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Non-technical summary 

Research Question 

A defining feature of modern economies is the high rate of product turnover in the 

market place. This research paper shows that product turnover and the product life cycle 

are important for determining the optimal inflation rate that a welfare maximizing 

central bank should target. Previous literature on the design of monetary policy often 

abstracts from product turnover and its consequences. 

Contribution 

We use the official micro price data that underlies the construction of the consumer 

price index in the United Kingdom and document a new set of facts for how product 

prices evolve over the product lifetime. We then derive monetary policy implications 

from these facts. We show that for most expenditure items, the price of individual 

products declines over the product lifetime, relative to the average price of products in 

the specific expenditure item. Put differently, new products tend to be initially 

expensive and become cheaper over their lifetime in relative terms. We also document 

considerable heterogeneity across expenditure items in the average rate at which relative 

prices decline. For instance, fashion and entertainment products, which arguably feature 

some “news value”, display very high rates of relative price decline. 

Results 

The set of empirical facts has strong normative implications for the optimal inflation 

target. Specifically, we show that sticky price models imply that the documented 

relative price declines over the product life reflects fundamental forces, such as the 

evolution of product quality or productivity over time. This suggests that the 

documented relative price declines are efficient and that monetary policy should choose 

its inflation target to facilitate the implementation of these trends.  

We show that this can be achieved by setting a positive inflation target, where the 

optimal target value is roughly equal to the average strength of the observed relative 

price decline across product groups. For the U.K. economy the optimal inflation target 

is found to be between 2.6% and 3.2%. The optimal target has increased over the past 

two decades by around 1.2% because relative price trends have considerably accelerated 

over this period. 



 

Nichttechnische Zusammenfassung 

Fragestellung 

Eine wichtige Eigenschaft moderner Volkswirtschaften ist die große Zahl von 

Produktsubstitutionen, wobei existierende Produkte durch neuere Produkte ersetzt 

werden. Diese Studie zeigt, dass Produktsubstitutionen und der Produktlebenszyklus 

wichtige Determinanten der optimalen Inflationsrate für eine wohlfahrtsmaximierende 

Zentralbank sind. Die Literatur zur Ausgestaltung von Geldpolitik abstrahiert häufig 

von Produktsubstitutionen und ihren Auswirkungen. 

Beitrag 

Anhand der Mikropreisdaten, die dem Konsumentenpreisindex für Großbritannien 

zugrunde liegen, dokumentieren wir das Verhalten von Produktpreisen über den 

Produktlebenszyklus. Aus dieser Evidenz leiten wir Schlussfolgerungen für die 

Geldpolitik ab. Wir zeigen, dass der Preis eines Produktes in den meisten 

Ausgabenkategorien über den Produktlebenszyklus fällt, und zwar relativ zum 

Durchschnittspreis in der jeweiligen Ausgabenkategorie. Das bedeutet, dass neue 

Produkte anfangs oft relativ teuer sind, im Laufe ihres Lebens aber günstiger werden. 

Die Stärke der negativen Preistrends unterscheidet sich deutlich über die 

Ausgabenkategorien hinweg. Beispielsweise ist der Preisverfall in Mode und 

Unterhaltung, beides Kategorien mit hohem Neuigkeitswert, ungewöhnlich stark. 

Ergebnisse 

Diese Evidenz hat wichtige normative Folgen für das optimale Inflationsziel. Wir 

zeigen, dass die negativen Preistrends über den Produktlebenszyklus in 

makroökonomischen Modellen mit rigiden Produktpreisen fundamentale Faktoren wie 

die Veränderung in Produktqualität und Produktivität widerspiegeln. Das legt nahe, dass 

die negativen Preistrends effizient sind und Geldpolitik durch die Höhe des 

Inflationsziels diese Trends begünstigen sollte. Dies wird mit einem positiven 

Inflationsziel erreicht, wobei das optimale Ziel ungefähr dem Durchschnitt der 

negativen Preistrends über die Ausgabenkategorien hinweg entspricht. Für die britische 

Wirtschaft schätzen wir ein optimales Inflationsziel zwischen 2,6% und 3,2%. Das 

optimale Ziel ist über die letzten zwei Jahrzehnte um ca. 1,2% angestiegen, da sich die 

negativen Preistrends in diesem Zeitraum verstärkt haben. 
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1 Introduction

A defining feature of modern economies is the high rate of product turnover in the market

place. This feature is documented in a number of micro studies (Nakamura and Steinsson

(2008), Broda and Weinstein (2010)) and is a key focus of the Schumpeterian literature on

creative destruction (Aghion and Howitt (1992)). It is, however, routinely abstracted from in

the monetary policy literature. This relative neglect of the product life cycle in the monetary

literature is surprising, but not innocuous from the perspective of monetary policy design: we

show that features of the product life cycle turn out to be important for determining the optimal

inflation rate that a welfare maximizing central bank should target.

We start our analysis by documenting a new set of stylized facts for the behavior of product

prices over the product lifetime. We do this by considering the official micro price data that

underlies the construction of the consumer price index in the United Kingdom. Our monthly

data covers the years 1996-2016, features more than 1200 narrowly defined expenditure items

and contains close to 29 million monthly price observations.

Using this data set, we document that for more than 90% of the expenditure items, the price

of individual products declines on average over the product lifetime, when measured relative to

the average price of products in the item.1 New products thus tend to be initially expensive,

while becoming cheaper over their lifetime in relative terms. There is also considerable hetero-

geneity in the average rate of relative price decline across items. Items featuring some kind of

‘news value’, e.g., fashion and entertainment products, display very high rates of price decline,

while for the vast majority of items the rates of relative price decline range between zero and

five percent per year. For a small set of items, relative prices are estimated to increase over the

lifetime of the product, but most of the estimated positive price trends are quantitatively close

to zero.

We also document that the downward trend in relative prices has significantly accelerated

over the past two decades. Expenditure items that dropped out of the consumption basket

displayed smaller relative price declines than the average expenditure item. Newly entering

items displayed above average relative price declines. Furthermore, within the set of continuing

items, the expenditure weights have shifted away from items displaying low rates of price decline

towards items that display stronger rates of price decline.

Taken together, these empirical facts have strong normative implications for the inflation

target that a welfare maximizing central bank should pursue. We arrive at this conclusion

through a number of steps. We start by showing that sticky price models imply that the

documented relative price declines are actually efficient. This is the case because price rigidities

and historically suboptimal rates of inflation distort only the level of relative prices, but leave

1Relative prices can decline on average because there is constant product turnover. Absent turnover, this is

hardly possible.
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the age trend of relative prices unchanged. As a result, the observed age trends of relative

prices in the micro price data are identical to the ones one would observe in a setting with

perfectly flexible prices.

In light of this insight, the question of finding the optimal inflation rate is equivalent to

determining how to best implement the documented relative price declines in a setting where

prices are sticky. While the decline in relative prices is consistent with many alternative rates

of inflation, as relative price trends are simply invariant to inflation, different inflation rates

nevertheless have welfare implications because they imply different level distortions for relative

prices.

To understand why this is the case, consider two alternative approaches for implementing

declining relative prices. One approach lets all newly entering products charge a fixed nominal

price P at the entry date and subsequently lets them cut the nominal price at some constant

rate over the product lifetime. With constant product entry and exit rates, the product price

distribution and thus the average product price is constant over time: there is zero inflation,

even though all individual prices decline over their respective lifetimes.2 Importantly, this

setting requires constant adjustments of existing prices. When prices are rigid, these price

adjustments tend to happen inefficiently.

An alternative - and as we show - preferable approach is to have constant nominal prices

for existing products over time. One can nevertheless implement a decline in relative prices,

simply by having newly entering products charge a higher (but also constant) price than the

average existing product. This way, relative prices decline because the average product price

keeps rising over time: there is positive inflation. Since this setting requires no adjustment of

individual product prices, it is generally preferred when prices are sticky.

Since the strength of the relative price decline is found to vary considerably across expen-

diture items, the optimal inflation rate also varies across different expenditure items. It is thus

impossible to implement - with the help of just one policy instrument (aggregate inflation) -

perfectly constant nominal product prices in all expenditure items. The optimal inflation target

must thus trade off the relative-price and mark-up distortions that are generated by different

aggregate inflation rates across different expenditure items.

To determine how this trade-off is optimally resolved, we construct a sticky price model

that incorporates a product life cycle and rich forms of product heterogeneity. To obtain a

model that can capture key characteristics of micro price behavior, we augment the theoretical

setup of Adam and Weber (2019) by adding many expenditure items, each of which consists

of a continuum of individual products that get continuously replaced over time, and by adding

important dimensions of heterogeneity across these items. In particular, we introduce (i) het-

2This is possible because exiting products have low prices, while entering products have high prices, which

generates a force towards inflation that compensates for the negative product price inflation over the lifetime

of products.
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erogeneity in the productivity and product quality growth rates across expenditure items, to

capture the observed heterogeneity in relative price trends; (ii) heterogeneity in the degree of

price rigidity and the rate of product turnover, to capture the observed differences along these

dimensions; and (iii) idiosyncratic components to product quality and productivity, to capture

the large amount of observed price dispersion.

Despite the richness of the model, we can derive a closed-form expression for the optimal

steady-state inflation rate, i.e., for the inflation target that a welfare-maximizing central bank

should adopt. We show how the optimal inflation target trades-off the mark-up and price

distortions generated across different expenditure items, but overall fails to implement the

efficient price distribution in steady state.3 Analytical aggregation is partly feasible because

we abstain from explicitly modeling the product replacement process, instead treat it as an

exogenous (albeit heterogeneous) stochastic process. In fact, the precise economic forces driving

product replacement are not important for our results, as long as these forces are independent

of the inflation target pursued by the central bank.4

We then use our analytic result to estimate the optimal inflation rate for the U.K. economy.

We start by showing that to a first-order approximation only three features of heterogeneity

matter for the optimal inflation target: (1) heterogeneity in productivity and quality growth

across expenditure categories, which we show to be identified by the estimated relative price

trends in the micro data; (2) heterogeneity in expenditure weights across expenditure categories,

and (3) heterogeneity in the steady-state real growth rates of (quality-adjusted) output across

expenditure categories. All remaining dimensions of heterogeneity, e.g., the heterogeneity in

price stickiness as emphasized in the sticky price literature (e.g., Aoki (2001), Benigno (2004))

or heterogeneity in product entry and exit rates, generate only second-order effects for the

optimal inflation target.

The analytic first-order result has considerable empirical appeal, because it allows estimating

the optimal inflation target using micro price data only. We thus use the U.K. price data

to estimate the optimal U.K. inflation target. For the year 2016, the optimal target ranges

between 2.6% and 3.2%, depending on how exactly one treats sales prices in the data set.

Independently of the treatment of sales prices, we robustly find that the optimal inflation target

has increased by around 1.2% over the period 1996 to 2016. This reflects the fact that negative

price trends have become stronger over time through the introduction of new expenditure items

3This differs notably from the findings for the simpler setup used in Adam and Weber (2019), where monetary

policy can implement efficient relative prices, even in response to economic disturbances.
4A number of potential forces driving product replacement dynamics naturally satisfy the independence

requirement: product replacement could be driven by changing consumer tastes that cause some products to

fall out of fashion and others to become fashionable; alternatively, replacement could be driven by negative

productivity shocks that cause the producer of an existing product to discontinue production and have the next

best producer enter the market with a new product.
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with stronger negative trends and the removal of items with less negative or positive trends.

The remainder of this paper is structured as follows. The next section presents the micro

price data set and a new set of stylized facts on relative price trends. Section 4 introduces a

sticky price model featuring a product life cycle and rich amounts of heterogeneity, which allow

capturing the documented heterogeneity in micro price data. Section 5 characterizes the steady

state outcome by aggregating the nonlinear model. Section 6 derives the closed-form result for

the optimal inflation target and section 7 explains how one can estimate the optimal inflation

target from micro price data. Section 8 shows that our estimation approach remains valid

even if statistical agencies account only imperfectly for quality progress. Section 9 presents our

baseline estimation for the U.K. and section 10 offers various robustness checks. A conclusion

briefly summarizes. A series of appendices present our theoretical aggregation result, various

proofs and details of our empirical approach.

2 Related Literature

The model in the present paper is related to interesting quantitative work by Wolman (2011),

who considers a two sector sticky-price model where (goods and service) sectors feature different

rates of productivity growth. Using numerical methods, the optimal inflation target is shown

to be slightly negative for reasonable model calibrations.

Wolman (2011) abstracts from the product life cycle, which makes his setup a special case of

the one considered in the present paper.5 In fact, using the analytic expressions for the optimal

inflation target derived in the present paper and his model parameterization, we can replicate

his numerical findings.6 Our analytic expressions also reveal why the optimal inflation target

remains fairly close to zero in his setting: in the absence of a product life cycle, remaining

heterogeneity generates only small (second-order) deviations from zero.

The literature discussing the role of the product life cycle in connection with monetary

policy is overall sparse and the present paper appears to be the first one drawing normative

conclusions from the product life cycle for monetary policy design.

The early product life cycle literature presented theoretical models of the evolution of firm

entry, exit and product innovation, but abstracted from nominal rigidities and monetary issues

(Shleifer (1986), Aghion and Howitt (1992), Klepper (1996)).

Nakamura and Steinsson (2008) present empirical evidence on product turnover in the BLS

consumer and producer price data sets. Broda and Weinstein (2010) present empirical evidence

on product creation and destruction for an important consumer good segment and quantify the

5His setup uses somewhat different price adjustment frictions (Taylor contracts and state-dependent price

rigidities).
6Using proposition 1 derived below, we find the optimal inflation target to be -0.42% for his parametrization,

while Wolman (2011) states that ”The optimal PCE inflation rate is approximately -0.4%” (p. 374).
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quality bias in consumer price indices. Bils (2009) decomposes aggregate price changes into

changes originating from new products and changes from existing products, with the aim of

improving estimated quality growth. Aghion et al. (2019) also estimate the missing growth

arising from incomplete adjustments associated with the quality gains triggered by creative

destruction. The issue of mismeasured quality growth is orthogonal to the issue studied in

this paper. In fact, as we show in section 8, our results apply even when statistical agencies

mismeasure quality growth and thus the inflation rate.

Argente, Lee and Moreira (2018) provide empirical evidence on how firms grow through the

introduction of new products and Argente and Yeh (2018) determine to what extent product

replacement and perpetual demand learning by firms contributes to monetary non-neutrality.

To the best of our knowledge, the latter paper is the only one incorporating a product life cycle

into a setting with nominal rigidities, but it does not study monetary policy implications.

The monetary policy literature has considered settings with endogenous firm entry and exit

(Bergin and Corsetti (2008), Bilbiie et al. (2008) and Bilbiie, Fujiwara and Ghironi (2014)),

which could be re-interpreted as models of endogenous product entry and exit.7 These pa-

pers study a complementary setup in which monetary policy affects the entry decisions of

firms/products, while abstracting from firm/product heterogeneity. Product heterogeneity is,

however, key to be able to account for the observed relative price trends.

Also related is the optimal inflation literature, see Schmitt-Grohé and Uribe (2010) for an

overview. This literature has identified a number of complementary economic forces affecting

the optimal rate of inflation. Concerns about an occasionally binding lower bound constraint

on nominal interest rates, for instance, tend to generate a force towards positive inflation on

average (Adam and Billi (2006, 2007), Coibion, Gorodnichenko and Wieland (2012)). The

same tends to be true when wages are downwardly rigid (Carlsson and Westermark (2016),

Benigno and Ricci (2011), Carlsson Kim and Ruge-Murcia (2009)). Conversely, the optimal

inflation rate tends to become negative when taking into account cash distortions (Khan, King

and Wolman (2003)).

3 U.K. Micro Price Data: New Evidence

We consider the micro price data that the Office of National Statistics (ONS) collects on a

monthly basis to compile the official consumer price index (CPI) for the United Kingdom (ONS

(2014)). While the data has previously been analyzed in Bunn and Ellis (2012), Kryvtsov and

Vincent (2017), Blanco (2018) and Hahn and Marencak (2018), none of these papers considers

price trends over the product lifetime. More generally, it appears that the only other paper

7Broda and Weinstein (2010) emphasize that product entry and exit dynamics differ considerably from firm

or establishment entry and exit dynamics.
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Table 1: Number of Price Quotes and ONS Product Identifiers

Price quotes in raw data 28.995.064

ONS product identifiers 736078

Price quotes excluding duplicate quotes 24.525.632

ONS product identifiers 687212

Price quotes excluding duplicate & invalid quotes 22.825.052

ONS product identifiers 682747

Price quotes w/o duplicate & invalid quote for replicated items 21.215.430

ONS product identifiers 613031

studying life-cycle price trends is Melser and Syed (2016), who consider supermarket prices in

Chicago. They focus on trends in nominal prices and show that nominal prices of supermarket

goods have a tendency to fall over the product life, but that there is considerable heterogeneity

across products, with many goods’ prices actually increasing over the lifetime. We focus on

life-cycle trends in relative prices and find very consistent evidence of declining prices for a

much broader set of goods and services. When considering trends in nominal prices in our data

set, we similarly find inconclusive evidence.

3.1 Data Description and Product Definition

We consider goods and service prices for the sample period February 1996 to December 2016.

The data covers the economic territory of the U.K., excluding offshore islands. For any given

sales outlet, data collectors find the most popular and regularly available products (or services),

record price information, as well as information for uniquely identifying the product and cate-

gorizing it into the Classification of Individual Consumption by Purpose (COICOP). The raw

data comprise almost 29 million individual price quotes, see table 1, and all prices are sampled

on a monthly basis.

The publicly available micro price data set does not contain all price information underlying

the construction of the official CPI. For instance, it does not contain most of the housing related

expenditure components and also does not report so-called ‘centrally collected items’, such as

‘Golf green fees’, ‘Horseracing admissions’ or ‘Air fares’. Despite this, the inflation rate obtained

from aggregating the price indices for which micro price data is available is very similar to the

official CPI inflation rate, see the top panel of figure 1.

Our analysis of relative price trends over the product life cycle requires us to track the same

product over time. Using the available product and outlet characteristics, we can construct

around 736k unique product identifiers for the raw data. For confidentiality reasons, however,

ONS does not disclose all available location information. As a result, we have some product

6



Figure 1: U.K. CPI Inflation, Various Measures
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identifiers where our data contains duplicate price quotes for the same month, so that we

cannot perfectly distinguish between products in these cases. We therefore discard all price

quotes belonging to the identifiers with duplicate price quotes. As table 1 shows, this leaves us

with a slightly lower number of product identifiers and about 24.5 million price quotes.

Following ONS practice, we also remove so-called ”invalid” price quotes, which are price

quote that do not pass ONS cross-checking procedures (see ONS (2014) for details). Table 1

shows that removing duplicate and invalid price quotes leaves us with 22.8 million price quotes.

We estimate life-cycle trends in relative product prices at the finest available level of product

disaggregation. In the ONS data set, this is the level of so-called expenditure items and there

are 1233 such item categories in the data set. The large number of expenditure items insures

that we convincingly capture heterogeneity across the product spectrum.

