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Non-technical summary

Research Question

In many central banks, models with unobserved components are routinely applied for

policy analysis and forecasting. When the models are estimated in a Bayesian framework

with iterative algorithms, recurrent sampling of the unobserved components given the

available data and parameters is necessary. In the literature, this procedure is called sim-

ulation smoothing. The computational burden of this sampling step can be considerable,

even if modern personal computers are applied.

Contribution

The paper proposes a fast simulation smoother in linear state-space models when ob-

servations are missing in the data. The simulation smoother is based on a particular

reformulation of the basic state-space form: It includes lagged states in the observation

equation and its intercepts depend on lagged observations. In this particular state-space

model, the state vector can be kept small, which can make simulation smoothing more

efficient computationally. Expanding on the existing literature, we derive the Kalman

smoother moments and the simulation smoother algorithm. To illustrate the method, the

approach is applied to a large dynamic factor model with many variables. The paper

compares the computing time of the simulation smoother sampler to other approaches

based on the Kalman filter and smoother.

Results

The proposed simulation smoother is competitive in terms of computational speed. It

works faster than the simulation smoothers based on the Kalman filter and smoother

without lagged states in the observation equation and without intercepts depending on

lagged dependent variables.



Nichttechnische Zusammenfassung

Fragestellung

In vielen Zentralbanken werden Modelle mit unbeobachtbaren Komponenten, sogenannte

Zustandsraummodelle, regelmäßig für die Analyse wirtschaftspolitischer Maßnahmen und

Prognosen verwendet. Bei der bayesianischen Schätzung solcher Modelle kommen häufig

iterative Algorithmen zum Einsatz, in denen wiederholt zufällig aus der stochastischen

Verteilung der unbeobachtbaren Komponenten bedingt auf verfügbare Daten und Para-

meter gezogen wird. Der rechnerische Aufwand dieser Ziehungen kann trotz des Einsatzes

moderner Computer beträchtlich sein.

Beitrag

Dieses Papier schlägt ein Verfahren zum Ziehen von unbeobachtbaren Komponenten in

linearen Zustandsraummodellen vor, wenn der verwendete Datensatz fehlende Beobach-

tungen aufweist. Die Methode basiert auf einer bestimmten Umformulierung des Zustands-

raummodells: Es enthält verzögerte Zustandsvariablen in der Beobachtungsgleichung, und

die Absolutterme hängen von verzögerten Beobachtungen ab. In diesem Zustandsraum-

modell kann die Dimension des Zustandsvektors klein gehalten werden, was Einsparun-

gen beim Zeitaufwand für die Schätzung erwarten lässt. Die Methode wird anhand eines

Faktormodells mit einem großen Datensatz veranschaulicht. Das Papier vergleicht die Re-

chenzeit des vorgeschlagenen Ansatzes mit anderen Verfahren, die auf dem Kalmanfilter

und -glätter beruhen.

Ergebnisse

In Bezug auf die Rechenzeit erweist sich der vorgeschlagene Ansatz als vorteilhaft. Das

Verfahren benötigt in verschiedenen Simulationsexperimenten weniger Berechnungszeit

als Verfahren, die auf dem Kalmanfilter und -glätter beruhen.
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1 Introduction

This paper proposes a simulation smoother for a state-space model with lagged states and
lagged dependent variables in both the observation and state equations.

Let αt be an (pt×1) state vector with time-varying dimension pt, and Yt be an (qt×1)
observation vector, whose dimension qt can also vary over time. Considering time periods
t = 1, . . . , n, define Y t

1 := {Y1, . . . , Yt} as the information set of all observations from the
first period up to time t. The flexible state-space model by Qian (2014) has the following
observation and state equations

αt = ft(Y
t−1
1 ) + Ftαt−1 + εt, (1)

Yt = gt(Y
t−1
1 ) +Htαt + Jtαt−1 + ut, (2)

where the intercepts ft(·) and gt(·) are deterministic functions, and εt, ut are distributed
as (

εt
ut

)
∼ N

[
0,

(
Qt St
S ′t Rt

)]
. (3)

The parameters Ft, Ht, Jt, Qt, Rt, and St are potentially time-varying conformable to time
variation in the dimensions of αt and Yt. The initial state vector α0 is distributed as
α0 ∼ N (µ0,Σ0).

The model differs from standard formulations of state-space models like αt = ct +
Ftαt−1+εt, Yt = dt+Htαt+ut with respect to the explicit dependence on lagged dependent
variables by ft(Y

t−1
1 ) and gt(Y

t−1
1 ), as well as the lagged state Jtαt−1. This specification

is efficient computationally for Kalman filtering, as it helps to keep the dimension of
the state-vector small when some observations are missing. Qian (2014) discusses these
advantages in three kinds of models: an autoregressive moving-average (ARMA) model,
a factor model, and autoregressive conditional heteroscedasticity (ARCH) models.

In this paper, we derive the Kalman smoother moments for the model (1)-(3) and
propose an efficient simulation smoother, which relies on mean corrections for uncondi-
tional vectors as in Durbin and Koopman (2002). Qian (2014) provides the Kalman filter
recursions, but not the smoother or simulation smoother recursions. The smoother for
the model without lagged dependent variables is discussed in depth by Nimark (2015)
and Kurz (2018).

The paper proceeds as follows: The Kalman filter including its initialization is pro-
vided in Section 2. The Kalman smoother and the simulation smoother are discussed in
Section 3. In Section 4, we discuss how the simulation smoother can be applied to a factor
model. We also compare two alternative simulation smoothers, both relying on different
state-space representations: A representation with time-invariant state dimension and
neither lagged dependent variables nor lagged states in the observation equation, and a
time-varying dimension state-space factor model as proposed by Jungbacker, Koopman,
and van der Wel (2011), which considers lagged dependent variables, but not lagged states
in the observation equation. Section 5 provides a simulation experiment to compare the
computational speed of the three simulation smoothers. Section 6 concludes. In what
follows, I is an identity matrix whose dimension may vary and a 0 in matrices indicates
a matrix of zeros.
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2 Kalman filter and initialization

Given the assumptions for the initial conditions and the noise terms, Qian (2014) derives
the Kalman filter recursions for the state-space model (1)-(3). The results are summarized
in Algorithm 1, including the moments of the state update αt|Y t

1 ∼ N (α̂t|t, Pt|t) for
t = 1, . . . , n.

