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Non-technical summary

Research question

The two-sided Hodrick-Prescott filter (HP-2s) is a popular tool for detrending macroe-

conomic time series, such as the gross domestic product (GDP). The one-sided Hodrick-

Prescott filter (HP-1s) is a version of this filter, which is often used for predictive tasks,

where there are no future values of a time series available yet. Furthermore, Basel III

regulations recommend using HP-1s to construct a reference indicator for setting the

countercylical capital buffer: the credit-to-GDP gap. HP-1s is usually applied under the

assumption that the properties of HP-2s carry over one-to-one to HP-1s.

Contribution

In this study, we explore whether the properties of HP-1s resemble those of HP-2s and

find pronounced differences. Therefore, we propose adjustments to HP-1s that align its

properties closely to those of HP-2s.

Results

We find pronounced differences in the properties of HP-1s and HP-2s. However, two

easy-to-implement adjustments to HP-1s strongly reduce these deviations: a lower value

for the smoothing parameter and a multiplicative rescaling of the detrended component.

For instance, considering HP-2s with the common choice of 1,600 as the value of the

smoothing parameter, the adjusted HP-1s employs a value of 650 instead. Moreover, it

rescales the detrended component by a factor of 1.15. Using simulated and empirical

data, we illustrate the relevance of these adjustments. For instance, financial cycles may

appear 1.7 times more volatile than business cycles, where in fact volatilities differ only

marginally.



Nichttechnische Zusammenfassung

Fragestellung

Der zweiseitige Hodrick-Prescott-Filter (HP-2s) ist ein gängiges Verfahren, um makro-

ökonomische Zeitreihen wie das Bruttoinlandsprodukt (BIP) um ihren Trend zu bereini-

gen. Der einseitige Hodrick-Prescott-Filter (HP-1s) ist eine Variante dieses Filters, die zum

Beispiel für Prognoseaufgaben verwendet wird, da in diesem Fall noch keine zukünftigen

Werte der Zeitreihe verfügbar sind. Der HP-1s wird unter Basel III vorgeschlagen, um den

Indikator zur Ermittlung des antizyklischen Kapitalpuffers zu bestimmen: die Kredit/BIP-

Lücke. Gewöhnlich wird der HP-1s unter der Annahme verwendet, dass seine Eigenschaf-

ten sich praktisch nicht von denen des HP-2s unterscheiden.

Beitrag

In dieser Studie untersuchen wir, inwieweit die Eigenschaften des HP-1s tatsächlich denen

des HP-2s ähneln und finden ausgeprägte Unterschiede. Daher schlagen wir Anpassungen

des HP-1s vor, die seine Trendbereinigung jener des HP-2s angleichen.

Ergebnisse

Die Verwendung des HP-1s erzeugt trendbereinigte Komponenten, deren Eigenschaften

oft stark von denen des HP-2s abweichen. Durch zwei einfache Anpassungen des HP-

1s können diese Unterschiede jedoch drastisch reduziert werden: die Verwendung eines

kleineren Werts für den Glättungsparameter und eine Skalierung der trendbereinigten

Komponente. Wenn man zum Beispiel einen HP-2s mit dem häufig genutzten Wert 1600

als Glättungsparameter betrachtet, benutzt der entsprechende adjustierte HP-1s statt des

Wertes 1600 den Wert 650. Zudem multipliziert er die trendbereinigte Komponente mit

einem Faktor von 1,15. Anhand von simulierten und empirischen Daten verdeutlichen wir

die Relevanz dieser Anpassungen. Ohne Anpassungen des HP-1s könnten zum Beispiel

Finanzzyklen 1,7-mal volatiler erscheinen als Konjunkturzyklen, wenn sich die wahren

Volatilitäten nur marginal unterscheiden.
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1 Introduction

The one-sided Hodrick and Prescott (1981, 1997) filter (HP-1s) is used as the real-time
version of the regular two-sided HP filter (HP-2s), a popular tool for detrending macroe-
conomic time series. As a “one-sided” or “real-time” filter, HP-1s uses only observations
dated t and earlier to filter the time-series observation yt. By contrast, HP-2s also uses
information beyond period t to filter yt. As a consequence, HP-2s revises its inference on
all observations in the sample as new observations become available, whereas the inference
of HP-1s on past observations does not change with new observations. HP-1s is attractive
for predictive tasks, where it is reasonable to use only information that is available in
real time. It is also appealing for policy making, where decisions are faced in real time
and where there is a preference not to revise past estimates. Related to this, HP-1s has
recently gained popularity through Basel III regulations that recommend the use of HP-1s
to construct a so-called credit-to-GDP gap.1

It is common to use HP-1s under the implicit assumption that the properties of HP-
2s carry over one-to-one, see, for example, Stock and Watson (1999). Other examples
include Orphanides and van Norden (2002), Christiano and Fitzgerald (2003), Edge and
Meisenzahl (2011), and Hamilton (2018), who compare properties of HP-2s and HP-1s
using the same values for the smoothing parameter in both cases. The purpose of this
paper is (i) to illustrate that the similar-properties assumption does not hold and (ii)
propose adjustments for HP-1s so that it can be used as the real-time version of HP-2s.