We compute relative prices by deflating nominal product prices with a quality-adjusted

item price index. To make sure that we understand the ONS methodology for expenditure
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weighting and quality adjustment, we first replicate the official ONS item price indices using

their methodology and all prices (i.e., including the eliminated duplicate price quotes but

without the invalid price quotes). In a second step, we compute the item price indices without

duplicate price quotes. In a third step, we make sure that excluding duplicate price quotes does

not materially affect the item price index and thus the estimated relative price trends. This is

insured by keeping only expenditure items for which the difference in the ONS item price index

with and without duplicate prices is small in a root mean square error sense, see appendix F.1

for details. This leaves us with 1093 of the 1233 item categories.8 Table 1 shows that restricting

our sample to successfully replicated items leaves us with 21.2 million price quotes and 613031

ONS product identifiers. Throughout the paper, this is the baseline sample we work with.

The bottom panel of figure 1 shows that the aggregate inflation rate obtained from ag-

gregating all available micro price data is very similar to the rate obtained from our baseline

sample.9

We then split the observed time series of price quotes for each product identifier at months

in which product changes occur. In a first step, we exploit ONS information on (comparable

and non-comparable) product substitutions that are reported by price collectors. Table 2

reports the monthly substitution rates: at the level of the identifier there is a lot of product

churning in terms of comparable substitutions but relatively low turnover in terms of non-

comparable substitutions. Non-comparable products thus appear to mainly enter via new

product identifiers. In fact, as table 2 shows, the monthly entry and exit rate for product

identifiers is fairly high and such that the average number of identifiers is constant over time.10

Table 2: Substitution & Turnover Rates: Products and Product Identifiers

Substitution Rates within Product Identifiers Monthly Rate in %

Comparable substitutions 5.74

Non-comparable substitutions 0.31

Turnover Rates for Product Identifiers

Entry rate 2.44

Exit rate 2.44

In a final step, we further refine our product definition by splitting the time series of product

8The 1093 items cover 94% of the expenditure share of the full set of 1233 items.
9Figure 1 adjusts for two outliers in January 1999 and May 2005 when computing the inflation rate for the

replicated item indices and without duplicate price quotes.
10The turnover statistics reported in table 2 are unweighted means using product identifiers. Panel A in figure

4 reports turnover rates using our refined product definition, which splits price data at product substitution

flags, splits data following price gaps, and deletes short price spells with less than two observations.
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prices whenever there are missing price quotes for more than one month. This insures that we do

not accidentally lump products together for which the price collector failed to record a product

substitution simply because no prices were recorded in the months prior to the month of price

collection. We are aware that this approach may accidentally split product price observations

that are in fact coming from the same product. According to the theory that we develop

later on, however, accidentally splitting price observations that come from the same product

is innocuous, while lumping price observations together that are in fact coming from different

products would lead to biased estimates.

Our refined product definition leaves the total number of price observations at the item level

unchanged, even if it reduces (potentially artificially) the length of the price spells of individual

products. Since we estimate relative price slopes at the level of the item category, the latter

is largely irrelevant. Table 3 reports descriptive statistics for the 1093 analyzed items in our

baseline sample, in terms of the mean and median of (refined) products per items, price quotes

per item and the length of price spells per (refined) product.

Table 3: Analyzed Expenditure Items and Products (Refined Definition)

Number of Products per Item

Median 925

Mean 1523.5

Number of Price Quotes per Item

Median 14846

Mean 18739

Length of Price Spell per Product (Months)

Median 9

Mean 14.5

3.2 Relative Price Trends over the Product Life

This section presents empirical evidence on the behavior of relative product prices over the

product lifetime.

Let P̃jzt denote the nominal (not-quality-adjusted) price of product j in expenditure category

z at time t and let Pzt denote the expenditure-weighted and quality-adjusted average price of

all products present in item z at time t.11 We are interested in following the relative product

price P̃jzt/Pzt over the lifetime of product j. To this end, we consider linear panel regressions

11See appendix F.3 for details on how Pzt is computed in the data.
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of the form

ln
P̃jzt
Pzt

= fjz + ln (bz) · sjzt + ujzt, (1)

where fjz is a product and item-specific intercept term, sjzt the in-sample age of the product

(normalized to zero at the date of product entry), and ujzt a mean zero residual potentially

displaying serial and cross-sectional dependence. The coefficient of interest is the slope coeffi-

cient bz, which measures the average growth rate of the relative product price over the product

lifetime in item z. Since regression (1) includes a product-specific intercept (fjz), the coefficient

of interest (bz) remains unaltered when using the quality-adjusted product price Pjzt instead of

the non-adjusted price P̃jzt in the numerator on the left-hand side.12

If the set of products were constant over time, i.e., in the absence of product entry and exit,

we would have bz = 1, as not all products can simultaneously become cheaper or more expensive

relative to each other with product age.13 However, with product turnover, the price of each

product relative to the price of existing products can rise or fall over time because the existing

set of products keeps changing over time. This is the case, for instance, when products enter

at a high price and leave at a low price, in a way that the average price in the cross-section of

products remains constant over time. Each product’s relative price is then falling with product

age.

We consider only linear trends in product age in equation (1) for two important reasons.

First, we observe only a censored measure of true product age: we see the in-sample age of

a product but not its true age. This distinction is relevant because products enter the ONS

basket with a considerable time delay, i.e., months or sometimes even years after their market

introduction. The extent of the time delay is also likely going to vary across products and

items, which makes it impossible to identify any non-linear age effects without observing the

true product age. This said, Argente, Lee and Moreira (2018) show - using scanner retail

data for the United States, which allow observing the precise time of product introduction -

that prices decline at a rate that is very close to being linear (see figure D.2 in their online

appendix).14 Second, the linear specification will have a direct structural interpretation that is

relevant for determining the optimal inflation target in the sticky price model that we introduce

later on.

We estimate the slope coefficient bz by running the fixed-effect panel regression (1) for

each of the more than one thousand expenditure items in our baseline sample, treating the

12This is so because product quality is constant over the product lifetime, given our refined product definition.

We use the not-quality-adjusted price because this allows for some further interpretation of the intercepts fjz

in the next section.
13For the case without product turnover, our theoretical model in fact predicts bz = 1.
14Argente, Lee and Moreira (2018) show this to be robust to considering products with alternative durability

or product with alternative duration in the market, see their online appendices D.4 and D7.
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Figure 2: Distribution of Estimated Slope Coefficients Across Items from Equation (1)
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intercept fjz as unobserved components.15 Figure 2 displays the distribution of estimated slope

coefficients, weighting coefficients by their average expenditure weight in the sample.16 To

facilitate interpretation, figure 2 reports the estimated bz coefficients in terms of annualized net

growth rates in percent (100((bz)
12 − 1)).

The distribution of estimated coefficients in figure 2 reveals that the age trend is negative for

the vast majority of expenditure items. This shows that relative product prices tend to decline

with product age, so that new products tend to be initially expensive, but become cheaper

over their lifetime (in relative terms). Figure 2 also shows that there is pronounced item-level

heterogeneity in the rate at which relative prices tend to decline over the product life. Most

15We also estimated equation (1) using a random effects estimator. This delivers very similar results. Using

a first-difference specification, estimation results turn out to be less robust, especially with respect to the

treatment of sales prices. This is so because the first-difference estimator effectively estimates the slope bz

using only the first and last price observation of each product. These observations are with higher than average

likelihood sales prices.
16We average by first computing for each item the average weight over the sample period (1996-2016) and

then rescale the item weights such that they sum to unity across items. The unweighted distribution looks very

similar to the weighted one shown in figure 2.
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weight of the estimated distribution falls into the range between minus five and zero percent

per year, whereas the more extreme parts of the distribution, below minus five and above zero,

receive considerably smaller weight.

Table 4 presents information on the tails of the relative price trend distribution. It lists

the 15 items with the most positive and most negative relative price trends that have at least

an expenditure weight of 0.15%. The table shows that the largest rates of price declines are

recorded for products that display a certain news value, i.e., fashion and entertainment products,

as well as consumer electronics. For most of the items displaying positive relative price trends,

the relative price increase remains well below 1% per year. The most positive relative price

trend is observed for a luxury product.

Table 5 aggregates item-level price trends to the level of so-called ONS product divisions,

using item-level expenditure weights for the year 2016. The table shows that the weighted

average rate of relative price changes over the product lifetime is negative in all product divi-

sions. Yet, even for this relatively high level of aggregation, there exists a considerable amount

of heterogeneity in the rates of relative price decline: the observed rates range from close to

zero to almost minus ten percent per year. While 8 out of the 11 reported rates fall into the

range between minus two and zero percent, there are two outstanding divisions, ‘Clothing &

Footwear’ and ’Recreation & Culture’, which both display a strong rate of price decline and a

high expenditure weight.

Estimating equation (1) using nominal prices (ln P̃jzt) instead of relative prices (ln P̃jzt/Pzt)

as left-hand side variable, we also find more mixed evidence regarding the sign of price trends, in

line with evidence by Melser and Syed (2016) for U.S. supermarket products. This is illustrated

in figure 3, which depicts the coefficient estimates obtained from both regressions. With nominal

prices, the coefficient distribution is shifted to the right and also more dispersed. The rightward-

shift of the (expenditure-weighted) mean of the distribution by approximately 2.3% largely

reflects aggregate inflation, which averaged almost 2% over the sample period. The increase in

the dispersion of the distribution shows that there is considerable heterogeneity in (same-good)

inflation rates across expenditure items17, in addition to the heterogeneity in relative price

trends documented above. Our theoretical model will be able to capture both of these data

features. Yet, only heterogeneity in relative price trends will turn out to be relevant for the

optimal inflation target.

3.3 Additional Dimensions of Heterogeneity

Besides heterogeneity in relative price trends, the U.K. price data features important hetero-

geneity along a number of other dimensions. Part of this heterogeneity is already well-known,

17Bils (2009) decomposes inflation at the item level into inflation from existing goods and inflation from the

entry and exit of goods. Following Bils (2009), we refer to the former as same-good inflation.
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Table 4: Top and Bottom Rates of Relative Price Change

Item Description Relative Price Change Exp. Weight

(in % per year) (in %)

Relative Price Increase

HIFI - 2007 3.28 0.15

WIDESCREEN TV - 2005 2.55 0.31

CAMCORDER-8MM OR VHS-C 2.34 0.16

WASHING MACHINE - 2008 1.82 0.16

WASHING MACH NO DRYER MAX 1800 1.48 0.17

LEISURE CENTRE ANNUAL MSHIP 1.34 0.16

COOKED HAM PREPACKED/SLICED 0.84 0.17

PRIV RENTD UNFURNISHD PROPERTY 0.41 1.02

AUTOMATIC WASHING MACHINE 2009 0.35 0.16

MILK SEMI-PER 2 PINTS/1.136 L 0.34 0.26

CIGARETTES 5 0.33 0.25

VEGETARIAN MAIN COURSE 0.24 0.17

DOMESTIC CLEANER HOURLY RATE 0.22 0.23

HOME REMOVAL- 1 VAN 0.17 0.18

STAFF RESTAURANT SANDWICH 0.17 0.20

Relative Price Decline

NEWSPAPER AD NON TRADE 20 WORD -3.66 0.19

COFFEE TABLE -2 -3.68 0.16

FLAT PANEL TV 33” + -3.84 0.16

KITCHEN WALL UNIT SELF ASSMBLY -3.94 0.16

FLAT PANEL TV 26” - 42” -4.26 0.29

WIDESCREEN TV (24-32 INCH) -4.50 0.19

AUTOMATIC WASHING MACHINE -4.76 0.18

WOMENS TROUSERS-FORMAL -7.12 0.17

MENS SHOES TRAINERS -7.84 0.18

PRE-RECORDED DVD TOP 20 -8.14 0.23

WOMENS SUIT -8.95 0.17

LADYS SCARF -20.19 0.17

COMPUTER GAME TOP 20 CHART -21.69 0.31

WOMENS DRESS-CASUAL 1 -25.55 0.17

PRE-RECORDED DVD (FILM) -35.03 0.16

Notes: The table reports the fifteen top and bottom rates of relative price change for items with expenditure

weight greater than 0.15%. Weights are average expenditure weights for the full sample period.
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Table 5: Relative Price Changes over the Product Lifetime for ONS Divisions

Division Description Relative Price Exp. Weight Number

Trend in 2016 of Items

(in % per year) (in %) (full sample)

Food & Non-Alcoholic Beverages -1.00 18.07 282

Alcoholic Beverages & Tobacco -0.41 8.03 66

Clothing & Footwear -9.36 11.92 149

Housing, Water, Electricity & Gas -0.83 0.75 38

Furniture, Equipment & Maintenance -1.67 9.98 146

Health -0.73 3.82 26

Transport -0.79 6.99 41

Communications -6.97 0.11 7

Recreation & Culture -3.98 9.44 157

Restaurants & Hotels -0.36 18.82 79

Miscellaneous Goods & Services -1.68 12.54 90

Notes: The number of items does not sum to 1093 because not all items are assigned to a division.

other parts are new. This section briefly outlines the key dimensions that we incorporate into

our theoretical model in the next section.

Panel A in figure 4 presents the item-level distribution of product turnover rates.18 Turnover

is defined as the unweighted average of the product entry and exit rates.19 The median monthly

turnover rate is 4.8% and thus fairly high. This partly reflects our refined product definition,

which treats two or more missing price quotes as product exit events. More importantly, panel A

shows that there is a lot of dispersion in turnover rates across items: the cross-sectional standard

deviation of turnover is 5.5%. Our theoretical model will, therefore, allow for heterogeneity in

product turnover rates.

It is important to note that the data not only features turnover of products, but also

turnover of expenditure items. Certain items become obsolete over time (e.g., CD players) and

are replaced by new items (e.g. flash drive devices). Yet, relative to the high turnover rates at

the product level, item turnover is a relatively slow process. On average only about 0.5% of

items are being replaced in any given month, which is about one tenth of the product turnover

rate.

Panel B in figure 4 reports the monthly price change frequencies across expenditure items.

18The distributions in panels A-C of figure 4 are expenditure-weighed in the same way as in figure 2, see

footnote 16. Unweighted distributions look very similar, except for Panel C, which in unweighted terms does

not have the large spike on the left-hand side of the distribution. Panel D shows the (unweighted) distribution

of expenditure weights.
19Product entry and exit rates have similar levels and are highly correlated across items.
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Figure 3: Distribution of Age Trend Coefficients from Regression 1) with Relative Prices

(ln P̃jzt/Pzt) and Nominal Prices (ln P̃jzt) as l.h.s. Variable.
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The median frequency is 12.6% and the standard deviation across items is 13.6%. These

numbers include temporary price changes such as sales or discounts. Nakamura and Steinsson

(2008) show that excluding temporary price changes reduces the frequency of price changes

considerably. In fact, when we exclude price quotes that ONS flags as sales prices, the median

frequency drops to 7.8%. Overall, we find price change statistics that are very similar to the

ones reported in Kryvtsov and Vincent (2017).20 Given the large amount of heterogeneity

documented in panel B, our model will allow for heterogeneous degrees of price rigidity across

items.

Panel C in figure 4 reports the weighted distribution of the standard deviation of the item-

level intercept term fjz from regression (1). It shows that items differ vastly in terms of the

dispersion of relative price intercepts. The dispersion reflects differences along two important

dimension within each item: quality differences and productivity differences, both of which

20They consider ONS micro price data for a slightly shorter sample period (February 1996 to September 2013)

and report the weighted mean of price changes frequencies to be equal to 15.8% including price sales price (we

find 16.9% for our sample) and equal to 13.2% excluding sales prices (we find 12.5% for our sample).
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Figure 4: Distribution of Various Variables across Items
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B. Monthly Frequency of Price Changes
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increase intercept dispersion.21 In fact, the big spike of around 6% on the left-hand side of

the distribution shown in panel C is due to cigarettes (various types) and gasoline (petrol and

diesel). Both of these items have a high expenditure weight (around 3% each), but also -

due to low degrees of quality and productivity differences - very homogeneous prices. Overall,

panel C reveals that for many items, intercept dispersion and thus productivity and/or quality

dispersion is very large in the cross section of products. In light of this finding, our model will

allow for idiosyncratic productivity and quality differences across products within each item.

Panel D in figure 4 displays the distribution of expenditure weights across items, which is

the distribution that has been used to compute the weighted distributions in the other panels

of the figure. Panel D shows that most items have an expenditure weight around one tenth

21Mark-up dispersion also generates intercept dispersion. Since we do not observe information on production

costs and thus mark-ups, we abstract from this dimension of heterogeneity.
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of a percent, but that there is a relatively long right tail to the distribution. To reflect this

dimension of heterogeneity, our model will allow for different expenditure weights across items,

see the next section.

4 Sticky Price Model with a Product Life Cycle

This section introduces a sticky price model featuring a product life cycle. The model con-

tains a range of new elements that allow capturing the key dimensions of product and price

heterogeneity documented in section 3. In particular, it features multiple expenditure items,

each of which is populated by a continuum of heterogeneous products. Expenditure items are

allowed to have different degrees of price stickiness and different product-entry and exit rates.

The model also allows for heterogeneity in productivity and quality trends across items, which

is key for being able to capture the heterogeneity in relative price trends documented before.

Finally, the model allows for idiosyncratic elements in product quality and productivity, which

allows capturing the large and heterogeneous amounts of dispersion in relative prices observed

in the data. The setup in this section non-trivially generalizes the one studied in Adam and

Weber (2019), which does not feature heterogeneity along any of these dimensions.

The next sections present the model, derive the steady state of the economy and a closed-

form expression for the optimal steady-state inflation rate.

4.1 Demand Side and Production Side

The demand side of the model is standard and consists of a representative consumer with

balanced-growth consistent preferences over an aggregate consumption good Ct and hours

worked Lt, described by

E0

∞∑
t=0

βt

(
[CtV (Lt)]

1−σ − 1

1− σ

)
, (2)

where β ∈ (0, 1) is a discount factor and σ > 0.22 The household faces the flow budget

constraint

Ct +Kt+1 +
Bt

Pt
= (rt + 1− d)Kt +

WtLt
Pt

+
Bt−1

Pt
(1 + it−1)− T̃t, (3)

where Kt+1 denotes the capital stock, Bt nominal government bond holdings, Pt the nominal

price of the aggregate consumption good, it−1 the nominal interest rate, Wt the nominal wage

rate, rt the real rental rate of capital, d the depreciation rate of capital, and T̃t a summary

variable that contains lump sum taxes and firm profits, which the household takes as given.

Household borrowing is subject to a no-Ponzi scheme constraint. The first-order conditions

22We assume σ > 0 and that V (·) is such that period utility is strictly concave in (Ct, Lt) and that Inada

conditions are satisfied. We also assume that V (·) is such that the steady state amount of labor is positive.
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characterizing optimal household behavior are standard and derived in appendix A.1. To insure

that utility remains bounded, we assume

β (γe)1−σ < 1,

where γe ≥ 1 denotes the steady-state growth rate of the aggregate economy under balanced

growth, as defined in equation (29) below.

The aggregate consumption good Ct is made up of Zt different consumption items (in the

language of the ONS). A consumption item is a product category, e.g., ”Flatscreen TV, 30-inch

display” or ”CD-player, portable”, which itself contains a range of individual products. Letting

Czt (z = 1, ..., Zt) denote consumption of item z in period t, we have

Ct =
Zt∏
z=1

(Czt)
ψzt , (4)

where ψzt ≥ 0 denotes the expenditure weight for item z at time t and
∑Zt

z=1 ψzt = 1. We

allow the set of items Zt and the expenditure weights ψzt to be time-varying, so as to capture

the fact that ONS regularly drops and adds items to its consumption basket and adjusts the

expenditure weights over time.23

For simplicity, we interpret item entry and exit or changing expenditure weights for items

as simply being due to changing consumer tastes. Obviously, item substitution could be due to

a variety of other factors, such as increased competition from a different item, e.g., flash-drive

devices becoming increasingly competitive relative to portable CD players and thus leading to

the exit of the latter. We refrain from explicitly modeling competition across items, instead

take changes in the item structure as exogenous. In the U.K. data, the item structure changes

only slowly over time, with on average 0.5% of items leaving the sample every month.

