
Discussion Paper
Deutsche Bundesbank
No 08/2019

The nonlinear dynamics
of corporate bond spreads:
Regime-dependent effects of their determinants

Henning Fischer
(Deutsche Bundesbank)

Oscar Stolper
(University of Marburg)

Discussion Papers represent the authors‘ personal opinions and do not
necessarily reflect the views of the Deutsche Bundesbank or the Eurosystem.



Editorial Board:  Daniel Foos 

Thomas Kick 

Malte Knüppel 

Vivien Lewis 

Christoph Memmel 

Panagiota Tzamourani 

Deutsche Bundesbank, Wilhelm-Epstein-Straße 14, 60431 Frankfurt am Main,  

Postfach  10 06 02, 60006 Frankfurt am Main 

Tel +49  69 9566-0 

Please address all orders in writing to: Deutsche Bundesbank, 

Press and Public Relations Division, at the above address or via fax  +49 69 9566-3077 

Internet http://www.bundesbank.de 

Reproduction permitted only if source is stated. 

ISBN  978–3–95729–563–7  (Printversion) 

ISBN  978–3–95729–564–4  (Internetversion) 



 

Non-technical summary 

Research Question 

Which factors determine corporate bond prices in which way? This question is highly 

relevant for investors and issuers, but also for financial supervisors. However, it has not 

been entirely answered by research to date. In this context, the global financial crisis 

highlighted again that the behavior of market participants, and thus the importance of 

particular price drivers, may change rapidly and considerably. Hence, it appears 

advisable to incorporate this aspect into models aimed at explaining the dynamics of 

corporate bond prices. 

Contribution 

This paper employs a so-called regime-switching approach when modeling US 

corporate bond spreads, defined as the excess yield corporate bonds as comparatively 

riskier assets have to pay over that of US treasuries with the same maturity. The regime-

switching model allows the impact of the pricing factors on the spreads to differ 

between relatively calm market phases and periods of financial stress. During the model 

estimation, the two alternating market states are directly derived from the observed 

behavior of all variables in the model setup. The results provide new insight on the 

time-varying importance of individual risk factors not documented so far. 

Results 

Based on data for the 2004-2016 period, this study finds empirical evidence for 

corporate bond prices to be primarily driven by credit risk and interest rate risk during 

tranquil market conditions. During more anxious and volatile markets, however, the 

impact of these two factors abates, whereas liquidity risk becomes the salient issue. 

While representing a negligible factor during placid phases, market-wide illiquidity 

shocks appear to result in substantial and long-lived increases in risk premia on the 

corporate bond market when a bearish sentiment prevails. This considerable impact of 

illiquidity on corporate bond spreads has not been reported previously by similar 

empirical studies based on simpler models. Our results – which are shown to be robust 

against various modifications of the model setup – suggest that in highly unstable times 

like the global financial crisis liquidity risk may supersede credit risk as the most 

important determinant of corporate bond spreads. 



 

Nichttechnische Zusammenfassung 

Fragestellung 

Die für Anleger und Emittenten im Markt, aber auch für die Finanzaufsicht relevante 

Frage, welche Faktoren auf welche Weise Einfluss auf die Preise von Unternehmensan-

leihen nehmen, kann von der Forschung bis heute nicht zur Gänze beantwortet werden. 

Die globale Finanzkrise rückte dabei erneut den Aspekt in den Fokus, dass sich das 

Verhalten von Finanzmarktakteuren und damit auch die Relevanz einzelner Einflussfak-

toren im Zeitverlauf schnell und stark ändern können. Daher scheint es geboten, diesen 

bei der Entwicklung von Modellen zur Erklärung der Preisdynamik explizit abzubilden. 

Beitrag 

Die vorliegende Studie bedient sich zur Modellierung US-amerikanischer Unterneh-

mensanleihepreise –ausgedrückt als Risikoprämie in Form eines Zinsaufschlags gegen-

über US-Staatsanleihen gleicher Restlaufzeit – eines sogenannten Regime-Switching-

Ansatzes. Dieser ermöglicht, dass sich die Stärke des Einflusses bepreisungsrelevanter 

Risikofaktoren auf die Zinsaufschläge zwischen Phasen ruhigerer Finanzmärkte und 

Phasen von Finanzmarktstress unterscheiden kann, wobei die beiden alternierenden 

Marktzustände direkt aus dem beobachteten Verhalten aller Modellvariablen abgeleitet 

werden. Die Modellschätzung liefert neue Erkenntnisse zur zeitabhängigen Relevanz 

einzelner Risikofaktoren, welche in der Form noch nicht nachgewiesen wurden. 