Using frequency domain analysis, we show that there are important differences be-
tween HP-1s and HP-2s in terms of extracted cyclical components. While HP-2s provides
a good approximation to the ideal band pass filter – it eliminates most fluctuations below
some frequency threshold (i.e. the trend) and passes most fluctuations above the thresh-
old (i.e. the cycle) without distortions – HP-1s does worse: First, HP-1s fails to eliminate
low-frequency fluctuations to the same extent, yielding a cyclical component that is more
strongly contaminated with low-frequency fluctuations. Second, HP-1s fails to pass fluc-
tuations above the threshold without distortions, dampening even those fluctuations it is
meant to extract.2

In order to harmonize the properties of HP-1s with HP-2s, we propose the adjusted
one-sided HP filter (HP-1s∗). Specifically, we make two small adjustments to HP-1s,
minimizing the squared distance of its power transfer function (PTF) with the PTF of
HP-2s: (1) a lower value for the smoothing parameter and (2) a multiplicative re-scaling
of the cyclical component. For instance, consider HP-2s with 1,600 as the value of the
smoothing parameter. Instead of 1,600, HP-1s∗ uses 650 and rescales the extracted cyclical
component by a factor of 1.1513. Table 1 gives an overview of the most commonly used
smoothing parameters of HP-2s together with the corresponding parameters for HP-1s*.
Furthermore, Table 4 in Appendix A gives a quick overview of adjustment parameters for

1The purpose of this indicator is to inform the calibration of the countercyclical capital buffer, a
cyclical bank capital requirement. See Basel Committee on Banking Supervision (2010).

2There is yet another notable difference between HP-1s and HP-2s. In contrast to HP-2s, HP-1s –
like any one-sided filter – shifts phases. This potentially affects the timing relationships of fluctuations
at different frequencies. Given that any one-sided filter necessarily introduces phase shifts, we decided
not to harmonize properties of HP-1s with HP-2s along this dimension. For a more detailed discussion,
please see Section 5 and Appendix D.
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a broad range of smoothing parameters of HP-2s.3

Table 1: Typical parameters of the adjusted one-sided Hodrick-Prescott filter

Two-sided filter (HP-2s) Adjusted one-sided filter (HP-1s*)
λ λ∗ κ

Business cycles (yearly data) 6.25 2.45 1.7962
Business cycles (quarterly data) 1,600 650 1.1513
Financial cycles (quarterly data) 400,000 163,101 1.0360

Notes: λ denotes smoothing parameter of the two-sided HP filter; λ∗ and κ denote, respectively, the corresponding smooth-
ing parameter and scaling factor of the adjusted one-sided HP filter. The scaling factor is multiplied by the extracted
cyclical component of the one-sided HP filter.

In an application to both simulated and empirical data, we show that our adjustments
succeed at harmonizing the properties of HP-1s with HP-2s: The extracted cyclical com-
ponents resemble one another more closely in terms of their persistence and variability.
Furthermore, we provide evidence that adjusting HP-1s can be relevant in empirical anal-
yses: Given discussions on volatile financial cycles (see, for instance, Claessens, Kose,
and Terrones (2011, 2012); Aikman, Haldane, and Nelson (2015); Schüler, Hiebert, and
Peltonen (2015, 2020)), we show that financial cycles may appear 1.7 times more volatile
than business cycles, where in fact volatilities are only marginally different.

2 The Hodrick-Prescott filter

The HP filter decomposes the time series y = (y1, . . . , yT )′ into a cyclical component
ψ = (ψ1, . . . , ψT )′ and a trend component τ = (τ1, . . . , τT )′:

yt = τt + ψt, (1)

where T denotes sample size.

The regular, two-sided filter: The two-sided HP filter (HP-2s) estimates the trend
component by solving the following minimization problem:

{
τ̂1|T,λ, . . . , τ̂T |T,λ

}
= arg minτ1,...,τt

(
T∑
s=1

(ys − τs)2 + λ

T−1∑
s=2

(τs+1 − 2τs + τs−1)2

)
, (2)

where λ controls the smoothness of the trend estimate τ̂t|T,λ: The higher its value, the
smoother the extracted trend component will be. λ = 1,600 is a common choice to extract
business cycle fluctuations in quarterly data.

Notice that we have denoted the trend estimate for period t by τ̂t|T,λ to illustrate that it
depends on the full sample of data (1, . . . , T ) and on the choice of the smoothing parameter

λ, see Equation (2). Accordingly, ψ̂t|T,λ is the estimate of the cyclical component obtained

as ψ̂t|T,λ = yt − τ̂t|T,λ.
3In addition, software implementing the adjusted HP filter can be downloaded from https://sites.

google.com/site/yvesschueler/research
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The one-sided filter: By contrast, the idea of the one-sided HP filter (HP-1s) is to
decompose yt into trend (τt) and cycle (ψt) based only on observations dated t and earlier
(and not beyond t, as with HP-2s). To stress this idea, we denote the corresponding

estimates by τ̂t|t,λ and ψ̂t|t,λ. The trend component is extracted by solving the following
expression for all values of t:

τ̂t|t,λ = arg minτt

(
min

τ1,...,τt−1

(
t∑

s=1

(ys − τs)2 + λ
t−1∑
s=2

(τs+1 − 2τs + τs−1)2

))
. (3)

This procedure is equivalent to applying HP-2s recursively on an expanding sample and
keeping, from each recursion step, only the trend estimate for the latest period. Analo-
gously to HP-2s, the cyclical component is obtained as ψ̂t|t,λ = yt − τ̂t|t,λ.