Algorithm 1 (Kalman filter by Qian (2014)). Consider the unconditional initial value of
the state, α0 ∼ N (µ0,Σ0). Y

0
1 is assumed to be empty, hence, the mean and covariance of

the state in period t = 0 conditional on initial information are equal to α̂0|0 = µ0, P0|0 =
Σ0, respectively. For periods t = 1, . . . , n, iterate through the following steps:

Step 1: For prediction, compute the moments of the joint distribution of the states and
observed variables conditional on information from period t− 1, which is defined
as (

αt
Yt

)
|Y t−1

1 ∼ N
[(

α̂t|t−1
Ŷt|t−1

)
,

(
Pt|t−1 Lt|t−1
L′t|t−1 Dt|t−1

)]
,

with

α̂t|t−1 = ft(Y
t−1
1 ) + Ftα̂t−1|t−1, (4)

Ŷt|t−1 = gt(Y
t−1
1 ) +Htα̂t|t−1 + Jtα̂t−1|t−1, (5)

Pt|t−1 = FtPt−1|t−1F
′
t +Qt, (6)

Dt|t−1 = HtPt|t−1H
′
t +Rt + JtPt−1|t−1J

′
t

+HtFtPt−1|t−1J
′
t + JtPt−1|t−1F

′
tH
′
t +HtSt + S ′tH

′
t, (7)

Lt|t−1 = Pt|t−1H
′
t + FtPt−1|t−1J

′
t + St. (8)

Step 2: Conditional on the additional observation Yt in period t, the update of the state
is distributed as αt|Y t

1 ∼ N (α̂t|t, Pt|t) with moments

α̂t|t = α̂t|t−1 + Lt|t−1D
−1
t|t−1(Yt − Ŷt|t−1), (9)

Pt|t = Pt|t−1 − Lt|t−1D−1t|t−1L
′
t|t−1. (10)

The recursions in Algorithm 1 are based on the assumption that the initial condition
is fixed and known. Alternatively, one can explicitly consider uncertainty regarding the
initial observation vector Y0 and state. For this purpose, assume that the intercept func-
tions f(·) and g(·) are linear functions of the previous period’s observed variables only,
in particular, ft(Y

t−1
1 ) = ftYt−1 and gt(Y

t−1
1 ) = gtYt−1. In this case, one can specify the

initial condition (
α0

Y0

)
∼ N (µ∗0,Σ

∗
0) (11)

and reformulate the model in t = 1 by temporarily augmenting the state vector with the
initial observations

α∗1 = F ∗1α
∗
0 + ε∗1, Y1 = H∗1α

∗
1, (12)
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where

α∗1 =

(
α1

Y1

)
, α∗0 =

(
α0

Y0

)
, (13)

F ∗1 =

(
F1 f1

H1F1 + J1 g1 +H1f1

)
, ε∗1 =

(
ε1

H1ε1 + u1

)
, (14)

Q∗1 =

(
Q1 Q1H

′
1 + S1

H1Q1 + S ′1 H1Q1H
′
1 +R1 + S ′1H

′
1 +H1S1

)
, (15)

H∗1 =
(
0 I

)
. (16)

These equations constitute a state space model without measurement errors, and the
prediction and update steps are the conventional Kalman filter recursions, initialized
with α̂∗0|0 = µ∗0, P0|0 = Σ∗0. Specifically, they are given by

α̂∗1|0 = F ∗1 α̂
∗
0|0, (17)

Ŷ1|0 = H∗1 α̂
∗
1|0, (18)

P1|0 = F ∗1P0|0F
∗
1
′ +Q∗1, (19)

D1|0 = H∗1P1|0H
∗
1
′, (20)

L1|0 = P1|0H
∗
1
′, (21)

and

α̂∗1|1 = α̂∗1|0 + L1|0D
−1
1|0(Y1 − Ŷ1|0), (22)

P1|1 = P1|0 − L1|0D
−1
1|0L

′
1|0, (23)

respectively.
In period t = 2, switch from the standard to the flexible state space model by removing

the observations in the augmented state vector. Thus, the transition equation is given by

α2 = F ∗2α
∗
1 + ε2 (24)

with F ∗2 =
(
F2 f2

)
and the measurement equation

Y2 = g2Y1 +H2α2 + J∗2α
∗
1 + u2 (25)

with J∗2 =
(
J2 0

)
. The prediction step is then

α̂2|1 = F ∗2 α̂
∗
1|1, (26)

Ŷ2|1 = g2Y1 +H2α̂2|1 + J∗2 α̂
∗
1|1, (27)

P2|1 = F ∗2P1|1F
∗
2
′ +Q1, (28)

D2|1 = H2P2|1H2
′ +R2 + J∗2P1|1J

∗
2
′

+H2F
∗
2P1|1J

∗
2
′ + J∗2P1|1F

∗
2
′H2

′ +H2S2 + S ′2H
′
2, (29)

L2|1 = P2|1H2
′ + F ∗2P1|1J

∗
2
′ + S2. (30)

Updating α̂2|1 and P2|1 proceeds as in Algorithm 1. The same holds for periods t ≥ 3.

3



Higher-order lags of the dependent variables in the intercepts can be considered in a
similar way.

3 Kalman smoother and simulation smoothing

Our goal is to derive a simulation smoother for the state-space model (1)-(3). Extending
the Kalman filter results by Qian (2014), we provide the smoothed state distribution
αt|Y n

1 ∼ N (α̂t|n, Pt|n). The mean and the covariance of the smoothed state vector, α̂t|n =
E(αt|Y n

1 ) and Pt|n = Var(αt|Y n
1 ), are provided in Proposition 1. Proofs can be found in

Appendix A.1.

Proposition 1 (Moments of smoothed state vector based on α̂t|t−1 and Pt|t−1). Let

At := [Ft − Lt|t−1D−1t|t−1(HtFt + Jt)]
′,

Bt := Qt[I − Lt|t−1D−1t|t−1Ht]
′ − St(Lt|t−1D−1t|t−1)

′,

Ct := (HtFt + Jt)
′,

vt := Yt − Ŷt|t−1,

Moreover, define rn+1 = 0, and

rt = CtD
−1
t|t−1vt + Atrt+1

for t = 1, ..., n. The mean of the smoothed state vector α̂t|n is given by

α̂t|n = α̂t|t−1 + (QtH
′
t + St)D

−1
t|t−1vt + FtPt−1|t−1rt +Btrt+1. (31)

Let Nn+1 = 0 and
Nt = CtD

−1
t|t−1C

′
t + AtNt+1A

′
t

for t = 1, ..., n. The covariance matrix of the smoothed state Pt|n is given by

Pt|n = Pt|t−1 − (QtH
′
t + St)D

−1
t|t−1 (QtH

′
t + St)

′ − (QtH
′
t + St)D

−1
t|t−1(FtPt−1|t−1Ct)

