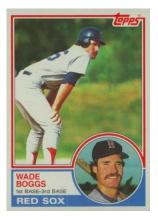

Money in the right hands

Aleksandra Rzeźnik* Rüdiger Weber[‡]

*York U, Schulich School of Business [‡]Goethe University


Bundesbank Autumn Conference "Markets and Intermediaries" October 1, 2024

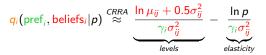
Brady Hill

up to 2000\$

Lack of specialized demand: asset liquidity dries up and prices fall.

.

• One-period model of "money in the right hands"


.

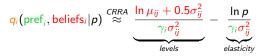
- One-period model of "money in the right hands"
 - Preferences (broadly defined) and beliefs w.r.t. a specific asset determine *specialization*.

- One-period model of "money in the right hands"
 - Preferences (broadly defined) and beliefs w.r.t. a specific asset determine *specialization*.
 - Efficient allocation: Investors *i* best suited (preferences, beliefs) to hold stock *j* hold relatively more of it:

$$q_i(\text{pref}_i, \text{beliefs}_i | p) \stackrel{CRRA}{\approx} \frac{\ln \mu_{ij} + 0.5\sigma_{ij}^2}{\gamma_i \sigma_{ij}^2} - \frac{\ln p}{\gamma_i \sigma_{ij}^2}$$

- One-period model of "money in the right hands"
 - Preferences (broadly defined) and beliefs w.r.t. a specific asset determine *specialization*.
 - Efficient allocation: Investors *i* best suited (preferences, beliefs) to hold stock *j* hold relatively more of it:

.

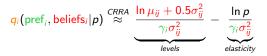

- One-period model of "money in the right hands"
 - Preferences (broadly defined) and beliefs w.r.t. a specific asset determine *specialization*.
 - Efficient allocation: Investors *i* best suited (preferences, beliefs) to hold stock *j* hold relatively more of it:

$$q_{i}(\mathsf{pref}_{i},\mathsf{beliefs}_{i}|p) \overset{CRRA}{\approx} \underbrace{\frac{\ln \mu_{ij} + 0.5\sigma_{ij}^{2}}{\gamma_{i}\sigma_{ij}^{2}}}_{levels} - \underbrace{\frac{\ln p}{\gamma_{i}\sigma_{ij}^{2}}}_{elasticity}$$

• Funding determines demand size $q_i W_i$. Aggregation and Mkt clearing, fixed supply \overline{S} :

$$p \cdot \bar{S} = \sum_{i} \mathbf{q}_{i} \mathbf{W}_{i}$$

- One-period model of "money in the right hands"
 - Preferences (broadly defined) and beliefs w.r.t. a specific asset determine *specialization*.
 - Efficient allocation: Investors *i* best suited (preferences, beliefs) to hold stock *j* hold relatively more of it:

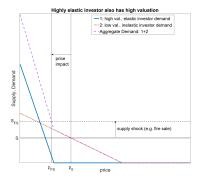

• Funding determines demand size $q_i W_i$. Aggregation and Mkt clearing, fixed supply \overline{S} :

$$p \cdot \bar{S} = \sum_{i} q_i W_i$$

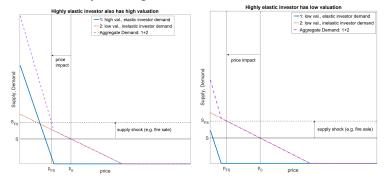
• Distribution of *W_i* across investors *i* = 1, ..., *N* affects i) aggregate *demand levels* and *elasticity*

.

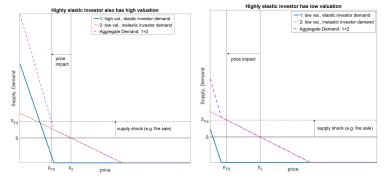
- One-period model of "money in the right hands"
 - Preferences (broadly defined) and beliefs w.r.t. a specific asset determine *specialization*.
 - Efficient allocation: Investors *i* best suited (preferences, beliefs) to hold stock *j* hold relatively more of it:


• Funding determines demand size $q_i W_i$. Aggregation and Mkt clearing, fixed supply \overline{S} :

$$p \cdot \bar{S} = \sum_{i} q_i W_i$$


Distribution of W_i across investors i = 1,..., N affects
i) aggregate demand levels and elasticity & ii) disruption to W_i, i = 1,..., N disrupts allocations and prices.