2.1 Hodrick-Prescott filter as a linear moving average

Both HP-1s and HP-2s are linear filters. This means that one can express the trend
components and the cyclical components as weighted averages of the data. Specifically,
the trend components are

HP-1s: τ̂t|t,λ =
∑t

s=1wt|t,s,λ · ys = Wt|t,λ(L) · yt, (4)

HP-2s: τ̂t|T,λ =
∑T

s=1wt|T,s,λ · ys = Wt|T,λ(L) · yt, (5)

where L is the lag operator with Lkτs = τs−k. Wt|t,λ(L) =
∑t

s=1wt|t,s,λL
t−s andWt|T,λ(L) =∑T

s=1 wt|T,s,λL
t−s are linear filter polynomials. Analogously, the cyclical components are

HP-1s: ψ̂t|t,λ = yt −
∑t

s=1 wt|t,s,λ · ys = (1−Wt|t,λ(L)) · yt = W t|t,λ(L) · yt, (6)

HP-2s: ψ̂t|T,λ = yt −
∑T

s=1 wt|T,s,λ · ys = (1−Wt|T,λ(L)) · yt = W t|T,λ(L) · yt. (7)

The notation of the weights (wt|t,s,λ, wt|T,s,λ) illustrates that they depend on the observa-
tion t to be filtered, the sample length t (or T in the two-sided case), the position of the
weighted observation in the sample s, and the value of λ.

Several papers derive analytical expressions for these filter weights in finite samples
(see, for instance, Danthine and Girardin (1989); De Jong and Sakarya (2016); Cornea-
Madeira (2017); Hamilton (2018)). We use these insights to derive the frequency domain
properties of HP-1s and HP-2s analytically. Specifically, we use the filter polynomials
that we summarize in Table 2 for a quick overview.

Table 2: Notation for the filter polynomials of the Hodrick-Prescott filter

Filter Component Filter polynomial

HP-1s Trend (τ̂t|t,λ) Wt|t,λ(L)

HP-1s Cycle (ψ̂t|t,λ) W t|t,λ(L)
HP-2s Trend (τ̂t|T,λ) Wt|T,λ(L)

HP-2s Cycle (ψ̂t|T,λ) W t|T,λ(L)
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2.2 Filtering from a frequency-domain perspective

Below, we give a brief overview of the frequency domain methods used in this paper. Let
yt be a stationary stochastic process with autocovariances γk = Cov(yt, yt−k) and define
the autocovariance-generating function of yt as gy(z) =

∑∞
k=−∞ γkz

k, where z denotes
a complex scalar. Evaluating the autocovariance generating function at z = e−iω and
dividing by 2π yields the spectral density of yt:

Sy(ω) =
1

2π
gy(e

−iω), (8)

where i =
√
−1. Integrating the spectral density over the interval [−π, π] gives the variance

of yt, i.e.

Var(yt) =

∫ π

−π
Sy(ω)dω = 2

∫ π

0

Sy(ω)dω,

where we can interpret the value of ω ∈ [0, π] as a cycle frequency measured in radians.4

This suggests that we can decompose the variance of yt into portions related to movements
at different frequencies. For instance, integrating the spectral density over the interval
[0, ω1] with ω1 < π, i.e. 2

∫ ω1

0
Sy(ω)dω would give the portion of variance related to

movements at frequencies less than or equal to ω1.
We use the concept of the power transfer function (PTF) to study how filtering changes

the spectral density of yt. Assuming thatW(L) is a linear filter polynomial withW(L) =∑∞
j=−∞wjL

j and absolutely summable polynomial coefficients, it is possible to show that
the spectral densities of yt and the filtered series xt =W(L)yt are related through

Sx(ω) = PTFW(ω) · Sy(ω), (9)

where PTFW(ω) = |W(e−iω)|2 is the power transfer function of the linear filter polynomial
W(L). PTFW(ω) is a non-negative and real-valued scalar function that measures how
W(L) dampens (PTFW(ω) < 1), passes (PTFW(ω) = 1), or amplifies (PTFW(ω) > 1)
movements at specific frequencies ω in yt. In the following, we use the concept of the PTF
to study the extent to which different variants of the HP filter succeed at eliminating lower
frequencies and preserving higher frequencies.

3 Why adjust the one-sided HP filter?

The top two panels of Figure 1 show the PTFs of HP-1s, W t|t,1600(L), and HP-2s, W t|T,1600(L),
for λ = 1,600. λ = 1,600 is the value of the smoothing parameter regularly used to extract
business cycle fluctuations from quarterly data.5 The PTF of HP-2s is that of a high pass

4Given the periodicity of e−iω, cycles with frequencies higher than two periods are indistinguishable, a
phenomenon commonly called the aliasing effect (see, for example, Hamilton (1994)). Hence, the analysis
of any PTF is limited to [0, π].

5To obtain the PTF of the one-sided filter (PTFW t|t,λ∗
(ω)), we compute the filter coefficients of HP-2s

at the sample boundary, as given by Hamilton (2018), using a sample size of T = 1,000. We use this large
sample size to avoid problems related to the small sample properties of the filter weights. Subsequently,
we cast the resulting filter polynomial into the frequency domain using the Finite Fourier Transform
(FFT). For the PTF of the two-sided HP filter (PTFW t|T,λ

(ω)), we use the large sample results given in

4



30 8 1.5 0.5
Cycle frequency in years

0.0

0.2

0.4

0.6

0.8

1.0
Po

we
r t

ra
ns

fe
r f

un
ct

io
n

Two-sided (1,600)
One-sided (1,600)

30 8 1.5
Cycle frequency in years

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r t
ra

ns
fe

r f
un

ct
io

n

30 8 1.5 0.5
Cycle frequency in radians

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r t
ra

ns
fe

r f
un

ct
io

n

Two-sided (400,000)
One-sided (400,000)

30 8
Cycle frequency in years

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r t
ra

ns
fe

r f
un

ct
io

n

Figure 1: PTFs of HP-1s and HP-2s for λ = 1,600 (top) and λ = 400,000 (bottom)
Notes: Panels depict power transfer functions of HP-1s (“One-sided”) and HP-2s (“Two-sided”) for different values of the
smoothing parameter λ. Top panels refer to λ = 1,600, bottom panels refer to λ = 400,000. Panels to the left and to
the right differ in domains. Red shaded areas highlight business cycle frequencies (1.5 to 8 years), purple areas highlight
financial cycle frequencies (8 to 30 years).

filter: Higher-frequency fluctuations in the range from 8 to 0.5 years pass the filter with
only moderate or virtually no dampening. Lower frequency fluctuations, by contrast, are
dampened almost fully: At a cycle length of approximately 17 years, for instance, its PTF
reaches a value of 0.01, meaning that the filter dampens variations at this frequency by
99 percent.

