all

products i = 1, . . . , N in (2) and rearranging yields

1

N

N∑
i=1

ln
(
pr

i /p s
i

)= ln
(
P r /P s)+ 1

N

N∑
i=1

usr
i . (11)

The term on the left-hand side of the equation is the logarithmic form of the Jevons index in

(1).8 Therefore, we denote it by ln Ṗ sr
J . In addition, we define 1

N

∑N
i=1 usr

i = usr . Consequently,

(11) can be rewritten as

ln Ṗ sr
J = ln

(
P r /P s)+usr . (12)

This model specification of the GEKS-Jevons method is widely documented (e.g. Hill, 2016,

p. 408). It states that the bilateral Jevons index numbers, ln Ṗ sr
J , and the corresponding tran-

sitive index numbers, ln(P r /P s), differ only with respect to the disturbances usr . Since the

disturbances usr are a linear combination of usr
i in (2), they follow a normal distribution with

expected value 0. Their variance is assumed to be identical.

In order to transform (12) into a standard regression model, we introduce for each region

t (t = 1, . . . ,R) the two dummy variables regiont and âregiont . Their definitions can be found

7 If the restriction
∑R

t=1α
t = 0 applies, then β̂ j = 1

R

∑R
t=1 ln p t

j follows (see also Diewert, 2004, p. 7).
8 Rao and Banerjee (1986, p. 306) underline the importance that the bilateral index numbers satisfy the

country-reversal test. The Jevons index exhibits that property.
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in (5) and (9). Defining αt = ln
(
P t /P 1

)
, Equation (12) can be written as

ln Ṗ sr
J =

R∑
t=2

αt
(
regiont − âregiont

)
+usr ∀ s = 1, . . . ,R −1 and r = s +1, . . . ,R . (13)

Regression model (13) draws on non-redundant bilateral price index numbers only. Because

α1 = ln
(
P 1/P 1

)= 0, it follows that α1
(
region1 − âregion1

)
is not included in (13). The remain-

ing parameters α2, . . . ,αR are estimated using OLS. In Appendix A.1, it is shown that the cor-

responding estimator, exp
(
α̂t

)
, is defined by

exp
(
α̂t )= R∏

r=1

(
Ṗ 1r

J · Ṗ r t
J

) 1
R , (14)

which is the typical presentation of the GEKS-Jevons method (e.g. ILO, IMF, OECD, UNECE,

Eurostat and World Bank, 2004, p. 498).9 Moreover, when we insert the definitions of Ṗ 1r
J and

Ṗ r t
J into (14), it simplifies to

exp
(
α̂t )= N∏

i=1

(
p t

i /p1
i

) 1
N = Ṗ 1t

J

in the case of a complete price matrix. Thus, the estimated price levels of the GEKS-Jevons

method, exp
(
α̂t

)
, are defined as ordinary Jevons indices (e.g. Hill, 2016, p. 408). This is due

to the fact that the bilateral Jevons index numbers are transitive when no product prices are

missing. As a consequence, no adjustment of the bilateral index numbers is necessary.

3 Discussion on the error term specification

In the previous section, it was shown that the stochastic approach to index numbers provides

point estimates for the price level of some region. The reliability of these estimates depends

to a high degree on the quality of the collected price data. In particular, differences in the

quality of products, missing prices across regions or selection bias may lead to distortions

in the regional price levels and a loss in representativity. These “non-stochastic” sources of

error are widely discussed in the literature (e.g. Balk and Kersten, 1986; Kokoski, Moulton

and Zieschang, 1999; Silver, 2009).

As one of its main advantages over the economic and the test approach, the stochastic

approach to index numbers provides measures of precision for the estimated price levels

9 Clearly, other bilateral price index formulas instead of the Jevons index could be used in (14) as well. In its
origin, the GEKS method was constructed based on binary Fisher indices. Caves et al. (1982, p. 78) propose
the use of the Törnqvist index. Both indices require quantity information.
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(e.g. standard errors, confidence intervals). Even if price level estimates are unbiased, the

interpretation of these measures relies highly on the choice of model specification and the

assumptions on the error term.10 Model (2), for example, postulates that the price ratio of

regions r and s for product i solely deviates from the general relative price level by a random

error term. This is a simple but plausible assumption. The assumption that the error term’s

variance is identical among the regions and products, however, is rather restrictive (e.g. Sum-

mers, 1973, p. 6). In particular, it is not only restrictive but might be false when it does not

fit to the underlying empirical data. As a consequence, the measures of precision would be

biased and, thus, meaningless. In the following, we address the importance of appropriate

error term specifications in light of empirical studies on spatial price comparisons.

Variance of the disturbances: The error term in (2) is assumed to be homoskedastic. This

assumption, however, might be inappropriate when the price ratios behave systematically

different among the regions and/or products (e.g. due to pricing policies that differ among

the products). For example, suppose that some basic heading consists of two products i and

j . Product i is uniformly priced in the regions while product j is not. Using (2), the error

terms would be realised by

exp
(
usr

i

)= P s/P r and exp
(
usr

j

)
= (

P s/P r ) · (pr
j /p s

j

)
,

suggesting a higher dispersion of product j ’s error term. The assumption of homoskedastic

rather than heteroskedastic disturbances would be difficult to defend in this case.11

Moreover, from a statistical viewpoint, some of the price ratios might be more reliable

than others. Several researchers have stressed this issue by incorporating more plausible

specifications on the error term into the CPD and GEKS methods.12 Rao (2001, pp. 4-8) in-

troduced a weighting concept into the GEKS method where the variance of the error term,

var(usr ), depends on individual weights, w sr , for the underlying bilateral price index num-

bers. Consequently, with var(usr ) = σ2/w sr , it is possible to discriminate between different

pairs of regions. Within this framework, Rao and Timmer (2003, pp. 498-500) developed and

tested various weighting schemes (e.g. weights based on the number of product matches or

10 Hajargasht and Rao (2010, pp. S38-S44) show that the CPD model under different distributional assump-
tions on the error term leads to various multilateral index number methods (e.g. Iklé index, Rao system).

11 In the context of intertemporal price comparisons, Crompton (2000) and Selvanathan (2003) recommend
the use of White’s (1980) heteroskedasticity-consistent covariance matrix. Following Crompton, “the exact
nature of the error variance is of no concern, and can remain unidentified.”

12 We do not consider the GEKS method proposed by Eurostat-OECD (2012, pp. 243-244) at this point because
it takes into account additional information on the representativity of some product rather than incorpo-
rating new specifications on the error term. For the same reason, we omit the CPRD method (the “R” stands
for the additional representativity dummy variables in the CPD model; see World Bank, 2013, pp. 109-111)
from our discussion.
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the economic distance of regions) while Hill and Timmer (2006, pp. 370-371) derived stan-

dard errors as a weighting factor that “penalizes bilateral comparisons where the overlap

of products is small”. Similarly, Rao (2001, pp. 15-16), Rao (2005, pp. 574-575) and Diew-

ert (2005) incorporated weights into the CPD method that reflect the importance of a single

price observation. In the absence of expenditure share data within a basic heading, the ICP

uses “importance weights” that distinguish between important (weight of 3) and unimpor-

tant (weight of 1) price observations (see World Bank, 2013, p. 110). In this scenario, the price

levels are estimated by weighted rather than ordinary least squares.

Covariance of the disturbances among regions: The covariance of different regions (CPD

method) or different pairs of regions (GEKS method) is usually assumed to be zero, meaning

that the error terms are spatially uncorrelated. Empirical studies, however, have shown that

spatial autocorrelation can be found in prices as well as price levels. Aten (1997, 1996) was

the first to explore the spatial nature in price levels. Using household consumption data for

64 countries in 1985, Aten (1996, pp. 160-162) reported for 15 out of 23 product categories

“significantly spatially autocorrelated residuals”. Rao (2001, pp. 18-20) found for seven out

of eight highly aggregated product categories, such as food and furniture, significant spatial

autocorrelation. These findings have been confirmed in more recent studies that used the

price data underlying the official CPI. Biggeri, Laureti and Polidoro (2017, pp. 109-111) com-

puted sub-national price levels on the basis of official CPI data for seven basic headings that

were collected in Italy in 2014. They reported that “an autocorrelation among disturbances

was observed for all the BHs [basic headings] under analysis even if Moran’s I is quite low in

some cases.” Similarly, Weinand and Auer (2019, pp. 29-31) computed a regional price index

with price data underlying the German CPI in 2016. They found positive spatial autocorre-

lation in the regional price levels which is mainly driven by housing and, to a much lesser

degree, by services and goods.

The empirical studies show that spatial autocorrelation plays an important role in spa-

tial price comparisons. More specifically, from a statistical viewpoint, ordinary least squares

would no longer provide efficient estimates when the disturbances are spatially autocorre-

lated. Therefore, various concepts have been proposed to address this issue. Rao (2004,

pp. 8-11) reformulated the original CPD model into a spatial error model (e.g. Anselin, 2003,

p. 316). In this modified version, the disturbances are assumed to be spatially autocorre-

lated, with cov
(
ur

i , us
i

) 6= 0 for regions r 6= s. In contrast, Montero, Laureti, Mínguez and

Fernández-Avilés (2019, pp. 8-10) propose a spatially-penalised version of the CPD method

where a penalty for the differences in the price levels of neighbouring regions is included

in the CPD model. For the GEKS method, Cuthbert (2003, pp. 77-78) recommended on the

basis of an OECD data set the use of an “idealised“ variance-covariance-matrix with con-

stant variances and covariances that are defined by cov
(
usr , ust

) > 0 and cov
(
usr , uut

) = 0
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for different regions r, s, t and u.