Every item contains a large number of differentiated products. To capture this fact, item

level consumption Czt is a Dixit-Stiglitz aggregate of individual products j ∈ [0, 1], so that

Czt =

(∫ 1

0

(
QjztC̃jzt

) θ−1
θ

dj

) θ
θ−1

, (5)

where C̃jzt denotes the consumed physical units of product j in item z in period t, Qjzt the qual-

ity level of the product and θ > 1 the elasticity of substitution between products. We consider

a constant product variety over time, simply because our data does not offer any information

about variety trends.24 The aggregation assumes that consumption goods with higher product

quality deliver proportionately higher consumption services relative to consumption goods with

23We assume Zt to be a stationary stochastic process that assumes an integer value Z > 0 in the steady state.
24The number of products sampled by ONS at the item level is not a function of true underlying product

variety, instead governed by the desire to minimize measurement error. Product inclusion decisions thus reflect

the variability of underlying product prices and by the item’s expenditure weight, see chapter 4 in ONS (2014).
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a lower quality level. This a standard approach for modeling the quality content of goods, see

Schmitt-Grohé and Uribe (2012).

In equilibrium, the quantity of products C̃jzt consumed must be equal to the quantity Ỹjzt

produced, net of the quantity invested. Individual products are produced using a Cobb-Douglas

production function

Ỹjzt = AztGjzt (Kjzt)
1− 1

φ (Ljzt)
1
φ , (6)

where Azt denotes the level of productivity common to all producers of products in item z and

Gjzt a product-specific productivity factor that captures idiosyncratic productivity components,

as well as productivity dynamics associated with experience accumulation in the manufacturing

of the product. The variables Kjzt and Ljzt, respectively, denote the capital and labor inputs

into production.

In line with the evidence in micro price data, there will be constant churning of products

j at the level of each expenditure item z. In the U.K. data, product entry and exit is -

unlike the entry and exit of expenditure items z - a fast moving process, see section 3.3. In

practice, product turnover may take place for a variety of reasons: (1) consumers may simply

no longer demand a specific product and demand other products instead, (2) the producers

of a particular product may receive a sufficiently negative productivity shock that causes the

product to become uncompetitive and being replaced by a new product, or (3) a newly available

product is in quality-adjusted terms simply more attractive. Whatever is the precise cause for

product turnover, we assume that it can be described by an product-specific, idiosyncratic and

exogenous Poisson process with arrival rate δz ∈ (0, 1). We thus assume that monetary policy

does not affect the product turnover dynamics.

For simplicity, we assign to the newly entering product the same product index j as to the

exiting product. Let sjzt denote the age of product j in item z at time t, with sjzt = 0 in the

period of entry. Given this definition, the time t− sjzt denotes - at any period t - the date at

which product j entered into the economy.

We now describe how the productivity processes (Gjzt, Azt) and the quality processes (Qjzt)

evolve over time. Product-specific productivity Gjzt is given by

Gjzt = Gjzt · εGjzt, (7)

where Gjzt denotes an experience-related productivity component for product j and εGjzt an

idiosyncratic product-specific relative productivity component. The latter is independently

drawn at the time of product entry from some distribution ΞG
z , that is

εGjzt ∼ ΞG
z , (8)

with εGjzt > 0 and E[(εGjzt)
θ−1] = 1, and remains constant over the lifetime of the product.

We incorporate product-specific relative productivities (εGjzt), so that the model can replicate
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the standard-deviation of product fixed effects, as well as its heterogeneity across items, as

documented in figure 4.25 The experience-related productivity component Gjzt evolves over

time according to

Gjzt =

{
1 for sjzt = 0,

gztGjz,t−1 otherwise,
(9)

with

gzt = gzε
g
zt, (10)

where gz ≥ 1 denotes the average growth rate of this productivity component and captures

the average rate of experience accumulation in the production of products in item z. The

disturbance εgzt is an arbitrary stationary process satisfying E ln εgzt = 0. Heterogeneity in the

experience growth rates gz allows the model to match different rates of relative price decline

across items, as present in figure 2.

The common item-level of productivity Azt evolves according to

Azt = aztAzt−1

azt = azε
a
zt,

where az ≥ 1 denotes the average productivity growth rate and εazt is an arbitrary stationary

processes satisfying E ln εazt = 0. While accumulated experience Gjzt associated with product j

in item z is lost upon exit of the product, the growth rate in the common productivity level Azt

allows for permanent productivity gains in item z. Heterogeneity in the productivity growth

rates az thus allows the model to account for relative price trends across items, e.g., the decline

of the price of products relative to the price of services, as emphasized in Wolman (2011). The

item-level growth trends az also allow to generate a disconnect between item-level productivity

growth, which is affected by az, and item-level relative price trends, which remain unaffected

by az.

It now remains to describe the process determining product quality (Qjzt). We assume

that the product-specific quality level Qjzt remains constant over the product lifetime, but that

quality can change upon product substitution.26 The quality level of products j entering in

period t is given by

Qjzt = Qzt · εQjzt, (11)

where εQjzt captures an idiosyncratic product-specific relative quality component and Qzt a

common item-level quality component. The idiosyncratic component is an independent draw

25Since the standard deviation of products fixed effects in figure 4 may alternatively be generated by idiosyn-

cratic product-specific relative quality components, we shall also introduce such components in equation (11)

below. We do not want to take a stance on whether the observed dispersion of product fixed effects in figure 4

is generated by product-specific quality or productivity.
26In model and in the data, we interpret a new quality level of the same product as being a new product.

Since we assign the same index j to the exiting and newly entering product, Qjzt must have a time subscript.
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from some distribution ΞQ
z , that is

εQjzt ∼ ΞQ
z ,

with εQjzt > 0 and E[(εQjzt)
θ−1] = 1, and remains constant over time.27 The common quality

component evolves according to

Qzt = qztQzt−1 (12)

qzt = qzε
q
zt, (13)

where qz ≥ 1 denotes the average quality progress in item z and εqzt a random component of

quality growth, which is an arbitrary stationary process satisfying E ln εqzt = 0. Heterogeneity

in average quality growth (qz) allows the model to generate different rates of relative price

increase over the product lifetime.28 Figure 2 shows that a few items in fact display upward

trends in relative prices.

Since the quality of a product remains constant over its lifetime, we have

Qjzt = Qjzt−sjzt for all (j, z, t) ,

where sjzt denotes the age of product j in item z at time t.

Let P̃jzt denote the price at which one unit of output Ỹjzt is sold at time t. The price P̃jzt will

be set by the producer optimally subject to price-adjustment frictions. The quality-adjusted

price of the product is defined as

Pjzt =
P̃jzt
Qjzt

, (14)

and the quality-adjusted price level for item z as

Pzt =

∫ 1

0

(
P̃jzt
Qjzt

)1−θ

dj

 1
1−θ

. (15)

Aggregation across items z delivers the quality-adjusted overall price level

Pt =
∏Zt

z=1

(
Pzt
ψzt

)ψzt
. (16)

The optimal inflation rate will be defined in terms of this (perfectly) quality-adjusted price

level, i.e., inflation is defined as

Πt =
Pt
Pt−1

. (17)

27Footnote 25 explains why we introduce idiosyncratic product-specific relative quality.
28Increases in relative prices over the product life cannot be generated by experience productivity (gz ≥ 1).

Experience accumulation can only cause relative prices to decrease over the product life. This does not rule

out that any observed relative price increase/decrease in the data reflects the combinded effect of experience

accumulation (gz) and quality progress (qz) at the same time. Our model and the empirical anaylsis allows for

this.
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We show in section 8 that our results are robust to the presence of imperfect quality adjustment.

Optimal product demand by consumers and market clearing implies that product demand

satisfies

Yjzt = Yzt

(
Pjzt
Pzt

)−θ
(18)

Yzt = ψzt

(
Pzt
Pt

)−1

Yt (19)

where

Yjzt ≡ QjztỸjzt (20)

denotes output in constant quality units.

4.2 Optimal Price Setting

We now consider the producers’ price setting problem. We assume that the price of a product

can be chosen freely at the time of product entry, but that price adjustments at the product

level are subsequently subject to Calvo-type adjustment frictions.

Let αz ∈ [0, 1) denote the time-invariant idiosyncratic probability that the price of some

product j in item z can not be adjusted in any given period.29 Since product quality is constant

over the product lifetime (new qualities are treated as new products), we let producers directly

choose the quality-adjusted product price Pjzt. Let Wt denote the nominal wage and rt the real

rental rate of capital. The factor input mix (Kjzt, Ljzt) is then chosen to minimize production

costs KjztPtrt + LjztWt subject to the constraint imposed by the production function (6).

From standard cost minimization follows, see appendix A.2, that the nominal marginal costs

(normalized by productivity and quality) are given by

MCt =

(
Wt

1/φ

) 1
φ
(

Ptrt
1− 1/φ

)1− 1
φ

. (21)

We can then express the price-setting problem for product j in a price-adjustment period t as

follows:

max
Pjzt

Et

∞∑
i=0

(αz(1− δz))i
Ωt,t+i

Pt+i

[
(1 + τ)PjztYjzt+i −

MCt+i
Azt+iQjzt+iGjzt+i

Yjzt+i

]
(22)

s.t. Yjzt+i = ψzt

(
Pjzt
Pzt+i

)−θ (
Pzt+i
Pt+i

)−1

Yt+i,

where MCt+i/ (Azt+iQjzt+iGjzt+i) denotes the effective nominal marginal costs when productiv-

ity is Azt+iGjzt+i and product quality equal to Qjzt, which is constant over the product lifetime.

29We abstract here from the possibility that firms can charge temporary prices or sales prices. We discuss

this feature in our robustness section 10.2.
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The variable Ωt,t+i denotes the representative household’s discount factor between periods t and

t+ i, and τ denotes a sales subsidy (tax) if τ > 0 (τ < 0). We assume

−1 < τ ≤ 1/(θ − 1), (23)

so that the sales subsidy cannot be higher than what is required to eliminate the monopoly

distortion in the flexible price equilibrium.

The first constraint in problem (22) captures the firm’s technology (6); the second constraint

captures consumers’ optimal product demand functions (18)-(19). Appendix A.3 shows that

the optimal price P ?
jzt satisfies

P ?
jzt

Pt

(
QjztGjzt

Qzt

)
=

(
θ

θ − 1

1

1 + τ

)
Nzt

Dzt

, (24)

where the item-level variables Nzt and Dzt are independent of the firm index j and defined in the

appendix. The previous equation shows that the optimal relative reset price of a firm (P ?
jzt/Pt)

depends only on item-level variables (Nzt/Dzt) and on how its own productivity (AztQjztGjzt)

relates to the average productivity of newly entering products (AztQzt), where productivity is

measured in quality-adjusted terms. In appendix A.4 we use this insight to derive a recursive

representation for the evolution of the quality-adjusted item price level Pzt.

5 Characterizing the Steady State Outcome

This section presents the key equations determining the economy’s deterministic balanced

growth path equilibrium.30 We obtain these equations by aggregating the nonlinear sticky

price model in closed form and by detrending variables by their respective balanced growth

path trends. The derivations are quite involved and are performed in appendices A, B, C and

D. Nevertheless, the resulting equilibrium equations are intuitively accessible and reveal how

mark-up distortions and relative price distortions across expenditure items move the economy

away from its first-best allocation. They also reveal how the aggregate inflation rate affects

these distortions.

We start by defining the steady state as a situation without aggregate shocks and without

item turnover, in which idiosyncratic shocks continue to operate:

Definition 1 A steady state is a situation with a fixed set of items Zt = Z, constant expenditure

weights ψzt = ψz, no aggregate item-level disturbances (gzt = gz, qzt = qz, azt = az ), and

30The equilibrium definition is entirely standard. It requires firms to maximize profits, the representative

household to maximize utility and market clearing. The government passively adjusts lump-sum taxed to

balance the government budget, keeping the real value of government bonds constant in detrended terms.
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a constant (but potentially suboptimal) inflation rate Π. The following idiosyncratic shocks

continue to operate in the steady state: product entry and exit shocks, shocks to price adjustment

opportunities, and product-specific shocks to quality and productivity that realize at the time of

product entry.

Appendix D shows how aggregate inflation Π, the detrended values of aggregate output y,

consumption c and capital k, and hours worked L satisfy the following four simple equations:31

y =

(
ρ(Π)

∆e

)(
k1− 1

φL
1
φ

)
(25)

c

(
−∂V (L)/∂L

V (L)

)
=

1

µ(Π)

1

∆e

(
k

L

)1− 1
φ
(

1

φ

)
(26)

1

β (γe)−σ
− 1 + d =

1

µ(Π)

1

∆e

(
k

L

)− 1
φ
(

1− 1

φ

)
(27)

y = c+ (γe − 1 + d)k. (28)

Equation (25) is the aggregate production function that determines output as a function of the

aggregate capital and labor inputs. The variable ∆e is a productivity parameter that captures

the (detrended) steady state distribution of productivities and qualities across products and

item categories.32 The term ρ(Π) ≤ 1 captures the distortions that arise from inefficient

relative price distortions, as defined in detail below.33 The size of these distortions depends on

the inflation rate, except in the special case with flexible prices, where we have ρ(Π) = 1 for

all Π.

Equation (26) equates the marginal rate of substitution between consumption and work

on the l.h.s. to the marginal rate of transformation on the r.h.s. of the equation. The lat-

ter is multiplied by the aggregate mark-up distortion 1/µ(Π), as defined further below. The

mark-up distortion depends on the degree of monopolistic competition, the level of output sub-

sidies/taxes and the inflation rate. Again, in the special case with flexible prices, the mark-up

distortion is independent of the inflation rate.

Equation (27) determines the optimal capital-to-labor ratio: it equates the marginal product

of capital on the r.h.s., again adjusted for potential mark-up-distortions, to the sum of the

steady-state real interest rate (1/β (γe)−σ−1) and the capital depreciation rate (d) on the l.h.s.

The parameter

γe ≡
Z∏
z=1

(azqz)
ψzφ ≥ 1 (29)

denotes the steady-state growth rate of quality-adjusted aggregate output y and affects (via

consumption growth) the steady-state real interest rate.

31The existence conditions for a steady state are discussed in appendix D.3.
32See appendix B for a definition.
33Price dispersion that reflects differences in productivity or product quality is efficient.
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Finally, equation (28) is the resource constraint, which says that output is consumed and

invested to keep the capital stock constant in detrended terms.

The aggregate mark-up distortion µ(Π) is an expenditure-weighted average of the item-level

mark-up distortions µz(Π) and given by

µ(Π) =
Z∏
z=1

µz(Π)ψz , (30)

where the item-level distortions are given by

µz(Π) ≡
(

1

1 + τ

θ

θ − 1

)
Mz

(
1− αz(1− δz)β(γe)1−σ[(γe/γez) Π]θ−1

1− αz(1− δz)β(γe)1−σ[(γe/γez) Π]θ(gz/qz)−1

)
, (31)

for all z = 1, . . . Z, with

Mz ≡
(

1− αz(1− δz)[(γe/γez) Π]θ−1

1− αz(1− δz)(gz/qz)θ−1

) 1
θ−1

,

and

γez ≡ (azqz)(γ
e)1− 1

φ .

The relative price distortion ρ(Π) is given by

(ρ(Π)µ(Π))−1 =
Z∑
z=1

ψz(µz(Π)ρz(Π))−1, (32)

where for all z = 1, . . . Z the item-level relative price distortions ρz(Π) are given by

ρz(Π)−1 = M θ
z

(
1− αz(1− δz)(gz/qz)θ−1

1− αz(1− δz)[(γe/γez) Π]θ(gz/qz)−1

)
. (33)

As is easy to see, for the limiting case without price stickiness (αz → 0 for all z), we have

µ =

(
1

1 + τ

θ

θ − 1

)
ρ = 1,

independently of Π. This shows that the flexible price equilibrium is efficient, whenever the

output subsidy τ is such that it eliminates the monopoly distortion (τ = 1/(θ − 1), so that

µ = 1). This mirrors results of standard New Keynesian models that do not feature product

heterogeneity and a product life cycle.

For the general case with price stickiness and suboptimal output subsidies, there exists

a trade-off between reducing mark-up distortions and reducing relative price distortions. In

particular, the steady-state inflation rate that minimizes the mark-up distortion, i.e., moves

1/µ(Π) closest to one, is generally different from the steady-state inflation rate that minimizes

the effects of relative price distortions, i.e., moves ρ(Π) closest to one. While this difference is

25



quantitatively small for fully calibrated versions of the model, the trade-off between minimizing

mark-up and relative-price distortion considerably complicates further analytical derivations.

We shall thus consider a limiting case in which mark-up distortions are proportional to relative

price distortions:34

Lemma 1 Consider a steady state with a potentially suboptimal inflation rate Π. For the

limiting case β (γe)1−σ → 1, we have

µ(Π) =

(
1

1 + τ

θ

θ − 1

)
1

ρ(Π)
.

The proportionality between mark-up distortions, µ(Π), and relative price distortions,

1/ρ(Π), implies that both distortions are minimized by the same inflation rate.35 We derive

the distortion-minimizing optimal inflation rate in the subsequent section.

6 The Optimal Inflation Target: Theory

We now present our main theoretical result about the optimal inflation target. We define the

optimal target as the inflation rate that maximizes steady state utility. The idea underlying this

approach is that economic shocks generate only temporary deviations of the optimal inflation

rate from its steady-state value, so that the average inflation rate that a welfare-maximizing

central bank should target is in fact the optimal steady-state inflation rate.36 The following

proposition states our main result:

Proposition 1 Consider an arbitrary output subsidy/tax satisfying (23) and the limit β(γe)1−σ →
1. The welfare maximizing steady-state inflation rate Π? is given by

Π? =
Z∑
z=1

ωz
γez
γe
gz
qz
, (34)

where γez is the output growth rate of item z and γe the aggregate growth rate, with

γez
γe

=
azqz∏Z

z=1 (azqz)ψz
.

The item weights ωz ≥ 0 are given by

ωz ≡
ω̃z∑Z
z=1 ω̃z

,

34See appendix E.1 for the proof of lemma 1.
35Note that this holds true independently of the level of the output subsidy τ .
36This holds true to a first-order approximation in the aggregate shocks. Nonlinear terms can cause the time

average of the optimal stochastic inflation rate to differ from its steady-state value, but such terms tend to be

quantitatively small in sticky-price models, as long as the lower bound on nominal rates is not binding.
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with

ω̃z ≡
ψzθαz(1− δz)(γe/γez)θ(Π?)θ(qz/gz)

[1− αz(1− δz)(γe/γez)θ(Π?)θ(qz/gz)] [1− αz(1− δz)(γe/γez)θ−1(Π?)θ−1]
.

The proof of the proposition is contained in appendix E.2. It shows that the steady-state

amount of labor (L) does not depend on the inflation target (Π), so that the target is opti-

mally chosen to maximize steady-state consumption. Consumption is shown to depend on the

inflation target only via the aggregate markup distortion (which is proportional to the relative-

price distortion under the maintained assumptions). The inflation rate minimizing the markup

distortion and maximizing consumption is the one stated in the proposition.