.


• Both, elasticity and high valuations matter.

• Both, elasticity and high valuations matter.

• Both, elasticity and high valuations matter.

• What happens when specialized investors lack funding?

- With investor heterogeneity, "money in the right hands" matters.
- Lower capacity of spec. investors; less spec. investors step in; require higher expected returns; markets still clear but only at lower prices with a less efficient allocation (relative to ex-ante).
- Discount-rate shocks no shock to cash flows.

- 1990-2016 sample of U.S. equity mutual funds.
- Classic finding: Funds with severe outflows have selling pressure.

- 1990-2016 sample of U.S. equity mutual funds.
- Classic finding: Funds with severe outflows have selling pressure.
 - Fire sales can push prices away from "fundamental values" (Coval and Stafford, 2007).
 - Critique: Coval/Stafford FS pressure indicates bad fundamentals (Huang et al., 2022).

- 1990-2016 sample of U.S. equity mutual funds.
- Classic finding: Funds with severe outflows have selling pressure.
 - Fire sales can push prices away from "fundamental values" (Coval and Stafford, 2007).
 - Critique: Coval/Stafford FS pressure indicates bad fundamentals (Huang et al., 2022).
 - Price dislocation using pressure on funds holding the stock as instrument (Edmans et al., 2012).
 - Critique: If measured right, FS discount is negligible (Wardlaw, 2020)

- 1990-2016 sample of U.S. equity mutual funds.
- Classic finding: Funds with severe outflows have selling pressure.
 - Fire sales can push prices away from "fundamental values" (Coval and Stafford, 2007).
 - Critique: Coval/Stafford FS pressure indicates bad fundamentals (Huang et al., 2022).
 - Price dislocation using pressure on funds holding the stock as instrument (Edmans et al., 2012).
 - Critique: If measured right, FS discount is negligible (Wardlaw, 2020)
- **This paper:** Demand-oriented empirical analysis of MF fire sales. Size of non-fundamental FS discount depends on (lack of) specialized demand.

Empirics

Measures Supply

"Supply": Stock-level fire sale pressure

• We use Wardlaw's measures: Weighted avg flows to funds under pressure that hold stock *i* weighted by how important each fund is for stock *i*.

$$\begin{aligned} \text{Flow-To-Volume}_{i,q} &= \sum_{f=1}^{M} (\text{Flow}_{f,q} \mid \text{Flow}_{f,q} < -5\%) \cdot \frac{\text{Shares}_{i,f,q-1}}{\text{Volume}_{i,q}} \\ \text{Flow-To-Stock}_{i,q} &= \sum_{f=1}^{M} (\text{Flow}_{f,q} \mid \text{Flow}_{f,q} < -5\%) \cdot \frac{\text{Shares}_{i,f,q-1}}{\text{Shrout}_{i,q-1}} \end{aligned}$$

Measures Supply

"Supply": Stock-level fire sale pressure

• We use Wardlaw's measures: Weighted avg flows to funds under pressure that hold stock *i* weighted by how important each fund is for stock *i*.

$$\begin{aligned} \text{Flow-To-Volume}_{i,q} &= \sum_{f=1}^{M} (\text{Flow}_{f,q} \mid \text{Flow}_{f,q} < -5\%) \cdot \frac{\text{Shares}_{i,f,q-1}}{\text{Volume}_{i,q}} \\ \text{Flow-To-Stock}_{i,q} &= \sum_{f=1}^{M} (\text{Flow}_{f,q} \mid \text{Flow}_{f,q} < -5\%) \cdot \frac{\text{Shares}_{i,f,q-1}}{\text{Shrout}_{i,q-1}}. \end{aligned}$$