Covariance of the disturbances among products: A relatively new field in price statistics

is the collection of online price data using web scraping techniques. Empirical studies show

that many online retailers are characterised by uniform pricing policies, meaning that the

prices on their website do not depend on the buyers’ location (e.g. Cavallo, 2018, pp. 15-21).

Thus, spatial autocorrelation might not play a dominant role in online price data. However,

with web scraped price data, new issues might arise that affect the error term specification

in multilateral index number methods. More specifically, online prices that are adjusted by

algorithms in response to competitors’ price changes for the same product or for a substitute

might lead to correlated disturbances among the products. A survey of the European Com-

mission (2017, pp. 175-177) on e-commerce strengthens this assumption. It revealed that

“53% of the respondent retailers track the online prices of competitors [...]” while the “ma-

jority of those retailers that use software to track prices subsequently adjust their own prices

to those of their competitors (78%)”. Moreover, Chen, Mislove and Wilson (2016, pp. 1344-

1346) found evidence of dynamic pricing in the online marketplaces of Amazon while Cal-

vano, Calzolari, Denicolò and Pastorello (2018, pp. 24-25) and Klein (2018, pp. 10-17) studied

experimentally Q-learning algorithms and showed, broadly speaking, that these are able to

coordinate on price setting.

The issue of correlated product prices is likely to be of more concern for the CPD method

rather than for the GEKS method. From (12), it is obvious that the latter does not rely on

individual product prices. Consequently, possible correlations among the prices of products

vanish in the calculation of the bilateral index numbers. In contrast, for the CPD method,

it would imply that cov
(
ur

i , ur
j

)
6= 0 for products i 6= j . Furthermore, taking into account

the findings on regionally uniform pricing of online retailers by Cavallo (2018), this might

be extended to cov
(
ur

i , us
j

)
6= 0 for products i 6= j and regions r 6= s. Lastly, it is worthwhile

noting that correlated product prices are likely to have more relevance in temporal price

comparisons as the algorithmic adjustment of prices to those of competitors is more of a

temporal rather than a spatial issue. Nevertheless, the considerations may give rise to future

research in this field.

4 Price level estimates when prices are missing

In Section 2, it was shown that the CPD, CD and GEKS-Jevons methods yield identical price

level estimates under suitable assumptions on the error terms and in the case of complete

price data. Strictly speaking, the price levels are defined by Equation (1) as a Jevons index.

It is well known that this equivalence no longer applies when prices are missing (e.g. World
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Bank, 2013, p. 108), though there is little knowledge about how price level estimates change.

One exception is the work of Ferrari et al. (1996). They consider the case where prices for

exactly the same products are missing in some regions while prices are fully available in the

remaining regions. It turns out that the CPD and GEKS-Jevons price level estimators are

still defined as a geometric average of those price ratios that are commonly available in the

regions to be compared, though multiplied with a correction term. The correction term is

weighted differently in both methods.

4.1 Some insights from a specific case of missing prices

In the following, we expand the considered case in Ferrari et al. (1996). For that purpose,

we randomly divide the regions into the nonempty and disjoint subsets Rk and the products

into the disjoint subsets Nk (henceforth, we will refer to region and product groups).13 We

suppose that our price data consists of two groups of regions and products, respectively, that

is, k ∈ {1,2}. Furthermore, we assume that the prices of products i ∈ Nk are only available

in regions r ∈ Rk . Thus, we have two complete, but non-connected blocks of prices (e.g.

World Bank, 2013, p. 98). Using graph-theoretic concepts, Rao (2004, pp. 11-17) shows that

the computation of price levels with the CPD method, however, requires a connected price

data graph.14 This is a remarkable result that also applies to the stochastic GEKS approach

(e.g. Ferrari and Riani, 1998, pp. 102-105). Therefore, we introduce an additional, nonempty

set of products, N0, whose prices are fully available in all regions. As a consequence, our

price data are said to be connected since all regions are linked either through direct or in-

direct comparisons of product prices.15 In total, they encompass
∑2

k=1 |Rk | = R regions and∑2
k=0 |Nk | = N products, where |Rk | is the number of regions and |Nk | the number of prod-

ucts in group k, respectively. The corresponding price incidence matrix is sketched in Table

3 of the Appendix.

We denote the price level estimator of region t compared to some arbitrary base region s

by P̂ st
m . The subscript m indicates if the price level stems from the CPD or the GEKS-Jevons

13 The concept of product groups in this context is only a theoretical one and should not be mixed up with the
classification of similar products into product groups as is the usual practice in official price statistics.

14 Using graph-theoretic concepts, Hajargasht and Rao (2019) derive necessary and sufficient conditions for
the existence and uniqueness of various index number methods.

15 The general form of the price data is the same as in Hajargasht, Rao and Abbas (2019, pp. 105-106, panel e
of Figure 1), where the authors derive the formula for the estimated variance of the CPD price levels.
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method. If region s ∈ R1, it is shown in Appendix A.2 that

P̂ st
m = ∏

i∈N0

(
p t

i

p s
i

) 1
|N0|

·
( ∏

r∈R1

Λsr
1

) 1
λm,1

·


( ∏

r∈R1

Λr t
1

) 1
λm,1

if s, t ∈ R1( ∏
r∈R2

Λr t
2

) 1
λm,2

if s ∈ R1 ∧ t ∈ R2

(15)

where the correction term of product group Nk for regions r and t ,Λr t
k , as well as its weight-

ing factor, λm,k , are defined by

Λr t
k =

∏
i∈N0∪Nk

(
p t

i /pr
i

) 1
|N0|+|Nk |

∏
i∈N0

(
p t

i /pr
i

) 1
|N0|

and λm,k =
|Rk | if m = CPD

R if m = GEKS

for k ∈ {1,2}.16 The correction termΛsr
1 for regions s and r is defined in the same way.

The basic structure of the correction term is obviously the same for the CPD and GEKS-

Jevons methods. Consequently, the price levels P̂ st
CPD and P̂ st

GEKS differ only due to a different

weighting of the two correction terms. Since |Rk | < R for all k, the CPD method assigns

greater weights to the correction terms than the GEKS-Jevons method. One could say that

the CPD method’s weights are somewhat plutocratic (Diewert, 1986, pp. 18-19) because they

differ with respect to the regional group sizes. In contrast, the correction terms of the GEKS-

Jevons method are weighted independently of the regional group sizes and, thus, more or

less “democratic”.

Equation (15) reveals that the calculation of P̂ st
m distinguishes between a price compar-

ison involving two regions of the same (intragroup comparisons) or of a different regional

group (intergroup comparisons). For intragroup comparisons, it actually simplifies to

P̂ st
m = ∏

i∈N0

(
p t

i

p s
i

) 1
|N0|

· (Λst
1

) |R1|
λm,1 if s, t ∈ R1 . (16)

The price level solely relies on the prices of the two regions under consideration.17 There-

fore, it is fully characteristic. In contrast, the price levels of intergroup comparisons, P̂ st
m

(with s ∈ R1∧ t ∈ R2), are defined in (15) by a geometric average of those prices that are com-

monly available in regions s and t (first term), multiplied with two regional sequences of the

16 It is worthwhile to note that we can replicate the results in Ferrari et al. (1996) by setting |Nk | = 0 for k = 1.
Technically speaking, we drop products i ∈ N1 from our price data but keep regions r ∈ R1. Consequently,
the prices in regions r ∈ R2 are fully available for all products.

17 In Appendix A.2, it is shown that we obtain the price level of regions s, t ∈ R2 when we replace
(
Λst

1

)|R1|/λm,1

with
(
Λst

2

)|R2|/λm,2 in (16).

14



correction terms, Λsr
1 and Λr t

2 (second and third term). The latter two put the prices of re-

gions s and t in relation to those of other regions r in the same regional group. As a result,

intragroup comparisons generate characteristic price levels while intergroup comparisons

do not.

The GEKS-Jevons price levels are generated such that the overall quadratic deviation to

the initial Jevons price levels, Ṗ st
J , is kept at a minimum (e.g. Rao and Timmer, 2003, p. 499;

Laureti and Rao, 2018, p. 126). Therefore, it would be the natural choice to use the GEKS-

Jevons method in every situation in order to approximate Ṗ st
J on average as close as possi-

ble. Equation (15) shows that this might be appropriate when intergroup comparisons are

of relevance, due to the smoother weighting of the correction terms, Λsr
1 and Λr t

2 , by the

GEKS-Jevons method.18 For intragroup comparisons, however, this is not the case. With

λCPD,1 = |R1|, the CPD price level estimator, P̂ st
CPD, in (16) simplifies to

P̂ st
CPD = ∏

i∈N0∪N1

(
p t

i /p s
i

) 1
|N0|+|N1| = Ṗ st

J if s, t ∈ R1

and, thus, corresponds to the bilateral Jevons price level of regions s and t , Ṗ st
J . In con-

trast, the GEKS-Jevons price level estimator, P̂ st
GEKS, equals Ṗ st

J only if p t
i = p s

i for all prod-

ucts i ∈ N0 ∪N1. As a result, it seems that the CPD method assigns a higher priority on the

“accuracy” of intragroup price levels while the GEKS-Jevons method treats intragroup and

intergroup price levels as equally important. This leads to the question of how the CPD and

GEKS-Jevons price level estimators behave in a generalised setting, namely when prices are

randomly rather than group-wise missing.