Equation (34) shows that the optimal inflation target is a doubly-weighted average of the

item-level terms gz/qz. To interpret this finding, we start by discussing the role of the item-level

terms gz/qz. Thereafter, we assess the role of the two weights ωz and γez/γ
e.

Items with gz > qz generate a force towards positive inflation (Π∗ > 1), while items with

gz < qz generate a force towards deflation (Π∗ < 1). To understand why this the case, abstract

for a moment from quality progress (qz = 1) and suppose gz > 1. Productivity then increases

with the lifetime of the product, so that old products should become increasingly cheaper

relative to newly entering products. In the presence of price setting frictions, this relative

price decline of old products is best implemented by having new products charge higher prices,

i.e., by positive amounts of inflation, rather than by having old products continuously adjust

prices downward. This is so because price cuts cannot be synchronized across firms due to

Calvo frictions and thereby give rise to inefficient price dispersion.37 Now consider the polar

case without age-dependent productivity (gz = 1) and positive quality progress (qz > 1). New

products can then be produced at increasingly higher quality, without having to use more

inputs into their production. New products should thus become cheaper (in quality-adjusted

terms), relative to old products. Again, in the presence of price setting frictions, this is best

achieved by having new products charge lower prices, i.e., via deflation, rather than by having

old product increase prices.

The proof of the proposition implies that the item-level term gz/qz captures the value of

the inflation target that eliminates inefficient price dispersion in item z. To the extent that

gz/qz varies across items, the optimal inflation rate must thus trade-off between the distortions

across different items. The optimal resolution of this trade-off is captured by the item weights

γez/γz and ωz.

37With menu cost frictions, continous price cuts would be equally undesirable because price adjustment is

costly.
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The first set of weights, γez/γz, captures the (quality-adjusted) output growth in item z

relative to the growth rate of the aggregate economy. This leads to an overweighting of items

with fast output growth and an underweighting of items with slow growth.

The second set of weights, ωz, are nonlinear functions of item-level fundamentals, i.e., the

expenditure weight ψz, the product turnover rate δz, the price stickiness αz, and the demand

elasticity θ. The weights also depend on the item-level terms qz/gz and on the optimal inflation

rate Π∗ itself. Admittedly, the dependence on Π∗ makes it hard to interpret the item weights

ωz. Yet, for the special case where an item features no price stickiness (αz = 0), the optimal

item weight is zero (ωz = 0). This is in line with the insights provided in Aoki (2001). Similarly,

with only a single item (Z = 1) and thus no trade-off between items, all weights are equal to

one, so that we obtain Π? = g1/q1. This is the special case with a single relative price trend

considered in Adam and Weber (2019).

7 Optimal Inflation Target: Empirical Approach

This section explains how one can estimate the optimal inflation target using micro price data.

Perhaps not surprisingly, a fully-fledged estimation based on the nonlinear analytic expression

in proposition 1 is challenging, because this requires empirically identifying a large range of

structural parameters in a model-consistent way.38 We proceed by considering a first-order

approximation to the optimal inflation rate in proposition 1. We then show how one can

empirically identify all elements that matter for inflation to first order using official micro price

data only. We leave the quantification of the effects of higher-order terms to future research.

The lemma below shows - rather surprisingly - that only very few dimensions of heterogeneity

matter for the inflation target to first order:

Lemma 2 The optimal steady-state inflation rate is equal to

Π∗ =
Z∑
z=1

ψz
γez
γe
gz
qz

+O(2), (35)

where O(2) denotes a second-order approximation error and where the approximation to equa-

tion (34) has been taken around a point, in which gz
qz

γez
γe

and αz(1 − δz)(γe/γez)θ−1 are constant

across item categories z = 1, . . . Z.

Three dimensions of heterogeneity are relevant to first order: heterogeneity in expenditure

weights ψz, heterogeneity in growth rates γez/γ
e and heterogeneity in the item-level terms gz/qz.

38For instance, using empirical price adjustment frequencies to estimate the price rigidity parameters αz, as

is commonly done in the literature, requires assuming that marginal production costs are not constant. The

estimation approach we adopt below does not rely on this assumption.
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The first two dimensions can be readily identified from official micro price data sets. In

particular, the expenditure weights are naturally part of micro price data sets that are used to

compute an aggregate price index. The heterogeneity in growth rates can be identified using

the model-implied relationship γez/γ
e = Π/Πz. We use the sample means for Π and Πz to

estimate γez/γ
e.

Identifying the item-level terms gz/qz is more challenging. A main contribution of the paper

is to derive a model-consistent estimation approach that directly yields estimates of the item-

level terms gz/qz under fairly general conditions. The following proposition states our main

insight:39

Proposition 2 Consider a stochastic sticky price economy with a stationary (and potentially

suboptimal) inflation rate Πt. Let T ?jz denote the set of periods in which the price of product

j in item z can be adjusted and let sjzt denote the product age. The optimal reset price P ?
jzt in

adjustment periods, defined in equation (24), satisfies

ln
P ?
jzt

Pzt
= f ?jz − ln

(
gz
qz

)
· sjzt + u?jzt, for all t ∈ T ?jz, (36)

where the residual satisfies E[u?jzt] = 0.

The proposition shows that the optimal reset price displays an age trend at the rate gz/qz,

which is our parameter of interest. The result applies, whenever there is a strictly positive

rate of product turnover (δz > 0), as assumed, but is otherwise independent of the turnover

rate. For the case without item turnover (δz = 0), the model implies that the age trend is

discontinuously different and equal to zero.40

It may appear surprising that the age-trend coefficient in equation (36) reveals our param-

eter of interest in a setting with sticky prices and potentially suboptimal inflation rates. To

understand why this is the case, we note that with flexible prices (αz = 0), the same relative

price trend would emerge. Specifically, the proof of proposition 2 implies that flexible prices

satisfy

ln
P f
jzt

Pzt
= f fjz − ln

(
gz
qz

)
· sjzt + ufjzt, (37)

for all periods t in which the product is on offer. Price stickiness and suboptimal inflation rates

thus only affect the level of relative reset prices, i.e., the intercept term f ?jz and the residual

u?jzt, but leave the time trend of relative prices invariant. This invariance property is key for

the ability to identify the structural parameters gz/qz. In fact, it implies that the relative price

trends that are present in micro price data are efficient, i.e., reflect economic fundamentals.

39See appendix E.4 for the proof.
40This seeming discontinuity at δz = 0 arises only because steady state considerations also involve taking a

limit, so that one effectively considers a double limit: the limit δz → 0 and additionally the limit distribution

for steady state productivities implied by δz.
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The invariance property of relative price trends is by no means special to the Calvo setting.

It would similarly be present, if price rigidities were driven by menu costs instead. Menu costs

generate inaction bands around the frictionless optimal relative price. If this frictionless price

is trending over time, then reset prices must display the same time trend.41

Equation (36) thus provides a highly tractable approach for empirically identifying gz/qz.
42

This is the case, despite the fact that the true product age sjzt is typically not observed. As is

easily seen, using the number of months since the product has been included into the price data

set as the ‘age’ regressor, instead of the true product age, affects only the estimated intercept

term, but leaves the coefficient of interest multiplying the ‘age’ term unchanged. One can thus

estimate the parameter of interest even without observing true product age.

Since product prices are reset only infrequently in adjustment periods but stay constant

otherwise, the entire price path of a product displays the very same time trend as the reset

prices. We thus have that the entire price path satisfies

ln
Pjzt
Pzt

= fjz − ln

(
gz
qz

)
· sjzt + ujzt, (38)

for some alternative intercept term and a residual that again satisfies E[ujzt] = 0.43 In our

empirical approach, we shall use equation (38) as our baseline equation, which uses all price

observations. We will consider estimates based on the reset prices only, see equation (36), in a

robustness exercise.

Regression (38) is almost the one we have estimated in our empirical section 3. The

only differences are that in section 3 we used the non-quality adjusted relative product price

(ln(P̃jzt/Pzt)) on the left-hand side of equation (1) and that there was a different sign for the

regression coefficient. With product quality being constant across the product lifetime, the

first difference does not affect the estimated age coefficient, as gets absorbed in the estimated

constant; the second difference only implies a trivial sign reversal. The estimates of slope co-

efficients bz displayed in figure 2 thus already reveal the (negative) of the optimal item-level

inflation rates.

8 Imperfect Quality Adjustment

The estimation approach and the underlying theory developed in the previous sections assume

that statistical agencies perfectly adjust prices for quality. This is clearly an idealized assump-

41This assumes - as is standard in menu cost models - that the width of the inaction bands does not itself

display a time trend.
42This is true even though the residual u?jzt can potentially contain a unit root, see the proof of proposition

2. Since product lives tend to be short, the asymptotics of interest are the ones where the number of products

gets large, not the ones where the lifetime of the products get large. Non-stationarity is thus not an issue for

consistency and asymptotic normality of our estimates.
43Appendix E.5 derives the intercept term and the properties of the modified residual in the previous equation
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tion, as a number of studies show that quality adjustment is far from perfect (Bils (2009),

Broda and Weinstein (2010), Aghion et al. (2019)).

This section shows that failure to perfectly adjust prices for quality generates biases in the

slope coefficients identified in regression (36), i.e., the coefficient in front of the age trend will

then not be equal to ln gz/qz, unlike in the case with perfect quality adjustment. This is the

case because the item price level Pzt showing up on the left-hand side of the regression equation

displays a different trend when quality adjustment is imperfect. While this may be a source

of concern, we show below that the optimal inflation target computed according to lemma 2

based on these biased slope estimates nevertheless delivers the welfare maximizing target for

the imperfectly quality-adjusted price index. In other words, the approach developed in the

previous sections works perfectly well, even if quality adjustment is imperfect, as is likely the

case in practice.

To make this point most forcefully, we consider an extreme setting in which the statistical

agency makes no quality adjustments whatsoever. The item price level is thus computed using

not-quality-adjusted prices P̃jzt and given by

P̃zt ≡
(∫ 1

0

(P̃jzt)
1−θdj

) 1
1−θ

, (39)

with the associated item-level inflation rate given by

Π̃zt = P̃zt/P̃zt−1.

Appendix E.6 derives the recursive law of motion for the not-quality adjusted item price level

and shows that in steady state the following holds:

Π̃z = qzΠz. (40)

The item-level inflation rate without quality adjustment Π̃z thus exceeds the quality-adjusted

inflation rate whenever there is quality growth (qz > 1). Similarly, the aggregate steady-state

inflation rate without quality adjustment Π̃ is given by44

ln Π̃ = ln Π +
Z∑
z=1

ψz ln qz, (41)

and exceeds the quality-adjusted rate by a weighted average of the item-level quality growth

rates. This feature is well understood in the literature. The key new observation in this section

is that in the absence of quality adjustment, the regression coefficient on the age trend in

equation (36) is equally distorted:45

44See appendix E.8 for the derivation.
45See appendix E.7 for the proof.
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Proposition 3 Consider a steady state with a potentially suboptimal inflation rate Π, and let

T ?jz denote the set of periods in which the price of product j in item z can be adjusted. Then,

ln
P̃ ?
jzt

P̃zt
= f̃ ?jz − ln(gz) · sjzt, for all t ∈ T ?jz, (42)

where sjzt denotes the age of product j in item z at time t.

This shows that with positive quality progress (qz > 1), the regression estimates are also

upwardly distorted by the amount of quality progress and given by gz instead of gz/qz. There-

fore, when computing the optimal inflation target for the not-quality adjusted inflation rate

using the distorted regression coefficients, one unwittingly implements the optimal target rate

for the quality-adjusted rate of inflation.

To formally shows this, note that the optimal inflation target from lemma 2 can alternatively

be expressed as46

ln Π? =
Z∑
z=1

ψz ln

(
bz
γez
γe

)
+O(2). (43)

where bz is the regression coefficient on the age trend in equation (36). We have bz = gz/qz

for perfect quality adjustment and bz = gz in the absence of quality adjustment. Using the

distorted regression coefficients (bz = gz) and equation (43), we arrive at an optimal inflation

target for the not-quality-adjusted inflation rate given by

ln Π̃? =
Z∑
z=1

ψz ln

(
gz
γez
γe

)
.

From equation (41) then follows that the quality-adjusted inflation rate satisfies

ln Π = ln Π̃? −
Z∑
z=1

ψz ln qz =
Z∑
z=1

ψz ln

(
gz
qz

γez
γe

)
= ln Π?.

This shows that the inflation target in terms of quality-adjusted prices is in fact optimal.

Imperfect quality adjustment is thus not a source of concern for the approach developed in this

paper.

9 The Optimal Inflation Target for the U.K.

We now use the approach developed in the previous sections to estimate the optimal inflation

target for the U.K. economy.

The top panel of figure 5 presents our baseline estimate. The baseline estimation approach

uses all price observations in the baseline sample to estimate the item-level relative price trends

46See appendix E.8 for a derivation
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Figure 5: Optimal U.K. Target - Baseline Results
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gz/qz, see equation (38). It then uses the expenditure items present at any considered date, the

corresponding ONS expenditure weights, as well as the estimated values for γz/γ, to compute

the optimal inflation target at this date according to lemma 2.

The top panel of figure 5 shows that the optimal inflation target is significantly positive and

stands at approximately 2.6% in the year 2016. The optimal target also steadily increased over

the period 1996-2016. The observed increase is about 1.2% and thus quantitatively significant.

Clearly, the observed gradual increase in figure 5 does not imply that the Bank of England

should have continuously revised its inflation target upward in line with the estimates shown in

the graph. If target adjustments are costly, e.g., because they require costly reputation build-

ing, then the optimal adjustments to the target would happen through lumpy and infrequent

adjustments and not via small continuous adjustments.

The optimal inflation target in figure 5 deviates from zero in a quantitative significant way

because of the strong negative relative price trends (section 3). Panel B in figure 5 depicts
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the distribution of item-level optimal inflation rates Π∗z ≡ gz/qz (in annualized terms) for all

items present over the period 1996-2016. The panel depicts the distribution once in expen-

diture weighted form (blue bars) and once using item frequencies (red line).47 Both of these

distribution show that the optimal inflation rate is positive for the vast majority of items. This

is the case for 90.5 % of the expenditure-weighted items and 89.8% of raw items in the sample.

Panel B in figure 5 also highlights that the aggregate inflation result is not driven by outliers,

instead there is a large mass of items for which the item-level optimal inflation rate is close to

the estimated optimal inflation target. There is, however, considerable heterogeneity in relative

price trends in the economy, causing some expenditure items to have substantially positive rates

of optimal item-level inflation.

To understand the source of the upward trend in the optimal inflation target in figure 5, we

perform a dynamic Olley-Pakes decomposition, following the approach of Melitz and Polanec

(2015). Specifically, we decompose the increase in the inflation target for any year of interest

relative to the base year 1996 into three components: the effect of newly added items up to the

year of interest, the effect of items that have exited up to the year of interest, and the effects

of changing expenditure weights among continuing items up to the year of interest.

The result of this decomposition is depicted in figure 6. The bottom panel of the figure

shows the number of continuing, exiting and entering items at any given date (all relative to

the base year 1996). The top panel decomposes the total increase in the inflation target (the

solid blue line) into the three elements. It shows that all elements contribute to the observed

increase in the optimal inflation target. The largest upward force comes from newly entering

items, which display (on average) a larger rate of relative price decline and thus a higher optimal

item-level inflation rate than the items present in 1996. The second largest upward force comes

from exiting items: exiting items display a rate of relative price decline that was on average

below the one displayed by items that were present in 1996. Finally, a small positive force is

due to a reshuffling of expenditure weights among the set of continuing items towards items

displaying a larger rate of relative price decline.

Figure 7 compares the expenditure-weighted distribution of item-level inflation rates in

1996 and 2016. It shows how item entry and exit, as well as expenditure reweighting among

continuing items have shifted the distribution of optimal item-level inflation rates towards the

right over these two decades. The figure makes it clear that there was a notable shift in the

center of the distribution and that results are not driven by outliers.

Figure 8 explores the quantitative relevance of the weighting schemes for the estimated op-

timal inflation target. The figure compares the baseline estimate to an inflation target estimate

that ignores the growth rate weights (
∑Zt

z=1 ψzt
gz
qz

) and an estimate that ignores all weights

47The expenditure-weighted distribution is the mirror image of the relative price trend distribution shown in

figure 2.
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Figure 6: Decomposing the upward trend in the optimal inflation target
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altogether ( 1
Zt

∑Zt
z=1

gz
qz

). The figure shows that the growth rate weights have quantitatively

only small effects on the estimated inflation target. The situation is different for the expen-

diture weights: without the appropriate expenditure weights, the optimal inflation target is

estimated to be around 0.25-0.5% higher. While the upward trend of the optimal inflation

remains unchanged, the level increase highlights the fact that expenditure weights covary neg-

atively with the downward trend in relative prices, i.e., expenditure items with less pronounced

relative price declines (and thus lower optimal item-level inflation rates) tend to have higher

expenditure weights.

10 Optimal U.K. Inflation - Robustness Checks

This section explores the robustness of the baseline results along two dimensions. We first show

in section 10.1 that results are robust towards using reset prices only (rather than all prices)
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Figure 7: Item-level optimal inflation rates: 2016 versus 1996, expenditure-weighted distribu-

tions
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in the relative price trend regressions. We then consider in section 10.2 alternative approaches

for dealing with sales prices and show that these tend to generate even higher estimates for the

optimal inflation target.

10.1 Using Reset Prices Only to Estimate Price Trends

The baseline approach uses all price observations available in our baseline sample to estimate

relative price trends. According to our theory, the price trend can alternatively be recovered

using reset prices only (proposition 2). Given this, we rerun our relative price trend regressions

using only price observations for which the monthly price deviated from the previous month’s

price. Clearly, this leads to a much smaller number of price observations used in the age

trend regressions: estimates are then based on just 2.6m price observations compared to the

20.5m observations used in the baseline approach.48 Figure 9 shows that the inflation target

recovered via this alternative estimation approach differs only in quantitatively minor ways

from our baseline findings. We find this result reassuring, as it effectively represents a test of

an overidentifying restriction implied by the underlying price setting model.

48The latter number is slightly below the number of price observations reported in the second to last row in

table 1 because we exclude products featuring just one price observation from the estimation, as these do not

provide information on the age coefficient.
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Figure 8: Relevance of the weighting schemes for the estimated optimal inflation target
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10.2 Alternative Treatment of Sales Prices

An important feature of micro price data is that it features many short-lived price changes that

are subsequently reversed. These typically take the form of temporary price reductions (sales),

but also occasionally the form of temporary price increases. The sticky price model outlined in

the previous sections does not allow for such temporary price changes. We show below that the

model can be augmented, following the lines of Kehoe and Midrigan (2015), and that doing so

leaves our empirical estimation approach unchanged. We furthermore explore the quantitative

effects of alternative treatments of sales prices for our results.

Consider for a moment the following augmented sticky-price setup featuring also temporary

prices. Firms choose a regular list price PL
jzt, which is subject to the same price adjustment

frictions as the prices in the pure Calvo model presented before. After learning about the

adjustment opportunity for the list price, a share αT ∈ [0, 1) of producers gets to choose freely

a temporary price P T
jzt at which they can sell the product in the current period. The temporary

price is valid for one period only and does not affect the list price. Furthermore, absent further

temporary price adjustment opportunities in the next period, prices revert to the list price
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Figure 9: Optimal inflation target: baseline versus reset price based estimation
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in the next period. With this setup, the optimal temporary price P T?
jzt is equal to the static

optimal price in the period, i.e., equal to the flexible price P f
jzt. It follows from equation (37)

that the relative price trend of temporary (or flexible) prices is no different from that of all

prices, so that the inclusion of temporary prices in the relative price trend regressions should

make no difference for our results.