• *Fire-sale stock in t:* Stock in bottom decile of FTV or FTS distribution. FS episodes

Measures Supply

"Supply": Stock-level fire sale pressure

• We use Wardlaw's measures: Weighted avg flows to funds under pressure that hold stock *i* weighted by how important each fund is for stock *i*.

$$\begin{aligned} \text{Flow-To-Volume}_{i,q} &= \sum_{f=1}^{M} (\text{Flow}_{f,q} \mid \text{Flow}_{f,q} < -5\%) \cdot \frac{\text{Shares}_{i,f,q-1}}{\text{Volume}_{i,q}} \\ \text{Flow-To-Stock}_{i,q} &= \sum_{f=1}^{M} (\text{Flow}_{f,q} \mid \text{Flow}_{f,q} < -5\%) \cdot \frac{\text{Shares}_{i,f,q-1}}{\text{Shrout}_{i,q-1}} \end{aligned}$$

- *Fire-sale stock in t:* Stock in bottom decile of FTV or FTS distribution. FS episodes
- Employed measures
 - i) are not mechanically related to returns,
 - ii) do not condition on stocks being sold (pressure does not reveal quality-driven selling decision).

Stock-level measures of specialized demand

- Starting point: high elasticity and high valuation demand levels.
 - Revealed Preferences: **Specialized funds** are **active** funds that hold the specific stock.

Measures Demand

Stock-level measures of specialized demand

- Starting point: high elasticity and high valuation demand levels.
 - Revealed Preferences: **Specialized funds** are **active** funds that hold the specific stock.
- \rightarrow 'Instrument for demand': inflows into active specialized funds (does not reveal quality-driven buying decision).

SPEC FLOW_{*i*,*q*} =
$$\frac{1}{F} \sum_{f=1}^{F} (\text{FLOW}_{f,q}^{i} \mid \text{FLOW}_{f,q}^{i} > -5\% \cap f \text{ is active}).$$

• Mutual funds are typically long-only (funding largely determined by flows; allows to study funding liquidity ↔ asset liquidity).

Measures Demand

Stock-level measures of specialized demand

- Starting point: high elasticity and high valuation demand levels.
 - Revealed Preferences: **Specialized funds** are **active** funds that hold the specific stock.
- \rightarrow 'Instrument for demand': inflows into active specialized funds (does not reveal quality-driven buying decision).

SPEC FLOW_{*i*,*q*} =
$$\frac{1}{F} \sum_{f=1}^{F} (\text{FLOW}_{f,q}^{i} \mid \text{FLOW}_{f,q}^{i} > -5\% \cap f \text{ is active}).$$

- Mutual funds are typically long-only (funding largely determined by flows; allows to study funding liquidity ↔ asset liquidity).
- Flows not required, **avg. active share** of co-holding funds as stock-level indicator of elasticity.

ACTIVE SHARE_{*i*,*q*} =
$$\frac{1}{F} \sum_{f=1}^{F} (\text{ACTIVE SHARE}_{f,q}^{i} | \text{FLOW}_{f,q}^{i} > -5\% \cap f \text{ is active}).$$

Price effects of specialized demand in fire sale episodes

30% smaller discount when Spec Flow is higher by 1 SD

	CAR during FS quarter						
	(1) (2) (3) (4)						
Spec $FLOW_{i,q}$	0.090 *** (3.66)	0.088 *** (3.50)	0.086 *** (3.36)	0.086 *** (2.66)			
$\text{FLOW-TO-VOLUME}_{i,q}$	0.875*** (3.07)	0.578* (1.70)	0.516 (1.57)	1.872*** (5.02)			
Controls: Time-varying controls Stock FE		Yes	Yes	Yes Yes			
$\begin{array}{l} \text{Year} \times \text{Quarter FE} \\ \text{Industry} \times \text{Year-Quarter FE} \end{array}$	Yes	Yes	Yes	Yes			

Time-varying controls: Fragility_{q-1}, Liquidity_{q-1}, SD(ret)_{q-1}, Ret_{q-1}, Negative earnings surprise_q, Market Cap_{q-1}, Inst. Ownership_{q-1}.