′

− FtPt−1|t−1CtD−1t|t−1 (QtH
′
t + St)

′ − FtPt−1|t−1NtP
′
t−1|t−1F

′
t −BtNt+1B

′
t. (32)

The smoother moments in Proposition 1 are based on the predicted state moments
α̂t|t−1 and Pt|t−1 given information in period t − 1 for t = 1, ..., n. In Proposition 2,
we also derive the smoother moments based on the updated state moments α̂t|t and Pt|t
given information in period t. Compared to Proposition 1, the expressions are simpler
and thus preferable in practice for computational reasons. Note that the moments in
Proposition 2 are the same as in Kurz (2018), Section 4.2, apart from the time-varying
system matrices in our model. Interestingly, the model in Kurz (2018) does contain lagged
states in the observation equation, but not lagged dependent variables in the state and
observation equations as in the model considered in this paper. Proposition 2 shows that
the existence of lagged dependent variables does not change the formulas for the smoothed
moments. The reason is that the lagged dependent variables change only the formulas for
the prediction step, namely, Step 1 in Algorithm 1, by additional information from period
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t− 1. The subsequent computation of quantities for the update steps and smoothing are
not affected. Proofs can be found in Appendix A.2.

Proposition 2 (Moments of smoothed state vector based on α̂t|t and Pt|t). Define At,
Ct, and vt as in Proposition 1. Moreover, define r∗n = 0, and

r∗t = Ct+1D
−1
t+1|tvt+1 + At+1r

∗
t+1 (33)

for t = 1, ..., n− 1. The mean of the smoothed state vector α̂t|n is given by

α̂t|n = α̂t|t + Pt|tr
∗
t . (34)

Let N∗n = 0 and
N∗t = Ct+1D

−1
t+1|tC

′
t+1 + At+1N

∗
t+1A

′
t+1

for t = 1, ..., n− 1. The covariance matrix of the smoothed state Pt|n is given by

Pt|n = Pt|t − Pt|tN∗t Pt|t. (35)

Concerning the relationship between Proposition 1 and Proposition 2, note that r∗t =
rt+1 and N∗t = Nt+1 for t = 1, ..., n. It can be shown that the means (31) and (34) as well
as the covariances in (32) and (35) are equal, see Appendix A.3 for details.

Given the recursions for the mean of the smoothed state E(αt|Y n
1 ), the simulation

smoother is provided in Algorithm 2, which adopts Algorithm 2 of Durbin and Koopman
(2002). A formal justification for Algorithm 2 is provided in Appendix A.4.

Algorithm 2 (Simulation smoother). Define α = (α′1, . . . , α
′
n)′ and Y = (Y ′1 , . . . , Y

′
n)′.

Follow three steps to obtain a draw for α conditional on Y :

Step 1: Simulate α+ and Y + by means of recursion (1) and (2), where the recursion is
initialized by a draw from α+

0 ∼ N(µ0,Σ0) or augmented by Y0 as in (11).

Step 2: Compute α̂ = E(α|Y ) and α̂+ = E(α+|Y +) by means of the Kalman filter and
smoother using Proposition 2 based on observed and simulated data, respectively.

Step 3: Take α̃ = α̂− α̂+ + α+. α̃ is a draw from the distribution of α conditional on Y .

Note that the intercepts ft(·) and gt(·) are not exogenous, but rather endogenous
functions of Y + in Step 1 of Algorithm 2. In Step 2, the intercepts differ for the two
smoother runs depending on Y + and Y . This has two implications. First, as the intercepts
in the model differ conditional on Y + and on Y , we have to compute α̂+ and α̂ separately
and perform the mean adjustment separately. It is not possible to directly compute the
mean differential by running the Kalman smoother only once with Y ∗ = Y −Y +. Second,
this also implies that there is no need to reset the initial conditions regardless of µ∗0 (µ0)
and Σ∗0 (Σ0) as in Jarociǹski (2015).

5



4 Application: Factor model with missing observa-

tions

To illustrate the simulation smoother in Algorithm 2, we choose an application to a factor
model with vector autoregressive (VAR) dynamics for the factors and autoregressive (AR)
idiosyncratic components. We focus on this kind of model, as it has been discussed
extensively in the literature (Jungbacker et al., 2011; Banbura and Modugno, 2014; Qian,
2014), in particular, when observations in the data are missing.

The factor model explains the (N×1)−dimensional vector of variables xt := (x1,t, x2,t,
. . . , xN,t)

′ in time period t according to

xt = ληt + εt, (36)

ηt = φηt−1 + uη,t, εt = ψεt−1 + uε,t. (37)

The (r×1)−dimensional vector of factors is denoted as ηt, and λ is the (N×r)−dimensional
matrix of factor loadings. The factor representation (36) holds for t = 1, . . . , n. The fac-
tors follow a VAR(1) process with the (r× r)−dimensional lag parameter matrix φ. The
factor VAR residuals are distributed as uη,t ∼ N (0r×1, ωη). The idiosyncratic compo-
nents collected in the (N × 1)−dimensional vector εt := (ε1,t, ε2,t, . . . , εN,t)

′ each follow
AR(1) processes such that the (N × N)−dimensional coefficient matrix ψ is diagonal
containing the AR(1) lag parameters ψi for i = 1, . . . , N on the main diagonal. The
idiosyncratic disturbances are distributed as uε,t ∼ N (0N×1, ωε), where ωε is also diag-
onal with diagonal elements ωε,i for i = 1, . . . , N . We assume that uη,t and uε,t are
mutually independent and that the VAR and AR processes in (37) are stationary. In
addition, the equations in (37) are defined for time periods t = 2, . . . , n. For t = 1, let
η1 ∼ N (η1|0, ϑη,1|0) and ε1 ∼ N (ε1|0, ϑε,1|0), respectively. The means of the distributions
are set equal to their unconditional mean, which is zero in our case, so η1|0 = 0r×1 and
ε1|0 = 0N×1, respectively. As the equations in (37) are stationary, ϑη,1|0 and ϑε,1|0 are set
equal to the implied unconditional covariances. We collect all the model parameters in
θ = {λ, φ, ψ, ωη, ωε, η1|0, ϑη,1|0, ε1|0, ϑε,1|0}.

