Firms, Failures, and Fluctuations

Daron Acemoglu and Alireza Tahbaz-Salehi

Joint Spring Conference 2019: Systemic Risk and the Macroeconomy $\mbox{Deutsche Bundesbank} - \mbox{ECB}$

Preliminary: Handle with care!

- Modern economies organized as complex production networks between firms
 - **Expenditure** on intermediate goods & services in the U.S. ≈ 1 GDP.

- (1) High levels of persistence in firm-to-firm relationships:
 - Chile: median firm retains 41% and 46% of its domestic suppliers and customers between two average years (Huneeus, 2018)
 - U.S.: 70% of link destructions due to one party's exit (Taschereau-Dumouchel, 2018)

- (2) Firm-to-firm linkages can result in cascading failures
 - bankruptcies due to spillovers over credit linkages (Jacobson and Von Schedvin, 2015)
 - the aftermath of the Great East Japan Earthquake (Carvalho et al., 2016)

- Modern economies organized as complex production networks between firms
 - **Expenditure** on intermediate goods & services in the U.S. ≈ 1 GDP.

- (1) High levels of persistence in firm-to-firm relationships:
 - Chile: median firm retains 41% and 46% of its domestic suppliers and customers between two average years (Huneeus, 2018)
 - U.S.: 70% of link destructions due to one party's exit (Taschereau-Dumouchel, 2018)

- (2) Firm-to-firm linkages can result in cascading failures
 - bankruptcies due to spillovers over credit linkages (Jacobson and Von Schedvin, 2015)
 - the aftermath of the Great East Japan Earthquake (Carvalho et al., 2016)

- Modern economies organized as complex production networks between firms
 - **Expenditure** on intermediate goods & services in the U.S. ≈ 1 GDP.

- (1) High levels of persistence in firm-to-firm relationships:
 - Chile: median firm retains 41% and 46% of its domestic suppliers and customers between two average years (Huneeus, 2018)
 - ▶ U.S.: 70% of link destructions due to one party's exit (Taschereau-Dumouchel, 2018)

- (2) Firm-to-firm linkages can result in cascading failures:
 - bankruptcies due to spillovers over credit linkages (Jacobson and Von Schedvin, 2015)
 - ▶ the aftermath of the Great East Japan Earthquake (Carvalho et al., 2016)

- Existence of firm-specific relationships indicates:
 - (a) relationship-specific surplus
 - (b) non-competitive division of surplus and existence of non-trivial markups
- Both features are absent from most models in the literature, which are typically better approximations for industry-level linkages
 - competitive
 - monopolistically competitive + CES (constant markups)
- Important to model explicitly and understand these features for two reasons:
 - (1) how shocks change relationship-specific surpluses and markups endogenously
 - (2) propagation of shocks, not just through competitive prices but also failures

What We Do

- · A firm-level model of production networks
 - ► firm-specific relationships
 - market power and endogenous markups
 - ► endogenous bankruptcies

- Cascading failures are an important channel for the propagation and amplification of shocks.
- Today:
 - existence and uniqueness results
 - comparative statics
 - ► macroeconomic implications

Related Literature

- Production networks:
 - Long and Plosser (1983); Horvath (1998, 2000); Carvalho (2010); Acemoglu et al. (2012, 2017); Atalay (2017); Baqaee (2018), and many more...
- Endogenous production networks:
 - ► Carvalho and Voigtländer (2014); Oberfield (2018); Acemoglu and Azar (2018)
- Misallocation and markups:
 - ▶ Jones (2013), Bigio and La'O (2018), Baqaee and Farhi (2019), Liu (2018)
- Models of firm-level interactions
 - ► Taschereau-Dumouchel (2018); Tintelnot et al. (2018); Kikkawaa et al. (2018)

Roadmap

- 1. Model
- 2. Solution concept
- 3. Existence and uniqueness
- 4. Comparative statics
- 5. Macroeconomic implications
 - industry-level aggregation
 - aggregate comparative statics

Roadmap

- 1. Model
- 2. Solution concept
- 3. Existence and uniqueness
- 4. Comparative statics
- 5. Macroeconomic implications
 - industry-level aggregation
 - aggregate comparative statics

Model

- An economy with n+1 industries.
 - ▶ industries $\{1, ..., n\}$ produce intermediate goods
 - ▶ industry 0 produces the final good.