The PTF of HP-1s differs in two respects. First, to the left of the two curves’ inter-
section, the PTF of HP-1s runs above that of HP-2s. This implies that HP-1s fails to
dampen lower frequencies to the same extent as HP-2s. In fact, differences are relatively
pronounced: At a cycle length of 17 years, for instance, the value of the PTF of HP-1s
is 0.08, which is eight times the value of the PTF of HP-2s. As a consequence, cyclical
components extracted using HP-1s feature low-frequency fluctuations to a much larger
extent than cyclical components extracted using HP-2s. Put differently, they tend to be
more persistent.6 Clearly, this is an undesirable property of HP-1s, as it implies that its
output is more strongly contaminated with the fluctuations that one aims to remove.

Second, to the right of the two curves’ intersection, the PTF of HP-1s starts to run

King and Rebelo (1993).
6We use the word “tend” because persistence, for example, as measured by first-order autocorrelation,

reflects only a proxy for cycle length. First-order autocorrelation crucially depends on the actual DGP
of the series, such as the presence of a unit root.
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horizontally at a level of approximately 0.8. The fact that this value is smaller than one
implies that HP-1s dampens higher frequencies. As a consequence, cyclical components
extracted using HP-1s feature higher-frequency fluctuations to a smaller extent than they
are present in the original data. By contrast, these fluctuations pass HP-2s without
dampening, as its PTF approaches a value of one as the frequency rises. This is yet another
drawback of HP-1s compared with HP-2s: HP-1s dampens precisely the fluctuations that
one aims to extract.

Jointly, these two differences imply that the variability of filtered series is likely to differ
between HP-1s and HP-2s. Yet the direction is not clear and depends on the spectral
density of the series we intend to filter. We elaborate on this in the empirical part of the
paper (see Section 5).

Finally, the bottom two panels of Figure 1 show the PTFs of HP-1s and HP-2s for λ =
400,000, which is the parameter value recommended in Basel III regulations to construct
the credit-to-GDP gap. The respective PTFs resemble those for λ = 1,600 although
there are quantitative differences: Both the lack of dampening of lower frequencies and
the excessive dampening of high frequencies that occur when using HP-1s appear less
pronounced for λ = 400,000 than for λ = 1,600. This suggests that differences between
HP-1s and HP-2s diminish as λ grows larger.

In this section, we have shown that the PTFs of HP-1s and HP-2s differ and that
differences are more pronounced for small values of the smoothing parameter λ. So why
are these differences important? The reason is that HP-1s is regularly used as the real-
time version of HP-2s, assuming that the two filters have the same properties. However,
this is not true, as we show above. So what can we do about it? In the following, we
propose two adjustments to HP-1s that harmonize its properties with HP-2s: First, in
order to eliminate the (relatively constant) dampening of higher frequency fluctuations,
we rescale the cyclical component. Second, to harmonize PTFs in the range of lower
frequencies, we choose a lower value of λ for HP-1s than for HP-2s.

4 The adjusted one-sided HP filter

The filter polynomial for the cyclical component of the adjusted one-sided HP filter (HP-
1s*) is:

W̃t|t,λ(L) = κ ·W t|t,λ∗(L), (10)

where we use W̃t|t,λ(L) to denote the filter polynomial of HP-1s* that is harmonized with
the two-sided HP filter (HP-2s) with smoothing parameter λ, κ = k(λ) is the scaling
factor, and W t|t,λ∗(L) is the standard filter polynomial of the one-sided HP filter (HP-1s)
with the adjusted smoothing parameter λ∗ = l(λ). The power transfer function of HP-1s*
is given by

PTFW̃t|t,λ
(ω) = κ2 · PTFW t|t,λ∗

(ω).

To clarify notation, consider HP-1s* for λ = 1, 600. As we show below, in this case we
have

W̃t|t,1600(L) = 1.1513 ·W t|t,650(L),

6



i.e. HP-1s* uses the weight polynomial of the unadjusted one-sided HP filter (HP-1s)
with smoothing parameter λ∗ = 650 and scales the weights by the factor κ = 1.1513.7

In general, we obtain κ = k(λ) and λ∗ = l(λ) by solving the following minimization
problem

minκ,λ∗

(∫ π

0

(
PTFW t|T,λ

(ω)− κ2 · PTFW t|t,λ∗
(ω)
)2

dω

)
. (11)

We thus minimize the squared distance between the PTF of HP-2s with smoothing pa-
rameter λ and the PTF of HP-1s*. This strategy is equivalent to the approach used by
Baxter and King (1999) in finding an approximate band pass filter for economic time
series.
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Figure 2: PTFs of HP-1s* and HP-2s for λ = 1,600 (top) and λ = 400,000 (bottom)
Notes: Panels depict power transfer functions of HP-1s* (“Adjusted one-sided”) and HP-2s (“Two-sided”) for different
values of the smoothing parameter λ. Top panels refer to λ = 1,600, bottom panels refer to λ = 400,000. Panels to the
left and to the right differ in domains. Red shaded areas highlight business cycle frequencies (1.5 to 8 years), purple areas
highlight financial cycle frequencies (8 to 30 years).