4.2 A generalised setting: Simulation of artificial price data

In Section 2, it was shown that the CPD method as well as the GEKS-Jevons method can

be derived from the same data generating process (DGP) in Equation (2). In the following,

we exploit the DGP to create artificial price data that can be used for a deeper comparison

between the CPD and the GEKS-Jevons price level estimators. Kackar and Harville (1984,

p. 860) recommend including a relatively simple estimator into the comparison of the error

metrics. In our case, the logarithm of the Jevons index, α̇t
J = ln Ṗ 1t

J , would be a natural choice

that serves as our baseline in the following.

We conduct a Monte Carlo analysis with L = 2,000 iterations (l = 1,2, . . . ,L). We set the

18 For intergroup comparisons, the bilateral Jevons price level is defined by Ṗ st
J = ∏

i∈N0

(
p t

i /p s
i

) 1
|N0 | . When∏

r∈R1Λ
sr
1 ≷ 1 and

∏
r∈R2Λ

r t
2 ≶ 1, it is technically possible that the CPD price levels approximate Ṗ st

J closer.
In Appendix B.1, however, it is shown that the GEKS-Jevons price level estimates are in most cases closer to
Ṗ st

J than the corresponding CPD price levels.
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number of regions in each iteration to R = 30 in order to receive a constant amount of price

level estimates. In each region, there are the same N = 50 products (i = 1, . . . , N ) available.

The price levels, P t (t = 2, . . . ,R), are drawn independently for each region and iteration from

a log-normal distribution with P t ∼ LN
(
µ= 0,σ2 = 0.02

)
. In addition, we exogenously fix the

price level of the base region to one, i.e. P 1 = 1. This setting ensures a sufficient fluctuation

around the base region’s price level while the maximum price level spread between the most

expensive and the cheapest region is roughly four. Furthermore, we assume that the error

term is iid with usr
i = lnεsr

i ∼ N
(
µ= 0,σ2 = 0.04

)
. As a result, we obtain L = 2,000 data sets

with regional price ratios on the product level.

We apply the GEKS-Jevons method to each of these simulated data sets and obtain a set of

transitive price levels, α̂t
GEKS. The CPD method, however, requires absolute prices rather than

price ratios. Therefore, we additionally assume to know the price for each product in at least

one region. This enables us to compute all of the remaining absolute prices, to transform

these into a full price matrix and, consequently, to apply the CPD method as well. As a result,

we receive the logarithmic price level estimators, α̂t
CPD and α̂t

GEKS (t = 2, . . . ,R), that were

computed from exactly the same price data. Moreover, from the DGP, we also know the “true”

logarithmic price levels, αt = ln
(
P t /P 1

)
, that were used within the simulation of each data

set. Thus, we are able to evaluate the performance of the estimators in terms of bias and root

mean squared error (RMSE):

Bias
(
α̂t

m

)= 1

L
·

L∑
l=1

(
α̂t

m,l −αt
l

)
and RMSE

(
α̂t

m

)=
√√√√ 1

L
·

L∑
l=1

(
α̂t

m,l −αt
l

)2
,

where L = 2,000 is the number of simulation runs and m ∈ {CPD, GEKS, Jevons}.

We know from Section 2 that the CPD and GEKS-Jevons price level estimators, α̂t
CPD and

α̂t
GEKS, coincide when no prices are missing. Moreover, we know that they also coincide with

the logarithm of the Jevons index, α̇t
J . Consequently, regardless of how many simulations

we would run, the estimated bias as well as the estimated RMSE is the same for these three

estimators. However, when prices are missing, it is well known that the simple Jevons index

no longer generates transitive price levels (e.g. ILO et al., 2004, p. 498). In addition, it was

shown in Section 4.1 that the transitive price levels produced by the CPD and GEKS-Jevons

methods differ. Therefore, in order to evaluate the performance of the price level estimators

under these circumstances, we incorporate gaps into our simulated price data by dropping

prices for certain products and regions. The selection of the prices that are removed hap-

pens randomly, but is restricted to three conditions. First, no matter how many prices are

removed, the price data must stay connected in order to ensure the feasibility of price level

computations. Second, for each product, prices are always available in at least two different
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Gaps
Bias RMSE

CPD GEKS Jevons CPD GEKS Jevons
0% 0.00025 0.00025 0.00025 0.01942 0.01942 0.01942

25% -0.00009 -0.00007 -0.00022 0.02304 0.02306 0.02608
50% 0.00005 0.00002 -0.00058 0.02911 0.02948 0.04067
60% 0.00043 0.00051 -0.00011 0.03315 0.03409 0.05272
70% -0.00011 -0.00017 0.00016 0.03954 0.04163 0.07503
80% -0.00048 -0.00108 -0.00601 0.05282 0.05726 0.10775

Table 1: Estimated bias and RMSE by percentage of missing prices for the CPD, GEKS-Jevons and
Jevons price level estimators, respectively. Calculations on the basis of L = 2,000 simulated price
data sets with R = 30 regions and N = 50 products.

regions. Third, the deletion of prices is path-dependent for a single price data set.19

Table 1 contains the simulation results in terms of bias and RMSE for the three estima-

tors. It further illustrates how the two error metrics change when the gaps in our artificial

price data gradually increase from 0% (no missing prices) to 80% (highly fragmented). As

can be seen, the estimated bias is roughly zero and, thus, indicates that the estimators are

unbiased. The estimated RMSE, on the other hand, increases for each estimator in reaction

to an increased share of gaps in our price data. Not surprisingly, it is the highest for the sim-

ple Jevons index. The CPD and GEKS-Jevons estimators clearly outperform the Jevons index

in terms of efficiency.20

The simulation setting leading to the results in Table 1 represents the case when all re-

gions may exhibit gaps in the price data (including the base region s and the comparison re-

gion t of some estimated price level, α̂t
m = ln P̂ st

m ). Nevertheless, it neglects scenarios where

either the base region, the comparison region or both of them provide full price information

while the other regions do not. Therefore, we extended our simulation study by these sce-

narios. The overall simulation results can be found in Table 4 of the Appendix. A subset of

them in terms of the RMSE is visualised in Figure 1. The first panel (from left to right) de-

picts the RMSE that arises when both, the base as well as the comparison region, provide full

price information while all other regions in the data set may exhibit gaps. As can be seen,

the RMSE of the CPD method and the simple Jevons index coincide.21 Moreover, it does

not change when prices are missing in other regions (represented by the horizontal line).

This, in contrast, is not true for the RMSE of the GEKS-Jevons method. The second and third

panels highlight the case when either the comparison or the base region is the only region

19 Path dependency in this context means that prices that are already missing remain missing in the updated
price data when we further increase the number of gaps. Specifically, it ensures that the impact of a gradual
increase in the number of gaps can be properly evaluated.

20 In Table 4 of the Appendix, it is shown that this is also true for other error metrics.
21 This result traces back to identical price level estimates and, thus, indicates that the CPD price level estima-

tor of two regions that provide full price information is defined as a Jevons index.
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Figure 1: RMSE (vertical axis) by percentage of missing prices (in %, horizontal axis), index
method and scenario (four panels). Calculations on the basis of L = 2,000 simulated price data
sets with R = 30 regions and N = 50 products.

that provides full price information. Interestingly, both the CPD and GEKS-Jevons estima-

tors perform far better when the prices are fully available in the comparison region rather

than in the base region. Lastly, the fourth panel captures the RMSE values of Table 1 where

all regions may exhibit gaps.

Overall, Figure 1 shows that the baseline RMSE of the Jevons index vastly increases as

soon as prices are missing in at least one of the two regions under consideration (see dotted

line in panels two to four). Moreover, the RMSE of the CPD price level estimator lies slightly

below that of the GEKS-Jevons estimator in all four scenarios. The change associated with an

increased share of missing prices, however, is fairly similar. This result is not surprising for

two reasons. First, from Equation (15), we know that the CPD and GEKS-Jevons price level

estimates differ only due to a different weighting of the correction terms. Now, even in this

more general setting, the estimators α̂t
CPD and α̂t

GEKS are almost perfectly correlated.22 Sec-

ond, and perhaps more importantly, the deletion of prices within the simulation happened

randomly, with the result that the gaps in our price data are uniformly distributed among

the regions and products. In practice, however, this is a rather unrealistic situation as re-

gions provide price information at varying frequencies. Similarly, specific products are less

frequently available across regions than others. Therefore, we adapt our simulation study in

the next section to a more realistic setting.