- Each industry consists of two types of firms:
 - competitive fringe producing a generic variant of the good
 - collection of firms producing customized variants
- A unit mass of households
 - ▶ log utilities over the final good
 - ▶ one unit of labor supplied inelastically

Timing

- t = 0:
 - ▶ customized firms decide whether to operate their technologies by paying a fixed cost.

- *t* = 1:
 - ▶ active firms enter into pairwise contracts that determine price
 - commitments to deliver as many units as demanded by their customers

- *t* = 2:
 - production and consumption take place.

Generic Producers

- A competitive fringe of firms i°
- constant returns to scale technology:

$$y_i^{\circ} = F_i(\ell_i^{\circ}, B_{i1}q_{i1}^{\circ}, \ldots, B_{in}q_{in}^{\circ}),$$

- $ightharpoonup \ell_i^\circ$: labor input
- $lackbox{ }q_{ij}^\circ\colon$ quantity of generic variants used as inputs
- $ightharpoonup B_{ij}$: productivity shock
- ullet All inputs are gross complements (elasticity of substitution \leq 1).

Customized Producers

- a (finite or infinite) collection of firms
- customized variants can only be used by specific firms as intermediate inputs
- formalized as an exogenous network G

Assumption

The firm-level production network **G** satisfies the following

- (i) each firm in G has at most one customer
- (ii) each firm in **G** has at most one customized supplier in any given industry

Customized Producers

- a (finite or infinite) collection of firms
- · customized variants can only be used by specific firms as intermediate inputs
- formalized as an exogenous network G

Assumption

The firm-level production network **G** satisfies the following:

- (i) each firm in **G** has at most one customer;
- (ii) each firm in G has at most one customized supplier in any given industry;

Customized Producers: Technology

- Same production function as the generics.
- Can always use generic variants as inputs

$$y_i = F_i \left(\ell_i, \{ A_{ij} x_{ij} + {\color{red} B_{ij} x_{ij}^{\circ}} \}_{(j,i) \in \textbf{G}}, \{ {\color{red} B_{ij} x_{ij}^{\circ}} \}_{(j,i) \not \in \textbf{G}} \right).$$

Assumption

Customized variants result in higher productivities:

$$A_{ij} \geq B_{ij}$$

• For today: Leontief production tehcnologies:

$$y_i = \min \left\{ I_i, \{ A_{ij} x_{ij} + B_{ij} x_{ij}^{\circ} \}_{(i,i) \in G^*}, \{ B_{ij} x_{ii}^{\circ} \}_{(i,i) \notin G^*} \right\}.$$

Customized Producers: Technology

- Same production function as the generics.
- Can always use generic variants as inputs

$$y_i = F_i \left(\ell_i, \{ A_{ij} x_{ij} + \underline{B}_{ij} x_{ij}^{\circ} \}_{(j,i) \in \mathbf{G}}, \{ \underline{B}_{ij} x_{ij}^{\circ} \}_{(j,i) \notin \mathbf{G}} \right).$$

Assumption

Customized variants result in higher productivities:

$$A_{ij} \geq B_{ij}$$

• For today: Leontief production tehcnologies:

$$y_{i} = \min \left\{ I_{i}, \left\{ A_{ij} x_{ij} + \frac{B_{ij}}{B_{ij}} x_{ii}^{\circ} \right\}_{(i,i) \in \mathbf{G}^{*}}, \left\{ \frac{B_{ij}}{B_{ij}} x_{ii}^{\circ} \right\}_{(i,i) \notin \mathbf{G}^{*}} \right\}.$$

Customized Producers: Fixed Operational Costs

- Operating active technology requires a fixed cost z_i in the units of labor at t=0
- cost is sunk by the contracting stage at t=1