Nevertheless, sales prices can make a difference for the estimated relative price trends due

to a number of reasons. Sales prices might, for instance, not be evenly distributed over the

product life cycle, unlike assumed in the augmented theoretical setup sketched in the previous

paragraph. Sales may happen, for instance, predominantly at the beginning (or at the end)

of the product lifetime. If this were the case, then our baseline regressions would probably

underestimate (overestimate) relative price declines and thereby underestimate (overestimate)

the optimal inflation target. In light of this, it appears of interest to investigate the robustness

of our baseline results towards using alternative approaches for treating sales prices in the data.

Figure 10 displays the baseline estimate of the optimal inflation target together with various

alternative estimates for the optimal inflation target. A first approach (baseline w/o sales prices)
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uses the ONS sales flag to exclude all sales prices from regression (38).49 The figure shows that

the optimal inflation target increases by around 0.3% per year as a result. A quantitatively

similar result is obtained, if only the so-called ”regular prices” are used in the regression (Kehoe-

Midrigan, regular prices only), where regular prices are defined according to the regular price

filter of Kehoe and Midrigan (2015).

Instead of simply excluding sales prices from the regression, one can adjust sales prices based

on various adjustment techniques and continue using them in the estimation. Figure 10 reports

the outcome when making adjustments using the sales filters A and B from Nakamura and

Steinsson (2008) and the regular price filter of Kehoe-Midrigan (2015) (Kehoe-Midrigan, filtered

prices). The outcomes across these filtering approaches vary quite substantially. While the

Nakamura-Steinsson filter B leads to only small adjustments relative to the baseline estimation,

filter A leads to adjustments of the same order of magnitude as when dropping sales prices from

the regression. The largest upward revision of the inflation target is observed for the regular

price filter of Kehoe and Midrigan: the inflation target is then on average about 0.5% higher

than the baseline estimate.

Overall, we can conclude that a different treatment of sales prices can lead to considerably

higher optimal inflation targets than the ones obtained via our baseline approach.

11 Conclusions

The paper documents relative price trends at the product level and shows how these trends can

inform what inflation target a welfare-maximizing central bank should pursue. The optimal

inflation target for the U.K. economy has been found to be increasing over time and to range

between 2.6% and 3.2. The sizably positive optimal inflation target largely reflects the fact

that relative prices in the U.K. tend to display a rate of price decline of similar magnitude on

average.

While our empirical approach allows for a rich set of heterogeneity across products, we have

abstracted from a number of features that appear worthwhile investigating in future work.

Given our focus on consumer products, we have abstracted from intermediate products. Con-

sidering relative price trends in sticky price models featuring sectoral input-output structures,

e.g., Nakamura and Steinsson (2010), Pasten, Schoenle and Weber (2018), could thus raise

interesting new aspects about how relative price trends affect the optimal inflation rate. Simi-

larly, the present analysis abstracted from imported goods, which can be relevant for relatively

open economies such as the United Kingdom. Exploring these additional features appears in

future research appears to be of interest.

49A sales flag is an indicator variable that the price collector records, whenever she/he finds the product to

be on sale. In this and subsequent robustness checks, we always recompute the item price levels after excluding

or adjusting sales prices.
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Figure 10: Optimal inflation target for alternative treatments of sales prices
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A Key Model Derivations

A.1 First-Order Conditions of the Household Problem

The representative household maximizes expected discounted utility in equation (2) subject to

the budget constraint (3). The first-order conditions to this maximization problem comprise

Wt

Pt
= −Ct

∂V (Lt)/∂Lt
V (Lt)

(44)

Ωt,t+1 = β

(
Ct+1

Ct

)−σ (
V (Lt+1)

V (Lt)

)1−σ

(45)

1 = Et

[
Ωt,t+1

(
1 + it
Pt+1/Pt

)]
(46)

1 = Et [Ωt,t+1(rt+1 + 1− d)] , (47)

a no-Ponzi scheme condition, the transversality condition and the household’s budget con-

straint.

A.2 Derivation of Firms’ Marginal Cost Expression (21)

Let

Ijzt ≡ Yjzt/(AztQjztGjzt)

denote the units of factor inputs (K
1− 1

φ

jzt L
1
φ

jzt) required to produce Yjzt units of (quality-adjusted)

output. We now show that cost minimization yields the expression for nominal marginal costs

of Ijzt provided in equation (21). Firm j chooses the factor input mix to minimize production

costs subject to the constraint imposed by the production function (6),

min
Kjzt,Ljzt

Kjztrt + LjztWt/Pt s.t. Yjzt = AztQjztGjztK
1− 1

φ

jzt L
1
φ

jzt .

Denoting the Lagrange multiplier by λt, this cost minimization problem yields first-order con-

ditions

0 = rt +

(
1− 1

φ

)
λtAztQjztGjzt

(
Ljzt
Kjzt

) 1
φ

0 = Wt/Pt +
1

φ
λtAztQjztGjzt

(
Ljzt
Kjzt

) 1
φ
−1

.

These conditions imply that the optimal capital labor ratio is the same for all firms j ∈ [0, 1]

and all items z = 1, . . . Zt, i.e.,
Kjzt

Ljzt
=

Wt

Ptrt
(φ− 1). (48)
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Substituting the optimal factor input mix into the production function (6) and solving for the

factor inputs yields the factor demand functions

Ljzt =

(
Wt

Ptrt
(φ− 1)

) 1
φ
−1

Ijzt (49)

Kjzt =

(
Wt

Ptrt
(φ− 1)

) 1
φ

Ijzt, (50)

where Ijzt is defined in the text. Firm j demands these amounts of labor and capital, respec-

tively, to combine them to Yjzt units of (quality-adjusted) output. Thus, the firm’s cost function

is

MCtIjzt = Wt

(
Wt

Ptrt
(φ− 1)

) 1
φ
−1

Ijzt + Ptrt

(
Wt

Ptrt
(φ− 1)

) 1
φ

Ijzt, (51)

where MCt denotes nominal marginal (or average) costs. The previous equation can be rear-

ranged to obtain equation (21).

A.3 Derivation of the Optimal Price Setting Equation (24)

The first order condition to the firm’s price setting problem (22) yields

0 = Et

∞∑
i=0

(αz(1− δz))i
Ωt,t+i

Pt+i
Yjzt+i

[
P ?
jzt −

θz
(1 + τ z)(θz − 1)

(
MCt+i

Azt+iQzt+iQjzt+i

)]
,

where we use the short-hand notation Qjzt = QjztGjzt/Qzt. Solving this equation for P ?
jzt yields

P ?
jzt

Pt
Qjzt =

(
1

1 + τ

θ

θ − 1

)
(52)

Et
∑∞

i=0(αz(1− δz))iΩt,t+i

(
Pzt+i
Pzt

)θ−1 (
Pt+i
Pt

Yt+i
Yt

)(
MCt+i

Pt+iAzt+iQzt+i

)(
Qjzt
Qjzt+i

)
Et
∑∞

i=0(αz(1− δz))iΩt,t+i

(
Pzt+i
Pzt

)θ−1 (
Yt+i
Yt

) .

We can express the ratio Qjzt/Qjzt+i in the previous equation as

Qjzt
Qjzt+i

=
GjztQzt+i

Gjzt+iQzt

,

because quality remains constant over the lifetime of product j, so that Qjzt = Qjzt+i. Using

equation (7) to substitute for productivity Gjzt and the fact that the idiosyncratic component

εGjzt remains constant of the product lifetime further yields

Qjzt
Qjzt+i

=
Gjzt

Gjzt+i

Qzt+i

Qzt

.

Given the evolution of Gjzt implied by equation (9), this equation can be rearranged to obtain

Qjzt
Qjzt+i

=

∏i
k=1 qzt+k∏i
k=1 gzt+k

,
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which is independent of the product index j and reduces to Qjzt/Qjzt+i = 1 for i = 0. Using

the previous equation, we can express the numerator on the r.h.s. of equation (52), denoted by

Nzt, recursively as

Nzt =
MCt

PtAztQzt

+ αz(1− δz)Et

[
Ωt,t+1

(
Pzt+1

Pzt

)θ−1(
Pt+1

Pt

)(
Yt+1

Yt

)(
qzt+1

gzt+1

)
Nzt+1

]
. (53)

We can also express the denominator on the r.h.s. of equation (52), denoted by Dzt, recursively

as

Dzt = 1 + αz(1− δz)Et

[
Ωt,t+1

(
Pzt+1

Pzt

)θ−1(
Yt+1

Yt

)
Dzt+1

]
, (54)

which then leads to equation (24) for the optimal price.

A.4 Item Price Level and Its Recursive Evolution Equation

We derive a recursive representation of the item price level Pzt in two steps. First, we decompose

the price level into the prices of newly entering products, the prices of existing products that

are optimally reset in period t, and all remaining prices. Second, we show that optimal reset

prices for existing products with age s ≥ 1 can be expressed as a function of the optimal

prices of newly entering products. This relationship allows us to derive the recursive price-level

representation. The derivation in the present section follows similar steps as in Adam and

Weber (2019) but generalizes it by allowing for idiosyncratic components in productivity and

product quality.

From equation (15), we have

P 1−θ
zt =

∫ 1

0

P 1−θ
jzt dj,

where Pjzt = P̃jzt/Qjzt denotes the quality-adjusted price of product j in item z. We decompose

this price level into (i) all prices that are adjusted in period t, including prices for newly entering

products; (ii) the sticky prices of continuing products. The share of the latter is equal to

αz(1 − δz) and their average price is equal to the lagged item price level. Thus, applying this

decomposition to the previous equation yields

P 1−θ
zt =

∞∑
s=0

∫
J?t−s,t

(P ?
jzt)

1−θdj + αz(1− δz)(Pzt−1)1−θ, (55)

where J?t−s,t denotes the set of products with age s in period t that can adjust prices in t. The

share of products that can adjust prices in t is equal to δz + (1 − δz)(1 − αz), where δz is the

share of newly entering products (all with optimal prices) and (1− δz)(1− αz) is the share of

continuing products that can adjust prices. We can define the average optimal price of products

newly entering in t as

P ?
z,t,t ≡

(
1

δz

∫
J?t,t

(P ?
jzt)

1−θdj

) 1
1−θ

, (56)
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and the average optimal price of products that entered in t− s (for s ≥ 1) and reset prices in

t as

P ?
z,t−s,t ≡

(
1

(1− αz)δz(1− δz)s

∫
J?t−s,t

(P ?
jzt)

1−θdj

) 1
1−θ

. (57)

Substituting the previous two definitions into equation (55) yields

P 1−θ
zt = δz(P

?
z,t,t)

1−θ + (1− αz)δz
∞∑
s=1

(1− δz)s(P ?
z,t−s,t)

1−θ + αz(1− δz)(Pzt−1)1−θ, (58)

where (1−αz)δz
∑∞

s=1(1−δz)s+αz(1−δz) = 1−δz is equal to the share of continuing products.

In the second step, we use the optimal price setting equation (24) to express the item price

level in the previous equation recursively. Consider the pricing equation for product j with age

sjzt = s ≥ 1 and rewrite (24) by substituting Gjzt using equation (7) and substituting Qjzt

using equation (11). This yields

P ?
jzt

Pt

(
Qzt−sGjzt

Qzt

)
[εQjz,t−sε

G
jz,t−s] =

(
θ

θ − 1

1

1 + τ

)
Nzt

Dzt

, (59)

where the term in brackets captures the idiosyncratic component of the optimal price, which

is constant over the product’s lifetime. Since the previous equation refers to products with the

same age, we can use equation (9) to rewrite Gjzt and equation (12) to rewrite Qzt−s/Qzt. This

yields

P ?
jzt

Pt

(∏s−1
k=0 gzt−k∏s−1
k=0 qzt−k

)
[εQjz,t−sε

G
jz,t−s] =

(
θ

θ − 1

1

1 + τ

)
Nzt

Dzt

.

Rearranging the previous equation to obtain the average of the optimal prices of products with

the same age s, as defined in equation (57), yields

P ?
z,t−s,t =

(∏s−1
k=0 gzt−k∏s−1
k=0 qzt−k

)−1(
θ

θ − 1

1

1 + τ

)
NztPt
Dzt

, (60)

where we used E[(εGjzt)
θ−1] = 1 and E[(εQjzt)

θ−1] = 1 and the fact that εGjzt and εQjzt are indepen-

dent.

Analogous steps for the case of products that newly entering in period t deliver the following

expression for the optimal average price P ?
z,t,t of these products, as defined in equation (56):

P ?
z,t,t =

(
θ

θ − 1

1

1 + τ

)
NztPt
Dzt

. (61)

Equations (60) and (61) jointly deliver

P ?
z,t−s,t = P ?

z,t,t

(∏s−1
k=0 gzt−k∏s−1
k=0 qzt−k

)−1

, (62)
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for s ≥ 1. This equation shows how the optimal average price of older products is related to the

optimal average price of newly entering products. Using the previous equation to substitute

for P ?
z,t−s,t in equation (58) and rearranging the result yields

P 1−θ
zt = (P ?

z,t,t)
1−θ

αzδz + (1− αz)

δz +
∞∑
s=1

δz(1− δz)s
(∏s−1

k=0 gzt−k∏s−1
k=0 qzt−k

)θ−1


+ αz(1− δz)(Pzt−1)1−θ. (63)

Now define

(∆e
zt)

1−θ ≡ δz +
∞∑
s=1

δz(1− δz)s
(∏s−1

k=0 gzt−k∏s−1
k=0 qzt−k

)θ−1

, (64)

and substitute this definition into equation (63). This delivers the recursive representation of

the item price level:

P 1−θ
zt =

{
αzδz + (1− αz)(∆e

zt)
1−θ} (P ?

z,t,t)
1−θ + αz(1− δz)(Pzt−1)1−θ, (65)

where P ?
z,t,t is defined in equation (56). Finally, we rewrite the definition of ∆e

zt according to

(∆e
zt)

1−θ = δz + (1− δz)
(
gzt
qzt

)θ−1
δz +

∞∑
s=1

δz(1− δz)s
(∏s−1

k=0 gzt−1−k∏s−1
k=0 qzt−1−k

)θ−1


= δz + (1− δz)
(
∆e
zt−1qzt/gzt

)1−θ
, (66)

which shows that (∆e
zt)

1−θ is a stationary variable that evolves recursively. We define the

item-level (gross) inflation rate as

Πzt ≡ Pzt/Pzt−1

and the relative price p?zt as

p?zt ≡ P ?
z,t,t/Pzt. (67)

Using these definitions, we rearrange equation (65) to obtain

1 =
{
αzδz + (1− αz)(∆e

zt)
1−θ} (p?zt)

1−θ + αz(1− δz)(Πzt)
θ−1. (68)

The previous equation shows that in a balanced growth path with a constant item-level inflation

Πz, the relative price p?z is also constant.

A.5 Item-Level and Economy-Wide Aggregate Production Func-

tions

We aggregate the model in two steps. In a first step, we aggregate firm-specific production

functions to item-level production functions. In a second step, we aggregate the item-level

production functions to a economy-wide production function.
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To obtain the item-level production function, we substitute (quality-adjusted) output of

product j in item z in the production function (6) using the demand function (18). This yields

Yzt
AztQjztGjzt

(
Pjzt
Pzt

)−θz
=

(
Kjzt

Ljzt

)1− 1
φ

Ljzt .

Integrating the previous equation over all firms j ∈ [0, 1] in item z, using the definition

Lzt ≡
∫
Ljzt dj,

and equation (48), which shows that capital-to-labor ratio is identical for all products, we obtain

the item-level production function for quality-adjusted output in item z

Yzt =
AztQzt

∆zt

(
K

1− 1
φ

zt L
1
φ

zt

)
, (69)

where

Kzt ≡
∫
Kjzt dj

and where we have defined the productivity parameter 1/∆zt as

∆zt ≡
∫ 1

0

(
Qzt

QjztGjzt

)(
Pjzt
Pzt

)−θz
dj , (70)

which captures the (detrended) distribution of productivities and qualities across products in

item z. The recursive evolution equation for ∆zt is derived in appendix A.6.

To obtain the economy-wide aggregate production function, we rewrite equation (69) to

obtain

Yzt
∆zt

AztQzt

=

(
Kt

Lt

)1− 1
φ

Lzt.

where we used the fact that the capital-to-labor ratio is the same across items, see equation

(48). Summing the previous equation over all items z = 1, ..Z, and using labor market clearing

across items, Lt =
∑

z Lzt, and the demand function (19) to substitute for item-level output

Yzt, we obtain

Yt

Zt∑
z=1

ψzt

(
Pzt
Pt

)−1(
∆zt

AztQzt

)
= K

1− 1
φ

t L
1
φ

t .

The aggregate economy-wide production function for quality-adjusted output is thus given by

Yt =
(Γet )

1/φ

∆t

(
K

1− 1
φ

t L
1
φ

t

)
, (71)

where the aggregate economy-wide productivity parameter 1/∆t is defined according to

∆t ≡ (Γet )
1/φ

Zt∑
z=1

ψzt

(
Pzt
Pt

)−1(
∆zt

AztQzt

)
, (72)

and where Γet denotes the trend-growth factor defined in Appendix B.4 and ensures that ∆t a

stationary variable.
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A.6 Derivation of the Recursive Evolution Equation for ∆zt

To derive a recursive representation for the productivity shifter ∆zt, defined in equation (70),

we decompose it in a way that resembles the decomposition of the item price level in Appendix

A.4. This yields

∆zt

P θ
zt

=
∞∑
s=0

∫
J?t−s,t

(
Qzt

QjztGjzt

)
(P ?

jzt)
−θdj +

qzt
gzt

∫
Jt

(
Qzt−1

Qjzt−1Gjzt−1

)
(Pjzt−1)−θdj, (73)

where, as before, J?t−s,t denotes the set of products with age s ≥ 0 at time t that can adjust

prices in t. Let Jt denote the set of all products that can not adjust prices in t. To derive

equation (73), we have used the fact that all products in Jt have age s ≥ 1. We have also used

the fact that the productivity component Gjzt for the products in Jt−1,t continues to evolve

over time, which yields

Gjzt = Gjzt · εGjzt−1

=

(
Gjzt

Gjzt−1

)(
Gjzt−1 · εGjzt−1

)
= gztGjzt−1, (74)

where the last line follows from equations (7) and (9) for the case with s ≥ 1.

