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Introduction

• This paper extends a dynamic endowment DSGE to allow for network
structures among firms. This is usually difficult due to the curse of
dimensionality of network economies

• Main Questions:

1. Are DSGE cash-flow dynamics robust to the introduction of network
effects? What is the impact of cash-flow externalities?

2. Are equilibrium Lucas’ asset prices and risk premia robust to the
existence of network effects? How are interest rates and risk premia
affected by these externalities?

3. What can we learn from a network-based DSGE model in terms of
optimal design of financial network? Which network is the most stable?
What is the maximal debt capacity of a network?
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Main findings

• To model network effects, we introduce a contact matrix in a DSGE model
where cash-flow growth of one firm depends on its distress state, whose
transition intensities depends on the state of distress of all other firms in the
network according to a specific topology.

• Answers:

1. No. There exist two distinct dynamics:

• Subcritical dynamics: If firm-to-firm interaction strength is below
a critical threshold the Lucas assumption holds true. Clusters of
firm-specific shocks are transitory, only aggregate shocks matter.

• Supercritical dynamics: Above the critical threshold, a “domino
effect” induces non-linear amplification of micro-shocks and a
violation of the Lucas assumption. Risk of persistent cascades of
firm-specific shocks is priced by investors.
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Main findings

• 2. No. There exist two distinct equilibria:

• C-CAPM fails in the supercritical equilibrium
• Risk premium includes a non-linear component that is network

specific
• Emergence of a cross-section of risk premia.

3. We propose two spectral-based measures of stability and economic
resilience. We show that:

• It is possible to introduce a tractable reduced-form model that
captures first order dynamics

• There exists a trade-off between stability and resilience:
(a) Star network are the most stable and least resilient;
(b) Complete networks are least stable and most resilient.

• Compute the equilibrium Libor spread and cost of equity capital in
financial networks.

• Derive link between bank debt on the interbank basis spread and
bank cost equity accounting for network externalities.
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Benchmark specification of the dividend distribution
dynamics

Dividend follows D i
t = Ytx

i
t :

• The aggregate shock is log-normal: dYt
Yt

= µdt + σdWt .

• The firm-specific component x it follows a Markov chain:

x it =

{
x it = x i (0) healthy state H i

t = 0
x it = x i (1) distressed state H i

t = 1.

The evolution of firm-specific shock x it is defined by transition rates:

0→ 1 : λi (Ht) distress rate,
1→ 0 : η (constant) healing rate

Key innovation =⇒ λi (Ht) is network dependent:

λi (Ht)

η
= εi +

λ

η

N∑
j=1

∆ijH
j
t , εi := λi/η

Ht =
(
H1

t ,H
2
t ...,H

N
t

)
, ∆ij network matrix.
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A reduced form description of distress propagation channels
• The level of ∆ij > 0, i 6= j determines the increase in the likelihood of

distress of firm i due to a distress of firm j .
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Panel A

Kleinberg Hub and Authority Scores:
α0 = 7.433

vL = [0.98 0 0 0 0 0.15]

vR = [0 0.27 0.40 0.57 0.66 0]

Eigenvector Centralities:
α0 = 0

C= [1 0 0 0 0 0]

Directed Star Network 
Firm 1 is at the centre of the network; firm 6 is a firm at the periphery 
connected to firm 4. Values in square brackets define the strength of the 
connection. The only firm with positive “eigenvalue centrality” is firm 1; 
however, firm 6 has positive Authority score. Similarly, firm 2,3,4, and 5 have 
zero centrality score; however, they have positive Hub score. 

[2]

[3]

[4]

[5]

[2]

Panel B

Panel C

∆ = α0

(
νR
)T
· νL =




0 0 0 0 0 0
2 0 0 0 0 0

3 0 0 0 0 2

4 0 0 0 0 0
5 0 0 0 0 0

0 0 0 0 0 0




Kleinberg Hub and Authority:

α0 = 7.0433

νL = [0.98, 0, 0, 0, 0, 0.15] ,

νR = [0, 0.27, 0.40, 0.57, 0.66, 0] .

Eigenvector Centrality:

α0 = 0

C = [1, 0, 0, 0, 0, 0] .

∆SN = α0

(
νR
)T
· νL =




0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0




α0 = 1, νL = [1, 0, ..., 0] , νR = [0, 1, ..., 1] ,

∆CN = α0

(
νR
)T
· νL =




1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1




α0 = 1, νL = νR = [1, 1, ..., 1] .