Given a complete data set, a parsimonious state-space representation of the factor
model can be obtained by quasi-differencing the observations, for example, by x̃t = xt −
ψxt−1 to remove the idiosyncratic autocorrelation. The state vector only contains ηt in this
case. However, as discussed in detail by Jungbacker et al. (2011), this representation is not
valid in the presence of missing observations. A valid alternative is a time-invariant state-
space representation with a state vector containing both the factors and the idiosyncratic
components as used in Banbura and Modugno (2014). More efficient representations can
be obtained by allowing for time-varying dimensions of the state vector. We discuss these
alternative models in turn, starting with the state-space model from (1)-(3) including
lagged states and lagged dependent variables.
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4.1 State-space model with lagged states and lagged dependent
variables

In order to apply simulation smoothing as described in Algorithm 2 to the factor model
(36) and (37), a particular time-varying state-space form is chosen. To obtain a short
state vector, the observation equation is quasi-differenced first. We obtain the modified
observation equation xt = ψxt−1+ληt−ψληt−1+uε,t, which has lagged dependent variables
and lagged states on the right-hand side. When stacking contemporaneous and lagged
states into (η′t, η

′
t−1)

′, this observation equation together with the state equation ηt =
φηt−1 +uη,t yields a state-space model with state dimension 2r. Additionally, Qian (2014)
removes the contemporary factor from the observation equation by using the factor VAR
ηt = φηt−1+uη,t. After this transformation, the observation equation contains only lagged
states according to

xt(ot) = ψ(ot, ot−1)xt−1(ot−1)

+
(
G(ot, :) ψ(ot,mt−1)

)( ηt−1
xt−1(mt−1)

)
+ vt(ot), (38)

where G = λφ− ψλ and vt = λuη,t + uε,t. The transition equation is written as(
ηt

xt(mt)

)
=

(
0

ψ(mt, ot−1)xt−1(ot−1)

)
+

(
φ 0

G(mt, :) ψ(mt,mt−1)

)(
ηt−1

xt−1(mt−1)

)
+

(
uη,t
vt(mt)

)
. (39)

In the equations above, ot and mt are logical indices indicating the observed and missing
entries in xt at time t, respectively. For any vector v, v(ot) and v(mt) select the elements
in v, which correspond to the observed and missing entries in xt, respectively. For a matrix
G, G(:, ot) denotes column selection, G(ot, :) denotes row selection, in both examples with
respect to observed values in period t. By using two index matrices such as ψ(mt, ot−1),
we can select columns and rows, in this example, the rows corresponding to missing values
in period t and the columns corresponding to observed values in t− 1.

When applying the simulation smoother in Algorithm 2, we have to consider the
intercepts in the following way. At time t, we have the information of xt−1(ot−1), which
can be used to correct both intercept terms. In this case, no extra information needs
to be saved for constructing the state-space model. Dividing both intercept terms with
xt−1(ot−1), then multiplying them with new draw x+t−1(ot−1) leads to the right constant
terms.

Below, we denote the approach by ’Lagged states and lagged dependent variables’.

4.2 State-space model with lagged dependent variables only

Jungbacker et al. (2011) discuss a state-space model with time-varying state-dimension
and lagged states in both the observation and state equation, but no lagged states in the
observation equation.
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Denote by Kt−1 a selection matrix of ones and zeros such that for a vector v(
vt(otmt−1)
vt(mtmt−1)

)
= Kt−1vt(mt−1),

where the double index for row selection indicates a logical AND in the following. For
example, indexing by otmt−1 picks those elements in vt, which are observed in period t,
but not observed in period t− 1. The state-space model in Jungbacker et al. (2011) can
be expressed as(

xt(otot−1)
xt(otmt−1)

)
=

(
ψ(otot−1, otot−1)xt−1(otot−1)

0

)

+

(
λ(otot−1, :) −ψ(otot−1, otot−1)λ(otot−1, :) 0 0
λ(otmt−1, :) 0 I 0

)
ηt
ηt−1

εt(otmt−1)
εt(mt)


+

(
uε,t(otot−1)

0

)
, (40)

ηt
ηt−1

εt(otmt−1)
εt(mt)

 =


0
0
0

ψ(mtot−1,mtot−1)xt−1(mtot−1)



+


φ 0 0 0
I 0 0 0
0 0 0 Kt−1ψ(mt−1,mt−1)

−ψ(mtot−1,mtot−1)λ(mtot−1, :) 0 0 0




ηt−1
ηt−2

εt−1(ot−1mt−2)
εt−1(mt−1)



+


uη,t
0

Kt−1uε,t(mt−1)
uε,t(mtot−1)

 . (41)

Compared to the state-space model (38) and (39), there are no lagged states in the
observation equation (40). The state vector always includes the factors and the first-order
lags of the factors. Idiosyncratic terms are included in a time-varying fashion to tackle
missing values in the current and previous period.

The factor model representation (40) and (41) is a state-space form with time-varying
dimensions of the variables and system matrices. Hence, we can apply the simulation
smoother by Durbin and Koopman (2002) in a similar way as in Algorithm 2. Special
care is needed when considering the intercepts in Step 2 of Algorithm 2. Note that at
time t, we have the information of(

xt−1(ot−1ot−2)
xt−1(ot−1mt−2)

)
= xt−1(ot−1),

8



and need to correct the intercept terms with the help of(
xt−1(otot−1)
xt−1(mtot−1)

)
= xt−1(ot−1).

We have to reorder xt−1(ot−1) with the missing value information at time t − 2 and
time t. This can be implemented when defining the time-varying system matrices of
the state-space model. Dividing both constant terms with xt−1(otot−1) and xt−1(mtot−1)
respectively, then multiplying them with new draw x+t−1(otot−1) and x+t−1(mtot−1) leads to
the correct constant terms.

Below, we denote the approach by ’Lagged dependent variables only’.

4.3 State-space model with time-invariant state dimension

The factor model in (36) and (37) can be cast in another state-space form by including
the idiosyncratic components in the state vector, yielding

xt =
(
λ I

)( ηt
εt

)
, (42)(

ηt
εt

)
=

(
φ 0
0 ψ

)(
ηt−1
εt−1

)
+

(
uη,t
uε,t

)
, (43)

which has been used in the literature by Banbura and Modugno (2014), for example. To
consider missing observations for simulation smoothing, we follow Durbin and Koopman
(2012), Section 4.10, and assume that we can observe xt in period t only partly and define
the selection matrix Wt such that xt(ot) = Wtxt. By pre-multiplying the observation
equation (42) for each t, we can apply the simulation smoother in Algorithm 2. When
simulating Y + in Step 1, the case of time-invariant state dimension necessitates to set the
values in Y + to be missing at the same positions as there are missing values in Y .

In this model, the dimension of the state vector is constant over time, namely r +N .
In the other two specifications, the dimension of the state depends on the presence of
missing data, and can be considerable smaller the lesser observations are missing.

In the simulations below, we denote the approach by ’Time-invariant state dimension’.