30% smaller discount when Spec Flow is higher by 1 SD

	CAR during FS quarter					
	(1) (2) (3) (4					
Spec $FLOW_{i,q}$	0.090 *** (3.66)	0.088 *** (3.50)	0.086 *** (3.36)	0.086 *** (2.66)		
FLOW-TO-VOLUME $_{i,q}$	0.875*** (3.07)	0.578* (1.70)	0.516 (1.57)	1.872*** (5.02)		
Controls: Time-varying controls Stock FE		Yes	Yes	Yes Yes		
Year \times Quarter FE Industry \times Year-Quarter FE	Yes	Yes	Yes	Yes		

Time-varying controls: Fragility_{q-1}, Liquidity_{q-1}, SD(ret)_{q-1}, Ret_{q-1}, Negative earnings surprise_q, Market Cap_{q-1}, Inst. Ownership_{q-1}.

• Similar results for flows to funds which do not hold the stock itself but do hold industry peers IND FLOW (Industry flows)

28% smaller discount when co-holder's avg active share is higher by $1\ \mathrm{SD}$

	CAR during FS quarter				
	(1)	(2)	(3)	(4)	
ACTIVE SHARE	0.048***	0.041**	0.039**	0.052**	
	(2.65)	(2.18)	(2.07)	(2.35)	
Observations R ²	24711 0.082	24711 0 10	24711 0.16	23021 0.36	
	0.002	0.10	0.10	0.50	
Time-varying controls: Control Variables		Yes	Yes	Yes	
Stock FE		105	105	Yes	
Year $ imes$ Quarter FE	Yes	Yes			
Industry $ imes$ Year-Quarter FE			Yes	Yes	

Return differentials are transient

- FS Stocks with low spec demand have higher returns after the fire sale episode.
- The discount differential evaporates (no difference in LT cumulative returns)

	Panel A: $CAR^{3m \rightarrow 3m+24m}$					
Cong INDEX	-0.014^{*}	-0.014^{*}	-0.014^{*}	-0.018^{**}		
Spec $INDEX_{i,q}$	(-1.73)	(-1.73)	(-1.72)	(-2.52)		
	Panel B: $CAR^{0m \rightarrow 3m+24m}$					
Spec Index _{i.a}	-0.003	-0.003	-0.005	-0.007		
SPEC INDEX;,q	(-0.40)	(-0.40)	(-0.57)	(-1.02)		
Controls:						
Flow-to-Volume/Flow-to-Stock	Yes	Yes	Yes	Yes		
Stock FE				Yes		
Year $ imes$ Month FE	Yes	Yes				
Industry $ imes$ Year-Month FE			Yes	Yes		

Further results

- *Passive specialization* has hardly any effect (passive funds lack discretion to 'pick up' stocks). Passive specialization
- Robust to controlling for cash holdings and access to interfund lending; *within* samples of large and small stocks.
- Works in other instances of non-fundamental price pressure, e.g. index reconstitutions.
- Specialization index (combination of different definitions of specialization) yields similar results.

Mechanisms

Asset quality as a potential driver?

• Recent literature suggests adverse selection and hence asset quality as driver of FS discounts (Dow and Han, 2018; Huang et al., 2022).

Asset quality as a potential driver?

- Recent literature suggests adverse selection and hence asset quality as driver of FS discounts (Dow and Han, 2018; Huang et al., 2022).
- Our results seem to be not driven by asset quality.

Asset quality as a potential driver?

- Recent literature suggests adverse selection and hence asset quality as driver of FS discounts (Dow and Han, 2018; Huang et al., 2022).
- Our results seem to be not driven by asset quality. E.g.:
 - i) Our measure of demand does not condition on actual buys.
 - ii) Results are *within* FS pressure levels at a given point in time, within one industry at a time or for one stock at different points in time.
 - iii) If low spec demand indicated poor quality, there should not be reversals but there are.
 - iv) *Fire-sale pressure from passive* funds (whose selling decisions convey no stock-specific information): similar results.
 - v) Stocks with high spec demand do not seem to have less asymmetric information: neg. earnings surprises, etc.