6

1

2

3

4

5 ∆ =



0 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 2
5 0 0 0 0 0
0 0 0 0 0 0


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Distress dynamics in the benchmark specification

• The number of accessible configurations is 2N and increases exponentially
wth N. Two consecutive configurations differ at most for the state of one
firm.

• Firm-specific distress evolution can be represented in terms of a transition
rate matrix A(N) of size 2N × 2N that specifies the transition rate between
any two configurations H and H ′.

• In the benchmark specification all the firms are identical and spontaneous
transition to distress is set to zero. Hence:

• The firms have all the same β risk exposure to aggregate log normal
factor Yt .

• The state H = 0 is absorbing, hence firm specific shocks are transitory.

thus in the long-term steady state each firm endomwent dynamics is

equivalent to the one of a single tree Lucas model.
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Cascades

• Let network G of N firms, HS
0 initial state with cluster of firms S in distress.

• Let T S (H) = E
[
τH | HS

0

]
be the conditional expected time required to

reach configuration H starting from configuration HS
0

• Mean return time to steady state:

T G (S) :=
∑

T S (H)πA (H)

πA (H) are the ss probabilities identified by left-eigenvector of the transition

matrix A.

• T G is determined by the eigenvalues of A =⇒ T G =
∑2N

n=2
1
λA
n
.

• The higher T G , the greater the amplification.

Definition (Cascade)
Process HS

t is a cascade if there exist two constants c , N0 > 0 such that:

T G > ecN for ∀N > N0

i.e. the mean return time to steady state is longer than a characteristic time ecN

which grows exponentially with the number of firms in the economy N > N0.
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Theorem (Existence of Critical Dynamics)

Consider a finite connected network G with a number of firms N > 2. Then

there exists a finite critical threshold KG separating two types of dynamics:

• Supercritical Dynamics. When λ
η > KG , there exists a set of firms S ⊂ V G

whose distress generates a contagion process HS
t that drives a cascade of

distress shocks with positive probability.

• Subcritical Dynamics. When λ
η < KG the probability of occurrence of a

cascade is zero.

The presence of cascades is a generic feature of network dynamics for a broad
class of topologies when the level of the distress-to-recovery intensity λ

η

overcomes a critical threshold KG .
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Application: Distress in Interbank Networks

We embed the two period model by Acemoglu et al. (2015) in our continuos time

economy to study its dynamic properties:

• ∆ji represents the interbank (short-term) liability that bank i owes to bank j

• Bank j cash flows are the sum of cash flows generated by risky projects and

by payments of interbank debt from non distressed banks.

• In normal times (H j
t = 0) bank j distributes dividends to equity holders since

the difference between cash flows and liabilities is positive.

• Bank j is in distress (H j
t = 1) and dividends are not paid if cash flows are

insufficient to meet its obligations.

• Financial Stability is measured by a dynamic extension of the surplus
function as follows:

uNT :=
1

T
EP
H0

[∫ T

0

(
1− 1

N

∑N

j=1
H j

t

)
dt

]
.
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Social Surplus for different levels of aggregate debt
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Cascades without Fire-Sales

Numerical simulation of dynamics in a complete undirected network: X-axis =

level of interconnectedness λ
η ; T = 1000 years.

• Subcritical equilibrium: distress shocks quickly average out, i.e.
1
N

∑N
j=1 H

j
t ' 0 and uNT

(
λ
η

)
' 1.

• Supercritical equilibrium: cascades induce lack of convergence of social

surplus to its expected steady state value: uNT

(
λ
η

)
9 1

• Cascades form even in the absence of fire sales. We hold ∆ fixed; it’s not

endogenous to the state.

• What are the key characteristics that impact on: (a) distance to critical

threshold and (b) social loss upon distress?

• For this we need a tractable model that allows for closed-form solutions.
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Endogeneity and Empirical Implications

Institutions optimally set the level of debt and the lending counterparties

independently of each other. However, this firm-specific decision creates network

externalities (see, e.g., Jackson and Pernaud (2019)).

• As firms adapt to environment changes, financial network structure is

endogenous and may change over time.

• Firms may have incentive to live close to the critical point KG (fiscal

advantage of debt; convex managerial incentives), spontaneously pushing
λ
η > KG creating endogenous fluctuations.

• Welfare considerations may motivate the mandate for a regulator to keep
the network in a subcritical equilibrium.

Econometrician observes two distinct dynamics complicating estimation methods.

With supercritical dynamics he sees infrequent clusters of large distress. See

Giesecke et al. (2011) and Feldhutter and Schaefer (2015).
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A Reduced-form Model
Question: “Possible to capture dynamics in a tractable reduced-form model?”