Since products in Jt are a representative subset of all products in the economy at date t− 1

and since Jt has mass αz(1 − δz), we can rewrite equation (73) by shifting equation (70) one

period into the past, which yields

∆zt

P θ
zt

=
∞∑
s=0

∫
J?t−s,t

(
Qzt

QjztGjzt

)
(P ?

jzt)
−θdj + αz(1− δz)

qzt
gzt

∆zt−1

P θ
zt−1

. (75)

We now rearrange the infinite sum in the previous equation. The steps involved in this resemble

the steps used in in the derivation of the item price level in Appendix A.4, but with slight

modifications. We first show how the integrals appearing in the infinite sum on the r.h.s. of

equation (75) are related to the average optimal price of newly entering products P ?
z,t,t. For

s ≥ 1, we obtain∫
J?t−s,t

(
Qzt

QjztGjzt

)
(P ?

jzt)
−θdj =

(∏s−1
k=0 qzt−k∏s−1
k=0 gzt−k

)∫
J?t−s,t

[
Qzt−s

Qjzt−sGjzt−s

]
(P ?

jzt)
−θdj, (76)

using Qzt = (
∏s−1

k=0 qzt−k)Qzt−s and the fact that products in J?t−s,t have age greater or equal to

s. We can rearrange the r.h.s. of equation (76) further using

Gjzt =

(
s−1∏
k=0

gzt−k

)
Gjzt−s,
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which follows from (74). The brackets in equation (76) contain only idiosyncratic components

and thus simplify as
Qzt−s

Qjzt−sGjzt−s
= [εQjz,t−sε

G
jz,t−s]

−1.

Substituting the previous two equations into equation (76) and integrating the result over the

products in J?t−s,t yields∫
J?t−s,t

(
Qzt

QjztGjzt

)
(P ?

jzt)
−θdj =

(∏s−1
k=0 gzt−k∏s−1
k=0 qzt−k

)−1 ∫
J?t−s,t

[εQjz,t−sε
G
jz,t−s]

−1(P ?
jzt)
−θdj. (77)

To link the previous equation to the average optimal price of newly entering products P ?
z,t,t, we

rearrange equation (60) to obtain

[εQjz,t−sε
G
jz,t−s]

−1(P ?
jzt)
−θ = [εQjz,t−sε

G
jz,t−s]

θ−1

(∏s−1
k=0 gzt−k∏s−1
k=0 qzt−k

)−1(
θ

θ − 1

1

1 + τ

)
NztPt
Dzt

−θ .
Integrating the previous equation over the set of products in J?t−s,t and normalizing the result

yields

∫
J?t−s,t

[εQjz,t−sε
G
jz,t−s]

−1

(1− αz)δz(1− δz)s
(P ?

jzt)
−θ dj =

(∏s−1
k=0 gzt−k∏s−1
k=0 qzt−k

)−1(
θ

θ − 1

1

1 + τ

)
NztPt
Dzt

−θ ,
where we used E[(εGjzt)

θ−1] = 1 and E[(εQjzt)
θ−1] = 1 and the fact that εGjzt and εQjzt are inde-

pendent. We can now use equation (61) to substitute P ?
z,t,t into the previous equation, which

yields ∫
J?t−s,t

[εQjz,t−sε
G
jz,t−s]

−1

(1− αz)δz(1− δz)s
(P ?

jzt)
−θ dj =

(∏s−1
k=0 gzt−k∏s−1
k=0 qzt−k

)θ (
P ?
z,t,t

)−θ
.

Furthermore, substituting the previous equation for the r.h.s. of equation (77) yields∫
J?t−s,t

(
Qzt

QjztGjzt

)
(P ?

jzt)
−θdj = (1− αz)δz(1− δz)s

(∏s−1
k=0 gzt−k∏s−1
k=0 qzt−k

)θ−1 (
P ?
z,t,t

)−θ
,

which shows how the integral terms on the r.h.s. of equation (75) are related to the average

optimal price of newly entering products P ?
z,t,t for s ≥ 1. For the case with s = 0, analogous

steps yield ∫
J?t,t

[εQjztε
G
jzt]
−1(P ?

jzt)
−θ dj = δz(P

?
z,t,t)

−θ.

Using the preceding two equations to substitute for the integrals in the infinite sum on the

r.h.s. of equation (75), we obtain

∆zt

P θ
zt

= (P ?
z,t,t)

−θ

δz + (1− αz)
∞∑
s=1

δz(1− δz)s
(∏s−1

k=0 gzt−k∏s−1
k=0 qzt−k

)θ−1
+ αz(1− δz)

qzt
gzt

∆zt−1

P θ
zt−1

,
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where the term in curly brackets is the same as the term in curly brackets in equation (63).

Accordingly, rearranging the previous equation yields the recursive representation

∆zt = (p?zt)
−θ {αzδz + (1− αz)(∆e

zt)
1−θ}+ αz(1− δz)(Πzt)

θ (gzt/qzt)
−1 ∆zt−1,

where Πzt = Pzt/Pzt−1. The stationary variable ∆e
zt evolves as described in equation (66) and

p?zt is defined in equation (67). The previous equation shows that ∆zt is constant in the balanced

growth path, because p?zt is constant in this path due to equation (68).

B Efficient Allocation and Efficient Growth Trends

As a reference point and to better understand the distortions emerging in the decentralized

economy, this section derives the first-best allocation. This involves deriving the allocation of

factor inputs across products with different levels of product quality and productivity at the

level of each expenditure item z, in addition to the allocation of factor inputs across items

z with different average quality and productivity. It also requires determining the optimal

intertemporal paths of aggregate variables. This appendix also derives the growth trend of

variables in the efficient allocation. Using the efficient trends we drive expressions for the

efficient allocation in terms of detrended variables. Throughout the appendix, variables carrying

the superscript ’e’ denote efficient quantities.

B.1 Efficient Allocation at the Item-Level

Consider a setting where it is efficient to allocate Lezt units of labor and Ke
zt units of capital to the

production of products in item z. The optimal allocation of capital and labor across products

j in item z maximizes then (quality-adjusted) item-level output/consumption in equation (5),

subject to the production function (6) and the feasibility constraints Lezt =
∫
z
Lejzt dj and

Ke
zt =

∫
z
Ke
jzt dj. This allocation problem yields the efficient item-level output

Y e
zt =

AztQzt

∆e
zt

(Ke
zt)

1− 1
φ (Lezt)

1
φ , (78)

where the efficient productivity parameters 1/∆e
zt is defined as

1/∆e
zt ≡

(∫ 1

0

(GjztQjzt/Qzt)
θ−1 dj

) 1
θ−1

.

To derive a recursive representation for 1/∆e
zt, we rearrange the previous equation to obtain

(∆e
zt)

1−θ = δz

∞∑
s=0

(1− δz)s
1

δz(1− δz)s

∫
Jt−s,t

(GjztQjzt/Qzt)
θ−1 dj, (79)
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where Jt−s,t denotes the set of products with age s ≥ 0 in period t. The integrals appearing on

the r.h.s. of the infinite sum in the previous equation can bet expressed as

1

δz(1− δz)s

∫
Jt−s,t

(GjztQjzt/Qzt)
θ−1 dj =

(∏s−1
k=0 gzt−k∏s−1
k=0 qzt−k

)θ−1

,

since E[(εQjzt)
θ−1] = 1 and E[(εGjzt)

θ−1] = 1 and εQjzt and εGjzt are independent. Plugging the

previous equation into equation (79) yields equation (64) which as is shown in appendix A.4,

has the recursive representation described in equation (66).

B.2 Efficient Allocation Across Items

The optimal allocation of capital and labor between items maximizes (quality-adjusted) aggre-

gate output/consumption in equation (4), subject to the efficient item-level production function

(78) and the feasibility conditions Let =
∑

z L
e
zt and Ke

t =
∑

zK
e
zt, for given levels of Let and

Ke
t . Solving this allocation problem delivers the aggregate economy-wide efficient production

function

Y e
t =

(Γet )
1/φ

∆e
t

(Ke
t )

1− 1
φ (Let )

1
φ , (80)

where the efficient productivity level 1/∆e
t is defined as

1

∆e
t

≡ (Γet )
− 1
φ

(
Zt∏
z=1

ψ
ψzt
zt

(
AztQzt

∆e
zt

)ψzt)
, (81)

and Γet denotes the aggregate growth rate defined in Appendix B.4 and ensures that ∆e
t a

stationary variable.

B.3 Efficient Intertemporal Allocation

The intertemporal allocation maximizes expected discounted utility of the representative house-

hold, equation (2), subject to the intertemporal feasibility condition

Ce
t +Ke

t+1 = (1− d)Ke
t + Y e

t (82)

and the aggregate economy-wide production function (80). The first order conditions to this

problem comprise the feasibility condition (82) and

Y e
Lt = −U

e
Lt

U e
Ct

, (83)

1 = βEt

[
U e
Ct+1

U e
Ct

(
Y e
Kt+1 + 1− d

)]
, (84)

where UCt denotes the marginal utility of consumption in t, ULt the marginal disutility from

labor, Y e
Kt the marginal product of capital and Y e

Lt the marginal product of labor.
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B.4 Efficient Item-Level and Aggregate Growth Trends

This section determined the efficient growth for the balanced growth path equilibrium in which

aggregate hours worked Let and item-level hours worked Lezt are stationary for all z. The

variables Ce
t , K

e
t and Y e

t all display the same growth trend, which we denote by Γet . Since the

captial-to-labor ratio is constant across products, it then follows the item-level capital stocks

Kzt have the same growth trend Γet for all z.

We can then derive the item-level output growth trend by rewriting equation (78) as

Y e
zt =

AztQzt

∆e
zt

(Γet )
1− 1

φ

(
Ke
zt

Γet

)1− 1
φ

(Lezt)
1
φ ,

which shows that Y e
zt grows at the same rate as AztQzt

∆e
zt

(Γet )
1− 1

φ because all other variables are

stationary. We can thus define the item-level growth trend as

Γezt ≡
AztQzt

∆e
zt

(Γet )
1− 1

φ . (85)

To derive the aggregate growth trend Γet , we substitute equilibrium output for equilibrium

consumption in equation (4) and detrend all output variables in the resulting equation by their

respective growth trends, which yields

Y e
t

Γet
=

[∏Zt
z=1(Γezt)

ψzt

Γet

]
Zt∏
z=1

(
Y e
zt

Γezt

)ψzt
.

Since Y e
zt/Γ

e
zt is stationary, the the aggregate growth trend is given by

Γet ≡
Zt∏
z=1

(Γezt)
ψzt . (86)

Using definition (85) to substitute for Γezt in the previous equation and solving for Γet yields

Γet =
Zt∏
z=1

(
AztQzt

∆e
zt

)φψzt
, (87)

which determines the aggregate growth trend in terms of model primitives. Substituting the

previous equation for Γet into equation (85) shows that the item-level growth trend relative to

the aggregate growth trend is independent of the parameter φ and given by

Γezt
Γet

=

(
AztQzt

∆e
zt

)
∏Zt

z=1

(
AztQzt

∆e
zt

)ψzt . (88)

We also define the aggregate growth rate as

γet ≡ Γet/Γ
e
t−1. (89)
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Using equation (87) to substitute for Γet and Γet−1 we obtain:

γe =
Z∏
z=1

(azqz)
ψzφ (90)

in the steady state. Furthermore, we define the item-level growth rate as

γezt ≡ Γezt/Γ
e
zt−1, (91)

and using equation (88), we obtain that in steady state,

γez
γe

=
azqz∏Z

z=1 (azqz)ψz
.

B.5 Efficient Production in Terms of Detrended Variables

We now express the item-level and aggregate production functions in the planned economy in

terms of detrended output and capital variables. Letting lower case letters denote stationary

variables, we can defineyet ≡ Y e
t /Γ

e
t , k

e
t ≡ Ke

t /Γ
e
t , k

e
zt ≡ Ke

zt/Γ
e
t and yezt ≡ Y e

zt/Γ
e
zt. To obtain

the production function in item z in terms of detrended variables, we divide equation (78) by

equation (85) and use the definitions of item-level detrended variables. This yields

yezt = (kezt)
1− 1

φ (Lezt)
1
φ . (92)

To obtain the aggregate production function in terms of detrended variables, we divide equation

(80) by Γet and use the definitions of aggregate detrended variables, which yields

yet =
1

∆e
t

(ket )
1− 1

φ (Let )
1
φ . (93)

Here, 1/∆e
t is defined in equation (81), and this definition simplifies to

1

∆e
t

=
Zt∏
z=1

ψ
ψzt
zt , (94)

after substituting the equation (87) for Γet into the definition.

C The Decentralized Economy and its Distortions

We now express the prices and allocations in the decentralized economy in terms of detrended

variables, using the efficient growth trends derived in the previous appendix to detrend quan-

tities. We then relate the allocation in the decentralized economy to the first-best allocation

derived in the previous section using two key distortions (or wedges), namely a mark-up dis-

tortion and a relative-price distortion.
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Appendices C.1 and C.2 start by deriving the growth trends of relative prices and express

optimal reset prices in terms of detrended variables. Appendix C.3 introduces the mark-up

distortion and uses it to rewrite various first-order conditions of households and firms. Appendix

C.4 derives the item-level and aggregate production functions for the decentralized economy and

relates them to the efficient allocation by introducing a relative-price distortion term. Appendix

C.5 summarizes the equations characterizing the decentralized economy in detrended variables.

C.1 Relative Price Trends and Relative Inflation Rates

To detrend the relative price of item z, Pzt/Pt, we multiply the demand function (19) by the

(inverse of the) relative growth factor Γezt/Γ
e
t , which yields

yzt/yt = ψztp
−1
zt , (95)

where we have defined

pzt ≡ (Pzt/Pt) (Γezt/Γ
e
t ) , (96)

which is constant in steady state. The demand function (19) also implies

Πzt

Πt

=

(
ψzt
ψzt−1

)(
γeztyzt/yzt−1

γetyt/yt−1

)−1

,

which shows that items with stronger price increases face stronger output declines, which is a

result of Cobb-Douglas aggregation across expenditure items.

C.2 Optimal Price in Terms of Detrended Variables

To express the optimal reset price in equation (24) in terms of detrended variables, we multiply

the equation by the relative sectoral growth trend, Γezt/Γ
e
t (see Appendix B) and divide by item

price level Pzt. This yields

P ?
jzt

Pzt

(
QjztGjzt

Qzt

)
pzt =

(
1

1 + τ

θ

θ − 1

)
Nzt

Dzt

(
Γezt
Γet

)
, (97)

where pzt is defined in equation (96). Since Dzt is stationary, see equation (54), we can define

dzt ≡ Dzt. (98)

The variable Nzt in equation (97) grows over time, but the variable

nzt ≡ Nzt

(
Γezt
Γet

)
(99)

is again stationary, as we show below. Using these definitions, we can thus write equation (97)

in terms of stationary variables according to

P ?
jzt

Pzt

(
QjztGjzt

Qzt

)
pzt =

(
1

1 + τ

θ

θ − 1

)
nzt
dzt

. (100)
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It remains to prove the stationarity of nzt. Using the definition of nzt and equation (53) delivers

nzt =

(
MCt

PtAztQzt

)(
Γezt
Γet

)
+ αz(1− δz)Et

[
Ωt,t+1

(
Pzt+1

Pzt

)θ−1(
Pt+1

Pt

)(
Yt+1

Yt

)(
qzt+1

gzt+1

)(
Γezt
Γet

)(
Γezt+1

Γet+1

)−1

nzt+1

]

or equivalently

nzt =

(
MCt

PtAztQzt

)(
Γezt
Γet

)
+ αz(1− δz)Et

[
Ωt,t+1Πθ−1

zt+1Πt+1 (yt+1/yt) γ
e
t+1

(
qzt+1

gzt+1

)(
γet+1

γezt+1

)
nzt+1

]
. (101)

We can rewrite equation (85) to obtain

Γezt
Γet

= (Γet )
− 1
φ

(
AztQzt

∆e
zt

)
,

and use this equation to rearrange the term involving marginal costs in equation (101) according

to (
MCt

PtAztQzt

)(
Γezt
Γet

)
=

(
MCt

PtAztQzt

)
(Γet )

− 1
φ

(
AztQzt

∆e
zt

)
=

(
MCt

Pt(Γet )
1/φ

)(
1

∆e
zt

)
.

We then define real detrended marginal costs as

mct ≡
MCt

Pt(Γet )
1/φ
, (102)

where MCt is defined in equation (21). Substituting the previous equation into equation (101)

yields

nzt =
mct
∆e
zt

+ αz(1− δz)Et
[
Ωt,t+1Πθ−1

zt+1Πt+1 (yt+1/yt) γ
e
t+1

(
qzt+1

gzt+1

)(
γet+1

γezt+1

)
nzt+1

]
,

which contains only stationary variables. From equation (54) and the definition of dzt we

likewise obtain

dzt = 1 + αz(1− δz)Et
[
Ωt,t+1Πθ−1

zt+1 (yt+1/yt) γ
e
t+1dzt+1

]
.

To obtain a detrended expression for the average optimal price of new products, we integrate

equation (100) over the set of newly entering products in t, normalize the resulting equation

and use the assumptions E[(εGjzt)
θ−1] = 1 and E[(εQjzt)

θ−1] = 1 and independence of εGjzt and εQjzt.

This yields

p?ztpzt =

(
1

1 + τ

θ

θ − 1

)
nzt
dzt

, (103)

where we have also used the definition (67).
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C.3 Aggregate Mark-Up Distortions

We define the average markup µzt at the item level as the relative price of item z over real

marginal costs (all in detrended terms),

µzt ≡
pzt
mct

, (104)

and the aggregate markup as

µt ≡
Zt∏
z=1

µ
ψzt
zt . (105)

Substituting equation (105) for µzt into the previous equation, we obtain

µt = mc−1
t

Zt∏
z=1

p
ψzt
zt .

Expressing the aggregate price in equation (16) in terms of detrended relative prices and also

using equation (94), we obtain from the previous equation

µt =
1

mct∆e
t

. (106)

Using the definition (102) and equation (21), we obtain

mct =

(
kt
Lt

) 1
φ
(

rt
1− 1/φ

)
,

where we have also used equation (48) determining the optimal input mix. Substituting into

the previous equation the expression for the markup and rearranging yields

rt = µ−1
t

(
1− 1

φ

)
1

∆e
t

(
kt
Lt

)− 1
φ

. (107)

Analogous steps deliver

wt = µ−1
t

(
1

φ

)
1

∆e
t

(
kt
Lt

)1− 1
φ

. (108)

The previous two equations show how the capital-to-labor ratio gets distorted by the aggregate

markup µt.

C.4 Relative Price Distortions

We define detrended variables according to yt ≡ Yt/Γ
e
t , kt ≡ Kt/Γ

e
t , kzt ≡ Kzt/Γ

e
t and yzt ≡

Yzt/Γ
e
zt. To obtain the production function in item z in terms of detrended variables, we rewrite

equation (69) as

Yzt
Γezt

=

[
(Γet )

1− 1
φ

Γezt

AztQzt

∆zt

](
Kzt

Γet

)1− 1
φ

L
1
φ

zt.
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Using the definitions for detrended variables and the definition of the item-level growth trend

in equation (85), we obtain a production function in detrended variables:

yzt =

(
∆e
zt

∆zt

)
k

1− 1
φ

zt L
1
φ

zt. (109)

In a situation in which relative prices in the decentralized economy are efficient, we have

∆zt = ∆e
zt,

such that equation (109) becomes equal to the efficient production function in the planner

solution, see equation (92). Item-level distortions arising from inefficient price dispersion can

thus be captured by the item-level distortion factor

ρzt ≡ ∆e
zt/∆zt ≤ 1 (110)

We obtain the aggregate production function in detrended variables for the decentralized econ-

omy by dividing equation (71) by Γet and using the definitions of aggregate detrended variables:

yt =

(
∆e
t

∆t

)(
1

∆e
t

)
k

1− 1
φ

t L
1
φ

t . (111)

We can then define an aggregate distortion factor capturing inefficiencies associated with rela-

tive price distortions across all items:

ρt ≡ ∆e
t/∆t ≤ 1. (112)

When relative prices are efficient, we have ρt = 1, so that the aggregate production function

in the decentralized economy (111) becomes equal to the aggregate production function in the

planner allocation (93).