Asymmetric information

Demand composition as a driver

- No evidence for 'fundamental' driver ("cash-flow shock").
- Results consistent with positive discount-rate shocks: higher discounts in FS quarter followed by transiently higher returns.

Demand composition as a driver

- No evidence for 'fundamental' driver ("cash-flow shock").
- Results consistent with positive discount-rate shocks: higher discounts in FS quarter followed by transiently higher returns.

Spec funds buy stocks under pressure

• Specialized funds have higher elasticity $\left|\frac{\partial \text{portf weight}}{\partial \text{price}}\right|$.

$\Delta \mathrm{Weight}$					
	(1)	(2)	(3)	(4)	
FIRESALESTOCK _{i,q}	0.0156 ^{***} (14.05)	-0.0005 ^{***} (-28.78)			
$\operatorname{PrcCHG}_{f,q}$			-0.0073 ^{***} (-9.35)	0.0002 ^{***} (19.93)	
Observations R^2	7,500,124	199,853,405 0.12	251,979 0.59	11,429,501 0.32	
Controls:	0.28	0.12	0.59	0.32	
Year-Quarter FE Fund × Stock FE Fund × Year-Quarter FE	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
Sample consisting of:	Tes	165	165	165	
Holdings	specialized	non-specialized	specialized	non-specialized	

Demand composition as a driver

- No evidence for 'fundamental' driver ("cash-flow shock").
- Results consistent with positive discount-rate shocks: higher discounts in FS quarter followed by transiently higher returns.

Spec funds buy stocks under pressure

- Specialized funds have higher elasticity $\left|\frac{\partial \text{portf weight}}{\partial \text{price}}\right|$.
- ... and buy stocks under pressure when i) they specialize in those stocks ii) they have inflows.

	ΔW EIGHT			Δ Shares		
	(1)	(2)	(3)	(4)	(5)	(6)
FIRESALESTOCK _{i,q}	0.0156 ^{***} (14.05)	-0.0005 ^{***} (-28.78)			81.0188 [*] (1.94)	-20.3419 ^{***} (-25.63)
$\operatorname{PrcChg}_{f,q}$			-0.0073 ^{****} (-9.35)	0.0002 ^{***} (19.93)		
FLOW _{f,q}					22.9351 ^{***} (50.98)	0.0697 ^{***} (6.92)
$\mathrm{FIReSALeStock}_{i,q}\times\mathrm{Flow}_{f,q}$					17.3617 ^{***} (3.29)	-0.4941 ^{***} (-5.65)
Observations	7,500,124	199,853,405	251,979	11,429,501	7,389,433	200,595,265
R^2	0.28	0.12	0.59	0.32	0.27	0.12
Controls: Year-Quarter FE					Yes	Yes
Fund \times Stock FE	Yes	Yes	Yes	Yes	Yes	Yes
Fund \times Year-Quarter FE	Yes	Yes	Yes	Yes		
Sample consisting of:						
Holdings	specialized	non-specialized	specialized	non-specialized	specialized	non-specialized
Stocks	all	all	fire-sale stocks	fire-sale stocks	all	all

Less efficient allocations (compared to ex-ante)

 With low spec demand, more of the asset is held by non-specialized investors.

Dependent variable: Non-specialized new noiders. Mean: 0.099, Median: 0						
	Flow-to-volume					
Spec $INDEX_{i,q}$	- 0.016 ** (-2.00)	- 0.020 ** (-3.37)	- 0.022 ** (-3.23)	- 0.012 ** (-2.63)		
$\mathrm{Flow}\text{-}\mathrm{To}\text{-}\mathrm{Volume}_{i,q}$	4.727** (6.16)	-0.017 (-0.03)	-0.142 (-0.29)	-0.619 (-1.23)		
Observations R^2	24711 0.014	24711 0.025	24711 0.061	23021 0.40		
	0.014	0.025	0.001	0.40		
Controls: Control Variables Stock FE		Yes	Yes	Yes Yes		
$Year \times Month \; FE$	Yes	Yes				
Industry \times Year-Month FE			Yes	Yes		

