Financial Variables as Predictors of Real Growth Vulnerability

Lucrezia Reichlin,¹ Giovanni Ricco,² and Thomas Hasenzagl³

³Now-Casting Economics ¹London Business School, Now-Casting Economics, and CEPR ²University of Warwick and OFCE-SciencesPo, and CEPR

5th Annual Macroprudential Conference

Eltville, June 21-22, 2019

Important Question for Macroprudential Policy

Can we extract advanced information about the risk of recessions from financial conditions?

Two Influential Approaches

- 1. **Growth-at-Risk** (short-medium term)
 - Focus on the tails, not on the mean!
 - Study the evolution over time of the GDP growth distribution conditional on financial stress
 - Policy as **risk management**

Key empirical results

- Financial conditions affect GDP growth in recessions but are muted in normal times
- Key mechanism is to affect negatively the GDP growth **mean** positively its **variance**
- 2. The Basel credit-to-GDP gap as a macro-prudential tool (medium term)
 - Monitor the credit-to-GDP cycle as an indicator of cumulation of financial risks
 - Find evidence of **smooth credit cycle** different than business cycle

This Paper

An outsiders' look at these tools!

- 1. Some **illustrative exercises** using the **Growth-at-Risk** framework
 - How are the key results from this literature to be interpreted?
 - How can this tool be used in policy?
- 2. Interpret the Basel gap using a more formal multivariate time series model

Growth-at-Risk

Intuition: GDP Growth and NFCI are Correlated in Recessions

In-sample - Quantile Regressions: Baseline Model

- NFCI and GDP growth: negative relation on average
- As financial conditions deteriorate, the model assigns both larger probability of a large negative event and of a large positive event!
- ullet The **slope is roughly constant** \Longrightarrow **conditional variance increases** as NFCI goes up

Comments

- During recession both real and financial models do badly: large forecast errors
- Expected shortfall adjusts with a delay Show Shortfall
- ⇒ Not a timely warning signal
 - Movements in the conditional distribution are driven by increase in variance and decrease in mean
 - Not shift of other moments (e.g. **skweness** or **kurtosis**) Show Moments
- From a modelling point of view this is equivalent to what we get with a linear conditional heteroskedasticity model

Financial and Real Factors

Strongly negatively correlated!

Financial and Real Factors

Considering Both

Results and Interpretation

- Both real and financial conditions detect increase in GDP-at-Risk
- Real factor captures downward shift the conditional mean rather than an increase in the conditional variance
- Both variables have low predictive power in bad times

Looking Inside the NFCI

NFCI components have heterogenous time series behaviour

Focus on Nonfinancial Leverage

Less strong non-linearities + equally large negative effect at low and high quantiles

Nonfinancial Leverage as a Signal of Risk

The Great Recession

Nonfinancial Leverage - Expected Shortfall

Tentative Appraisal

- 1. Big difference in results depending on key indicator of financial conditions
- 2. NFCI move conditional variance of GDP growth (positively) and conditional mean (negatively)...
- 3. ... but **low predictability for risk** even at short-horizon
- 4. Negative correlation in left tail also explained by an index of real economic activity
- 5. **Nonfinancial leverage** has some **predictive information for risk** but non-linearities not as strong
- 6. Little advance information on risk for growth in financial variables

Leverage and Real Activity

GDP and Credit Variables

- Persistent and faster growth of debt w.r.t output are followed by deleveraging
- In the medium term **credit fluctuates with the business cycle**
- Debt variables can deviate from long-run equilibrium
- This is when **fragilities build-up!**

The Basel Gap

- Detrended credit-to-GDP ratio
- Hodrick-Prescott filter with $\lambda = 400,000$
- ullet Very **smooth long cycle** \sim 30 year

Problems with the Basel Gap

- 1. HP is a blackbox
- 2. End-point problem
- 3. High-pass behaviour it correlates negatively with GDP growth
- 4. Contaminated by business cycle (common) dynamic
- 5. 'Downward bias' in the estimates **very negative today!**

Can We do Better in Identifying Excess Leverage?

- Filter through a multivariate trend-cycle model
- Use real and labour market variables to discipline the model
- Minimal assumptions but more transparent

Model Assumptions:

- 1. Credit variables comove (at lags) with the **output gap** \Longrightarrow common **business cycle**
- 2. In the long-run credit and real variables should **grow at same rate**
- 3. but deviations are possible \Longrightarrow common and idiosyncratic trend growth

The Data

Variable	Transformation	Loads on	
		Common Business Cycle	Common Growth Rate
Gross Domestic Product	Log-Levels	✓	√
Employment	Log-Levels	\checkmark	×
Unemployment Rate	Log-Levels	✓	×
Household Debt	Log-Levels	✓	\checkmark
Nonfinancial Business Debt	Log-Levels	✓	✓

Sample: Quarterly, Q1-1973 to Q1-2019

A Sketch of the Model

Business Cycle and Idiosyncratic Cycles

Trends

Idiosyncratic and common drifts in credit variables growth

Cumulated Idiosyncratic Drift and the Basel Gap Interpretation

In our model the Basel gap in growth rate is:

$$\Delta \frac{Credit_t}{GDP_t} \simeq \mu^i + c(L)\psi_t^{bc}$$

i.e.

Growth rate of Credit-to-GDP \simeq idiosyncratic drift + business cycle

- ullet Idiosyncratic drift \sim measure of **excess credit growth**
- Resuming the idiosyncratic drift we obtain a clean measure of credit gap
- No business cycle contamination!

Model-Implied Excess Credit and the Basel Gap

Takeaways

Trend-Cycle Model

- Idiosyncratic credit growth leads recessions...
- and may have some predictive value for recessions or risk of recessions
- Its level has the same interpretation of the Basel gap and can be used for monitoring excess credit risk
- The model can be easily extended to incorporate several credit variables (and asset classes)...
- more granular approach to be tested

Some Concluding Observations

- Monitoring risk and focusing on the tails is very appealing. GDP at risk metgodology
 is a nice way to summarize the concept but more data and model extensions
 needed to make it a tool for stress testing and predictions (some is under way)
- 2. **Risk management is about combining different models** we have presented two very different models in a stylised form but a more systemiatic approach to model and data combinations is desirable
- 3. Both **dynamic heterogeneity** (trends and cycles) and **cross-variables heterogeneity** relevant for empirical modelling

Appendix

Priors BC

Priors Variance

Moments

Shortfall