We take the inverse of equation (72) and multiply it by ∆e
t . We simplify the resulting

equation by substituting for (Γet )
1/φ using equation (85) and using the definition of pzt in

equation (96). This yields

∆e
t

∆t

= ∆e
t

(
Zt∑
z=1

ψztp
−1
zt (∆zt/∆

e
zt)

)−1

,

and shows that the relative price distortion at the aggregate level is a weighted sum over

item-level relative price distortions with weights equal to the item’s relative output (recall

yzt/yt = ψztp
−1
zt from equation (95)). We can rearrange the previous equation by using the

definition (105) to substitute for pzt and equation (106) to substitute for mct in this definition.

This yields

(ρtµt)
−1 =

Zt∑
z=1

ψzt(µztρzt)
−1 (113)

and shows that the product of (inverse) aggregate distortion corresponds to the weighted sum

of the product of (inverse) item-level distortions.
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C.5 Summary of Equations Characterizing the Decentralized Econ-

omy

At the aggregate level, the decentralized and detrended economy is summarized by the following

four equations:

yt =

(
ρt
∆e
t

)
k

1− 1
φ

t L
1
φ

t (114)

µ−1
t

(
1

φ

)
1

∆e
t

(
kt
Lt

)1− 1
φ

= −ct
(
∂V (Lt)/∂Lt

V (Lt)

)
(115)

1 = Et

[
Ωt,t+1

{
µ−1
t+1

(
1− 1

φ

)
1

∆e
t+1

(
kt+1

Lt+1

)− 1
φ

+ 1− d
}]

(116)

γet+1kt+1 = (1− d)kt + yt − ct. (117)

Equation (114) follows from substituting the definition of the relative price distortion (112) into

the aggregate production function (111). Equation (115) follows from substituting equation

(107) for the wage into the household’s first-order condition (47). Equation (116) follows from

substituting equation (108) for the real rate into the first-order condition (44). Equations

(115) and (116) show how the markup distorts the intra- and inter-temporal optimal household

choices compared to the first-best allocation, see equations (83) and (84). Equation (117)

is derived from consolidating the budget constraints of the representative household and the

government and expressing the resulting equation in terms of detrended variables.

Equations (114)–(117) determine the variables yt, kt, Lt and ct given values for the aggregate

distortions ρt and µt, which depend on the inflation rate, aggregate growth γet , the productivity

parameter ∆e
t determined by equation (94) and given the equation for the discount factor

Ωt,t+1 = β

(
γet+1ct+1

ct

)−σ (
V (Lt+1)

V (Lt)

)1−σ

.

Furthermore, we previously determined in equation (113) and definition (105) that the aggregate

markup and relative price distortions are functions of the item-level markup and relative price

distortions. These equations are repeated here, jointly with the definitions of item-level markup

and relative price distortions (105) and (110), respectively:

(ρtµt)
−1 =

Zt∑
z=1

ψzt(µztρzt)
−1

µt =
Zt∏
z=1

µ
ψzt
zt

ρzt = ∆e
zt/∆zt

µzt = pzt/mct.
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Note that the distortions depend on the inflation rate.

The item-level outcomes are described by the following set of equations:

1 =
{
αzδz + (1− αz)(∆e

zt)
1−θ} (p?zt)

1−θ + αz(1− δz)(Πzt)
θ−1 (118)

p?ztpzt =

(
1

1 + τ

θ

θ − 1

)
nzt
dzt

(119)

nzt =
mct
∆e
zt

+ αz(1− δz)Et
[
Ωt,t+1Πθ−1

zt+1Πt+1 (yt+1/yt) γ
e
t+1

(
qzt+1

gzt+1

)(
γet+1

γezt+1

)
nzt+1

]
(120)

dzt = 1 + αz(1− δz)Et
[
Ωt,t+1Πθ−1

zt+1 (yt+1/yt) γ
e
t+1dzt+1

]
(121)(

γezt
γet

)
Πzt =

(
ψzt
ψzt−1

pzt
pzt−1

)
Πt (122)

∆zt = (p?zt)
−θ {αzδz + (1− αz)(∆e

zt)
1−θ}+ αz(1− δz)(Πzt)

θ (gzt/qzt)
−1 ∆zt−1 (123)

(∆e
zt)

1−θ = δz + (1− δz)
(
∆e
zt−1qzt/gzt

)1−θ
(124)

mct =

(
wt

1/φ

) 1
φ
(

rt
1− 1/φ

)1− 1
φ

(125)

rtkt = (φ− 1)wtLt (126)

γezt = (γet )
1− 1

φ
(
aztqzt∆

e
zt−1/∆

e
zt

)
, (127)

where inflation Πt is defined in equation (17) and the aggregate price level in equation (16).

Furthermore, the aggregate growth rate γet is defined in equation (89) and the aggregate growth

trend is determined by equation (87).

D Derivation of the Steady State Equations in Section

5

In the steady state, the one-period discount factor in equation (45) is

Ω = β(γe)−σ.

Using this, equations (114)–(117) simplify to the equations (25)–(28) in the steady state. Fur-

thermore, in the steady state, the aggregate markup in equation (105) and the relative price

distortion in equation (113) simplify to equations (30) and (32), respectively. These aggregate

distortions are functions of the item-level distortions, which are functions of the aggregate in-

flation rate. We now derive the steady-state expressions for the item-level distortions µz in

equation (31) and ρz in equation (33).
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D.1 Item-Level Relative Price Distortion

To express ρz as function of inflation, we consider the equations (118) and (123) in the steady

state. This yields

1− αz(1− δz)Πθ−1
z =

{
αzδz + (1− αz)(∆e

z)
1−θ} (p?z)

1−θ(
1− αz(1− δz)Πθ

z(gz/qz)
−1
)

∆z =
{
αzδz + (1− αz)(∆e

z)
1−θ} (p?z)

−θ . (128)

Dividing both equations by each other yields

p?z = ∆−1
z

(
1− αz(1− δz)Πθ−1

z

1− αz(1− δz)Πθ
z(gz/qz)

−1

)
. (129)

Substituting this expression for p?z into equation (128) yields(
∆z

∆e
z

)1−θ

=

(
αzδz(∆

e
z)
θ−1 + (1− αz)

1− αz(1− δz)Πθ
z(gz/qz)

−1

)(
1− αz(1− δz)Πθ−1

z

1− αz(1− δz)Πθ
z(gz/qz)

−1

)−θ
.

We substitute for ∆e
z on the r.h.s. of the previous equation using the steady-state version of

equation (124), which yields

∆z

∆e
z

=

(
1− αz(1− δz) (gz/qz)

θ−1

1− αz(1− δz)Πθ
z(gz/qz)

−1

) 1
1−θ (

1− αz(1− δz)Πθ−1
z

1− αz(1− δz)Πθ
z(gz/qz)

−1

) θ
θ−1

.

Simplifying the previous equation, using the definition (110) and substituting for Πz using

equation (122) in the steady state yields

ρz(Π)−1 =

(
1− αz(1− δz) (gz/qz)

θ−1

1− αz(1− δz)[(γe/γez)Π]θ(gz/qz)−1

)(
1− αz(1− δz)[(γe/γez)Π]θ−1

1− αz(1− δz) (gz/qz)
θ−1

) θ
θ−1

,

(130)

which shows that the item-level relative price distortion can be expressed as function of Π only.

Rearranging the previous equation yields equation (33).

D.2 Item-Level Markup Distortion

To express µz as function of inflation, we consider the pricing equation (119) in the steady state

and substitute for n and d using the equations (120) and (121) in the steady state. This yields

pz
mc

=

(
1

1 + τ

θ

θ − 1

)
1

p?z∆
e
z

(
1− αz(1− δz)β(γe)1−σ[(γe/γez)Π]θ−1

1− αz(1− δz)β(γe)1−σ[(γe/γez)Π]θ(gz/qz)−1

)
, (131)

where we have also substituted for Πz using equation (122) in the steady state. Using equation

(129), the definition (110) and equation (122) to substitute for Πz, we obtain

1

p?z∆
e
z

= ρz(Π)−1

(
1− αz(1− δz)[(γe/γez)Π]θ−1

1− αz(1− δz)[(γe/γez)Π]θ(gz/qz)−1

)−1

.
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Using the previous equation to substitute for (p?z∆
e
z)
−1 on the r.h.s. in equation (131) yields

µz(Π) =

(
1

1 + τ

θ

θ − 1

)
ρz(Π)−1

(
1− αz(1− δz)[(γe/γez)Π]θ−1

1− αz(1− δz)[(γe/γez)Π]θ(gz/qz)−1

)−1

(132)

×
(

1− αz(1− δz)β(γe)1−σ[(γe/γez)Π]θ−1

1− αz(1− δz)β(γe)1−σ[(γe/γez)Π]θ(gz/qz)−1

)
.

Using equation (130) to substitute for ρz(Π)−1 and the definition (104) to substitute for pz/mc

in the previous equation yields equation (31) determining the item-level markup as function of

inflation.

D.3 Steady State: Existence Conditions

We now derive the existence conditions for a steady state (or deterministic balanced growth

path). First, we need to impose

1 > (1− δz) (gz/qz)
θ−1 , (133)

for all z, so that 1/∆e
z, which measures quality-adjusted productivity in the efficient economy,

see equation (124), has a well-defined steady-state value:(
1

∆e
z

)θ−1

=
δz

1− (1− δz) (gz/qz)
θ−1

,

Given the substantial amount of product turnover (δz � 0), see panel A of Figure 4, and the

relatively low rates of relative price decline (gz/qz), see figure 2, condition (133) is likely to be

fulfilled for reasonable values for the demand elasticity parameter θ.

To insure that the item-level distortions ρz(Π) and µz(Π) in equations (33) and (31) have

well- defined steady state values, we furthermore impose

1 > αz(1− δz)[(γe/γez) Π]θ(gz/qz)
−1 (134)

1 > αz(1− δz)[(γe/γez) Π]θ−1, (135)

for all z. Since αz � 1 and δz � 0, it follows from the fact that γe/γez and gz/qz take on values

fairly close to one, that these conditions are easily fulfilled for reasonable values for the demand

elasticity parameter θ and plausible (gross) steady-state inflation rates Π.

E Proofs

E.1 Proof of Lemma 1

For the limiting case β (γe)1−σ → 1, we have from item-level distortions in equations (31) and

(33) that

µz(Π) =

(
1

1 + τ

θ

θ − 1

)
ρz(Π)−1. (136)
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Multiplying the previous equation by ρz(Π) and substituting the result into equation (32) yields

(ρ(Π)µ(Π))−1 =

(
1

1 + τ

θ

θ − 1

)−1

,

so that

µ(Π) =

(
1

1 + τ

θ

θ − 1

)
ρ(Π)−1.

E.2 Proof of Proposition 1

The proof proceed as follows: section E.2.1 derives a convenient formulation for the steady-

state solution for general values of β (γe)1−σ < 1; section 1 considers this formulation for

the limiting case β (γe)1−σ → 1 and shows that labor is independent of the inflation rate,

whereas consumption depends on the inflation rate only via the aggregate markup distortion;

section E.2.3 derives the inflation rate that minimizes the aggregate markup distortion and

thus maximizes consumption.

E.2.1 Steady State Solution

We rewrite equations (25) to (28) by expressing the variables y, c and k relative to hours worked

L, which yields

y

L
=

(
ρ(Π)

∆e

)(
k

L

)1− 1
φ

(137)

c

L
=

1

µ(Π)

1

∆e

(
1

φ

)(
k

L

)1− 1
φ
(
− V (L)

L ∂V (L)/∂L

)
(138)

k

L
=

1

µ(Π)

1

∆e

(
1− 1

φ

)(
k

L

)1− 1
φ
(

1

β(γe)−σ
− 1 + d

)−1

(139)

y

L
=
c

L
+ (γe − 1 + d)

k

L
. (140)

We now show that these four equations determine the four variables y, c, L, k, given a steady-

state inflation rate Π. For given Π, one can solve for hours worked L by substituting the

equations (137) to (139) into equation (140). This yields(
− V (L)

L ∂V (L)/∂L

)
= φµ(Π)ρ(Π)− (φ− 1)

(
γe − 1 + d
1

β(γe)−σ
− 1 + d

)
. (141)
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Given Π and L, the solutions for k, c, and y can then be recursively computed from the equations

(137) to (139). These solutions are

k(Π) =

(
1

µ(Π)

1

∆e

)φ(
1− 1

φ

)φ(
1

β(γe)−σ
− 1 + d

)−φ
L (142)

c(Π) =
1

µ(Π)

1

∆e

(
1

φ

)(
k

L

)1− 1
φ
(
− V (L)

∂V (L)/∂L

)
(143)

y(Π) = c+ (γe − 1 + d)k. (144)

E.2.2 Steady-state solution for the limiting case in proposition 1:

We now consider the steady-state solution from the previous section for the limiting case

β (γe)1−σ → 1. Using lemma 1 equation (141) simplifies to(
− V (L)

L ∂V (L)/∂L

)
=

(
1

1 + τ

θ

θ − 1

)
φ− (φ− 1) . (145)

This shows that the steady state amount of labor does not dependent on Π. Next, rewrite

equation (142) as(
k(Π)

L

)1− 1
φ

=

(
1

µ(Π)

1

∆e

)φ−1(
1− 1

φ

)φ−1

(γe − 1 + d)1−φ .

Substitute this equation and equation (145) into equation (143), this delivers

c(Π) =

(
1

µ(Π)

)φ{
L

(
1

∆e

)φ
(γe − 1 + d)1−φ

((
1

1 + τ

θ

θ − 1

)
φ− (φ− 1)

)
φ−φ (φ− 1)φ−1

}
,

where the term in parentheses depends is independent of inflation Π. We thus have

c(Π) ∝
(

1

µ(Π)

)φ
.

The inflation rate that minimizes the aggregate markup distortion thus maximizes steady-state

consumption and thereby welfare, given that labor is fixed.

E.2.3 Minimizing The Aggregate Markup Distortion

From equation (30), minimizing the aggregate markup distortion in the steady state implies

∂µ(Π)

∂Π
=

Z∑
z=1

ψzµz(Π)ψz−1[∂µz(Π)/∂Π]

(∏
zC

µz(Π)ψz

)
= 0,

where zC to denote the set of all items except for item z. The equation holds if and only if

Z∑
z=1

ψz
∂µz(Π)/∂Π

µz(Π)
= 0. (146)
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Using equation (136), the expression for ρz(π) in equation (33) and the shorthand notation

α̃z = αz(1− δz)(γe/γez)θ−1, we obtain

∂µz(Π)/∂Π

µz(Π)
=

θα̃zΠ
θ−2
(
qzγe

gzγez

)
(

1− α̃zΠθ
(
qzγe

gzγez

))
(1− α̃zΠθ−1)

[
Π− gzγ

e
z

qzγe

]
.

Plugging this expression into equation (146) and multiplying by Π2 yields

Z∑
z=1

 ψzθα̃zΠ
θ
(
qzγe

gzγez

)
(

1− α̃zΠθ
(
qzγe

gzγez

))
(1− α̃zΠθ−1)


[
Π− gzγ

e
z

qzγe

]
= 0. (147)

The expression in the parentheses is the weight ω̃z in proposition 1. We normalize the weights so

that they sums to unity over all z = 1, . . . Z. This yields normalized weights ωz = ω̃z/
∑Z

z=1 ω̃z,

with
∑Z

z=1 ωz = 1. Using these, we can rewrite equation (147) according to

Z∑
z=1

ωz

[
Π? − gzγ

e
z

qzγe

]
= 0, (148)

where ωz is given by the expression in the proposition and Π? denotes the optimal solution.

Solving equation (148) for Π? yields the expression for the optimal inflation target in proposition

1.

E.3 Proof of Lemma 2

Defining mz = gzγez
qzγe

one can express equation (147) as

Z∑
z=1

ω̃z(Π,mz) [Π−mz] = 0, (149)

where ω̃z(Π,mz) = ψzθα̃zΠθ/mz

(1−α̃zΠθ/mz)(1−α̃zΠθ−1)
and α̃z = αz(1− δz)(γe/γez)θ−1. Linearizing equation

(149) at a point where Π̄ = m̄z for all z, yields

Z∑
z=1

ω̃z(Π̄, m̄z) [Π−mz] = 0 +O(2).

Letting again Π? denote the optimal solution, we can rewrite the previous equation as

Π? =
Z∑
z=1

ω̃z(Π̄, m̄z)(∑Z
z′=1 ω̃z′(Π̄, m̄z′)

)−1 mz +O(2), (150)

which shows that Π? is a weighted average of mz’s for all item categories z and with weights

evaluated at the expansion point and normalized to unity. The normalized weight of item z
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evaluated at Π̄ = m̄z is given by

ω̃z(Π̄, m̄z)∑Z
z=1 ω̃z(Π̄, m̄z)

= ψz

[
θα̃zΠ̄

θ−1(
1− α̃zΠ̄θ−1

)2

](
Z∑
z=1

ψz

[
θα̃zΠ̄

θ−1(
1− α̃zΠ̄θ−1

)2

])−1

,

= ψz,

where the second equality follows from the fact that α̃z is constant across item categories

z = 1, . . . Z and the fact that
∑Z

z=1 ψz = 1. Equation (150) can be rearranged to obtain

Π? =
Z∑
z=1

ψzmz +O(2),

which is the equation stated in lemma 2, when using mz = gzγez
qzγe

.

E.4 Proof of Proposition 2

Taking the natural logarithm of the equation (100), which describes the optimal reset price,

yields

ln
P ?
jzt

Pzt
= ln

(
1

1 + τ

θ

θ − 1

)
− ln

(
QjztGjzt

Qzt

)
+ ln

(
nzt
pztdzt

)
. (151)

We rearrange the term ln(QjztGjzt/Qzt) in the previous equation for sjzt ≥ 1 as

ln

(
QjztGjzt

Qzt

)
= ln(εGjztε

Q
jzt) + ln

(
Qzt−sGjzt

Qzt

)
= ln(εGjztε

Q
jzt) + ln

(∏sjzt−1
k=0 gzt−k∏sjzt−1
k=0 qzt−k

)

= ln(εGjztε
Q
jzt) + ln

(
gz
qz

)
· sjzt +

t∑
i=t−sjzt+1

(ln εgzi − ln εqzi) . (152)

where the first equality follows from using equations (7) and (11), the second equality follows

from using equations (9) and (12), the third equality follows from using equations (10) and

(13), and and where ln(εGjztε
Q
jzt) denotes the product-fixed effect. For the case with sjzt = 0,

we obtain ln(QjztGjzt/Qzt) = ln(εGjztε
Q
jzt). Substituting the equation (152) into equation (151)

yields equation (36) in the proposition, where we have defined

f ?jz ≡ ln

(
1

1 + τ

θ

θ − 1

nz
pzdz

)
− ln(εGjztε

Q
jzt) (153)

u?jzt ≡ ln

(
nzt
pztdzt

pzdz
nz

)
−

t∑
i=t−sjzt+1

(ln εgzi − ln εqzi) , (154)

and E[u?jzt] = 0 holds because by assumption E ln εgzt = 0 and E ln εqzt = 0 and ln
(

nzt
pztdzt

pzdz
nz

)
denotes the percentage deviation of stationary variables from their steady state values.
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E.5 Relative Price Regression Using all Prices (Equation 38)

As proven below, the intercepts and residuals of regression (38) satisfy the following properties:

Proposition 4 The evolution of the relative product price in all periods, including adjustment

periods, is described by equation (38), where

fjz = f ?jz + ūz,

with f ?jz being defined in equation (153) and

ūz = − αz
1− αz

[E ln Πzt − ln(gz/qz)]. (155)

For products with age sjzt > 0, we have

ujzt =

{
u?jzt − ūz in price adjustment periods,

ujz,t−1 + ln(gz/qz)− ln Πzt otherwise,
(156)

where u?jzt is defined in equation (154). For new products with sjzt = 0, we have

ujzt = u?jzt − ūz,

where

u?jzt ≡ ln

(
nzt
pztdzt

pzdz
nz

)
.