Figure 2 shows the PTFs of HP-1s* and HP-2s. Though some visible differences
remain between the two PTFs, these are clearly smaller than for HP-1s (see Figure 1).
Notably, in the immediate surroundings of the intersection of the two PTF curves, HP-
1s* continues to show a slight lack of dampening at lower frequencies (left of intersection)

7Table 1 in Section 1 provides adjustment parameters for the most commonly used values of the
smoothing parameter λ of HP-2s. For a more comprehensive collection of values, see Appendix A. In
addition, software implementing the adjusted HP filter can be downloaded from https://sites.google.

com/site/yvesschueler/research
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and a slight excess of dampening at higher frequencies (right of intersection). Despite
these differences, in terms of the proximity of PTFs, HP-1s* is a more closely harmonized
real-time version of HP-2s than HP-1s.

Why do we adjust HP-1s in the manner of Equation (10)? Suppose we adjust only
the smoothing parameter λ∗ but apply no scaling factor, i.e. set κ = 1 in Equation
(10). This adjustment does not produce a good fit, because a change in the smoothing
parameter alone always has opposing effects on the degree to which PTFs are harmonized
in the range of higher frequencies vs. the range of lower frequencies. This can be seen
from Figure 1: Choosing a higher value of λ reduces the undesirable dampening of higher
frequencies but, at the same time, increases the undesirable lack of dampening at lower
frequencies. By contrast, in the specification of Equation (10), the scaling factor κ elimi-
nates the dampening of higher frequencies, where the PTF is almost horizontal, whereas
the adjusted smoothing factor λ∗ harmonizes PTFs in the low-frequency band.

5 Applying the adjusted one-sided HP filter

Below, we apply HP-1s* to both simulated and actual data and show that it extracts
cyclical components that closely resemble those from HP-2s in terms of persistence and
volatility. By contrast, we find no improvement over HP-1s in terms of contemporaneous
correlation with the cyclical component extracted using HP-2s. Interestingly, this cor-
relation can be raised by adjusting the smoothing parameter in the opposite direction,
i.e. we find the highest correlations for smoothing parameter values greater than those of
HP-2s. We suspect that this finding relates to the fact that HP-1s induces phase shifts,
and that these phase shifts change with the value of the smoothing parameter λ.

Specifically, we use HP-1s*, HP-1s, and HP-2s to detrend four series with distinct
properties:

1. 3,000 randomly sampled observations from a white noise process with yt = εt and
εt ∼ N(0, 1).

In a white noise process, all frequencies contribute equally to the overall variance,
i.e. the spectral density is uniform.

2. 3,000 randomly sampled observations from a random walk process with yt =
yt−1 + εt and εt ∼ N(0, 1).

This data-generating process is a good representation of the time series behaviour
of many macroeconomic variables (see, for instance, Hamilton (2018)). In a random
walk process, the lower the frequency, the higher its contribution to the overall
variance, i.e. the spectral density falls monotonically for ω ∈ [0, π].

3. The natural logarithm of quarterly US real GDP for the period 1952Q2 to
2018Q3, retrieved from FRED, and the natural logarithm of yearly US real GDP
for the years 1880 to 2016, retrieved from the Jordà-Schularick-Taylor Macrohistory
Database (see Jordà, Schularick, and Taylor (2017)).

The distinct feature of real GDP is that business cycle frequencies (1.5 to eight
years) contribute heavily to its overall variance.
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4. The quarterly US credit-to-GDP ratio for the period 1952Q2 to 2018Q3,
retrieved from the BIS website, and the yearly US credit-to-GDP ratio for
the years 1880 to 2016, obtained from the Jordà-Schularick-Taylor Macrohistory
Database.8

The distinct feature of the credit-to-GDP ratio is that medium-term frequencies
(eight to 30 years) contribute heavily to its overall variance.9

We set the value of the smoothing parameter λ for HP-2s to

• either λ = 6.25, λ = 1,600, or λ = 400,000 for the two simulated series in order to
demonstrate how filter properties change with the value of the smoothing parameter;

• λ = 1,600 and λ = 6.25 respectively for quarterly and yearly real GDP, which are
the values typically used to extract business cycle and higher frequencies in quarterly
and yearly data;

• λ = 400,000 and λ = 1,562.25 respectively for quarterly and yearly US credit-to-
GDP ratio, which are the values typically used to extract financial cycle and higher
frequencies in quarterly and yearly data.10

Table 3 reports summary statistics for the detrended series for each of the three filters,
i.e. HP-2s, HP-1s, and HP-1s*.11 The block of columns depicting standard deviations
shows that HP-1s* more closely resembles HP-2s in terms of the variability of the de-
trended series. Not in a single case do we find that the discrepancy in standard deviations
is greater in absolute terms for HP-1s* than for HP-1s. That said, for some series there
are still notable differences in standard deviations between HP-1s* and HP-2s. This is
because PTFs are not fully harmonized, and the degree of harmonization varies over
frequencies. The consequences of this are more severe for series that have important
variation at frequencies that are not well harmonized.