22 Their correlation does not fall below 0.99, including in cases when 80% of the prices are missing. In contrast,

the correlation of
(
α̂t

CPD, α̇t
J

)
and

(
α̂t

GEKS, α̇t
J

)
drops to nearly 0.84 in each case.
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4.3 A more realistic setting with official micro price data

The official CPI in Germany is constructed as a stratified, non-random sample.23 The prices

of narrowly defined products are collected on a monthly basis in different regions, outlet

types (e.g. supermarkets, discount stores) and basic headings (e.g. rice, milk). The actual

collection of the price data is mainly carried out by the Statistical Offices of the Federal States

(Statistische Landesämter) in selected regions of Germany. These data are supplemented by

the Federal Statistical Office (Statistisches Bundesamt) which gathers the prices of products

that are known to be regionally identical (e.g. books and cigarettes) or affected by particularly

complex pricing policies (e.g. package holidays).

We have the privilege to work with a subset of these CPI data that was provided to us by

the Research Data Centre (RDC) of the Federal Statistical Office and Statistical Offices of the

Federal States. The price data were collected in R = 19 Bavarian regions in May 2011 (see left

panel of Figure 2). They contain 23,642 consumer prices for goods, services and rents that are

divided at the lowest classification level into 607 basic headings. The basic headings’ expen-

diture weights add up to 71.79% of the German consumption basket.24 Moreover, the data

set contains information about the region where a price was collected. A unique identifier of

the product for which that price was observed, however, is missing. Instead, semi-structured

product descriptions are available (e.g. Behrmann, Deml and Linz, 2009, pp. 5-6; Zimmer,

2016, pp. 44-45). These include information about the product’s amount (e.g. the weight

or quantity), the respective unit of measurement (e.g. litre) and, subject to the basic head-

ing, a number of supplementary characteristics like the brand or the packaging. In addition,

special offer prices and the outlet type where the price was observed are indicated.

The collected rents for flats and single-family houses in the data set are accompanied by

much richer “product descriptions” compared to those for goods and services. Therefore,

one would typically draw on more sophisticated methods for the computation of regional

price levels than the simple CPD and GEKS-Jevons methods (e.g. more complex hedonic re-

gressions). However, since our simulation analysis concentrates on the latter two, we omit

the rent data from that analysis. As a result, 21,783 price observations in B = 601 basic head-

ings (expenditure weight: 51.05%) remain. For those basic headings, we rely on the product

descriptions to define directly comparable products as precisely as possible. The choice of

how narrowly we define such a product, however, is left to us and is thus more or less sub-

jective. Therefore, we distinguish the following evaluation of the estimators’ performances

23 Rents are a subcategory of the CPI. In contrast to the prices for goods and services, however, they are col-
lected from a stratified random sample since 2016 (Goldhammer, 2016, pp. 93-95).

24 The prices collected by the Federal Statistical Office are not included in the data set. They add up, together
with a small fraction of seasonal products, to the remaining expenditure weight.
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Figure 2: Bavarian regions where prices were collected in 2011 (left panel, grey shaded areas)
and relationship between population density and number of collected prices across those re-
gions (right panel, logarithmic scale). Source: RDC of the Federal Statistical Office and Statistical
Offices of the Federal States, Consumer Price Index, May 2011, own calculations.

by the level of product definition. For price comparisons at the product level (a product

is defined as narrowly as possible by all available characteristics), we identify 1,291 unique

products that are priced in at least two different regions. In contrast, this number reduces

to 652 at the outlet level (a product is defined only by the outlet type within a basic heading)

and to 371 at the basic heading level (no product definition; all prices within a basic heading

are assumed to be directly comparable). Weinand and Auer (2019, pp. 31-32) speak in this

context of “simplified compilation procedures”, since a definition at the outlet or at the basic

heading level does not require any prior processing of the product descriptions.

As in the previous section, we perform a Monte Carlo analysis with L = 2,000 iterations

(l = 1,2, . . . ,L). This time, however, we do not randomly introduce gaps into our price data.

Instead, we mimic the underlying structure of the CPI data set, i.e., we create artificial basic

headings that adopt the observed basic headings’ structure. In this way, we take into account

that the number of collected prices varies by region (see right panel of Figure 2). More specif-

ically, it is positively correlated with the population density. Those regions with a relatively

low population density do not provide prices for each basic heading. As a result, most of the

basic headings in the data set are incomplete.

Our simulation strategy is as follows. First, we randomly choose one of Eurostat’s main

HICP special aggregates.25 Second, within the aggregate, we randomly select N = 10 spe-

25 The likelihood of choosing either (1) processed food, alcohol and tobacco, (2) unprocessed food, (3) energy,
(4) non-energy industrial goods or (5) services depends on the relative frequency of these aggregates in the
underlying CPI data.
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cific products from the original CPI data set without replacement. This setting ensures that

unprocessed food, say, is not mixed up with services. Third, we add to these products the

corresponding regions that originally collected prices. Consequently, we receive a new com-

position of products and regions. The regional distribution of available product prices, how-

ever, is adopted from the original price data. Lastly, we add artificial prices. For this purpose,

we sample independently for each iteration the true regional price levels, P t (t = 1, . . . ,R),

and error terms, usr
i , in line with the DGP in (2):

P t ∼ LN
(
µ= 0,σ2 = 0.02

)
and usr

i = lnεsr
i ∼ N

(
µ= 0,σ2 = 0.04

)
.

In this way, we generate L = 2,000 data sets. On average, 66.7% of the prices are missing

within these data sets. The distribution of available prices across the regions is highly corre-

lated with that of the original CPI data
(
ρ = 0.78

)
. We apply the CPD, the GEKS-Jevons and

the simple Jevons estimators to each of these data sets. Their performance in terms of bias

and RMSE is documented in Table 2.

Product definition
Bias RMSE

CPD GEKS Jevons CPD GEKS Jevons
Product level 0.00044 0.00115 -0.00049 0.22680 0.23971 0.24453
Outlet level -0.00395 -0.00239 -0.00271 0.28745 0.29268 0.29479
Basic head. level -0.00387 -0.00387 -0.00387 0.29566 0.29566 0.29566

Table 2: Simulation results in terms of bias and RMSE for the CPD, GEKS-Jevons and Jevons price
level estimators, respectively. Calculations on the basis of L = 2,000 incomplete price data sets
with N = 10 products.

The simulation results show how the regional price level estimators perform on “real

world data”. Moreover, they demonstrate the relevance of the product definition level for

the estimation efficiency. As can be seen, the estimated bias and RMSE are the same for the

three estimators when there is no product differentiation within a basic heading (see line

“Basic heading level”). Otherwise, with a product differentiation, the RMSEs differ. Strictly

speaking, they slightly decrease for product definitions at the outlet level and considerably at

the much narrower product level. In both cases, the RMSE is the lowest for the CPD method.

Lastly, it is worthwhile to note that the RMSE comparison between the different levels

of product definition also depends on the regional volatility of prices, that is, how much the

prices of some product fluctuate across the regions. Unsurprisingly, when we lowered the

regional volatility of the prices in our simulation study, the RMSE values dropped to roughly

0.22, including for product definitions at the outlet and basic heading level.26 As a conse-

26 One could imagine a basic heading with identical product prices in all regions. Independent of the level of
product definition, the regional price level estimates would be the same.
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quence, in future work with official CPI data, one could rely on product definitions at the

outlet level for those basic headings with low regional price fluctuations. In contrast, for

those basic headings with high regional price fluctuations, the estimation efficiency clearly

benefits from a narrow product definition. This mixed strategy would heavily reduce the

costly data preprocessing reported by Weinand and Auer (2019, pp. 9-11).

5 Concluding remarks

The main goal of this paper was to expand the theoretical foundations of the stochastic ap-

proach to index numbers in light of spatial price comparisons. To this end, we examined the

most prominent representatives of the stochastic approach: the CPD method and the GEKS

method. In particular, we analysed the impact of missing prices below the basic heading on

the estimation of regional price levels. For a specific case of missing prices, we derived the

formula underlying the price level estimates and showed that differences between the CPD

and GEKS-Jevons methods stem solely from the assignment of a different weighting pattern.

Moreover, using simulation techniques, we studied the statistical properties of the CPD and

GEKS-Jevons price level estimators in terms of bias and RMSE. Our results revealed lower

RMSE values for the CPD method in four tested scenarios. For spatial price comparisons,

it is worthwhile keeping in mind that the estimation efficiency improved especially in those

cases where the comparison region provided complete prices.

Notwithstanding these differences, our results demonstrate that the regional price level

estimates of the CPD and the GEKS-Jevons methods are closely related. Therefore, we do

not want to speak generally in favour of one of the two methods. However, two thoughts

are worth mentioning. First, from a practical point of view, statistical offices collect absolute

prices rather than price ratios or price index numbers. These price data form the building

blocks for CPI measurement purposes and would be a unique data source for the calcula-

tion of regional price levels as well. The application of standard regression techniques to

these raw data (CPD method) therefore seems more straightforward than first converting

prices into bilateral index numbers (GEKS method). In addition, the regression approach

underlying the CPD method would allow for extensions in the sense of more careful quality

adjustments, for example, by including additional product characteristics (e.g. Balk, 2008,

p. 258). Second, from a statistical point of view, we showed in Section 4 that the estimation

efficiency of the CPD method outperforms that of the GEKS-Jevons method, especially in the

case of substantial gaps in the price data. This result strengthens the application of the CPD

method below the basic heading level where data gaps are frequently an issue.