• Induces an endogenous subnetwork of active firms

$$\textbf{G}^*\subseteq \textbf{G}$$

Consumption Good Sector

• Firms transforming various inputs into industrial aggregates:

$$x_{0i} = F_{0i} \left((x_{0i} + x_{0i}^{\circ})_{(i,0) \in \mathbf{G}} \right),$$

• Outputs then aggregated to a single consumption good:

$$y_0 = F_0(x_{01}, \dots, x_{0n})$$

- Different from customized producers:
 - > no productivity difference between generic and customized inputs
 - no entry costs
 - no market power

- Active firms can enter into pairwise contracts at t=1
- Contract between $(j, i) \in \mathbf{G}^*$ specifies a price p_{ij}
- A commitment by the supplier to deliver as many units as demanded by the customer at fixed price p_{ij}.

- Generic producers:
 - lacktriangle price at marginal cost irrespective of customers' identity: $p_i^\circ=c_i^\circ$

- Customized producers:
 - ▶ Rubinstein bargaining with random offers over infinitely many subperiods.
 - lacktriangle supplier and customer make offers with probabilities δ_{ij} and $1-\delta_{ij}$.
 - ▶ if rejected, proceed to the next subperiod
 - ▶ both parties discount time at rate $\eta \uparrow 1$
 - \blacktriangleright if no agreement, the two parties cannot trade at t=2.

- Generic producers:
 - lacktriangle price at marginal cost irrespective of customers' identity: $p_i^\circ=c_i^\circ$

- Customized producers:
 - ▶ Rubinstein bargaining with random offers over infinitely many subperiods.
 - lacktriangle supplier and customer make offers with probabilities δ_{ij} and $1-\delta_{ij}$.
 - if rejected, proceed to the next subperiod.
 - ▶ both parties discount time at rate $\eta \uparrow 1$.
 - if no agreement, the two parties cannot trade at t=2.

• The bargaining powers δ_{ij} will determine equilibrium markups, markups' response to shocks, and shocks' pass-through.

• The customer has access to the outside option of using the generic variant:

$$p_{ij} \leq p_{ij}^{\circ} \frac{A_{ij}}{B_{ij}}$$

- Both parties have the outside option of walking away:
 - they reach an agreement in equilibrium only if there are positive gains from trade
 - ightharpoonup imposes endogenous restrictions on p_{ij} as a function of other prices in the economy

Summary

- t = 0:
 - $\,\blacktriangleright\,$ the network of potential relationships G is realized
 - ▶ customized producers decide to operate their technologies by paying a fixed cost
 - ightharpoonup network of active firms: $\mathbf{G}^*\subseteq\mathbf{G}$

- *t* = 1:
 - ▶ firms enter into pairwise fixed-price contracts
 - > commitments to deliver as many units as demanded by their customers

$$oldsymbol{
ho} = (p_{ij})_{(j,i) \in \mathbf{G}^*}$$
 $oldsymbol{
ho}^{\circ} = (p_1^{\circ}, \dots, p_n^{\circ}, w)$

- t = 2:
 - ▶ all firms make input and output decisions
 - households make consumption decisions

Roadmap

- 1 Mode
- 2. Solution concept
- 3. Existence and uniqueness
- 4. Comparative statics
- 5. Macroeconomic implications
 - industry-level aggregation
 - aggregate comparative statics

Solution Concept: Production Equilibrium (t = 2)

Definition

Take the prices and the network G^* as given. In a production equilibrium,

- (i) firms minimize costs while meeting their output obligations to their customers;
- (ii) the representative household maximizes her utility;
- (iii) all markets clear.

Solution Concept: Pricing Equilibrium (t = 1)

Definition

For given \mathbf{G}^* , a pricing equilibrium is collection of prices $(\boldsymbol{p}, \boldsymbol{p}^\circ)$ and quantities

- (i) the quantities in any ensuing subgame correspond to a production equilibrium;
- (ii) no generic producer i° can earn higher profits by offering a different price;
- (iii) there is no $(j,i) \in \mathbf{G}^*$ such that one party can earn higher profits by
 - renegotiating with an existing partner
 - negotiating with a new partner
 - terminating an already existing agreement

Solution Concept: Full Equilibrium (t = 0)

