Discussion: "Financial Variables as Predictors of Real Growth Vulnerability"

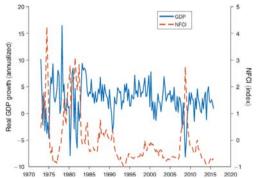
Mikkel Plagborg-Møller Princeton University

Bundesbank + Riksbank + Nederlandsche Bank 5th Annual Macroprudential Conference June 22, 2019

Outline

• Evaluating early warning indicators

2 Letting the data speak about risk


3 Excess leverage as macro-pru indicator

How does the nonlinear model help us forecast?

- ABG (AER 2019): Nonlinear link between financial cond's and GDP.
 - Bad fin cond's ⇒ downside risk in GDP. Good fin cond's ⇒ upside.
- RRH: Better density forecast performance of ABG's nonlinear model comes from higher precision in normal times, not in bad times.
 - This fact is actually reported by ABG (fig. 11), although not emphasized.

How to evaluate early warning indicators?

- RRH: NFCI does not provide early warning in 2008q2–q3. Non-fin leverage indicator does.
- Dangerous to evaluate models on single data point? Nonlinearities already identified off just 2 or 3 historical periods of stress.

Note: ABG (2019) Figure 2

Cross-country data useful? Adrian, Liang, Grinberg & Malik (2018)

Outline

1 Evaluating early warning indicators

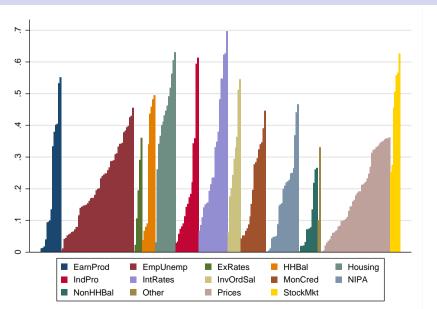
2 Letting the data speak about risk

3 Excess leverage as macro-pru indicator

Letting the data speak about risk

- RRH break down distributional forecasts by NFCI sub-index.
 - ABG online appendix does the same, but omit non-financial leverage.
 - NFCI (and sub-indices) are constructed from \sim 100 component series.
- RRH also control for real activity index, constructed from 18 component series.
- Neither the NFCI nor the real activity index have been constructed specifically with a view toward risk monotoring.
- Question: Taking sub-index approach to its logical conclusion, which *component series* are most important indicators of GDP risk?

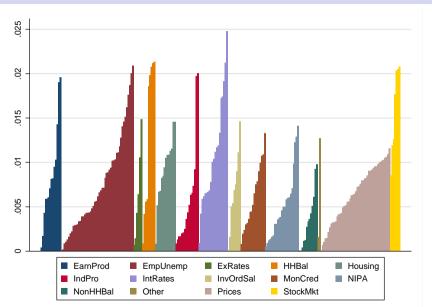
Conditional heteroskedasticity model


 ABG show that their one-quarter-ahead quant. reg. distributional forecasts are well approximated by a Gaussian conditional heteroskedasticity model:

$$y_{t+1} = \mu + \beta' x_t + \sigma_t \varepsilon_{t+1}, \quad \varepsilon_{t+1} \stackrel{i.i.d.}{\sim} N(0,1),$$

$$\sigma_t^2 = \exp(\nu + \gamma' z_t).$$

- ABG: $z_t = NFCI \& GDP$.
- My approach: Let data speak flexibly.
 - FRED-QD data set: 248 series, all categories of macro/finance data. Sample: 1973q1-2016q3. McCracken & Ng (2015); Stock & Watson (2016)
 - 2 Estimate 8 factors \hat{F}_t by principal components (67% of variance). Bai & Ng (2002)
 - .
 - **3** Estimate cond het model with $x_t, z_t = \hat{F}_t$.
- Next: How does vol factor $\hat{\gamma}'\hat{F}_t$ relate to 248 underlying series?


Correlation of underlying series with vol factor

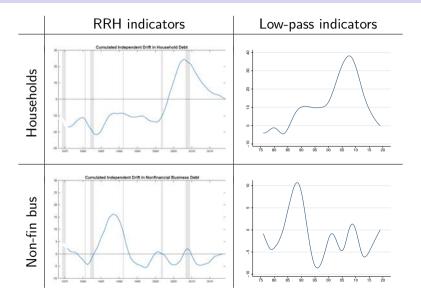
Top-10 highest (abs.) correlates with vol factor

Series	Category	Corr.
3-mth CP/TBill spread	IntRates	.70
New housing build permits: total	Housing	63
AAA/FFR spread	IntRates	63
S&P 500: div yield	StockMkt	.63
3mTBill/FFR spread	IntRates	62
Capac util.: total	IndPro	.61
New housing build permits: South	Housing	60
Capac util: manuf	IndPro	.59
S&P 500	StockMkt	57
New housing starts	Housing	56

Weight of vol factor on underlying series

Outline

1 Evaluating early warning indicators


2 Letting the data speak about risk

3 Excess leverage as macro-pru indicator

Excess leverage as macro-pru indicator

- Goal of last part of paper: "excess leverage" indicator for HHs and non-fin firms.
 - Rivals BIS's "credit gap" as macro-pru tool.
- RRH indicator = cumulated drift in HH/business debt in excess of and independent of drift in GDP growth.
- RRH emphasize need for trend-cycle model w. labor mkt var's to filter out business cycle.
- But I get similar indicators using simple approach:
 - \bullet Obtain trend in debt+GDP using low-pass filter (retain cycles > 32 quarters).
 - Subtract GDP trend from debt trend. Remove sample avg growth rate.