In our second simulation study, we used a subset of the price data underlying Germany’s
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CPI. These price data come with precise but relatively unstructured product descriptions.

The importance of these product descriptions for spatial price comparisons is widely docu-

mented in the literature (e.g. ILO et al., 2004, p. 73; World Bank, 2013, p. 590), as they enable

price statisticians to identify directly comparable products as precisely as possible. Utilising

the product descriptions would be a natural choice for statistical offices to compare only like

with like across regions and thereby avoid any distortions in their estimates of regional price

levels. However, one drawback that statistical offices would face is the extensive preprocess-

ing of the product descriptions (e.g. Weinand and Auer, 2019, pp. 9-11). Our findings have

practical relevance for two reasons as they address both issues and may therefore serve as

guidance for statistical offices carrying out spatial price comparisons. First, our simulation

results underline the importance of the product definition for the estimation efficiency. In

particular, they show an improvement in the estimation efficiency owing to more narrowly

defined products, though this is usually accompanied by more gaps in the price data. Sec-

ond, our simulation results reveal that statistical offices may reduce the workload associated

with preprocessing the product descriptions by following a mixed strategy that takes into ac-

count the regional price volatilities of the basic headings.27 For those basic headings with a

low regional price volatility, statistical offices could rely on looser product definitions, such

as the outlet level, which do not require any data preprocessing.

We conclude with two points that are worth mentioning but beyond the focus of this

paper. First of all, Hajargasht and Rao (2019) recently examined the theory on multilateral

index numbers in light of graph theory. Although they do not explicitly mention the CPD

and GEKS methods, their derivations might be relevant to our setting as well. Basically, not

only does the percentage of missing prices directly influence the efficiency of the price level

estimates, the manner in which the prices and thus the gaps within the collected data are

distributed among the regions (“degree of connectedness”) are also relevant. This consider-

ation may give rise to future research. With respect to simulation analyses, greater attention

in future work could be focused towards different patterns in the price data (e.g. spatially

correlated prices). Moreover, the adoption of various extensions of multilateral index num-

ber methods such as the CPRD method proposed by Cuthbert and Cuthbert (1988, pp. 55-58)

into the simulation framework would be interesting. As information on the representativity

of some product is usually lacking in the price data gathered by statistical offices, we focused

our analyses on the straightforward CPD and GEKS-Jevons methods.

27 Expert judgement of price statisticians on specific basic headings could be included as well.

23



A Derivation of price level estimators

A.1 Complete price data

In the following, we consider a complete price matrix with exactly one price, pr
i , per product

(i = 1,2, . . . , N ) and region (r = 1,2, . . . ,R). In Sections A.1.1 to A.1.3, we derive the price level

estimators of the CPD, CD and GEKS-Jevons methods.

A.1.1 CPD method

The estimated regression model of (7) can be cast in general matrix notation. To that end,

we define the vectors y = (
y1 . . .yN

)′
and û = (û1 . . . ûN )

′
, with yi =

(
ln p1

i . . . ln pR
i

)′
and ûi =(

û1
i . . . ûR

i

)′
for products i = 1, . . . , N . The (N R × (R −1+N ))-matrix X comprises the R − 1

dummy variables regiont (t = 2, . . . ,R) and the N dummy variables product j ( j = 1, . . . , N ).

With complete price data, there are N ·R observations and (N −1)·(R−1) degrees of freedom

available. The OLS estimator, β̂CPD, can be written as

β̂CPD =
 β̂

1
CPD

β̂
2
CPD

=
(
X

′
X
)−1

X
′
y (17)

where β̂
1
CPD = (

α̂2 . . . α̂R
)′

contains the estimated logarithmic regional price levels and β̂
2
CPD =(

β̂1 . . . β̂N
)′

the estimated logarithmic product prices.

The ((R −1+N )× (R −1+N ))-matrix X
′
X in (17) takes the following form:

X
′
X =

(
N · IR−1 J(R−1)×N

JN×(R−1) R · IN

)
,

where I is the identity matrix and J is a matrix of ones. The diagonal of the upper left sub-

matrix indicates the number of products that are observed in the respective region (= N ),

whereas the lower right submatrix indicates the number of regions in which the product has

been observed (= R). The upper right and the lower left submatrices convey the same in-

formation. They specify for each combination of products and regions if a price is available

(= 1) or not (= 0). Since we have a complete data set, each element in the submatrices has

the value one. Using computation rules on block matrices (e.g. Horn and Johnson, 2012,
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p. 18), the inverse of X
′
X is defined by

(
X

′
X
)−1 =

 1
N · (IR−1 + JR−1) − 1

N · J(R−1)×N

− 1
N · JN×(R−1)

1
R · (IN + R−1

N · JN )

 . (18)

The same result can be found in Rao and Hajargasht (2016, p. 418).

The first block of the ((R − 1+ N )× 1)-vector X
′
y contains for each region (t = 2, . . . ,R)

the sum of its logarithmic product prices while the second block comprises for each product

( j = 1, . . . , N ) the regional sum of logarithmic prices:

X
′
y =

(
N∑

i=1
ln p2

i . . .
N∑

i=1
ln pR

i

R∑
r=1

ln pr
1 . . .

R∑
r=1

ln pr
N

)′
. (19)

Inserting (18) and (19) in (17) yields the OLS estimator β̂CPD. The estimated logarithmic

price levels, α̂2, . . . , α̂R , can be found in β̂
1
CPD by multiplying the top row of

(
X

′
X
)−1

with X
′
y:

β̂
1
CPD = (

α̂2 . . . α̂R)′ =


1
N ·∑N

i=1 ln
(
p2

i /p1
i

)
...

1
N ·∑N

i=1 ln
(
pR

i /p1
i

)
 .

Thus, taking anti-logs, exp
(
β̂

1
CPD

)
yields the estimated regional price levels as a geometric

average of the product prices in region t (with t = 2, . . . ,R) relative to those of the base region

(t = 1). Furthermore, multiplying the bottom row of
(
X

′
X
)−1

with X
′
y results in

β̂
2
CPD = (

β̂1 . . . β̂N
)′ =


1
R ·∑R

r=1 ln pr
1 − α̂r

...
1
R ·∑R

r=1 ln pr
N − α̂r

 .

Therefore, exp
(
β̂

2
CPD

)
is defined as a geometric average of product j ’s regional prices (with

j = 1, . . . , N ), deflated by the corresponding regional price level, exp(α̂r ).

Using (18), the estimated variance-covariance-matrix is given by

V̂
(
β̂

1
CPD

)
= σ̂2

CPD

(
X

′
X
)−1 = σ̂2

CPD · 1

N
· (IR−1 + JR−1) (20)

where the estimated variances of α̂2, . . . , α̂R can be found on the diagonal, with v̂ar
(
α̂t

) =
(2/N ) · σ̂2

CPD for regions t = 2, . . . ,R.
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A.1.2 CD method

From (2), it is known that usr
i = ln

(
pr

i /p s
i

)− ln(P r /P s). Hence,

−usr
i = ln

(
p s

i /pr
i

)− ln
(
P s/P r )

= ur s
i

(21)

for all regions r and s. Furthermore, with some arbitrary third region v , it follows that

uvr
i −uv s

i = ln
(
pr

i /pv
i

)− ln
(
P r /P v)− ln

(
p s

i /pv
i

)+ ln
(
P s/P v)

= ln
(
pr

i /p s
i

)− ln
(
P r /P s)

= usr
i .

(22)

The variance of the disturbances is assumed to be identical among the products and regions.

Therefore, E
[(

usr
i

)2
]
= E

[(
usv

i

)2
]
= E

[(
uvr

i

)2
]
= σ2. Using (21), the relationship in (22) can

be rewritten as uvr
i = usr

i −usv
i . Taking the expected value of this expression yields

E
[(

uvr
i

)2
]
= E

[(
usr

i −usv
i

)2
]

= E
[(

usr
i

)2
]
+E

[(
usv

i

)2
]
−2 ·E[

usr
i usv

i

]
σ2 =σ2 +σ2 −2 ·cov

(
usr

i , usv
i

)
cov

(
usr

i , usv
i

)= 1

2
σ2

(23)

for regions r 6= v . Furthermore, it is assumed that the disturbances of two different products

i and j are uncorrelated:

cov
(
usr

i , usr
j

)
= cov

(
usr

i , usv
j

)
= 0 . (24)

The estimated regression model of (10) can be put in general matrix notation. We set

region s = 1 as the reference for the price ratios, that is, ln
(
pr

i /p1
i

)
for products i = 1, . . . , N

and r = 2, . . . ,R. Accordingly, we define the vector of residuals û = (û1 . . . ûN )
′

and the vector

of price ratios y = (
y1 . . .yN

)′
, with ûi =

(
û12

i . . . û1R
i

)′
and yi =

(
ln

(
p2

i /p1
i

)
. . . ln

(
pR

i /p1
i

))′
. The

(N (R −1)× (R −1))-matrix X contains the R − 1 dummy variables
(
regiont − âregiont

)
for re-

gions t = 2, . . . ,R. With complete price data, there are N · (R −1) observations and (N −1) ·
(R −1) degrees of freedom available.