• Important to distinguish two types of information: (a) “Systemicness”, νLj ,
economic information/state that affects other nodes, and (b)

“Vulnerability”, νRi , economic information/state that depends on others.
• They are mutually linked:

1. Bank j Systemicness νLj increases if
∑

i ν
R
i ∆i,j increases

2. Bank i Vulnerability νRi increases if
∑

j ∆i,jν
L
j increases

• Linearity assumption:

νR = c1∆νL and νL = c2∆′νR

Solution:

vR = (c1c2)∆∆′vR and vL = (c1c2)∆′∆vL

• Natural link between [vR , vL] and right left singular vectors of ∆: Kleinberg

(1999) first to introduce notion of “hub” and “authority” scores.
• Different from Eigenvalue Centrality that applies only to symmetric ∆: not

suited for directed networks.
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Low Rank Representation of the Model

• Given νRi and νLj from right and left singular vectors of ∆, we can obtain an

optimal lower rank aproximation of ∆:

∆Gi ,j ∼ α
GνRi ν

L
j i , j = 1, .., |G|

The N2 elements of ∆G of a generic network can be represented in terms of

the 2N + 1 components of [νRi , ν
L
j , α

G ].

• This specific rank-reduction preserves economic interpretation: vulnerability

and systemicness of firm i is still the same; these measures still depend on

the global properties, not on just local links.
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Example: a Directed Star Network

∆SN = α0

(
νR
)T · νL

=



0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0


α0 = 1,

νL = [1, 0, ..., 0] ,

νR = [0, 1, ..., 1] ,
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Systemicness and Vulnerability vs Eigenvector Centrality
UNDER REVIEW ASSET PRICING WITH SYSTEMIC RISK 65

Panel A

Kleinberg Hub and Authority Scores:
α0 = 7.433

vL = [0.98 0 0 0 0 0.15]

vR = [0 0.27 0.40 0.57 0.66 0]

Eigenvector Centralities:
α0 = 0

C= [1 0 0 0 0 0]

Directed Star Network 
Firm 1 is at the centre of the network; firm 6 is a firm at the periphery 
connected to firm 4. Values in square brackets define the strength of the 
connection. The only firm with positive “eigenvalue centrality” is firm 1; 
however, firm 6 has positive Authority score. Similarly, firm 2,3,4, and 5 have 
zero centrality score; however, they have positive Hub score. 

[2]

[3]

[4]

[5]

[2]

Panel B

Panel C

∆ = α0

(
νR
)T
· νL =




0 0 0 0 0 0
2 0 0 0 0 0

3 0 0 0 0 2

4 0 0 0 0 0
5 0 0 0 0 0

0 0 0 0 0 0




Kleinberg Hub and Authority:

α0 = 7.0433

νL = [0.98, 0, 0, 0, 0, 0.15] ,

νR = [0, 0.27, 0.40, 0.57, 0.66, 0] .

Eigenvector Centrality:

α0 = 0

C = [1, 0, 0, 0, 0, 0] .

∆SN = α0

(
νR
)T
· νL =




0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0




α0 = 1, νL = [1, 0, ..., 0] , νR = [0, 1, ..., 1] ,

∆CN = α0

(
νR
)T
· νL =




1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1




α0 = 1, νL = νR = [1, 1, ..., 1] .

6

1

2

3

4

5

∆ = α0

(
νR
)T
·νL '


0 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 2
4 0 0 0 0 0
5 0 0 0 0 0
0 0 0 0 0 0


Kleinberg Hub and Autho-

rity:

α0 = 7.0433

νL = [0.98, 0, 0, 0, 0, 0.15] ,

νR = [0, 0.27, 0.40, 0.57, 0.66, 0] .

Eigenvector Centrality:

α0 = 0

C = [1, 0, 0, 0, 0, 0] .
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Low Rank Representation

• Star network: cash-flow transition of non-central firms i depends on

central (?) firm:

A
(i)
ν,H?t

=

[
−λH?

t λH?
t

η −η

]
∀i .

• Generic network:

A
(i)

νR ,Hνt
=

[
−λανRi Hν

t λανRi H
ν
t

η −η

]

• Common Network Factor: linearity allows construction of

(systemicness) νLi -weighted mean of each firm distress indicators H i
t :

Hν
t :=

∑+∞
i=1 ν

L
i H

i
t∑+∞

i=1 ν
L
i

.
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Closed form solutions

Theorem
Consider the large economy limit N → +∞ of a sequence of reduced form

generic directed networks satisfying Condition 1. Then:

a The critical threshold is given by:

KG =
1

α
, α = L

(
νL · νR

)

b The long term probability of distress hi∞ := limt→∞ E
[
hit
]

of firm i is given

by:

• for λ
η ≤ KG , hi∞ = 0.