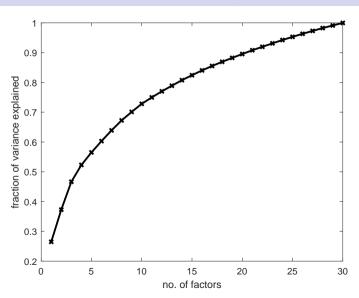
Excess leverage indicators

Taking stock: macro-pru indicators

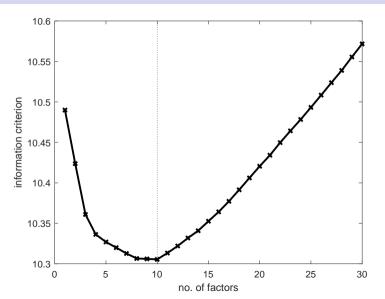
- RRH indicators primarily differ from the simple-minded ones at end of the sample. Why?
 - Implicit prior on how much trend growth can fluctuate?
 - Do results depend on using labor market data?
- How to link excess leverage indicators with macro-pru goals?
 - According to RRH's model, the excess growth in debt *should not* help forecast GDP growth (due to independence assumption).
- How to reconcile with BIS's "credit gap", which is difference from debt-to-GDP trend?
 - Can theory guide us?

Outline

• Evaluating early warning indicators

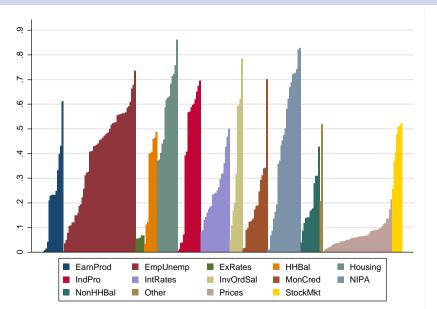

2 Letting the data speak about risk

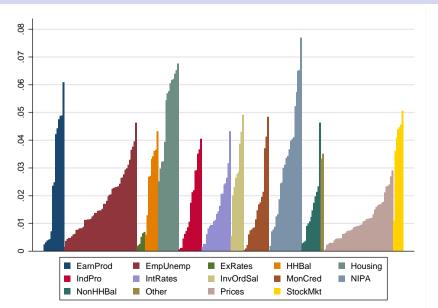
3 Excess leverage as macro-pru indicator


- Great paper that advances our understanding of GDP downside risk and of reduced-form macro-finance linkages.
- Humble suggestions:
 - Cross-country data to avoid evaluating on a single Great Recession data point.
 - **2** Explore a wider set of variables for short-term risk prediction.
 - 3 Modify trend-cycle model so that excess leverage indicator may help forecast GDP growth. Explain differences from simple-minded low-pass filter and from BIS "credit gap".

Thank you!

Cumulative scree plot


Bai-Ng information criterion IC_{p2}


Conditional heteroskedasticity model estimates

	Mean	Var
L.factor1	-1.374***	0.0619
	(0.191)	(0.147)
L.factor2	1.148***	-0.530***
	(0.202)	(0.136)
L.factor3	-0.433**	-0.136
	(0.220)	(0.150)
L.factor4	0.402*	-0.0227
	(0.212)	(0.157)
L.factor5	0.440* [*]	0.129
	(0.177)	(0.138)
L.factor6	-0.211	-0.153
	(0.184)	(0.142)
L.factor7	0.176	-0.0296
	(0.167)	(0.132)
L.factor8	0.356*	0.108
	(0.185)	(0.127)
Constant	2.722***	1.599***
	(0.203)	(0.126)
Observations	174	174

Correlation of underlying series with mean factor

Weight of mean factor on underlying series

Top-10 highest (abs.) weights in vol factor

Series	Category	Weight
3-mth CP/TBill spread	IntRates	.025
Fin assets, HH & non-prof	HHBal	021
3mTBill/FFR spread	IntRates	021
Net worth of HH & non-prof	HHBal	021
Employees: other services	${\sf EmpUnemp}$.021
Real assets, HH & non-prof, excl. real estate	HHBal	021
S&P 500	StockMkt	021
S&P 500: div yield	StockMkt	.021
S&P 500: industrials	StockMkt	020
Employees: education & health	${\sf EmpUnemp}$.020