From (23) and (24), it follows that the disturbances of the Country-Dummy method are

autocorrelated blockwise (see also Summers, 1973, p. 10). The variance-covariance-matrix
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of the disturbances, V(u), can be written as

V(u) =σ2 (IN ⊗ Vi )

=σ2Ω ,
(25)

where I is a (N ×N )-identity matrix and Vi = 1
2 · (IR−1 + JR−1) for products i = 1, . . . , N . OLS

would lead to inefficient estimates of the regression coefficients. However, since the form

of the (N (R −1)×N (R −1))-matrix Ω is known, GLS can be applied to obtain unbiased and

efficient estimates.

The GLS estimator is defined by

β̂
GLS
CD = (

α̂2 . . . α̂R)′ = (
X

′
Ω−1X

)−1
X

′
Ω−1y . (26)

The inverse ofΩ in (25) can be expressed by the Kronecker productΩ−1 = IN ⊗ V−1
i . Follow-

ing Graybill (1983, pp. 190-193), it can be shown that V−1
i = 2 ·(IR−1 − 1

R · JR−1
)
. As a result, the

((R −1)× (R −1))-matrix X
′
Ω−1X can be written as(

X
′
Ω−1X

)
= N ·2 ·

(
IR−1 − 1

R
· JR−1

)
︸ ︷︷ ︸

=V−1
i

.

The inverse of
(
X

′
Ω−1X

)
is defined by

(
X

′
Ω−1X

)−1 = 1

N
· 1

2
· (IR−1 + JR−1)︸ ︷︷ ︸

=Vi

. (27)

Furthermore, the ((R −1)×1)-vector X
′
Ω−1y can be written as

X
′
Ω−1y = 2 ·


∑N

i=1 ln
(
p2

i /p1
i

)− 1
R ·∑R

r=2
∑N

i=1 ln
(
pr

i /p1
i

)
...∑N

i=1 ln
(
pR

i /p1
i

)− 1
R ·∑R

r=2
∑N

i=1 ln
(
pr

i /p1
i

)
 . (28)

Inserting (27) and (28) in (26) yields the definition of the GLS estimator:

β̂
GLS
CD =


1
N ·∑N

i=1 ln
(
p2

i /p1
i

)
...

1
N ·∑N

i=1 ln
(
pR

i /p1
i

)
 .

Thus, like the CPD method, the estimated regional price levels in exp
(
β̂

GLS
CD

)
are defined as a
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geometric average of the product price ratios between regions t = 2, . . . ,R and the base region

(t = 1), respectively.

The estimated variance of the disturbances is

σ̂2
CD = û

′
Ω−1û

(N −1) · (R −1)
.

From û1r
i = ûr

i − û1
i , it follows that û

′
Ω−1û = 2 ·∑R

r=1
∑N

i=1

(
ûr

i

)2. Thus, σ̂2
CD = 2 · σ̂2

CPD. Using

(27), the estimated variance-covariance-matrix of the GLS estimator is given by

V̂
(
β̂

GLS
CD

)
= σ̂2

CD

(
X

′
Ω−1X

)−1

= σ̂2
CD · 1

N
· 1

2
· (IR−1 + JR−1)

= σ̂2
CPD · 1

N
· (IR−1 + JR−1) ,

(29)

which coincides with V̂
(
β̂

1
CPD

)
in (20). The estimated variances of α̂2, . . . , α̂R can be found on

the diagonal, with v̂ar
(
α̂t

)= (1/N ) · σ̂2
CD = (2/N ) · σ̂2

CPD for regions t = 2, . . . ,R.

A.1.3 GEKS method

The estimated regression model of (13) is converted in standard matrix notation. The vec-

tor y encompasses the logarithmic bilateral Jevons price index numbers, ln Ṗ sr
J , for regions

s = 1, . . . , (R − 1) and r = (s + 1), . . . ,R. With complete prices, there are R · (R − 1)/2 non-

redundant, bilateral price index numbers available (Hill and Timmer, 2006, p. 368). The ma-

trix X contains the R − 1 dummy variables
(
regiont − âregiont

)
for regions t = 2, . . . ,R. Thus,

the degrees of freedom are (R −2) · (R −1)/2. The OLS estimator

β̂GEKS =
(
α̂2 . . . α̂R)′ = (

X
′
X
)−1

X
′
y (30)

yields the estimated regional price levels α̂2, . . . , α̂R .

The ((R −1)× (R −1))-matrix X
′
X contains on the diagonal for each region t = 2, . . . ,R the

number of bilateral index numbers. It can be written as

X
′
X = (R · IR−1 − JR−1) ,

where I is the identity matrix and J is a matrix of ones. The inverse of X
′
X is defined by

(
X

′
X
)−1 = 1

R
· (IR−1 + JR−1) . (31)
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The ((R − 1)× 1)-vector X
′
y contains for each region t = 2, . . . ,R the sum of its logarithmic

bilateral index numbers Ṗ r t
J :

X
′
y =

(
R∑

r=1
ln Ṗ r 2

J . . .
R∑

r=1
ln Ṗ r R

J

)′
. (32)

Inserting (31) and (32) in (30) yields the OLS estimator of the GEKS-Jevons method:

β̂GEKS =
1

R
·


∑R

r=1 ln Ṗ r 2
J +

[∑R
r=1 ln Ṗ r 2

J + . . .+∑R
r=1 ln Ṗ r R

J

]
...∑R

r=1 ln Ṗ r R
J +

[∑R
r=1 ln Ṗ r 2

J + . . .+∑R
r=1 ln Ṗ r R

J

]
 . (33)

It is well known in literature that the Jevons index satisfies the country-reversal test, that

is, ln Ṗ r s
J = − ln Ṗ sr

J . Thus, with complete prices, it can be shown that the term in squared

brackets simplifies to
∑R

r=1 ln Ṗ 1r
J . Accordingly, (33) can be rewritten as

β̂GEKS =


1
R ·∑R

r=1

(
ln Ṗ r 2

J + ln Ṗ 1r
J

)
...

1
R ·∑R

r=1

(
ln Ṗ r R

J + ln Ṗ 1r
J

)
 . (34)

Inserting (1), the definition of the Jevons index, in (34) and taking anti-logs yields the esti-

mated regional price levels as a geometric average of the product price ratios between re-

gions t = 2, . . . ,R and the base region (t = 1), respectively. Therefore, the GEKS-Jevons ap-

proach leads to identical estimates of the regional price levels as the CPD and CD methods

in the event of complete prices.

Using (31) yields the estimated variance-covariance-matrix as

V̂
(
β̂GEKS

)
= σ̂2

GEKS

(
X

′
X
)−1 = σ̂2

GEKS ·
1

R
· (IR−1 + JR−1) , (35)

with v̂ar
(
α̂t

)= (2/R) · σ̂2
GEKS for regions t = 2, . . . ,R. With complete prices, the bilateral index

numbers are transitive and therefore coincide with the multilateral index numbers. As a

result, σ̂2
GEKS = 0 and v̂ar

(
α̂t

)= 0.

A.2 Missing prices

In the following, we consider a price matrix with R regions and N products. We randomly

divide the regions r = 2, . . . ,R into the nonempty and disjoint sets R1 and R2. The base

region r = 1 belongs, by definition, to set R1. Similarly, we randomly divide the products
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i = 1,2, . . . , N into the nonempty and disjoint sets N0, N1 and N2. We assume that the prices

of products i ∈ N1 are available only in regions r ∈ R1 while the prices of products i ∈ N2 are

available only in regions r ∈ R2. In contrast, the prices of products i ∈ N0 are fully available

in all regions. The price incidence matrix of this scenario is shown in Table 3. For illustra-

tion purposes, its entries are ordered column-wise by the product group and row-wise by the

region group.

M =

products−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

1 · · · 1 1 · · · 1 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

1 · · · 1 1 · · · 1 0 · · · 0
1 · · · 1 0 · · · 0 1 · · · 1
...

. . .
...

...
. . .

...
...

. . .
...

1 · · · 1 0 · · · 0 1 · · · 1



y
regions

Table 3: Price incidence matrix of blockwise missing prices, indicating whether a specific price is
available in the data (= 1) or not (= 0).