Ergebnisse 

Die den Zeitraum 2004 bis 2016 abdeckende Studie findet empirische Belege dafür, 

dass in ruhigen Marktphasen die Preise von Unternehmensanleihen hauptsächlich durch 

Kredit- und Zinsänderungsrisiken getrieben sind. Allerdings verlieren diese beiden Ein-

flussfaktoren in Phasen nervöser, volatilerer Märkte relativ an Bedeutung zugunsten des 

Themas (mangelnder) Liquidität, welches dann stark in den Vordergrund rückt. Unbe-

deutend in normalen Marktphasen, zeigen sich marktweite Illiquiditätsschocks in Kri-

senzeiten als Ursache substantieller und langlebiger Ausweitungen der Risikoprämien 

am Unternehmensanleihemarkt, welche in diesem Ausmaß bisher in ähnlichen Studien 

bei Verwendung einfacherer Modelle noch nicht dokumentiert wurden. Die Ergebnisse, 

welche sich robust gegenüber diversen Änderungen im Modell-Setup zeigen, legen na-

he, dass Kreditrisiken die Rolle als gewichtigster Einflussfaktor auf die Risikoprämien 

von Unternehmensanleihen in Krisenzeiten an Illiquiditätsrisiken verlieren können. 
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1. Introduction and related research 

Understanding the determinants of corporate bond prices is crucial and has been even higher on the 

agenda ever since the global financial crisis, which was characterized by unprecedented levels and 

volatilities of corporate bond spreads. Learning about these spread dynamics is highly relevant for 

prudential supervisory authorities and central banks who trace aggregate spreads to assess financial 

stability and the effectiveness of monetary policies. Moreover, corporate bond investors and the 

treasury and risk management units of the corporates themselves benefit from a thorough analysis 

of the time-varying influence of spread determinants. Yet, a considerable fraction of the empirical-

ly observable variation in corporate bond spreads still remains unexplained. Even after including a 

host of non-default-related components into econometric models, predicted spreads are typically 

much too low to match actual levels, leading to the corporate bond spread puzzle (Chen et al., 

2009; Guo, 2013; Huang and Huang, 2012).1 

In this paper, we address this puzzle by modelling the relationship between spreads and their 

main drivers using a Markov-switching vector autoregressive (MS-VAR) model. By introducing 

the MS-VAR specification as an innovative econometric approach to model corporate bond spreads, 

we extend previously employed static single-equation models which do not allow for a data-driven 

separation of market regimes and neglect dynamic adjustments, time-varying correlations, and po-

tential endogeneity issues.2 At this, our research is closely related to the work of Acharya et 

al. (2013) and Kalimipalli et al. (2013).3 Acharya et al. (2013) use a static MS model to analyze 

                                                 
1 Structural credit risk models based on the Merton (1974) framework for valuing corporate debt are limited 
to variables which affect the firm’s default probability and thus fail to explain empirically observed variation 
in corporate bond spreads (Duffee, 1998; Eom et al., 2004; Leland and Toft, 1996; Longstaff and Schwartz, 
1995). Other contributions include liquidity concerns, tax effects, or business cycle dependencies to proxy for 
market-wide effects explaining non-default-related spread components (e.g. Collin-Dufresne et al., 2001; 
Duffie and Singleton, 1999; Elton et al., 2001). While incorporating non-default-related determinants in-
creases explanatory power, it is still not fully understood which factors – and through which functional rela-
tionships – drive the dynamics of corporate bond spreads. 
2 Although skewness, positive excess kurtosis, and persistence are robust stylized facts of the distribution of 
individual and aggregate corporate bond spreads (Gatfaoui, 2006; Pedrosa and Roll, 1998), early work on the 
corporate term structure assumes spreads to be normally distributed and uses simple linear regression models 
(e.g. Collin-Dufresne et al., 2001; Elton et al., 2001; Huang and Kong, 2003). Regression models with re-
gime-switching, in particular those with Markov-switching (MS) as proposed by Hamilton (1989), account 
for non-normal distribution of spreads and persistence in their levels (Duffee, 1998; Timmermann, 2000). 
Moreover, MS models allow for explicit modeling of time-varying simultaneous correlations, thereby incor-
porating evidence that correlations between different financial asset returns typically increase during market 
downswings (Alexopoulou et al., 2009; Longin and Solnik, 2001, 1995). Consequently, MS models have 
recently been applied to study the corporate bond market (Acharya et al., 2013; Davies, 2008; Kalimipalli et 
al., 2013; Maalaoui Chun et al., 2014) as well as the related market of credit default swaps (Alexander and 
Kaeck, 2008; Chan and Marsden, 2014). 
3 Giesecke et al. (2011) study the determinants of U.S. corporate bond default rates for the 1866-2008 period. 
Regressing the actual annual default rates on financial and macroeconomic variables lagged by one year, 
their single-equation model allows the intercept term to be subject to Markovian regime switches, thereby 
providing for different default rate regimes. The authors find stock market returns and stock market return 
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regime-specific liquidity effects on corporate bond spreads. Their findings suggest that the negative 