Table 3 also reports autocorrelations, i.e. the correlation of each detrended component
and its own first lag. This statistic offers one way of summarizing the extent to which the
different filters extract a similar mix of frequencies. Based on the fact that HP-1s* has
a PTF that is harmonized with that of HP-2s, we would expect only minor differences
between the two. As expected, differences are small with somewhat higher autocorrela-
tions for HP-1s*, which is a consequence of the fact that HP-1s* fails to dampen lower
frequency fluctuations as strongly as HP-2s. Therefore, the extracted cyclical component
of HP-1s* has a higher share of persistent fluctuations. This is even more pronounced
for HP-1s, which produces a considerably more persistent cyclical component than both
HP-1s* and HP-2s. The table also suggests that differences in autocorrelations are bigger
for smaller values of λ (see, for instance, the yearly US real GDP series).

8Note that definitions differ somewhat for the quarterly and yearly credit-to-GDP ratio series: Whereas
credit represents all loans to the non-financial private sector in the yearly series, the quarterly series uses
a more comprehensive definition that also includes debt securities.

9See, for example, Galati, Hindrayanto, Koopman, and Vlekke (2016); Schüler (2018, 2019).
10The smoothing parameters 6.25 and 1,562.5 reflect the yearly counterpart of 1,600 and 400,000 in

the context of a quarterly sampling frequency (see Ravn and Uhlig (2002)).
11Appendix B shows the filtered series.
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Table 3: Extracted cyclical components: Standard deviations, autocorrelations, and
correlations with the two-sided filter

Standard deviation Autocorrelation Correlation with HP-2s

λ HP-2s HP-1s* HP-1s HP-2s HP-1s* HP-1s HP-2s HP-1s* HP-1s

DGP 1: yt = εt

6.25 0.83 0.84 0.55 -0.30 -0.29 -0.23 1.00 0.79 0.84
1,600 0.96 0.96 0.86 -0.05 -0.05 -0.04 1.00 0.94 0.95
400,000 0.99 0.99 0.96 0.01 0.01 0.01 1.00 0.98 0.98

DGP 2: yt = yt−1 + εt

6.25 0.62 0.65 0.47 0.11 0.16 0.29 1.00 0.50 0.58
1,600 1.29 1.34 1.36 0.72 0.74 0.80 1.00 0.47 0.54
400,000 2.72 2.79 3.01 0.93 0.94 0.95 1.00 0.49 0.58

Quarterly US real GDP

1,600 1.50 1.53 1.53 0.85 0.86 0.89 1.00 0.44 0.54

Yearly US real GDP

6.25 3.56 3.73 2.80 0.34 0.39 0.50 1.00 0.31 0.44

Quarterly US credit-to-GDP ratio

400,000 5.90 5.79 6.12 0.99 0.99 0.99 1.00 0.54 0.65

Yearly US credit-to-GDP ratio

1,562.50 4.37 4.59 4.75 0.87 0.88 0.91 1.00 0.36 0.46

Notes: The table compares properties of cyclical components extracted using the two-sided HP filter (columns ‘HP-2s’),
the adjusted one-sided HP filter (columns ‘HP-1s*’), and the unadjusted one-sided HP filter (columns ‘HP-1s’). Column λ
gives the value of the smoothing parameter used with the two-sided HP filter and the unadjusted one-sided HP filter. The
adjusted one-sided HP filter uses the corresponding smoothing and scaling parameter given in Table 1 and Table 4.

Finally, Table 3 reports correlations with the extracted cyclical component of HP-2s.
This statistic offers a perspective on the extent to which two filters extract the same
signal contemporaneously. This correlation depends not only on a filter’s PTF but also
on its phase shift, i.e. the extent to which the filter dislocates fluctuations at different
frequencies in the time domain. This phase shift is an unavoidable property of any one-
sided filter (see Priestley (2001)), and it has not been targeted by our adjustment.12 As
the one-sided filter’s phase shift is more pronounced for smaller values of λ (see Figure 5
in Appendix D), we would expect the HP-1s* to perform somewhat worse than HP-1s in
terms of this correlation. Indeed, Table 3 shows exactly that.

Table 3 offers an interesting insight for the debate on the relative variability of financial

12Figure 5 in Appendix D shows the phase shift as a function of cycle frequency and illustrates how
the phase shift of the one-sided HP filter is closer to zero over a wide range of frequencies for higher
values of λ. In a robustness exercise in Table 5 in Appendix C, we show that the correlation can be
raised relative to the unadjusted one-sided filter by adjusting the smoothing parameter in the opposite
direction, i.e. by choosing a higher value than for the two-sided filter. For each of the series considered
in this section, it lists the value of λ that maximizes the correlation with the two-sided filter’s cyclical
component along with the respective correlations. For purposes of comparison, the table also features
the same correlation for the unadjusted one-sided filter. Potential improvements in correlations can be
sizable. For instance, in the case of the quarterly credit-to-GDP ratio, the correlation increases from 0.65
for the unadjusted filter to 0.86 for the one-sided filter with optimized smoothing parameter value. That
said, this improvement in correlation comes at the cost of a much higher contamination of the extracted
cyclical component with exactly those low-frequency fluctuations that the filter is meant to eliminate.
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versus business cycles (see, among others, Claessens et al. (2012); Borio (2014); Aikman
et al. (2015)). Suppose we measure these variabilities by the standard deviations of the
cyclical component extracted from the yearly US credit-to-GDP ratio (financial cycle)
and yearly US real GDP (business cycle) as shown in Table 3. This allows us to base
our insights on a time series that extends from 1880 to 2016 and thus covers a number of
financial crisis episodes. In terms of relative variability, both HP-1s* and HP-2s suggest
that financial cycles are about 1.2 times as variable as business cycles. By contrast, HP-1s
would suggest a far higher ratio of 1.7. Clearly, such differences are material and they may
matter, for instance, in the calibration of macro-econometric models and in the debate on
financial market regulation, whereby more volatile financial cycles may call for a stricter
regulation.