Definition

A full equilibrium is network G* and collections of prices & quantities such that

- (i) the quantities form production equilibria in the subgames at t = 2;
- (ii) the prices correspond to a pricing equilibrium in the subgames at t=1;
- (iii) no customized firm has an incentive to change its decision to operate at t=0:

$$\pi_i(\mathbf{G}^*) - z_i w \ge 0 \qquad \forall i \in \mathbf{G}^*$$

 $\pi_i(\mathbf{G}^* \cup \{i\}) - z_i w < 0 \qquad \forall i \notin \mathbf{G}^*.$

- Endogenizes the production network $G^* \subseteq G$
- Firms account for how their decision shapes the outcomes of the various pairwise bargaining processes, input and output prices, quantities, and household wealth.

Solution Concept: Full Equilibrium (t = 0)

Definition

A full equilibrium is network ${f G}^*$ and collections of prices & quantities such that

- (i) the quantities form production equilibria in the subgames at t = 2;
- (ii) the prices correspond to a pricing equilibrium in the subgames at t = 1;
- (iii) no customized firm has an incentive to change its decision to operate at t=0:

$$\pi_i(\mathbf{G}^*) - z_i w \ge 0$$
 $\forall i \in \mathbf{G}^*$
 $\pi_i(\mathbf{G}^* \cup \{i\}) - z_i w < 0$ $\forall i \notin \mathbf{G}^*.$

- Endogenizes the production network $\mathbf{G}^* \subseteq \mathbf{G}$
- Firms account for how their decision shapes the outcomes of the various pairwise bargaining processes, input and output prices, quantities, and household wealth.

Roadmap

- 1. Mode
- 2. Solution concept
- 3. Existence and uniqueness
- 4. Comparative statics
- 5. Macroeconomic implications
 - industry-level aggregation
 - aggregate comparative statics

Production Equilibrium (t = 2)

Theorem

For any $(\mathbf{G}^*, \mathbf{p}, \mathbf{p}^\circ),$ a production equilibrium exists and is unique.

Pricing Equilibrium (t=1)

Theorem

For any feasible network of active firms G*,

- (a) a pricing equilibrium $({\it p},{\it p}^\circ)$ always exists and is unique;
- (b) all pairs of firms $(j,i) \in \mathbf{G}^*$ reach an agreement,
- (c) vector of generic prices $\mathbf{p}^{\circ} = (p_{1}^{\circ}, \dots, p_{n}^{\circ}, w)$ is the solution to system of equations $p_{i}^{\circ} = c_{i}(w, p_{1}^{\circ}/B_{i1}, \dots, p_{n}^{\circ}/B_{in});$
- (d) vector of customized prices $\mathbf{p}=(p_{ij})_{(j,i)\in G^*}$ is solution to the system of equations

where \widehat{p}_{ii} is the unique solution to the equation

$$f_{ij}(\widehat{p}_{ij}) = \delta_{ij}\pi_i \frac{\partial \pi_j}{\partial p_{ij}} + (1 - \delta_{ij})\pi_j \frac{\partial \pi_i}{\partial p_{ij}} = 0.$$

Pricing Equilibrium (t = 1)

Theorem

For any feasible network of active firms **G***,

- (a) a pricing equilibrium (p, p°) always exists and is unique;
- (b) all pairs of firms $(j, i) \in \mathbf{G}^*$ reach an agreement;
- (c) vector of generic prices $\mathbf{p}^{\circ} = (p_{1}^{\circ}, \dots, p_{n}^{\circ}, w)$ is the solution to system of equations $p_{i}^{\circ} = c_{i}(w, p_{1}^{\circ}/B_{i1}, \dots, p_{n}^{\circ}/B_{in});$
- (d) vector of customized prices $\mathbf{p} = (p_{ij})_{(j,i) \in \mathbb{G}^*}$ is solution to the system of equations $p_{ii} = \min \left\{ \widehat{p}_{ii}, p_i^{\circ} A_{ii} / B_{ii} \right\},$

where \hat{p}_{ii} is the unique solution to the equation

$$f_{ij}(\widehat{\rho}_{ij}) = \delta_{ij}\pi_i \frac{\partial \pi_j}{\partial \rho_{ij}} + (1 - \delta_{ij})\pi_j \frac{\partial \pi_i}{\partial \rho_{ij}} = 0$$