• for λ
η > KG , hi∞ and hν∞ are strictly positive and are the unique

solution to:

hi∞ =
αλη ν

R
i

1 + αλη h
ν
∞ν

R
i

hν∞,
K∑

k=1

pk
νLk ν

R
k

Lλ
η

Lλ
η ν

R
k h

ν
∞ (νL · 1) + 1

= 1.
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Debt bearing capacity and financial network architectures

• STABILITY. Debt capacity is KDebt := η
λ

1

(νR ·νL) . If leverage L < KDebt ,

the dynamics is STABLE.

• Maximum debt bearing capacity is achieved by the class of directed
star networks. In fact, in this case νR · νL = 0 implies KDebt → +∞.

• Minimal debt bearing capacity is achieved by the complete undirected
network. In fact, νR = νL = 1 and standardized KDebt = η

λ .

• RESILIENCE. Social loss in supercritical reduces welfare to:

u∞ = 1−
(
νR · 1

)(
1 · νL

)
L
λ

η
hν∞

• The most resilient network is the uniform complete undirected network,
with νLi = νRi .

• The least resilient network is a star network with a central institution
having non-zero vulnerability. Resilience is decreasing with increasing
vulnerability of the central institution.
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Core-Periphery Structures:
Stability vs Resilience Tradeoff

𝑹𝑬𝑺𝑰𝑳𝑰𝑬𝑵𝑪𝑬

𝑺𝑻𝑨𝑩𝑰𝑳𝑰𝑻𝒀
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Valuation in a network economy

Our main interest is to model pricing of cash-flow risks. We introduce a
simple preference structure and derive the intertemporal asset pricing
equilibrium conditions.

• A representative agent maximizes a time additive Constant Relative
Risk Aversion utility of intertemporal consumption.

• The separation of diversifiable from aggregate effects requires the
analysis of the asymptotic long-term regime t → +∞ in the large
economy limit N →∞.

• The analysis of expectations in supercritical dynamics requires the
construction of a probability measure to characterize long-term
contagion risk. Its construction follows the approach proposed in
Hansen and Scheinkman (2009).
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Network Irrelevance in subcritical equilibria

In the absence of “systemic firms”firm-specific distress shocks have
marginal contributions to the stochastic discount factor of order 1/N.

Theorem
Consider the large economy limit of a generic Network of firms. Under the
above assumptions, the risk free rate and the pure jump risk premia are
unaffected by transitory shocks:

rGN (Ht)
N→+∞' rf := δ + µγ − 1

2
(1 + γ) γσ2,

θGN,i (Ht)
N→+∞' 1.

In the large economy limit, the dynamics of the SDF converges to the Lucas one:

dξGNt

ξGNt

= −rf dt − κdWt ,

If λ
η < KG then distress shocks average out and the the network structure is

irrelevant in the large economy limit.
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Network Relevance in Supercritical Economies and
Long-Run Risks

Theorem
Consider the large economy limit N → +∞ of a generic network. In supercritical
economies with λ

η > KG , the idiosyncratic risk components dM i
t are rationally

compensated and the long-term expected risk premium of firm i is equal to:

µi∞ = κσ +
(
1− hi∞

)
Eµiλ + hi∞Eµiη,

where the two terms Eµiλ and Eµiη, respectively the distress and recovery risk
premia are:

Eµiλ = α
λ

η
νRi h

ν
∞

a(
1 + a

η

) (1− x i (1)

x i (0)

)
,

Eµiη = −a
(

1− x i (1)

x i (0)

)
.
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CAPM fails

The Consumption CAPM fails:

• Beta does not capture risk premium even for simple preferences

• There is a cross-section of risk premia proportional to

νRi︸︷︷︸
Vulnerability

× hν∞︸︷︷︸
Global Cashflow

Risk

×
[

1− x i (1)

x i (0)

]
︸ ︷︷ ︸

Idiosyncratic Cashflow

Risk

.