6 Conclusion

Should the cyclical component obtained from the standard one-sided HP filter be used as
the real-time version of the two-sided HP filter’s cyclical component? This paper argues
that it should not. The reason is that important properties of the standard one-sided
filter are quite different from the two-sided filter. Namely, the standard one-sided filter
(1) fails to remove low-frequency fluctuations to the same extent as the two-sided filter
and (2) has the undesirable feature of dampening exactly those fluctuations that one
wishes to extract. As a remedy, this paper proposes two easy-to-implement adjustments
to the one-sided filter: (1) a lower smoothing parameter and (2) a multiplicative rescaling
of the cyclical component. Jointly, these two adjustments address the above-mentioned
problems of the standard one-sided HP filter. This is confirmed in applications of the
adjusted one-sided HP filter to both simulated and empirical data.
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A Adjustment parameters for the one-sided Hodrick-

Prescott filter

Table 4: Given a value of λ, i.e. the HP-2s smoothing parameter, HP-1s* uses the value
of λ∗ and κ

λ λ∗ κ λ λ∗ κ λ λ∗ κ λ λ∗ κ

1.00 0.35 2.7174 55.00 22.15 1.3921 1000 406 1.1718 55000 22411 1.0598
1.25 0.45 2.5372 57.50 23.16 1.3869 1250 508 1.1617 57500 23431 1.0591
1.50 0.55 2.4111 60.00 24.17 1.3820 1600 650 1.1513 60000 24450 1.0584
1.75 0.65 2.3165 62.50 25.19 1.3774 1750 711 1.1477 62500 25469 1.0578
2.00 0.75 2.2420 65.00 26.20 1.3730 2000 813 1.1425 65000 26488 1.0572
2.25 0.85 2.1814 67.50 27.21 1.3688 2250 915 1.1381 67500 27507 1.0567
2.50 0.95 2.1308 70.00 28.23 1.3648 2500 1017 1.1342 70000 28526 1.0562
2.75 1.04 2.0877 72.50 29.24 1.3610 2750 1118 1.1309 72500 29546 1.0557
3.00 1.14 2.0503 75.00 30.25 1.3574 3000 1220 1.1279 75000 30565 1.0552
3.25 1.24 2.0176 77.50 31.26 1.3540 3250 1322 1.1252 77500 31584 1.0547
3.50 1.34 1.9885 80.00 32.28 1.3506 3500 1424 1.1227 80000 32603 1.0543
3.75 1.44 1.9625 82.50 33.29 1.3475 3750 1525 1.1205 82500 33623 1.0538
4.00 1.55 1.9390 85.00 34.30 1.3444 4000 1627 1.1184 85000 34642 1.0534
4.25 1.65 1.9177 87.50 35.32 1.3415 4250 1729 1.1166 87500 35661 1.0530
4.50 1.75 1.8981 90.00 36.33 1.3387 4500 1831 1.1148 90000 36680 1.0527
4.75 1.85 1.8802 92.50 37.35 1.3359 4750 1933 1.1132 92500 37700 1.0523
5.00 1.95 1.8636 95.00 38.36 1.3333 5000 2034 1.1116 95000 38719 1.0519
5.25 2.05 1.8483 97.50 39.37 1.3308 5250 2136 1.1102 97500 39738 1.0516
5.50 2.15 1.8339 100 40 1.3283 5500 2238 1.1089 100000 40758 1.0512
5.75 2.25 1.8206 125 51 1.3077 5750 2340 1.1076 125000 50951 1.0484
6.00 2.35 1.8080 150 61 1.2919 6000 2442 1.1064 150000 61145 1.0462
6.25 2.45 1.7962 175 71 1.2792 6250 2543 1.1053 175000 71340 1.0444
6.50 2.55 1.7851 200 81 1.2688 6500 2645 1.1042 200000 81534 1.0429
6.75 2.65 1.7746 225 91 1.2599 6750 2747 1.1032 225000 91730 1.0416
7.00 2.75 1.7647 250 101 1.2523 7000 2849 1.1022 250000 101925 1.0405
7.25 2.85 1.7552 275 111 1.2456 7250 2951 1.1012 275000 112120 1.0396
7.50 2.95 1.7463 300 122 1.2397 7500 3053 1.1003 300000 122316 1.0387
7.75 3.05 1.7377 325 132 1.2343 7750 3154 1.0995 325000 132512 1.0379
8.00 3.15 1.7296 350 142 1.2295 8000 3256 1.0986 350000 142708 1.0372
8.25 3.25 1.7218 375 152 1.2251 8250 3358 1.0978 375000 152904 1.0366
8.50 3.35 1.7143 400 162 1.2211 8500 3460 1.0971 400000 163101 1.0360
8.75 3.45 1.7072 425 172 1.2174 8750 3562 1.0964 425000 173297 1.0354
9.00 3.55 1.7004 450 183 1.2140 9000 3664 1.0956 450000 183494 1.0349
9.25 3.65 1.6938 475 193 1.2108 9250 3765 1.0950 475000 193691 1.0344
9.50 3.76 1.6875 500 203 1.2078 9500 3867 1.0943 500000 203887 1.0340
9.75 3.86 1.6814 525 213 1.2051 9750 3969 1.0937 525000 214084 1.0336