Pricing Equilibrium (t = 1)

Theorem

For any feasible network of active firms G*,

- (a) a pricing equilibrium $(\mathbf{p}, \mathbf{p}^{\circ})$ always exists and is unique;
- (b) all pairs of firms $(j, i) \in \mathbf{G}^*$ reach an agreement;
- (c) vector of generic prices $\mathbf{p}^{\circ} = (p_1^{\circ}, \dots, p_n^{\circ}, w)$ is the solution to system of equations: $\mathbf{p}_i^{\circ} = c_i(w, \mathbf{p}_1^{\circ}/B_{i1}, \dots, \mathbf{p}_n^{\circ}/B_{in});$
- (d) vector of customized prices $\mathbf{p}=(p_{ij})_{(j,i)\in \mathsf{G}^*}$ is solution to the system of equations $p_{ij}=\min\left\{\widehat{p}_{ii},p_i^\circ A_{ii}/B_{ii}\right\},$

where \hat{p}_{ii} is the unique solution to the equation

$$f_{ij}(\widehat{\rho}_{ij}) = \delta_{ij}\pi_i \frac{\partial \pi_j}{\partial \rho_{ij}} + (1 - \delta_{ij})\pi_j \frac{\partial \pi_i}{\partial \rho_{ij}} = 0$$

Pricing Equilibrium (t=1)

Theorem

For any feasible network of active firms G*,

- (a) a pricing equilibrium (p, p°) always exists and is unique;
- (b) all pairs of firms $(j, i) \in \mathbf{G}^*$ reach an agreement;
- (c) vector of generic prices $\mathbf{p}^{\circ} = (p_1^{\circ}, \dots, p_n^{\circ}, w)$ is the solution to system of equations:

$$p_i^{\circ} = c_i(w, p_1^{\circ}/B_{i1}, \ldots, p_n^{\circ}/B_{in});$$

(d) vector of customized prices $\mathbf{p}=(p_{ij})_{(j,i)\in\mathbf{G}^*}$ is solution to the system of equations

$$p_{ij} = \min\left\{\widehat{p}_{ij}, p_j^{\circ} A_{ij}/B_{ij}\right\}$$
,

where \hat{p}_{ii} is the unique solution to the equation

$$f_{ij}(\widehat{\boldsymbol{\rho}}_{ij}) = \delta_{ij}\pi_i \frac{\partial \pi_j}{\partial \boldsymbol{\rho}_{ij}} + (1 - \delta_{ij})\pi_j \frac{\partial \pi_i}{\partial \boldsymbol{\rho}_{ij}} = 0.$$

Endogenizing Production Networks: Full Equilibrium (t = 0)

Theorem

Suppose all production functions are Leontief. Then,

- (a) a full equilibrium exists;
- (b) set of full equilibria has a greatest element with respect to the set inclusion order;
- (c) aggregate output in the greatest equilibrium is higher than all other equilibria.

- All failures in the greatest full equilibrium are "fundamental"
- Strategic complementarities only in PE but not in GE:
 - operation of a firm that makes negative net profits may reduce the profits of others.
 - ▶ cannot use lattice theoretic results like Tarski's or Milgrom and Roberts (1994).
 - monotonicity for the set of firms that make positive profits

Roadmap

- 1. Mode
- 2. Solution concept
- 3. Existence and uniqueness
- 4. Comparative statics
- 5. Macroeconomic implications
 - industry-level aggregation
 - aggregate comparative statics

Exogenous Production Networks: Bargaining Power

Theorem

An increase in a supplier's bargaining power vis-à-vis the customer

- (a) increases all upstream markups and decreases downstream and horizontal markups;
- (b) increases all upstream profits and decreases downstream and horizontal profits;
- (c) increases all upstream and downstream prices and decreases all horizontal prices.