5 Simulation exercise

We consider data-generating processes (DGP) that differ with respect to the sample size
T with a set of two values {100, 200}, the number of variables N with the alternatives
{50, 100, 200}, and the set {4, 16} for the number of factors r. Concerning the available
data for estimation, we assume that 50% of observations are missing, κ = 0.5. The
missing observations are distributed randomly across the indexes (i, t). Overall we have
12 different experiments of different 4−tuples (T,N, r, κ).

The DGP is defined by the factor model in (36) and (37). The elements of the
loading matrix λ are each sampled independently from a Normal distribution according
to λij ∼ N (0, 1/r2). The AR coefficient of the idiosyncratic components follows a Normal
distribution ψi ∼ N (0.5, 0.01), the variance of the disturbance in the AR(1) equation is

9



equal to (1− ψ2
i ). The VAR coefficient matrix implies a recursive dynamic structure. It

is upper diagonal with φi,i = γ/12 for i = 1, . . . , r on the main diagonal, φi,i+1 = γ/22 for
i = 1, . . . , r − 1 on the first superdiagonal, up to φ1,r = γ/r2 for the top-right element in
φ, and γ is distributed as γ ∼ N (0.8, 0.01). The remaining elements in φ are equal to
zero. The off-diagonal elements of the covariance matrix ωη are set to zero. The diagonal
elements of ωη are set such that the variances of the factors in population are each equal
to one. Given this set of parameters θ, we sample ηDGP , εDGP , and xDGP from the DGP
(36) and (37). We randomly set κNT observations to missing values, yielding the data
set xo used for sampling states and missing observations. Given the data set x = xo, we
draw K = 200 times new parameters θ(k), and η(k) ∼ p(η|x = xo, θ(k)) using the different
samplers discussed in the previous section.

In Figure 1, we compare the overall computing time elapsed to draw the K = 200
samples from p(η|x = xo, θ) in seconds. In Panel A of Figure 1, the results for r = 4
factors are shown, in Panel B for r = 16 factors. In Panel A, the results show for all
simulation designs with respect to (T,N) a clear pattern. The model with lagged states
and lagged dependent variables by Qian (2014) performs better than the sampler with
time-invariant state dimension, and the model based on lagged dependent variables only.
The model based on lagged dependent variables only always outperforms the model with
time-invariant state dimension. When the number of factors is increased to r = 16, see
Panel B, the results are very similar.

6 Conclusions

In this paper, we provide a simulation smoother for a flexible state-space model with
lagged states and lagged dependent variables. Qian (2014) has derived the Kalman filter
recursions for this model. We derive the corresponding Kalman smoother moments and
propose a simulation smoother based on Durbin and Koopman (2002). When applied to
a factor model, the proposed simulation smoother is highly efficient in terms of comput-
ing time compared to other approaches where 1) neither lagged states are considered in
the observation equation in the model nor lagged dependent variables or 2) only lagged
dependent variables are considered.

A Appendix

A.1 Proof of Proposition 1

A.1.1 Mean of the smoothed state vector

To derive the mean of the smoothed state vector α̂t|n, we adopt the method in Durbin
and Koopman (2012), equation (4.31), according to

α̂t|n = E(αt|Y n
1 ) = E(αt|Y t−1

1 , vt:n)

= α̂t|t−1 +
n∑
j=t

Cov(αt, vj|Y t−1
1 )Var(vj|Y t−1

1 )−1vj, (44)

10



Figure 1: Computing time
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where vt := Yt− Ŷt|t−1. Denote xt := αt− α̂t|t−1 and xt−1|t−1 := αt−1− α̂t−1|t−1. Moreover,
we define

At := [Ft − Lt|t−1D−1t|t−1(HtFt + Jt)]
′, (45)

Bt := Qt[I − Lt|t−1D−1t|t−1Ht]
′ − St(Lt|t−1D−1t|t−1)

′, (46)

Ct := (HtFt + Jt)
′. (47)

First note that

xt = αt − α̂t|t−1
(4),(1)

= Ftxt−1|t−1 + εt (48)

and

vt = Yt − Ŷt|t−1
(2),(5)

= Ht(αt − α̂t|t−1) + Jt(αt−1 − α̂t−1|t−1) + ut

= Htxt + Jtxt−1|t−1 + ut
(48)
= (HtFt + Jt)xt−1|t−1 +Htεt + ut. (49)

Given the state prediction from the Kalman filter recursion (9), as well as (48) and (49)
above, we can derive xt|t and xt+1|t+1 according to

xt|t = αt − α̂t|t
(9)
= αt − α̂t|t−1 − Lt|t−1D−1t|t−1vt
= xt − Lt|t−1D−1t|t−1vt

(49),(48)
= Ftxt−1|t−1 + εt − Lt|t−1D−1t|t−1(HtFt + Jt)xt−1|t−1

−Lt|t−1D−1t|t−1Htεt − Lt|t−1D−1t|t−1ut
= [Ft − Lt|t−1D−1t|t−1(HtFt + Jt)]xt−1|t−1 + [I − Lt|t−1D−1t|t−1Ht]εt

−Lt|t−1D−1t|t−1ut
= A′txt−1|t−1 + [I − Lt|t−1D−1t|t−1Ht]εt − Lt|t−1D−1t|t−1ut, (50)

and, analogously,

xt+1|t+1 = A′t+1xt|t + (I − Lt+1|tD
−1
t+1|tHt+1)εt+1 − Lt+1|tD

−1
t+1|tut+1. (51)

For j = t, ..., n, given (49) and since vj is centered, we can determine the elements in the
decomposition (44)

Cov(αt, vj|Y t−1
1 ) = E

[
αtv

′
j|Y t−1

1

]
− E

[
αt|Y t−1

1

]
· 0

= E
[
αtx

′
j−1|j−1(HjFj + Jj)

′ + αtε
′
jH
′
j + αtu

′
j|Y t−1

1

]
= E

[
αtx

′
j−1|j−1|Y t−1

1

]
(HjFj + Jj)

′ + E
[
αtε
′
j|Y t−1

1

]
H ′j + E

[
αtu

′
j|Y t−1

1

]
,
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where

E
[
αtε
′
j|Y t−1

1

] (1)
=

{
Qt, j = t
0, j = t+ 1, . . . , n

, E
[
αtu

′
j|Y t−1

1

] (2)
=

{
St, j = t
0, j = t+ 1, . . . , n

.