• Note: the shape of the cross-section depends on global properties of
the network, not just local ∆ij = ανRi ν

L
j . Indeed, each element of νRi

depends on all the elements of νLj .
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The impact of the interbank network on financial sector
valuation

In a supercritical equilibrium the failure of the diversification argument has
implications for asset valuation:

- Interbank Basis Spread. The fraction of borrowers that are not

repayed is EP
Π

[
1
N

∑N
j=1 H

j
t

]
> 0 in a supercritical equilibrium. Then,

the break-even interbank (Libor) spread over the risk-free rate is given
by:

` := (1 + rf )

 EP
Π

[
1
N

∑N
j=1 H

j
t

]
1− EP

Π

[
1
N

∑N
j=1 H

j
t

]
 .
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Interbank basis spread for different financial architectures.
Consider convex combination of the two extreems architectures:

• STAR: νL = [1, 0, ..., 0] , νR = [0, 1, ..., 1]
• COMPLETE: νL = νR = [1, 1, ..., 1]
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Bank cost of equity for different financial architectures.
- Bank cost of equity. (a) More vulnerable banks have a higher cost of

equity; (b) the greater the feedback effects (completeness) the
greater the cost of equity:
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Cross-border Impact of Regulatory Changes

To illustrate the asset pricing implications of the exposure to network
shocks, let us consider a two-country economy.

- The initial levels of interbank debt are given by matrix ∆0:

- Banks 3 and 4 are subject only to country A local regulatory constraints; on

the other hand, banks 5 and 6 are subject only to country B local regulatory

constraints. Banks 1 and 2 operate cross-border and are subject to the same

international regulatory standards.

- The two countries have homogeneous regulatory standards and international

debt exchanges are symmetric.

- λ/η = 0.045 < KG = 0.046, the equilibrium is subcritical and risk premia

are simply equal to κσ = 0.45%, since hi∞ = 0 ∀i .
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Cross-border Impact of Regulatory Changes
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∆0 1 2 3 4 5 6
∑6

i=1

ν0,L
i 0.35 0.35 0.61 0.61 0.085 0.085 2.09

ν0,R
i 0.93 0.26 0.18 0.18 0.03 0.03 1.60

µ∞
i = γσ2 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% −
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Cross-border Impact of Regulatory Changes
Assume now that country B introduces a more relaxed domestic regulatory
standards which allows local institutions 5 and 6 to take more counterparty
risk and/or debt.

- ∆1 is the new adjacency matrix after this regulatory shock

- KG drops by 27% and λ/η > KG so that the equilibrium becomes
supercritical. Local banks 5 and 6 in country B scale up their
borrowing/lending activity increasing both their level of systemicness and
vulnerability.

- Externality generated by banks 5 and 6 propagates to the rest of the

network. The regulatory framework and the books of global banks 1 and 2

and local banks 3 and 4 in country A do not change however, their

vulnerability increases because the risk of their counterparties increases.

- The cost of equity of all banks raises. Bank 3 and 4 in country A increase to

2%. The largest risk premium increase occur for the global bank 1, which is

the most vulnerable to the chain of negative externalities originating in

country B, and goes to 7.85%
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Cross-border Impact of Regulatory Changes
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Country A Country B

∆1 1 2 3 4 5 6
∑6

i=1

ν1,L
i 0.31 0.31 0.38 0.38 0.51 0.51 2.40

ν1,R
i 0.62 0.47 0.11 0.11 0.43 0.43 2.17

hi 17% 14% 4% 4% 13% 13% hν∞ = 52%

µ∞
i 7.9% 6.3% 2% 2% 5.9% 5.9% −
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Policy Implications

• Macro-Prudential Debt and Leverage constraints: this affects α, thus
distance to criticality

• Bank specific policies =⇒ Bail-ins and Bail-outs:

• When close to threshold KG , “Bail-ins” may take economy above
threshold unless the bank is not systemic. This can be calculated from
νL and νR . Thus, bail-ins depends on the spectral characteristic of teh
network.

• When distance to threshold
∥∥λ/η − KG

∥∥ is large enough, “Bail-ins”
are possible.

• When λ/η > KG , “Bail-out” might be the only solution.

• Derivative markets: centralized clearing market (Star) are the most
stable.
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Conclusions and extensions

• We show that concentrated directed networks are stable but not

economically resilient. On the contrary, a complete network is unstable but

economically resilient.

• The equilibrium unsecured interbank deposit rate includes a compensation

for the undiversifiable risk that a clustering of bank distress transitions

induces (endemic) distress.

• In the supercritical state the differential exposure to aggregate network risk

is priced selectively and is higher for smaller more vulnerable banks.

• Future analysis will further refine testable empirical implications on: i)

Bailout Policies, Leverage, and Correlation Risk, ii) The Political Economy

Banking Networks, The cross-section of risk premia.
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