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Motivation

- Huge interest in how heterogeneity, incomplete markets affect aggregate outcomes

- Which features of market incompleteness can “solve RANK puzzles”?

- Determinacy of equilibrium

- Forward guidance too strong?

- Fiscal spending multipliers too big at ZLB?

- Which features of HANKs ⇒ difference from RANKs?

- precautionary savings motive?

- MPC heterogeneity?
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Environment

- We use a tractable model to explain the distinct effects of

- precautionary savings and the cyclicality of risk
- MPC heterogeneity and the cyclicality of HTM income

on determinacy, forward guidance puzzle, spending multipliers

- CARA utility + idiosyncratic income risk → linear aggregation
(Pseudo-Representative-ANK)

- exact aggregate Euler equation

- no need to keep track of wealth distribution

- Isolate the effect of cyclicality of risk, since MPC heterogeneity is wholly absent in
our baseline (but we can put it back in)
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Related literature

- quantitative models: Kaplan et al. (2018), McKay et al. (2016)

- stylized “zero-liquidity limit” models: Werning (2015), Ravn and Sterk (2018),
McKay et al. (2017), Debortoli and Gaĺı (2018), Bilbiie (2008, 2019a,b)

- MPC heterogeneity, sufficient statistics approach, determinacy of equilibrium -
numerical: Auclert et al. (2018)
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Household problem

Discrete time, no aggregate risk, measure 1 of households solve

max
{cit,Ait+1}∞t=0

−1

γ
E0

∞∑
t=0

βte−γc
i
t

subject to Ptc
i
t +

1

1 + it
Ait+1 = Ait + Pt

yit︷ ︸︸ ︷[
(1− τt)ωt`it + dt +

Tt
Pt

]
`it ∼ i.i.d.N

(
1, σ2

` (yt)
)
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Firms

- combine labor, Dixit-Stiglitz aggregate of intermediates inputs Mt(j) to produce

xt(j) = zmt(j)
αnt(j)

1−α

- Net output in symmetric eq’m is defined as: Yt = xt − x
1
α
t

- face Rotemberg (1982) costs of price adjustment, max

∞∑
s=0

Qt|0

{(
Pt(k)

Pt
−mct

)(
Pt(k)

Pt

)−θ
− Ψ

2

(
Pt(k)

Pt−1(k)
− 1

)2
}
xt

where Qt|0 =
∏t−1
k=0

1
1+rk

and mct =
ω1−α
t

αα(1−α)1−α
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Policy

- Monetary policy:
1 + it = (1 + r)Πφπ

t

given steady state real interest rate 1 + r

- Fiscal policy

Bt + Ptgt + Tt = Ptτtωt +
1

1 + it
Bt+1

- τt = τ (Yt), lump-sum transfers Tt adjust as needed to ensure fiscal solvency:
fiscal policy is ‘passive’ (Leeper, 1991)
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Household decisions

cit = Ct + µt

(
Ait
Pt

+ yit

)
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Household decisions

cit = Ct + µt

(
Ait
Pt

+ yit

)

Ct =

∞∑
s=1

Qt+s|t
µt

γµt+s
ln

[
1

β (1 + rt+s−1)

]
︸ ︷︷ ︸

impatience

+µt

∞∑
s=1

Qt+s|tȳt+s︸ ︷︷ ︸
PIH

− γµt
2

∞∑
s=1

Qt+s|tµt+sσ
2
y,t+s︸ ︷︷ ︸

precautionary savings

7 / 27



Household decisions

cit = Ct + µt

(
Ait
Pt

+ yit

)

Ct =

∞∑
s=1

Qt+s|t
µt

γµt+s
ln

[
1

β (1 + rt+s−1)

]
+ µt

∞∑
s=1

Qt+s|tȳt+s −
γµt
2

∞∑
s=1

Qt+s|tµt+sσ
2
y,t+s

MPC: µt =
µt+1 (1 + rt)

1 + µt+1 (1 + rt)

- if rt = r for all t, µt = r
1+r

precautionary savings

7 / 27



Aggregation

- Model linearly aggregates:

ct =

∫ 1

0
citdi = Ct + µtyt

- Impose goods market clearing + use Govt. BC: “Aggregate Euler equation”

yt = yt+1 −
lnβ (1 + rt)

γ
−
γµ2

t+1

2
σ2(yt+1) + gt − gt+1
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The cyclicality of income risk

In equilibrium, yit is i.i.d. with variance

σ2(yt) =
[(

1− τ (yt)
)
ω(yt)

1/α
]2
σ2
` (yt)

so cyclicality of income risk
dσ2(y)

dy
equals

2σ(y)σ`(y)