Given the results in the previous proposition, we can compute the unconditional mean of

ujzt. Rewrite equation (156) as

ujzt = ξjzt[ujz,t−1 + ln(gz/qz)− ln Πzt] + (1− ξjzt)(u?jzt − ūz),

where the product-specific, idiosyncratic, and independent Poisson process ξjzt captures the

price adjustment process: ξjzt is equal to zero with probability 1−αz and equal to one otherwise.

Given the independence of ξjzt from ujz,t−1, Πzt and u?jzt, we obtain

E[ujzt] = E[ξjzt]E[ujz,t−1 + ln(gz/qz)− ln Πzt] + E[u?jzt − ūz]− E[ξjzt]E[u?jzt − ūz]

= αz (E[ujz,t−1] + ln(gz/qz)− E[ln Πzt]) + (1− αz)E[u?jzt − ūz].

Since ujzt is a stationary process, we have E[ujzt] = E[ujz,t−1]. Since E[u?jzt] = 0, see proposition

2, we obtain from the previous equation and equation (155) that

E[ujzt] = − αz
1− αz

[E ln Πzt − ln(gz/qz)]− ūz = 0,

as claimed in the text.
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Proof. We start by deriving the evolution of the modified residual ujzt. Let the sticky price

in t be equal to the optimal price set k ≥ 0 periods ago, Pjzt = P ?
jz,t−k, where k ≤ sjzt. Then,

we can rewrite equation (38) as

ln
P ?
jz,t−k

Pz,t−k
+ ln

Pz,t−k
Pzt

= fjz − ln

(
gz
qz

)
· (k + sjz,t−k) + ujzt,

or equivalently

ln
P ?
jz,t−k

Pz,t−k
+ ln

Pz,t−k
Pzt

= fjz − ūz − ln

(
gz
qz

)
· (k + sjz,t−k) + ujzt + ūz.

Defining fjz − ūz = f ?jz, the previous equation is equal to the reset price equation (36) shifted

k periods into the past, i.e.,

ln
P ?
jz,t−k

Pz,t−k
= f ?jz − ln

(
gz
qz

)
· sjz,t−k + u?jz,t−k,

where ujzt is given by

ujzt = u?jz,t−k − ūz + ln

(
gz
qz

)
· k − ln

Pzt
Pz,t−k

. (157)

For k = 0, we have ujzt = u?jzt − ūz. For k ≥ 1, we can derive a recursive representation.

Equation (157) then also holds in period t− 1, where the age of the price is k − 1, so that

ujz,t−1 = u?jz,t−k − ūz + ln

(
gz
qz

)
· (k − 1)− ln

Pz,t−1

Pz,t−k

= ujzt − ln

(
gz
qz

)
− ln

Pz,t−1

Pzt
.

The last line follows from equation (157). Rewriting the previous equation yields the postulated

recursive law of motion of the residual ujzt for non-adjustment periods:

ujzt = ujz,t−1 + ln(gz/qz)− ln Πzt.

E.6 Derivation of Equation (40)

The not-quality adjusted price level of item z, defined in equation (39), can be decomposed as

follows:

P̃ 1−θ
zt = δz(P̃

?
z,t,t)

1−θ + (1− αz)δz
∞∑
s=1

(1− δz)s(P̃ ?
z,t−s,t)

1−θ + αz(1− δz)(P̃zt−1)1−θ, (158)

where the average optimal (not-quality adjusted) price of new products entering in t is given

by

P̃ ?
z,t,t ≡

(
1

δz

∫
J?t,t

(P̃ ?
jzt)

1−θdj

) 1
1−θ

, (159)
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and the average optimal (not-quality adjusted) price of continuing products with age s ≥ 1 is

given by

P̃ ?
z,t−s,t ≡

(
1

(1− αz)δz(1− δz)s

∫
J?t−s,t

(P̃ ?
jzt)

1−θdj

) 1
1−θ

. (160)

To obtain a recursive representation of equation (158), we derive the equation corresponding

to equation (60) for the case without quality adjustment. This yields

P̃ ?
z,t−s,t =

(
s−1∏
k=0

gzt−k

)−1(
θ

θ − 1

1

1 + τ

)
NztPt
Dzt

Qzt. (161)

For the special case s = 0, we have

P̃ ?
z,t,t =

(
θ

θ − 1

1

1 + τ

)
NztPt
Dzt

Qzt. (162)

Dividing equation (161) by equation (162) yields

P̃ ?
z,t−s,t = P̃ ?

z,t,t

(
s−1∏
k=0

gzt−k

)−1

. (163)

Using the previous equation to substitute for P ?
z,t−s,t in equation (158) yields

P̃ 1−θ
zt = (P̃ ?

z,t,t)
1−θ

δz + (1− αz)
∞∑
s=1

δz(1− δz)s
(
s−1∏
k=0

gzt−k

)θ−1
+ αz(1− δz)(P̃zt−1)1−θ,

which can be rearranged to obtain

P̃ 1−θ
zt =

{
αzδz + (1− αz)(∆̃e

zt)
1−θ
}

(P̃ ?
z,t,t)

1−θ + αz(1− δz)(P̃zt−1)1−θ, (164)

where the stationary variable ∆̃e
zt is given by

(∆̃e
zt)

1−θ = δz + (1− δz)(∆̃e
zt−1/gzt)

1−θ. (165)

In order to relate Pzt in equation (65) to P̃zt in equation (164), we derive the mapping between

P ?
z,t,t and P̃ ?

z,t,t. In particular, dividing equation (162) by equation (61) and taking growth rates

yields

P̃ ?
z,t,t

P̃ ?
z,t−1,t−1

=
Qzt

Qz,t−1

P ?
z,t,t

P ?
z,t−1,t−1

, (166)

which shows that in item z, the growth rates of the average optimal price of newly entering

products with and without quality adjustment are related via quality growth.

The steady-state version of equation (164) can be rearranged to obtain

(Π̃zP̃z,t−1)1−θ =
{
αzδz + (1− αz)(∆̃e

z)
1−θ
}( P̃ ?

z,t,t

P̃ ?
z,t−1,t−1

P̃ ?
z,t−1,t−1

)1−θ

+ αz(1− δz)(Π̃zP̃z,t−2)1−θ,
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For equation (167) to be consistent with equation (164), it must hold that

Π̃z = P̃ ?
z,t,t/P̃

?
z,t−1,t−1. (167)

Similar reasoning for the item price level with quality adjustment yields

Πz = P ?
z,t,t/P

?
z,t−1,t−1. (168)

Using equations (167) and (168) to rewrite equation (166) in the steady state yields equation

(40) in the main text.

E.7 Proof of Proposition 3

Consider a steady state and use equation (14) to replace in equation (100) the quality-adjusted

reset price P ?
jzt by P̃ ?

jzt/Qjzt. This yields

P̃ ?
jzt

P̃zt

P̃zt
Pzt

1

Qjzt

(
QjztGjzt

Qzt

)
=

(
1

1 + τ

θ

θ − 1

)
nz
pzdz

.

Taking the natural logarithm of the previous equation and using equation (152) to substitute

for ln(QjztGjzt/Qzt) in the steady state yields

ln
P̃ ?
jzt

P̃zt
= ln

(
1

1 + τ

θ

θ − 1

nz
pzdz

)
+ ln

(
Qjzt

εGjztε
Q
jzt

)
− ln

(
gz
qz

)
· sjzt + ln

(
Pzt

P̃zt

)
. (169)

Steady-state relative item price levels evolve as

ln(Pzt/P̃zt) = (t+ 1) · ln(Πz/Π̃z) + ln(Pz,−1/P̃z,−1)

= −(t+ 1) · ln(qz) + ln(Pz,−1/P̃z,−1)

= − ln(qz) · sjzt − (t− sjzt + 1) · ln(qz),

where the second equality follows from equation (40) and the third equality uses the initial

condition Pz,−1/P̃z,−1 = 1, without loss of generality. Using the previous equation to substitute

for the ratio of item price levels in equation (169) yields

ln
P̃ ?
jzt

P̃zt
= ln

(
1

1 + τ

θ

θ − 1

nz
pzdz

)
+ln

(
Qjzt

εGjztε
Q
jzt

)
−(t−sjzt+1)· ln(qz)− ln

(
gz
qz

)
·sjzt− ln(qz)·sjzt.

(170)

Defining the product-fixed effect as50

f̃ ?jz ≡ ln

(
1

1 + τ

θ

θ − 1

nz
pzdz

)
+ ln

(
Qjzt

εGjztε
Q
jzt

)
− (t− sjzt + 1) · ln(qz)

shows that equation (170) is equivalent to equation (42) in the proposition.

50Recall that t− sjzt is constant over the product lifetime.
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E.8 Imperfect Quality Adjustment: Deriving Equations (41) and

(43)

To derive equation (41), we define the price level for the case without quality adjustment as

P̃t =
Zt∏
z=1

(
P̃zt/ψzt

)ψzt
,

analogously to equation (16). Taking growth rates of the previous equation and using equation

(40) to substitute for Π̃z in the steady state yields

Π̃ =
∏Z

z=1
(qzΠz)

ψz .

Taking the natural logarithm of the previous equation and using ln Π =
∑Z

z=1 ψz ln Πz, which

follows from equation (16), yields equation (41).

To derive equation (43), we rewrite the equation in Lemma 2, which holds to first order at

the approximation point (Π̄, m̄z), with Π̄ = m̄z and mz = gzγez
qzγe

, using

Π? = Π̄ + Π̄(ln Π? − ln Π̄) +O(2)

mz = m̄z + m̄z(lnmz − ln m̄z) +O(2),

to substitute for Π? and mz, respectively. This yields

ln Π? − ln Π̄ =
Z∑
z=1

ψz (lnmz − ln m̄z) +O(2),

which after simplifying is equivalent to equation (43).

F Data Appendix

F.1 ONS Methodology for Constructing Item-Level Price Indices

ONS constructs quality-adjusted item price indices using a three step approach. We now briefly

describe each step (see ONS (2014) for a more detailed description).

In the first step, ONS uses internal plausibility and cross-checking procedures to flag price

quotes it considers invalid and then removes these quotes from the data set before computing

price indices. ONS removes, for example, price quotes which belong to a non-comparable

substitution in the month in which the substitution occurs and in the subsequent month.

Similarly, ONS removes price quotes with an invalid base price. Generally, the base price is the

price of the product in the previous January. However, when ONS detects a change in product

quality, it adjusts the base price to reflect this quality change. As described further below, ONS
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uses base prices to obtain quality-adjusted price indices. We restrict our sample to validated

price quotes (see table 1).51

In the second step, ONS computes one or more stratum indices in each item category. To

this end, ONS stratifies valid price quotes into stratum cells according to the type of shop

(shops with ten or more outlets versus shops with less than ten outlets) and/or the region from

which price quotes were sampled (ONS considers thirteen regions). In a given month, a stratum

index comprises all valid price quotes in the stratum cell. The stratum index Ĩkzt for stratum

cell k in month t of item z is given by

Ĩkzt = 100× exp

[
1∑

j∈Jkz wjkzt

(∑
j∈Jkz

wjkzt ln

(
Pjkzt
Pjkzb

))]
,

where Jkz denotes the set of products belonging to stratum cell k in item z and wjkzt the

weight of product j in stratum cell k at date t. This weight is a so-called ‘replication factor’

that represents the relative number of times that a price relative Pjkzt/Pjkzb is meant to appear

in the stratum index. Here, Pjkzb denotes the price quote of the product in the base month,

which is January of each year. Unless ONS implements quality adjustment, the base price is

thus the January price of the product.52

In the third step, ONS computes the price index for the item category. In a given month of

a year, the item index is equal to the weighted sum of stratum indices available in this month

in this category. Specifically, the item-level price index Ĩzt of item z in month t is given by

Ĩzt =
K∑
k=1

(
wkzt∑
k wkzt

)
Ĩkzt,

where K denotes the number of stratum cells53 and wkzt the expenditure weight attached to

51In addition, we erase 201 validated price quotes for which the base price is exactly equal to 0.0004 GBP. This

base price is clearly implausible on a priori grounds. Furthermore and contrary to previous studies focusing on

the price change distribution, we also keep the validated price quotes that contain the VAT changes in December

2008, January 2010 and January 2011. Dropping all price quotes in a January would make it infeasible to

construct chained item price indices. We also keep validated price quotes in May 2005 in our baseline sample

even though May 2005 is a month in which unusually many nominal price quotes are equal to their value in

January 2005. Our results are robust to excluding price quotes in May 2005 from the analysis. Finally, we also

keep the validated price quotes in January 1999 in our baseline sample, even though unusually large replication

errors arise in this month for some of the item indices that we recompute.
52Base prices are adjusted when ONS detects a change in product quality. Usually, quality change coincides

with product substitution. When ONS can place a value on the quality difference between the previous product

and the replacement product (the so-called direct quality adjustment), it uses this value to directly adjust

the base price in proportion to the quality change. For example, when the package size of a product changes

permanently, ONS price collectors find in each outlet the nearest equivalent new size of the product priced in

this outlet. Then, the base price is adjusted in proportion to the change in package size.
53The number of stratum cells K varies over time and items. The reason for the time variation is that

stratification varies over time. For instance, products in item z may not be stratified initially but at some point

in time may be stratified.
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stratum cell k in month t. ONS updates the expenditure weights annually.

Since Ĩzt represents the index increase between January (the base month) and month t of the

same year, the within year item indices Ĩzt need to be chained together to obtain a consistent

multi-year index series Izt.

F.2 Item Indices Without Duplicate Price Quotes

As described in section 3, our analysis requires us to track individual products and their relative

price trajectories over the product life. Some of the product identifiers we construct contain

duplicate price quotes for the same month because ONS does not disclose all location informa-

tion of a price quote.54 For our analysis, we discard all price quotes belonging to the product

identifiers with duplicate price quotes.

When then recompute item indices using official ONS methodology (see appendix F.1),

discarding products with duplicate price quotes, and compare the recomputed item indices

with the official ONS item indices.

We consider a recomputed item index as sufficiently accurate, whenever the root mean

squared error (RMSE) of the log difference between the recomputed and the official index is

below 2%,

RMSEz =

√
1

Tz

∑
Tz

[ln
(
ĨOzt

)
− ln

(
Ĩzt

)
]2 < 0.02,

where ĨOzt denotes the official ONS index of item category z in month t, Ĩzt the recomputed

item index and Tz the sample period for which both indices display non-missing values. We

also require that recomputed item indices do not display temporarily missing values. We find

that 1093 of the 1233 item categories fulfill these requirements.55 These 1093 item categories

constitute our baseline sample.

Panel A in figure 11 depicts the distribution of RMSEs for all 1233 item categories. RMSEs

are generally low: the median (mean) error is equal to 0.006 (0.0079). Pairwise correlations

between recomputed and official ONS item indices in Panel B typically exceed 0.95 and the

54We construct the ONS product identifier as the tuple consisting of item ID, region, shop code, shop type,

and stratum type. The ”item ID” is a six digit reference number which can be used to allocate each price

quote in a particular item category to its constituent COICOP classification. The ”region” is equal to one of

thirteen region classifications. The ”shop code” denotes the outlet code from which the individual price quote

was obtained. The ”shop type” discriminates shops with ten or more outlets versus shops with less than ten

outlets. The ”stratum type” is equal to ”not stratified”, ”stratified by region”, ”stratified by region and shop

type” or ”stratified by shope type”. These variables are contained in the ONS meta data.
55In particular, 68 of the recomputed indices do not fulfill the RMSE criterion. Another 72 of the recomputed

item indices fulfill the RMSE criterion but display temporarily missing values. We exclude these indices,

which often refer to seasonal products for which prices are missing in certain months in each year, to avoid

complications when chaining item indices with missing values in the month of January.
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Figure 11: Recomputed and Official ONS Item Indices
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median (mean) correlation is equal to 0.984 (0.972).56 Panel C in figure 11 depicts the RMSE

(the upward-sloping line) and the correlations for all items with an RMSE<0.02. It shows that

for the vast majority of items that satisfy RMSE<0.02, we have a high correlation (above 0.9).

Only few items display a somewhat lower correlation.

Figure 12 further illustrates the properties of the 1093 recomputed item indices in our

baseline sample. Panel A shows that the numbers of recomputed and ONS item indices evolve in

parallel and tend to both increase over the sample period. For the item categories in our baseline

sample, the implied annual entry and exit rates are equal to 6.02% and 5.37%, respectively,

which indicates fairly modest turnover at the item category level.57 Furthermore, only about

56Correlations are meaningful statistics because at this stage of the analysis, the base period of item indices

corresponds to the month of January in the current year.
57The entry rate is the share of item categories newly introduced in the current year, relative to all item

categories present in this year. The exit rate is the share of item categories present in the previous year but no

longer present in this year. Item turnover primarily reflects decisions taken at ONS, which are often determined
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Figure 12: Number, Share and Spell Duration of Analyzed Items
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half of the 1093 recomputed item indices are present in the average year (503 out of 1093). The

same pattern is present when considering all ONS item indices for which micro price data is

available (675 out of 1233). Panel B reports the relative number and the expenditure share of

items in our baseline sample relative to the full ONS sample. It shows that the baseline sample

covers around 75% of the available items and 94% of the expenditure share.

F.3 Theory-Consistent and Quality-Adjusted Item Price Level In Regressions

This appendix describes how we compute theory-consistent item price levels from the micro

price data. Using the equations (14), (18) and (20), we write the item price level in equation

(15) as

Pzt =

∫ 1

0

Yjzt
Yzt

Pjzt dj .

Dividing the previous equation by Pzb, which is the item price level in the base period b, and

augmenting the integrand, we obtain

Pzt
Pzb

=

∫ 1

0

wjzb
YjztYzb
YztYjzb

Pjzt
Pjzb

dj, (171)

where Pjzb denotes the price of product j in base period b and wjzb ≡ PjzbYjzb
PzbYzb

denotes the

expenditure weight of product j in the base period, with weights satisfying
∫
wjzb dj = 1. The

product demand function in equation (18) implies

YjztYzb
YztYjzb

=

(
PjztPzb
PztPjzb

)−θ
.

by methodological changes or data production requirements such as keeping the number of items in the basket

roughly steady over time.

76



Substituting the previous equation into (171) yields

Pzt
Pzb

=

(∫ 1

0

wjzb

(
Pjzt
Pjzb

)1−θ

dj

) 1
1−θ

.

Linearizing the previous equation around Pjzt/Pjzb = 1 delivers

Pzt
Pzb

=

∫ 1

0

wjzb
Pjzt
Pjzb

dj +O(2),

which is the equation we use to compute the growth rate of the price index at the item level.

We thereby set wjzb equal to the ONS expenditure weight and - following ONS - chain the index

growth rates across years to get the multi-year series for the price index at the item level.
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