We obtain the expectation terms E[αtx
′
j−1|j−1|Y

t−1
1 ] for j = t, t+ 1, ..., n, respectively,

E
[
αtx

′
t−1|t−1|Y t−1

1

] (1)
= E

[
(ft(Y

t−1
1 ) + Ftαt−1 + εt)(αt−1 − α̂t−1|t−1)′|Y t−1

1

]
= FtPt−1|t−1,

E
[
αtx

′
t|t|Y t−1

1

] (50)
= E

[
αt
(
A′txt−1|t−1

+
[
I − Lt|t−1D−1t|t−1Ht

]
εt −Lt|t−1D−1t|t−1ut

)′
|Y t−1

1

]
= E

[
αtx

′
t−1|t−1|Y t−1

1

]
At

+E
[
αtε
′
t|Y t−1

1

] [
I − Lt|t−1D−1t|t−1Ht

]′
−E

[
αtu

′
t|Y t−1

1

]
(Lt|t−1D

−1
t|t−1)

′

= FtPt−1|t−1At

+Qt

[
I − Lt|t−1D−1t|t−1Ht

]′
− St(Lt|t−1D−1t|t−1)

′

= FtPt−1|t−1At +Bt,

E
[
αtx

′
t+1|t+1|Y t−1

1

] (51)
= E

[
αtx

′
t|t|Y t−1

1

]
At+1 + E

[
αtε
′
t+1|Y t−1

1

]
(I − Lt+1|tD

−1
t+1|tHt+1)

′

−E
[
αtu

′
t+1|Y t−1

1

]
(Lt+1|tD

−1
t+1|t)

′

= FtPt−1|t−1AtAt+1 +BtAt+1,

and, finally,

E
[
αtx

′
n−1|n−1|Y t−1

1

]
= FtPt−1|t−1AtAt+1...An−1 +BtAt+1...An−1.

Notice that
Var(vt|Y t−1

1 ) = Var(Yt − Ŷt|t−1|Y t−1
1 ) = Dt|t−1,

we consider the α̂t|n from (44). For t = n, j = n, we have

α̂n|n = α̂n|n−1 +
(
FnPn−1|n−1Cn +QnH

′
n + Sn

)
D−1n|n−1vn.

For t = n− 1, j = n− 1, n,

α̂n−1|n = α̂n−1|n−2 +
(
Fn−1Pn−2|n−2Cn−1 +Qn−1H

′
n−1 + Sn−1

)
D−1n−1|n−2vn−1

+ (Fn−1Pn−2|n−2An−1 +Bn−1)CnD
−1
n|n−2vn.
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For t = n− 2, j = n− 2, n− 1, n,

α̂n−2|n = α̂n−2|n−3 + (Fn−2Pn−3|n−3Cn−2 +Qn−2H
′
n−2 + Sn−2)D

−1
n−2|n−3vn−2

+
(
Fn−2Pn−3|n−3An−2 +Bn−2

)
Cn−1D

−1
n−1|n−3vn−1

+ (Fn−2Pn−3|n−3An−2An−1 +Bn−2An−1)CnD
−1
n|n−3vn.

In general,

α̂t|n = α̂t|t−1 + (QtH
′
t + St)D

−1
t|t−1vt + FtPt−1|t−1CtD

−1
t|t−1vt

+ (FtPt−1|t−1At +Bt)Ct+1D
−1
t+1|t−1vt+1

+
(
FtPt−1|t−1AtAt+1 +BtAt+1

)
Ct+2D

−1
t+2|t−1vt+2

+ ...+
(
FtPt−1|t−1AtAt+1...An−1 +BtAt+1...An−1

)
CnD

−1
n|t−1vn,

where the definitions (45), (46), and (47) have been used.
Concerning Dj|t−1 for j = t, . . . , n, we follow Durbin and Koopman (2012) and use

Dj|t−1 = Dj|j−1.

For j = t this is trivial. For j = t+ 1, ..., n, this assumption holds, since

Dj|t−1 = Var(vj|Y1, v2, ..., vt−1),
Dj|j−1 = Var(vj|Y1, v2, ..., vt−1, vt, ..., vj−1),

and v2, ..., vt, ..., vj−1 are mutually independent of each other by definition. Hence addi-
tional information of vt, ..., vj−1 does not improve the forecast of vj.

To simplify the recursions, we first consider the part containing At and define rn =
CnD

−1
n|n−1vn, then for t = 1, ..., n− 1,

rt = CtD
−1
t|t−1vt + Atrt+1. (52)

Regarding terms containing Bt, define ln = 0, then for t = 1, . . . , n− 1,

lt = CtD
−1
t|t−1vt + Atlt+1. (53)

Note that lt−1 = rt. Define rn+1 = ln = 0, then

α̂t|n = α̂t|t−1 + (QtH
′
t + St)D

−1
t|t−1vt + FtPt−1|t−1rt +Btrt+1,

which is equal to (31) and completes the the proof of Proposition 1 with respect to the
mean of the smoothed state.
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A.1.2 Covariance of the smoothed state vector

To derive the covariance of the smoothed state vector Pt|n, we adopt the method in Durbin
and Koopman (2012), Section 4.4.3, according to

Pt|n = Var(αt|Y n
1 ) = Var(αt|Y t−1

1 , vt:n)

= Pt|t−1 −
n∑
j=t

Cov(αt, vj|Y t−1
1 )Var(vj|Y t−1

1 )−1Cov(αt, vj|Y t−1
1 )′. (54)

For t = n, j = n, we have

Pn|n = Pn|n−1 −
(
FnPn−1|n−1Cn +QnH

′
n + Sn

)
D−1n|n−1

(
FnPn−1|n−1Cn +QnH

′
n + Sn

)′
.

For t = n− 1, j = n− 1, n,

Pn−1|n = Pn−1|n−2

−
(
Fn−1Pn−2|n−2Cn−1 +Qn−1H

′
n−1 + Sn−1

)
D−1n−1|n−2

·
(
Fn−1Pn−2|n−2Cn−1 +Qn−1H

′
n−1 + Sn−1

)′
− (Fn−1Pn−2|n−2An−1 +Bn−1)CnD

−1
n|n−2C

′
n(Fn−1Pn−2|n−2An−1 +Bn−1)

′.

For t = n− 2, j = n− 2, n− 1, n,

Pn−2|n = Pn−2|n−3

− (Fn−2Pn−3|n−3Cn−2 +Qn−2H
′
n−2 + Sn−2)D

−1
n−2|n−3

· (Fn−2Pn−3|n−3Cn−2 +Qn−2H
′
n−2 + Sn−2)

′

−
(
Fn−2Pn−3|n−3An−2 +Bn−2

)
Cn−1D

−1
n−1|n−3C

′
n−1
(
Fn−2Pn−3|n−3An−2 +Bn−2

)′
− (Fn−2Pn−3|n−3An−2An−1 +Bn−2An−1)CnD

−1
n|n−3C

′
n

· (Fn−2Pn−3|n−3An−2An−1 +Bn−2An−1)
′.