(1− τ (Y ))ω′ (y)︸ ︷︷ ︸
cyclicality of
real wages

− τ ′ (y)ω (y)︸ ︷︷ ︸
cylicality of

taxes

+
σ2 (y)

σ2
` (y)

dσ2
` (y)

dy︸ ︷︷ ︸
cyclicality of

employment risk

endogenous - depends on tax-transfer system
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Linearized demand block

ŷt =

[
1− γµ2

2

dσ2(y∗)

dY

]
ŷt+1 −

1

γ
(it − πt+1)− γµσ(y∗)µ̂t+1

µ̂t = β̃µ̂t+1 + β̃(it − πt+1)

- RANK (σ = 0): Θ = 1, Λ = 0

- Procyclical risk
(
dσ2

dy > 0
)

: Θ < 1, discounted Euler eq

- Acyclical risk
(
dσ2

dy = 0
)

: Θ = 1, but still Λ > 0: precautionary savings channel

- Countercyclical risk
(
dσ2

dy < 0
)

: Θ > 1, explosive Euler eq
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Linearized supply block

Standard Phillips curve, Taylor rule:

πt = κŷt + β̃πt+1

it = Φππt

where β̃ = 1
1+r
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Determinacy under a peg (Φπ = 0) in the rigid price limit πt = 0

ŷt = Θŷt+1 −
1

γ
it − Λµ̂t+1

µ̂t = β̃µ̂t+1 + β̃it
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Determinacy under a peg (Φπ = 0) in the rigid price limit πt = 0

ŷt = Θŷt+1
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Determinacy under a peg (Φπ = 0) in the rigid price limit πt = 0

ŷt+1 = Θ−1ŷt

Does a unique bounded {ŷt} solve this? YES (determinacy), NO (indeterminacy)
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Determinacy under a peg (Φπ = 0) in the rigid price limit πt = 0

ŷt+1 = Θ−1ŷt

Does a unique bounded {ŷt} solve this? YES (determinacy), NO (indeterminacy)

- HANK - acyclical risk (Θ = 1)/RANK: Indeterminacy

- HANK - procyclical risk (Θ < 1): Determinacy

- HANK - countercyclical risk (Θ > 1): Indeterminacy
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An income risk-adjusted Taylor principle

With sticky prices and Taylor rule, equilibrium is locally determinate if

Φπ > 1 +
γ

κ


(

1− β̃
)2(

1− β̃
)

+ γβ̃Λ

 (Θ− 1)

- procyclical risk (Θ < 1): determinacy more likely (Auclert et al., 2018)

- acyclical risk (Θ = 1): determinacy requires Φπ > 1 as in RANK

- countercyclical risk (Θ > 1): determinacy less likely (Ravn and Sterk, 2018)
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Forward guidance

- Suppose Fed announces at t a rate cut at date t+ k

- In RANK

ŷt = −1

γ

∞∑
k=0

(it+k − πt+k+1)

- With fixed prices, date t+ k rate cut equally as effective as date t cut

- With sticky prices, date t+ k rate cut more effective than date t cut

- ‘forward guidance puzzle’ (Del Negro et al., 2015)

14 / 27



Forward guidance

- In HANK

ŷt = −1

γ

∞∑
k=0

Θk(it+k − πt+k+1)− Λ

∞∑
k=0

Θk
∞∑
s=1

β̃(it+k+s − πt+k+s+1)

- With fixed prices:

- with sufficiently procyclical risk (Θ << 1), date t+ k rate cut less effective than
date t rate cut

- with acyclical risk (Θ = 1), date t+ k rate cut more effective (precautionary savings
channel)

- Lower future rt ⇒ µt ↓. Lower pass through of income risk into consumption risk,
weakens precautionary savings motive.

- with countercyclical risk (Θ > 1), date t+ k rate cut more effective
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Response of yt to cut in it 5 periods in the future

0 1 2 3 4

time

0.34

0.36

0.38

0.4

0.42

0.44

0.46
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Fiscal multipliers

- Consider liquidity trap lasting T periods, ĝt = g > 0 during trap, zero thereafter

- In RANK:

- with fixed prices
∂ŷt
∂g

= 1, 0 ≤ t ≤ T

independent of duration of trap

- With sticky prices, multiplier increasing in duration of trap (Eπ channel)
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Fiscal multipliers

- In HANK with fixed prices:

∂ŷt
∂g

= ΘT−t−1, 0 ≤ t ≤ T

- with procyclical risk (Θ < 1), decreasing in duration of trap

- with acyclical risk (Θ = 1), independent of duration of trap

- with countercyclical risk (Θ > 1), increasing in duration of trap

- With sticky prices...
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dŷt
dg in a 10 period liquidity trap

0 1 2 3 4

time

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35
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Introducing MPC heterogeneity

- Suppose η ∈ (0, 1) households hand to mouth, income yit = χyt (Bilbiie, 2008)