Exogenous Production Networks: Bargaining Power

ullet Changes in markups and profits in response to increase in δ_{ij} :

Exogenous Production Networks: Production Network

Theorem

Let $\underline{\textbf{G}}^*\subseteq \bar{\textbf{G}}^*$ denote two feasible production networks. Then, for all $i\in\underline{\textbf{G}}^*$,

(a)

$$\mu_i(\underline{\mathbf{G}}^*) \leq \mu_i(\bar{\mathbf{G}}^*);$$

(b) if
$$\int_{\{j\in \mathbf{G}^*\setminus \underline{\mathbf{G}}^*\}} (\pi_j(\bar{\mathbf{G}}^*) - wz_j) dj \geq 0$$
, then,
$$\pi_i(\underline{\mathbf{G}}^*) < \pi_i(\bar{\mathbf{G}}^*)$$

 Growing the set of active firms increases profits and markups of already active firms.

Exogenous Production Networks: Production Network

 Expanding the set of active firms is isomorphic to increasing the bargaining power of the already active firms.

- Strategic complementarities only in PE but not in GE:
 - ▶ holding aggregate demand constant, expanding the set of active firms increases profits (PE)
 - ▶ but operation of a firm that makes negative net profits may reduce aggregate demand (GE).

Exogenous Production Networks: Productivity Shocks

Theorem

For any $(j,i) \in \mathbf{G}^*$, an increase in productivity A_{ij}

- (a) increases all markups in the economy;
- (b) increases the **profits** of all firms that are downstream and horizontal to j;
- (c) increases the price of firms that are upstream and horizontal to j and decreases the price of downstream firms.

Comparative Statics: Endogenous Production Networks

Theorem

An increase in the vector of fixed costs z

- (a) shrinks the set of active firms in the greatest full equilibrium;
- (b) lowers aggregate output in the greatest full equilibrium;
- (c) reduces markups and profits of all remaining firms.

- ullet There are complementarities in production o failure cascades
 - ▶ PE effect: direct propagation of failures over the network
 - ▶ GE effect: reduction in aggregate demand, thus lower profits for all firms

Cascading Failures

- ullet Negative shock to j can result in upstream, downstream, and horizontal failures.
- both PE and GE effects.

Cascading Failures

- ullet Negative shock to j can result in upstream, downstream, and horizontal failures.
- both PE and GE effects.

Cascading Failures

- Negative shock to *j* can result in upstream, downstream, and horizontal failures.
- both PE and GE effects.

Roadmap

- 1. Mode
- 2. Solution concept
- 3. Existence and uniqueness
- 4. Comparative statics
- 5. Macroeconomic implications
 - industry-level aggregation
 - aggregate comparative statics

Industry-Level Aggregation

- Can the model be aggregated to the industry level?
- Baqaee and Farhi (2019):

$$\Delta \log \mathsf{GDP} = \tilde{\lambda}' \quad \underbrace{\Delta \log A}_{\mathsf{change in productivity}} - \lambda' \underbrace{\Delta \log \mu}_{\mathsf{change in markups}} - \tilde{\Lambda} \underbrace{\Delta \log \Lambda}_{\mathsf{labor income share}}$$

- Implication: changes in labor income share and industry-level markups are sufficient statistics for measuring productivity shocks' aggregate effects.
- Question: can we use industry-level aggregates to obtain for shocks' macro effects, ignoring firm-level networks and failures?

Industry-Level Aggregation

- Can the model be aggregated to the industry level?
- Bagaee and Farhi (2019):

$$\Delta \log \mathsf{GDP} = \tilde{\lambda}' \quad \underbrace{\Delta \log A}_{\mathsf{change in productivity}} - \lambda' \underbrace{\Delta \log \mu}_{\mathsf{change in markups}} - \tilde{\Lambda} \underbrace{\Delta \log \Lambda}_{\mathsf{labor income share}}$$

- Implication: changes in labor income share and industry-level markups are sufficient statistics for measuring productivity shocks' aggregate effects.
- Question: can we use industry-level aggregates to obtain for shocks' macro effects, ignoring firm-level networks and failures?