A.2.1 CPD method

The OLS estimator, β̂CPD, is defined in (17). Using block matrix notation, the inverse of the

((R −1+N )× (R −1+N ))-matrix X
′
X can be written as

(
X

′
X
)−1 =

(
X

′
1X1 X

′
1X2

X
′
2X1 X

′
2X2

)−1

=
 A B

B
′

C

 , (36)

where the matrix X1 = (X11 X12) contains the R −1 dummy variables regiont and the matrix

X2 = (X20 X21 X22) the N dummy variables product j .28 Furthermore, the ((R−1+N )×1)-vector

X
′
y can be expressed by

X
′
y = (

X′
1y X′

2y
)′ , (37)

where the ((R − 1)× 1)-vector X
′
1y contains for each region t (except the base region t = 1)

the sum of its logarithmic prices. In contrast, the (N ×1)-vector X
′
2y encompasses for each

product j the sum of its logarithmic prices. Inserting (36) and (37) in (17) results in

β̂
1
CPD = A X

′
1y+B X

′
2y , (38)

28 The matrix X11 encompasses the dummy variables regiont for regions t ∈ R1 ∧ t 6= 1 while the matrix X12

holds the dummy variables regiont for regions t ∈ R2. Similarly, X20 contains the dummy variables product j
for products j ∈ N0, X21 for j ∈ N1 and X22 for j ∈ N2.
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the estimator of logarithmic regional price levels.

In the scenario under consideration, it can be shown that the ((R−1)×(R−1))-submatrix

X
′
1X1 and the ((R −1)×N )-submatrix X

′
1X2 can be written as

X
′
1X1 =

 a · I|R1|−1 0(|R1|−1)×|R2|

0|R2|×(|R1|−1) b · I|R2|


and

X
′
1X2 =

 J(|R1|−1)×|N0| J(|R1|−1)×|N1| 0(|R1|−1)×|N2|

J|R2|×|N0| 0(|R2|)×|N1| J|R2|×|N2|

 ,

where 0 is the null matrix. The scalars a = |N0|+ |N1| and b = |N0|+ |N2| show the number of

available price observations per region. Inserting the definitions of X
′
1X1 and X

′
1X2 into (36)

yields the matrices

A = a−1 ·
(

I+ J J

J (a/b) · I+ (1+ c) · J

)
and B =−a−1 ·

(
J J J

d · J e · J f · J

)
, (39)

with c = a·|N2|·|R1|+b·|N1|·|R2|
b·|N0|·|R1|·|R2| , d = 1+ |N1|

|N0|·|R1| , e = 1− 1
|R1| and f = 1+ |R1|·|N0|+R·|N1|

|N0|·|R2|·|R1| .29 Inserting

(39) in (38) results in the regional price level estimator, exp
(
β̂

1
CPD

)
= P̂ 1t

CPD:

P̂ 1t
CPD = ∏

i∈N0

(
p t

i

p1
i

) 1
|N0|

·


Λ1t

1 if t ∈ R1( ∏
r∈R1

Λ1r
1

) 1
|R1|

·
( ∏

r∈R2

Λr t
2

) 1
|R2|

if t ∈ R2

, (40)

where Λ1r
1 and Λr t

2 are two correction terms that depend on the prices in region group R1

and R2. They are defined by

Λ1r
1 =

∏
i∈N0∪N1

(
pr

i /p1
i

) 1
|N0|+|N1|

∏
i∈N0

(
pr

i /p1
i

) 1
|N0|

and Λr t
2 =

∏
i∈N0∪N2

(
p t

i /pr
i

) 1
|N0|+|N2|

∏
i∈N0

(
p t

i /pr
i

) 1
|N0|

. (41)

The correction termΛ1t
1 for regions 1 and t is defined in the same way.

Due to transitivity of the price levels in (40), P̂ st
CPD for regions s, t ∈ R2 can be calculated

29 The submatrices in A and B encompass the same dimensions as the submatrices in X
′
1X1 and X

′
1X2, respec-

tively. A description of the matrix C is omitted at this point because it is not required for the derivation of
the regional price level estimates.
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by

P̂ st
CPD = P̂ 1t

CPD

/
P̂ 1s

CPD = ∏
i∈N0

(
p t

i

p s
i

) 1
|N0|

· Λst
2 ,

where P̂ 1t
CPD (t ∈ R2) and P̂ 1s

CPD (s ∈ R2) are defined in (40), respectively.

Hajargasht et al. (2019, p. 106) provide the formula underlying the estimated variance of

these price levels.

A.2.2 CD method

The GLS estimator, β̂
GLS
CD , is defined in (26). The matrix X = (X1 X2) encompasses the R − 1

dummy variables
(
regiont − âregiont

)
, where those of regions t ∈ R1∧ t 6= 1 can be found in X1

and those of t ∈ R2 in X2. As a result, the ((R −1)× (R −1))-matrix X
′
Ω−1X can be written as:

(
X

′
Ω−1X

)
= 2 ·

 a · I|R1|−1 − |N1|
|R1| · J|R1|−1 0(|R1|−1)×|R2|

0|R2|×(|R1|−1) b · I|R2|− |N2|
|R2| · J|R2|

− |N0|
R

· JR−1

 ,

where the scalars a and b are defined on page 31. Following Miller (1981, p. 67), the inverse

of that matrix is given by (
X

′
Ω−1X

)−1 = 1

2
·A , (42)

with A being defined in (39). The ((R −1)×1)-vector X
′
Ω−1y can be written as

X
′
Ω−1y = 2 ·

 X
′
1Ω

−1y

X
′
2Ω

−1y

 , (43)

where the element x t
1 of the ((|R1|−1)×1)-vector X

′
1Ω

−1y is defined by

x t
1 =

1

R
· ∑

r∈R1∪R2

∑
i∈N0

ln
(
p t

i /pr
i

)+ ∑
i∈N1

ln
(
p t

i /p1
i

)− 1

|R1|
· ∑

r∈R1

∑
i∈N1

ln
(
pr

i /p1
i

)
︸ ︷︷ ︸

= 1
|R1| ·

∑
r∈R1

∑
i∈N1

ln
(
p t

i /pr
i

)

for regions t ∈ R1 ∧ t 6= 1, while the element x t
2 of the (|R2|×1)-vector X

′
2Ω

−1y is

x t
2 =

1

R
· ∑

r∈R1∪R2

∑
i∈N0

ln
(
p t

i /pr
i

)+ ∑
i∈N2

ln
(
p t

i /p s
i

)− 1

|R2|
· ∑

r∈R2

∑
i∈N2

ln
(
pr

i /p s
i

)
︸ ︷︷ ︸

= 1
|R2| ·

∑
r∈R2

∑
i∈N2

ln
(
p t

i /pr
i

)
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for regions t ∈ R2. Because the initial region s = 1 would not allow the calculation of any

price ratio for products i ∈ N2, another region s ∈ R2 is used instead. This is evident from the

definition of x t
2.

Inserting (42) and (43) in (26) finally yields exp
(
β̂

GLS
CD

)
as defined in (40). Thus, it follows

that β̂
GLS
CD = β̂1

CPD.

A.2.3 GEKS method

The OLS estimator, β̂GEKS, is defined in (34).30 Some of the logarithmic bilateral index num-

bers, ln Ṗ r t
J , change due to a decrease in commonly available price observations between

regions t and r (e.g. Rao and Hajargasht, 2016, p. 415). It follows that the sum of logarithmic

bilateral Jevons index numbers for region t is defined by

R∑
r=1

ln Ṗ r t
J =


1

|N0|+|N1|
∑

r∈R1

∑
i∈N0∪N1

ln
(
p t

i /pr
i

)+ 1
|N0|

∑
r∈R2

∑
i∈N0

ln
(
p t

i /pr
i

)
if t ∈ R1

1
|N0|+|N2|

∑
r∈R2

∑
i∈N0∪N2

ln
(
p t

i /pr
i

)+ 1
|N0|

∑
r∈R1

∑
i∈N0

ln
(
p t

i /pr
i

)
if t ∈ R2

. (44)

Inserting (44) in (34) yields the price level estimator, exp
(
β̂GEKS

)
= P̂ 1t

GEKS, as

P̂ 1t
GEKS =

∏
i∈N0

(
p t

i

p1
i

) 1
|N0|

·


(
Λ1t

1

) |R1|
R if t ∈ R1( ∏

r∈R1

Λ1r
1

) 1
R

·
( ∏

r∈R2

Λr t
2

) 1
R

if t ∈ R2

. (45)

The two correction terms,Λ1r
1 andΛr t

2 , are defined in (41). Thus, the GEKS-Jevons price level

estimator only differs from that of the CPD method in (40) in terms of a different weighting of

the correction terms. Due to transitivity of the price levels in (45), P̂ st
GEKS for regions s, t ∈ R2

can be calculated by

P̂ st
GEKS = P̂ 1t

GEKS

/
P̂ 1s

GEKS =
∏

i∈N0

(
p t

i

p s
i

) 1
|N0|

· (
Λst

2

) |R2|
R ,

where P̂ 1t
GEKS (t ∈ R2) and P̂ 1s

GEKS (s ∈ R2) are defined in (45), respectively.

The estimated variance-covariance-matrix is defined in (35). Because prices are missing,

the bilateral price index numbers are no longer transitive. Thus, σ̂2
GEKS > 0 and, accordingly,

v̂ar
(
α̂t

)= (2/R) · σ̂2
GEKS > 0 for regions t = 2, . . . ,R.