In general for t = 1, . . . , n,

Pt|n = Pt|t−1 − (QtH
′
t + St)D

−1
t|t−1 (QtH

′
t + St)

′ − (QtH
′
t + St)D

−1
t|t−1(FtPt−1|t−1Ct)

′

−FtPt−1|t−1CtD−1t|t−1 (QtH
′
t + St)

′ − FtPt−1|t−1CtD−1t|t−1C
′
tP
′
t−1|t−1F

′
t

−(FtPt−1|t−1At +Bt)Ct+1D
−1
t+1|t−1C

′
t+1(FtPt−1|t−1At +Bt)

′

−
(
FtPt−1|t−1AtAt+1 +BtAt+1

)
Ct+2D

−1
t+2|t−1C

′
t+2

(
FtPt−1|t−1AtAt+1 +BtAt+1

)′
−...−

(
FtPt−1|t−1AtAt+1...An−1 +BtAt+1...An−1

)
CnD

−1
n|t−1C

′
n

·
(
FtPt−1|t−1AtAt+1...An−1 +BtAt+1...An−1

)′
,

where the definitions (45), (46), and (47) have been used.
We again use Dj|t−1 = Dj|j−1 for j = t + 1, ..., n as in Durbin and Koopman (2012).

Let Nn+1 = 0, Nn = CnD
−1
n|n−1C

′
n, and for t = 1, ..., n− 1,

Nt = CtD
−1
t|t−1C

′
t + AtNt+1A

′
t, (55)
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then

Pt|n = Pt|t−1 − (QtH
′
t + St)D

−1
t|t−1 (QtH

′
t + St)

′ − (QtH
′
t + St)D

−1
t|t−1(FtPt−1|t−1Ct)

′

− FtPt−1|t−1CtD−1t|t−1 (QtH
′
t + St)

′ − FtPt−1|t−1NtP
′
t−1|t−1F

′
t −BtNt+1B

′
t, (56)

which is equal to (32) and completes the proof of Proposition 1.

A.2 Proof of Proposition 2

A.2.1 Mean of the smoothed state vector

We start this proof by writing the mean of the smoothed state as a function of the mean
of the updated state, as in Kurz (2018),

α̂t|n = E(αt|Y n
1 ) = E(αt|Y t

1 , vt+1:n)

= α̂t|t +
n∑

j=t+1

Cov(αt, vj|Y t
1 )Var(vj|Y t

1 )−1vj. (57)

Note that for j = t+ 1, ..., n, Dj|t = Dj|j−1, hence Var(vj|Y t
1 )−1 = D−1j|j−1. Moreover,

Cov(αt, vj|Y t
1 ) = E

[
αtv

′
j|Y t

1

]
− E

[
αt|Y t

1

]
· 0

(49)
= E

[
αtx

′
j−1|j−1(HjFj + Jj)

′ + αtε
′
jH
′
j + αtu

′
j|Y t

1

]
= E

[
αtx

′
j−1|j−1|Y t

1

]
(HjFj + Jj)

′ + E
[
αtε
′
j|Y t

1

]
H ′j + E

[
αtu

′
j|Y t

1

]
,

where E
[
αtε
′
j|Y t

1

]
= 0 and E

[
αtu

′
j|Y t

1

]
= 0, for j = t + 1, ..., n by definition. Consider

now the term E
[
αtx

′
j−1|j−1|Y t

1

]
. For j = t+ 1, E

[
αtx

′
t|t|Y t

1

]
= Pt|t. For j = t+ 2,

E
[
αtx

′
t+1|t+1|Y t

1

]
(51)
= E

[
αtx

′
t|t|Y t

1

]
At+1 + E

[
αtε
′
t+1|Y t

1

]
[I − Lt+1|tD

−1
t+1|tHt+1]

′ − E
[
αtu

′
t+1|Y t

1

]
[Lt+1|tD

−1
t+1|t]

′

= Pt|tAt+1.

In general,
Cov(αt, vj|Y t

1 ) = Pt|tAt+1...Aj−1Cj, (58)

and (57) becomes

α̂t|n = α̂t|t +
n∑

j=t+1

Pt|tAt+1...Aj−1CjD
−1
j|j−1vj. (59)

For t = n− 1, j = n,

α̂n−1|n = α̂n−1|n−1 + Pn−1|n−1CnD
−1
n|n−1vn.
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For t = n− 2, j = n, n− 1,

α̂n−2|n = α̂n−2|n−2 + Pn−2|n−2An−1CnD
−1
n|n−1vn + Pn−2|n−2Cn−1D

−1
n−1|n−2vn−1.

Let r∗t = Ct+1D
−1
t+1|tvt+1 + At+1r

∗
t+1, and r∗n = 0, then

α̂t|n = α̂t|t + Pt|tr
∗
t . (60)

A.2.2 Covariance of the smoothed state vector

As in Kurz (2018), we can write the covariance of the smoothed state as a function of the
covariance of the updated state according to

Pt|n = Var(αt|Y n
1 ) = Var(αt|Y t

1 , vt+1:n)

= Pt|t −
n∑

j=t+1

Cov(αt, vj|Y t
1 )Var(vj|Y t

1 )−1Cov(αt, vj|Y t
1 )′. (61)

With (58) we have

Pt|n = Pt|t −
n∑

j=t+1

Pt|tAt+1...Aj−1CjD
−1
j|j−1

(
Pt|tAt+1...Aj−1Cj

)′
.

For t = n− 1, j = n,

Pn−1|n = Pn−1|n−1 − Pn−1|n−1CnD−1n|n−1C
′
nPn−1|n−1.

For t = n− 2, j = n, n− 1,

Pn−2|n = Pn−2|n−2 − Pn−2|n−2An−1CnD−1n|n−1C
′
nA
′
n−1Pn−2|n−2

−Pn−2|n−2Cn−1D−1n−1|n−2C
′
n−1Pn−2|n−2.