Dependent variable: Non-specialized new holders. Mean: 0.099, Median: 0

Summary

- Fire sale discounts depend on the availability of specialized demand (which depends on funding liquidity).
- Discounts are likely due to inefficient allocations rather than adverse selection.
- <u>Outlook</u>: Further disentangle level and elasticity channel

Summary

- Fire sale discounts depend on the availability of specialized demand (which depends on funding liquidity).
- Discounts are likely due to inefficient allocations rather than adverse selection.
- <u>Outlook</u>: Further disentangle level and elasticity channel

Implications

• Demand-based AP: Active specialization determines elasticity

Summary

- Fire sale discounts depend on the availability of specialized demand (which depends on funding liquidity).
- Discounts are likely due to inefficient allocations rather than adverse selection.
- <u>Outlook</u>: Further disentangle level and elasticity channel

Implications

- Demand-based AP: Active specialization determines elasticity
- CF: Fire sales absent specialized demand as non-cash flow price shocks.

Summary

- Fire sale discounts depend on the availability of specialized demand (which depends on funding liquidity).
- Discounts are likely due to inefficient allocations rather than adverse selection.
- <u>Outlook</u>: Further disentangle level and elasticity channel

Implications

- Demand-based AP: Active specialization determines elasticity
- CF: Fire sales absent specialized demand as non-cash flow price shocks.
- Allocational efficiency as a prerequisite for price efficiency
- \bullet Financial stability: Leverage constraints \rightarrow inefficient allocations & prices?
 - Should funds have access to LOLR (Breckenfelder and Hoerova, 2023)?

Conclusion References

- BRECKENFELDER, J. AND M. HOEROVA (2023): "Do non-banks need access to the lender of last resort? Evidence from fund runs," .
- COVAL, J. D. AND E. STAFFORD (2007): "Asset fire sales (and purchases) in equity markets," Journal of Financial Economics, 86, 479–512.
- DOW, J. AND J. HAN (2018): "The paradox of financial fire sales: The role of arbitrage capital in determining liquidity," *The Journal of Finance*, 73, 229–274.
- DUFFIE, D. (2010): "Presidential address: Asset price dynamics with slow-moving capital," Journal of Finance, 65, 1237–1267.
- EDMANS, A., I. GOLDSTEIN, AND W. JIANG (2012): "The real effects of financial markets: The impact of prices on takeovers," *Journal of Finance*, 67, 933–971.
- HADDAD, V., P. HUEBNER, AND E. LOUALICHE (2021): "How competitive is the stock market? Theory, evidence from portfolios, and implications for the rise of passive investing," Working Paper.
- HUANG, S., M. C. RINGGENBERG, AND Z. ZHANG (2022): "The information in asset fire sales," Working Paper, 1–53.
- KOIJEN, R. S. J. AND M. YOGO (2019): "A Demand System Approach to Asset Pricing," Journal of Political Economy, 127, 1475–1515.
- LLORENTE, G., R. MICHAELY, G. SAAR, AND J. WANG (2002): "Dynamic volume-return relation of individual stocks," *Review of Financial Studies*, 15, 1005–1047.
- SCHMICKLER, S. (2020): "Identifying the price impact of fire sales using high-frequency surprise mutual fund flows," Available at SSRN 3488791.
- SHLEIFER, A. AND R. W. VISHNY (1992): "Liquidation Values and Debt Capacity: A Market Equilibrium Approach," The Journal of Finance, 47, 1343–1366.
- VAN DER BECK, P. (2024): "On the estimation of demand-based asset pricing models," Tech. rep.
- WARDLAW, M. (2020): "Measuring mutual fund flow pressure as shock to stock returns," Journal of Finance, 75, 3221–3243.
- WEBER, R. (2023): "Institutional Investors, Households, and the Time-Variation in Expected Stock Returns," Journal of Financial and Quantitative Analysis, 58, 352†"391.