Industry-Level Aggregation: Counterexample

• $\psi_2 =$ fraction of active firms in industry 2.

• industry-level markups depend on the composition of firms:

$$\begin{split} &\mu_2^{\circ} = 1 \\ &\mu_2 = 1 - \delta_{12} + \delta_{12} A_{12} / B_{12} \\ &\mu_1 = \left[(1 - \psi_2) / \mu_2^{\circ} + \psi_2 / \mu_2 \right]^{-1} \end{split}$$

Industry-Level Aggregation: Counterexample

• A proportional increase in A_{12} and B_{12} (TFP shock to industry 1).

Industry-level aggregation holds if and only if

$$(1 - \delta_{12}) \frac{d\psi_2}{dA_{12}} = 0.$$

 With endogenous failures, industry-level variables are not sufficient statistics for the impact of industry-level shocks.

• ψ : mass of active firms

- ▶ PE effect: as if G^* were exogenous (holding ψ constant)
- cascade effect: increase in fixed costs shrink the set of active firms
- entry/exit effect: less active firms reduces aggregate productivity
- aggregate demand: less active firms decreases final demand

ψ: mass of active firms

- ▶ PF effect: as if G^* were exogenous (holding ψ constant)
- cascade effect: increase in fixed costs shrink the set of active firms
- entry/exit effect: less active firms reduces aggregate productivity
- aggregate demand: less active firms decreases final demand

• ψ : mass of active firms

- ▶ PE effect: as if G^* were exogenous (holding ψ constant)
- cascade effect: increase in fixed costs shrink the set of active firms
- entry/exit effect: less active firms reduces aggregate productivity
- aggregate demand: less active firms decreases final demand

• ψ : mass of active firms

- ▶ PE effect: as if G^* were exogenous (holding ψ constant)
- cascade effect: increase in fixed costs shrink the set of active firms
- entry/exit effect: less active firms reduces aggregate productivity
- ▶ aggregate demand: less active firms decreases final demand

Aggregate Comparative Statics: Productivities

Aggregate Comparative Statics

for today:

some implications of how interactions between firm-specific relationships, markups, and failures shape aggregate output

Example 1: Failure Propagations

• Supplier has all the bargaining power $\delta_{k-1,k}=1.$

 $\psi_k = \text{fraction of active firms}$

Example 1: Failure Propagations

• aggregate output:

$$\mathsf{GDP} = \frac{L - \bar{z}}{\sum_{k=1}^{n} (\psi_k - \psi_{k+1}) (A_{12} \dots A_{k-1,k} B_{k,k+1} \dots B_{n-1,n})^{-1}}$$

• failure cascades:

$$\psi_{k+1} = \psi_k \mathcal{H}_{k+1} \left(\frac{(1 - B_{k,k+1} / A_{k,k+1}) \text{GDP}}{A_{12} \dots A_{k-1,k} B_{k,k+1} \dots B_{n-1,n}} \right)$$

Output in the economy with endogenous set of active firms relative to an
economy with exogenous set of active firms with \(\psi_k = 1 \):

$$\lim_{A_k \to \infty} \lim_{A_1 \downarrow B_1} \frac{\mathsf{GDP}_{\mathsf{end}}}{\mathsf{GDP}_{\mathsf{exg}}} = 0.$$

Example 2: Productivity Shocks in a Non-Competitive Economy

• Leontief technologies + exogenous production network:

$$\frac{d\log\mathsf{GDP}}{d\log A_{ij}} > 0$$

Endogenous production network:
 positive productivity shocks may reduce aggregate outputs

an increase in A_{ij} increases k's markup, but may reduce its profits and lead to its failure.

Summary and Next Steps

- A firm-level model that takes relationship-specific surplus and firm failures into account.
 - ▶ how shocks change firm-specific relationships and markups endogenously
 - propagation of shocks via failures

- Aggregated industrial-level variables (Domar weights, sectoral markups) not sufficient statistics for understanding the above.
- Different implications from to standard models with competitive pricing/constant markups

- Next steps:
 - more detailed comparative statics?
 - quantitive exercise for the various forces in a more realistic economy?
 - measuring the various terms in the data?