Let N∗t = Ct+1D
−1
t+1|tC

′
t+1 + At+1N

∗
t+1A

′
t+1, and N∗n = 0, then

Pt|n = Pt|t − Pt|tN∗t Pt|t. (62)

A.3 Equivalence of the smoother means in Proposition 1 and
Proposition 2

As for the equivalence of the smoother means in Proposition 1 and Proposition 2, the
case t = n is clear and the coming proof is for t = n− 1, . . . , 1. We start with (34), using
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the definition of Ct in (47),

α̂t|n = ât|t + Pt|tr
∗
t

(9)
= α̂t|t−1 + Lt|t−1D

−1
t|t−1vt + Pt|tr

∗
t

(8),(6)
= α̂t|t−1 +

[
FtPt−1|t−1F

′
tH
′
t +QtH

′
t + FtPt−1|t−1J

′
t + St

]
D−1t|t−1vt + Pt|tr

∗
t

= α̂t|t−1 + [QtH
′
t + St]D

−1
t|t−1vt + FtPt−1|t−1 [HtFt + Jt]

′︸ ︷︷ ︸
=Ct

D−1t|t−1vt + Pt|tr
∗
t .

Comparing this expression with (31) by using the update of rt, we have

α̂t|n = α̂t|t−1 + (QtH
′
t + St)D

−1
t|t−1vt + FtPt−1|t−1rt +Btrt+1

= α̂t|t−1 + (QtH
′
t + St)D

−1
t|t−1vt + FtPt−1|t−1

[
CtD

−1
t|t−1vt + Atrt+1

]
+Btrt+1

= α̂t|t−1 + (QtH
′
t + St)D

−1
t|t−1vt + FtPt−1|t−1CtD

−1
t|t−1vt +

[
FtPt−1|t−1At +Bt

]
rt+1.

Note that r∗t = rt+1. Thus, we only have to show that

Pt|t
!

= FtPt−1|t−1At +Bt. (63)

By (6) and (10), the left-hand side of (63) is equal to

Pt|t = FtPt−1|t−1F
′
t +Qt − Lt|t−1D−1t|t−1L

′
t|t−1.

By definition of At and Bt, the right-hand side of (63) is equal to

FtPt−1|t−1At +Bt

= FtPt−1|t−1

[
Ft − Lt|t−1D−1t|t−1(HtFt + Jt)

]′
+Qt[I − Lt|t−1D−1t|t−1Ht]

′

−St(Lt|t−1D−1t|t−1)
′

= FtPt−1|t−1F
′
t +Qt −

[
FtPt−1|t−1(HtFt + Jt)

′ +QtH
′
t + St

]
(Lt|t−1D

−1
t|t−1)

′

(8),(6)
= FtPt−1|t−1F

′
t +Qt − Lt|t−1D−1t|t−1L

′
t|t−1.

Thus, the left-hand side and the right-hand side of (63) are identical, which proves the
equivalence of the means (31) and (34). The proof for the covariances (32) and (35) works
analogously.

A.4 Verifying the mean and the covariance of the state sampled
using the simulation smoother in Algorithm 2

Algorithm 2 adopts the simulation smoother by Durbin and Koopman (2002) to the state-
space model with lagged states in the observation equation and lagged dependent variables
in the state and observation equation. Compared to Durbin and Koopman (2002), we pro-
vide a more detailed justification of the simulation smoother. In particular, we check the
validity of the simulation smoother in Algorithm 2 by analyzing the moments of the simu-
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lated state α̃ given the observed data Y1, ..., Yn as realizations of the corresponding random
variables. We assume that ft(Y

t−1
1 ) and gt(Y

t−1
1 ) are linear functions of Y1, ..., Yt−1, and

stack the states and observations according to α = (α′1, . . . , α
′
n)′ and Y = (Y ′1 , . . . , Y

′
n)′.

As the state-space model is linear and the disturbances are normally distributed, the joint
vector of states and observables is also multivariate normal with(

α
Y

)
∼ N

[(
µα
µY

)
,

(
Σαα ΣαY

ΣY α ΣY Y

)]
, (64)

where means µα, µY , variances and covariances Σαα, ΣαY , ΣY α, ΣY Y are functions of
the system matrices ft(·), gt(·), Ft, Ht, Jt, Qt, Rt, St for t = 1, . . . , n, and the initial
conditions of the state-space model.

Given the joint normal distribution, we can derive the mean and the covariance of the
state α conditional on Y according to

E[α|Y ] = µα + ΣαY Σ−1Y Y (Y − µY ), (65)

Var[α|Y ] = Σαα − ΣαY Σ−1Y Y ΣY α. (66)

To check the validity of the simulation smoother, we have to show that E[α̃|Y ] =
E[α|Y ] and Var[α̃|Y ] = Var[α|Y ]. Note that from the definition of Algorithm 2, the
stacked vector of α+ and simulated data Y + has the independent identical distribution
as the stacked vector of α and Y .

Concerning the mean, we have

E[α̃|Y ] = E[E(α|Y )− E(α+|Y +) + α+|Y ]

= E[E(α|Y )|Y ]− E[E(α+|Y +)|Y ] + E[α+|Y ]

= E(α|Y )− E(α+) + E(α+) = E(α|Y ),

where E[E(α|Y )|Y ] = E(α|Y ) due to the Tower property, E[E(α+|Y +)|Y ] = E(α+) and
E[α+|Y ] = E(α+) since both Y + and α+ are independent of Y .

Concerning the covariance, note that due to the Tower property,

Var[E(α|Y )|Y ] = E[(E(α|Y )− E[E(α|Y )|Y ])2|Y ] = E[(E(α|Y )− E(α|Y ))2|Y ] = 0.

Let Z := −E(α+|Y +) + α+, which is independent of Y , then

Var[E(α+|Y +)− α+|Y ] = Var[Z|Y ]

= E[(Z − E[Z|Y ])2|Y ] = E[(Z − E[Z])2|Y ] = E[(Z − E[Z])2]

= Var[Z] = Var[E(α+|Y +)− α+].

Moreover,

Var(E(α+|Y +)) = Var(µα + ΣαY Σ−1Y Y (Y + − µY ))

= ΣαY Σ−1Y Y ΣY Y Σ−1Y Y Σ′αY = ΣαY Σ−1Y Y Σ′αY ,

Cov(E(α+|Y +), α+) = Cov(µα + ΣαY Σ−1Y Y (Y + − µY ), α+) = ΣαY Σ−1Y Y Σ′αY .
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Together we obtain

Var[α̃|Y ] = Var[E(α|Y )− E(α+|Y +) + α+|Y ]

= Var[E(α|Y )|Y ] + Var[E(α+|Y +)− α+|Y ]

= 0 + Var(E(α+|Y +)) + Var(α+)− 2Cov(E(α+|Y +), α+)

= ΣαY Σ−1Y Y Σ′αY + Σαα − 2ΣαY Σ−1Y Y Σ′αY
= Σαα − ΣαY Σ−1Y Y Σ′αY .

As the state moments from the simulation smoother and the moments from the theoretical
distribution coincide, we can conclude that the simulation smoother provides an unbiased
sample with correct covariance.
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