30 Compared to Section A.1.3, the definitions of X, y and, thus, the OLS estimator in (33) remain unchanged.
Moreover, Equation (33) simplifies to (34) in the scenario of missing prices considered here.
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B Simulation results

B.1 Intragroup and intergroup price level estimates

In Section 4.1, it is shown that the CPD price level is defined as a simple Jevons index for

intragroup comparisons. This does not apply to the GEKS-Jevons method. By contrast, for

intergroup comparisons, the GEKS-Jevons price level seems to approximate the Jevons in-

dex closer due to a smoother weighting of the correction terms. In order to strengthen this

assumption, we draw on L = 2,000 (l = 1,2, . . . ,L) simulated price data sets. The number of

regions and products varies across the data sets. The prices are drawn independently for

each region r and product i from a normal distribution with constant mean and variance,

i.e. pr
i ∼ N (10,1). We estimate for each data set the regional price levels, P̂ st

CPD and P̂ st
GEKS,

and normalise them by the bilateral Jevons price level, Ṗ st
J , respectively.

Figure 3 depicts on the vertical axis the normalised price levels. The left panel shows that

the normalised CPD price levels are always one for intragroup comparisons and, therefore,

represented by a straight horizontal line. For intergroup comparisons, however, this is not

the case. It can be seen from the right panel that the GEKS-Jevons price levels fluctuate in

roughly 90% of cases more closely around Ṗ st
J than the CPD price levels.

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

Intragroup Comparisons

1 500 1000 1500 2000

CPD
GEKS−Jevons

Intergroup Comparisons

1 500 1000 1500 2000

P
mst

P⋅ Jst

Figure 3: Estimated CPD and GEKS-Jevons price levels, P̂ st
m , for intragroup (left panel) and inter-

group comparisons (right panel), normalised by the respective bilateral Jevons price level, Ṗ st
J .

Calculations on the basis of L = 2,000 simulated price data sets.

B.2 Error metrics of price level estimators

In the following, we showcase the simulation results of Section 4.2. Figure 4 depicts the

change in the estimated root mean squared error (RMSE) when we vary the number of prod-
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Figure 4: RMSE (vertical axis) by number of products (left horizontal axis) and percentage of
missing prices (in %, right horizontal axis). Calculations on the basis of L = 2,000 simulated price
data sets with R = 30 regions.

ucts in our artificial price data within a sequence from 10 to 100 but exogenously set the

number of regions to R = 30. As can be seen, the number of products and the RMSE are in-

versely related. This result is not surprising as it mirrors a gain in the efficiency of the price

level estimators that arises from an increased number of price observations per region.

In contrast, Figure 5 shows the simulation results in terms of the RMSE when we set the

number of products to N = 50 but vary the number of regions within a range from 10 to 100.

As can be seen, especially with a high percentage of missing prices, the RMSE of the CPD

and the GEKS-Jevons estimators decreases when we raise the number of regions in our price

data. The same does not apply to the simple Jevons index. This is due to its bilateral nature

that considers only the prices of the two regions under consideration when calculating some

price level. The CPD and GEKS-Jevons methods, by contrast, additionally use the price in-

formation of all other regions and, thus, are able to increase the efficiency of the respective

price level estimator.

Summarising, Figures 4 and 5 reveal that the RMSE depends, among other drivers, on the

number of regions and products present in some price data set. The general interpretation

of introducing gaps into the price data, however, basically remains unaffected. Therefore, it

seems acceptable to exogenously fix both the number of products and regions in the core

simulation study.

We conduct our simulation study with L = 2,000 artificial price data sets for R = 30 re-

gions and N = 50 products. Table 4 depicts the corresponding error metrics (bias, maximum-

minimum error range, mean absolute error and RMSE) for the price level estimator, α̂t
m =�lnP st

m (with m ∈ {Jevons,CPD,GEKS}). Moreover, the error metrics are calculated separately

for four different scenarios of missing prices:

• Scenario I: The base region s as well as the comparison region t provide full prices
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Figure 5: RMSE (vertical axis) by number of regions (left horizontal axis) and percentage of miss-
ing prices (in %, right horizontal axis). Calculations on the basis of L = 2,000 simulated price data
sets with N = 50 products.

while all other regions r (with r 6= s, t ) may exhibit gaps.

• Scenario II: The comparison region t is the only region that provides full prices.

• Scenario III: The base region s is the only region that provides full prices.

• Scenario IV: Neither the base region s, the comparison region t or some other region

provide prices for all products.

Figure 6 illustrates the absolute deviations between the estimated and the true logarithmic

price levels for each scenario.

Scenario I Scenario II Scenario III Scenario IV

0% 25% 50% 60% 70% 80% 0% 25% 50% 60% 70% 80% 0% 25% 50% 60% 70% 80% 0% 25% 50% 60% 70% 80%
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Index: Jevons CPD GEKS

Figure 6: Boxplots of absolute deviations between estimated and true logarithmic price levels
(vertical axis) by percentage of missing prices (in %, horizontal axis). Calculations on the basis of
2,000 simulated price data sets with R = 30 regions and N = 50 products.
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Missing
Bias MaxMin MAE RMSE

CPD GEKS Jevons CPD GEKS Jevons CPD GEKS Jevons CPD GEKS Jevons
Sc

en
ar

io
I

0% 0.00028 0.00028 0.00028 0.13190 0.13190 0.13190 0.01550 0.01550 0.01550 0.01941 0.01941 0.01941

25% 0.00028 0.00020 0.00028 0.13190 0.13715 0.13190 0.01550 0.01558 0.01550 0.01941 0.01954 0.01941

50% 0.00028 0.00013 0.00028 0.13190 0.13901 0.13190 0.01550 0.01573 0.01550 0.01941 0.01974 0.01941

60% 0.00028 0.00002 0.00028 0.13190 0.14052 0.13190 0.01550 0.01593 0.01550 0.01941 0.01998 0.01941

70% 0.00028 0.00014 0.00028 0.13190 0.14078 0.13190 0.01550 0.01619 0.01550 0.01941 0.02037 0.01941

80% 0.00028 0.00009 0.00028 0.13190 0.13273 0.13190 0.01550 0.01686 0.01550 0.01941 0.02117 0.01941

Sc
en

ar
io

II

0% 0.00026 0.00026 0.00026 0.13190 0.13190 0.13190 0.01551 0.01551 0.01551 0.01943 0.01943 0.01943

25% 0.00027 0.00016 0.00035 0.13240 0.13391 0.13619 0.01563 0.01572 0.01840 0.01964 0.01976 0.02293

50% 0.00049 0.00046 0.00003 0.13655 0.13947 0.18521 0.01609 0.01639 0.02299 0.02023 0.02066 0.02887

60% 0.00042 0.00043 -0.00007 0.13661 0.14474 0.22764 0.01666 0.01711 0.02596 0.02096 0.02159 0.03250

70% 0.00029 0.00021 -0.00038 0.15987 0.17454 0.24447 0.01809 0.01889 0.03064 0.02271 0.02389 0.03818

80% 0.00072 0.00017 -0.00001 0.19507 0.21520 0.37746 0.02331 0.02483 0.03940 0.02933 0.03118 0.04963

Sc
en

ar
io

II
I

0% 0.00026 0.00026 0.00026 0.13190 0.13190 0.13190 0.01551 0.01551 0.01551 0.01942 0.01942 0.01942

25% 0.00068 0.00069 0.00068 0.17995 0.17724 0.17207 0.01852 0.01864 0.01854 0.02316 0.02329 0.02316

50% 0.00033 0.00030 0.00032 0.18864 0.17930 0.18118 0.02338 0.02377 0.02304 0.02914 0.02960 0.02866

60% -0.00009 -0.00009 0.00004 0.24611 0.24512 0.23431 0.02688 0.02757 0.02627 0.03390 0.03483 0.03313

70% 0.00010 0.00023 0.00022 0.32552 0.35160 0.30728 0.03236 0.03468 0.03122 0.04076 0.04353 0.03945

80% -0.00026 -0.00055 -0.00011 0.40972 0.49109 0.41767 0.04200 0.04585 0.03944 0.05365 0.05855 0.05056

Sc
en

ar
io

IV

0% 0.00025 0.00025 0.00025 0.13190 0.13190 0.13190 0.01550 0.01550 0.01550 0.01942 0.01942 0.01942

25% -0.00009 -0.00007 -0.00022 0.15590 0.15548 0.17732 0.01839 0.01843 0.02087 0.02304 0.02306 0.02608

50% 0.00005 0.00002 -0.00058 0.21551 0.20012 0.30521 0.02314 0.02349 0.03231 0.02911 0.02948 0.04067

60% 0.00043 0.00051 -0.00011 0.29018 0.26839 0.45189 0.02641 0.02701 0.04099 0.03315 0.03409 0.05272

70% -0.00011 -0.00017 0.00016 0.27549 0.26593 0.65357 0.03142 0.03312 0.05775 0.03954 0.04163 0.07503

80% -0.00048 -0.00108 -0.00601 0.44658 0.50425 0.78107 0.04174 0.04548 0.08442 0.05282 0.05726 0.10775

Table 4: Simulation results in terms of bias, maximum-minimum error range (MaxMin), mean absolute error (MAE) and root mean squared
error (RMSE) for the CPD, GEKS-Jevons and Jevons price level estimators, respectively. Calculations on the basis of 2,000 simulated price data
sets with R = 30 regions and N = 50 products.
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