-
dyi

t

dyt
= χ: cyclical sensitivity of income of constrained χ 6= 1, e.g., fiscal transfers

- Avg. MPC = (1− η)× µt + η × 1 > µt

- Aggregate Euler eq becomes

yt = yt+1 −
Ξ

γ
ln(β(1 + rt))− Ξ

γµ2
t+1σ

2(yt)

2
, Ξ =

1− η
1− ηχ

- Resource constraint:

yt = ct = ηχyt + (1− η)cut ⇒ yt = Ξcut

Ξ is ‘static’ response of GDP to consumption of unconstrained
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MPC heterogeneity

- direct effect of unit increase in cut :

∆ydirect effect
t = ∆cut = 1− η

- increases total income and consumption of constrained η × χ(1− η)

- and so on ...

- total effect:

∆ytotal effect = 1− η + ηχ(1− η) + ... =
1− η

1− ηχ
= Ξ
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Affects contemporaneous response to rt

yt = yt+1 −
Ξ

γ
ln(β(1 + rt))− Ξ

γµ2
t+1σ

2(yt)

2
, Ξ =

1− η
1− ηχ

- HTM income less cyclically sensitive (Ξ < 1): dampens response to interest rates

- HTM income equally cyclically sensitive (Ξ = 1): no effect

- HTM income more cyclically sensitive (Ξ > 1): stronger response to interest rates

cyclicality of risk does not affect this (contra Werning (2015))
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..but has less effect on determinacy and ‘puzzles’

Linearizing:

ŷt = −Ξ

γ
(it − πt+1) + (ΞΘ + 1− Ξ)︸ ︷︷ ︸

Θ̃

ŷt+1 − ΞΛµ̂t+1

- MPC heterogeneity does not affect determinacy

- FGP: affects response to interest rates at all horizons, but not the slope

- If Ξ = 1, then Θ̃ = Θ

- If Ξ < 1, then Θ̃ is a linear combination of Θ and 1

- If Ξ > 1, then Θ̃ closer to 1 than Θ
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Fiscal policy

- Both cyclicality of risk Θ and cyclical sensitivity of HTM income Ξ depend
crucially on fiscal policy

- different tax-transfer scheme can change Θ,Ξ and thus change transmission
mechanism

- This channel of fiscal policy is distinct from others:

- active fiscal (FTPL)

- passive fiscal but ∆rt requires changes in surpluses, and how surpluses are adjusted
affects outcomes in non-Ricardian economies (Kaplan et al., 2018)
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Conclusion

- Whether and how HANKs differ from RANK depends on both cyclicality of risk
and MPC heterogeneity/cyclical sensitivity of HTM income

- They have different effects
- procyclical risk makes determinacy more likely, moderates FGP, reduces multipliers;

countercyclical risk does the opposite

- MPC heterogeneity reduces contemporaneous response to rt if HTM income less
cyclical; increases it if HTM income more cyclical

- Both depend crucially on fiscal policy

- Very tractable framework. Easy extensions to persistent idiosyncratic income

- Acharya, Challe and Dogra (2019) study optimal monetary policy in similar
environment + endogenous labor supply. cyclicality of risk: key determinant in
how monetary policy should respond
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Strength of precautionary savings motive

Unlike zero-liquidity models: distinction between consumption and income risk.

- hh consumes µt of additional dollar at date t, saves 1− µt

dcit = µt and dait+1 = (1 + rt)(1− µt) and dcit+1 = µt+1da
i
t+1

- consumption smoothing dcit = dcit+1 ⇒ µt = µt+1(1+rt)
1+µt+1(1+rt)

- µt ↑ when temp. higher path of interest rates in future µt =
(∑∞

s=0Qt+s|t
)−1

- when rt high, curr. inc. larger fraction of lifetime inc. ⇒ cit responds more to yit.

ypi,t =
1∑∞

s=0Qt+s|t
yit +

∞∑
s=1

(
Qt+s|t∑∞
s=0Qt+s|t

)
Etyit+s

- mon. pol. affects pass-through of income risk to consumption risk back



Calibration

- Normalize y∗ = 1 in steady state

- annual frequency, σy = 0.5 (Guvenen et al., 2014)

- κ = 0.1 (Schorfheide, 2008)

- coefficient of relative/absolute prudence γ = 3 (Cagetti, 2003; Fagereng et al.,
2017; Christelis et al., forthcoming)

- r = 4%

- range of values for dσ2/dy, baseline −1 (Storesletten et al., 2004)



Phillips Curve

ΨΠt (Πt − 1) = 1− θ
(

1− x
1−α
α

t

)
+ Ψ (Πt+1 − 1) Πt+1

[
1

1 + rt

xt+1

xt

]
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