10.00 3.96 1.6755 550 223 1.2024 10000 4071 1.0930 550000 224281 1.0332
12.50 4.96 1.6265 575 233 1.2000 12500 5089 1.0878 575000 234478 1.0328
15.00 5.97 1.5897 600 243 1.1976 15000 6108 1.0837 600000 244675 1.0324
17.50 6.98 1.5607 625 254 1.1954 17500 7127 1.0804 625000 254873 1.0321
20.00 7.99 1.5370 650 264 1.1933 20000 8145 1.0776 650000 265070 1.0318
22.50 9.00 1.5172 675 274 1.1913 22500 9164 1.0753 675000 275267 1.0315
25.00 10.01 1.5001 700 284 1.1894 25000 10183 1.0733 700000 285465 1.0312
27.50 11.02 1.4853 725 294 1.1876 27500 11202 1.0715 725000 295662 1.0309
30.00 12.03 1.4723 750 304 1.1859 30000 12221 1.0699 750000 305860 1.0307
32.50 13.04 1.4606 775 315 1.1842 32500 13240 1.0685 775000 316057 1.0304
35.00 14.05 1.4502 800 325 1.1826 35000 14259 1.0672 800000 326255 1.0302
37.50 15.06 1.4407 825 335 1.1811 37500 15278 1.0660 825000 336453 1.0299
40.00 16.08 1.4320 850 345 1.1796 40000 16297 1.0649 850000 346650 1.0297
42.50 17.09 1.4241 875 355 1.1782 42500 17316 1.0639 875000 356848 1.0295
45.00 18.10 1.4167 900 365 1.1768 45000 18335 1.0629 900000 367046 1.0293
47.50 19.11 1.4099 925 376 1.1755 47500 19354 1.0621 925000 377244 1.0291
50.00 20.12 1.4036 950 386 1.1743 50000 20373 1.0612 950000 387442 1.0289
52.50 21.14 1.3977 975 396 1.1730 52500 21392 1.0605 975000 397640 1.0287

1000000 407838 1.0285

Notes: λ denotes the smoothing parameter of the two-sided HP filter. λ∗ is the corresponding adjusted smoothing parameter,
used as an input to the one-sided HP filter. κ is the scaling factor by which the extracted cyclical component of the one-sided
HP filter is multiplied. For instance, consider HP-2s with λ =1,600 (column three, in bold). Instead of 1,600, the adjusted
HP-1s employs a smoothing parameter of value 650 (λ∗). In parallel, it multiplicatively rescales the extracted cyclical
component by a factor of 1.1513. We also offer software implementing the adjusted HP-1s for given HP-2s smoothing
parameter (see https://sites.google.com/site/yvesschueler/research)
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B Hodrick-Prescott-filtered data
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Figure 3: Quarterly HP-filtered data (1952Q2-2018Q3)
Notes: The graphs show HP-filtered data. “Two-sided” refers to data filtered with HP-2s, “adj. one-sided” to data filtered
with HP-1s*, and “one-sided” to data filtered with HP-1s. The respective smoothing parameters can be inferred from Table
3.
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Figure 4: Yearly HP-filtered data (1880-2016)
Notes: The graphs show HP-filtered data. “Two-sided” refers to data filtered with HP-2s, “adj. one-sided” to data filtered
with HP-1s*, and “one-sided” to data filtered with HP-1s. The respective smoothing parameters can be inferred from Table
3.
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C Robustness exercise

Table 5: Maximum correlations of one-sided HP filters with two-sided HP filter

λ HP-1s HP-1s∗∗ λ∗∗

DGP 1: yt = εt

6.25 0.84 0.93 751.92
1,600 0.95 0.98 345,784
400,000 0.98 0.99 30,375,000

DGP 2: yt = yt−1 + εt

6.25 0.58 0.67 58
1,600 0.54 0.63 16,732
400,000 0.58 0.65 2,463,711

Quarterly US real GDP

1,600 0.54 0.64 17,147

Yearly US real GDP

6.25 0.44 0.62 154.37

Quarterly US credit-to-GDP ratio

400,000 0.65 0.86 39 · 109

Yearly US credit-to-GDP ratio

1,562.50 0.46 0.64 118,900.74

Notes: The table shows the correlations of the extracted cyclical components obtained using one-sided HP filters with
the cyclical components obtained using the two-sided HP filter. HP-1s depicts the correlation when both filters, i.e. the
one-sided filter and two-sided filter, use the same smoothing parameter λ. HP-1s∗∗ illustrates the maximum correlation
that can be obtained by adjusting the smoothing parameter (λ∗∗) of the one-sided HP filter.
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D Phase shift of the one-sided Hodrick-Prescott fil-

ter

0 /4 /2 3/4
Cycle Frequency

0

/4

/2

3/4

Ph
as

es
hi

ft

=2.45
=650
=163,101

Figure 5: Phase diagram of HP-1s for different values of the smoothing parameter λ
Notes: The graph shows the phase shift that is induced by the one-sided HP filter for different values of the smoothing
parameter λ at different frequencies. A positive phase (y-axis in radians) denotes a backward shift, i.e. introducing a lead.
Based on a quarterly sampling frequency, the red and blue shaded areas indicate the frequency bands for business cycles
(1.5 to 8 years) and financial cycles (8 to 30 years) respectively (x-axis in radians). The values close to zero of the y-axis,
for instance, in the higher frequency bands, indicate that the respective frequency components are only mildly affected by
the filter. However, the increasingly positive values in the lower frequency bands indicate that longer cycles are shifted
backward in phase by a certain amount. For example, given a smoothing parameter of λ = 650, cycles with a duration of
eight years are shifted backward in phase by two years.
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