impact of liquidity shocks on the spreads of speculative-grade bonds is limited to down market 

periods. In a related study, Kalimipalli et al. (2013) use a linear (single-regime) VAR model to 

examine the regime-specific impact of equity volatility and liquidity on corporate bond spreads and 

conclude that both volatility and liquidity shocks have a stronger effect on the spreads of low-rated 

bonds during crisis regimes.  

Using weekly data covering the period from 2004 to 2016, we document significant differences 

in how default- and non-default-related factors impact aggregate corporate bond spreads conditional 

on the prevailing market regime. Specifically, our results suggest that the multivariate Markov-

switching approach provides new insights into the time-varying role of illiquidity for pricing corpo-

rate bonds. Aggregate liquidity exhibits the most pronounced regime-specific differences in its ef-

fect on corporate bond spreads, and a shock to market-wide liquidity has the relatively largest im-

pact on spreads in terms of magnitude and persistence during phases of high corporate bond and 

equity volatility. We conclude that, during highly unstable times like the global financial crisis, in-

vestors demand a substantially higher premium for taking on liquidity risk than previously assumed, 

thus providing novel evidence to rationalize the corporate bond spread puzzle. 

Moreover, we find that during tense markets, shocks to credit risk trigger a disproportionately 

large and persistent increase in corporate bond spreads. Similarly, while interest rate risk plays a 

major role in normal times, it appears to have less of an impact relative to other risk factors when a 

bearish or generally anxious market sentiment prevails. In additional analyses, we show that our 

main results are robust to (i) the inclusion of more than one business cycle during the period under 

review, (ii) using alternative measures of illiquidity, and to (iii) the choice of the default risk meas-

ure. 

2. The Markov-switching vector autoregressive model 

2.1. Motivation 

We choose the MS-VAR methodology to explain corporate bond spread dynamics and determi-

nants as it allows us to analyze the regime-specific impact of the main determinants on the dynamic 

behavior of corporate bond index spreads within an interdependent system of equations. In fact, 

single-equation MS models selected in prior research might be missing important parts of the big 

picture since they are affected by potential endogeneity issues arising from simultaneous causality 

between the financial variables under review. Moreover, dynamic adjustments of the returns to 

shocks in a certain determinant cannot be analyzed in a static setting, either. Instead, all reactions 

                                                                                                                                                    
volatility to have significant forecasting power for default rates, whereas credit spreads do not feature predic-
tive power. 
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are considered to be one-time adjustments that instantaneously take place within the same period.4 

Finally, a single-equation approach implies that all return determinants are assumed to be exoge-

nous, i.e., do not allow for mutual causality between the variables that enter the model. However, 

due to their specific risk-return profile and correlations with other asset classes, corporate bonds 

lend themselves for hedging purposes and their returns can be expected to comove with, e.g., re-

turns on Treasury and equity markets, i.e. variables typically deemed relevant determinants of cor-

porate bond spreads.  

Another methodological advantage of the MS-VAR approach is that prior knowledge about the 

exact regime changes –which might be recurring or caused by one-time events, and which can lead 

to either discrete or more gradual changes in the time series of the variables under review– is not 

required. Instead, the model estimation does not only provide the potentially differing regression 

coefficients, but at the same time also conditional regime probabilities for each point in time of the 

sample which allow conclusions to be drawn about when each submodel has most likely prevailed. 

Importantly, the distinct regimes are inferred endogenously by letting the sample data speak rather 

than being imposed ex ante by the researcher. Hence, the MS-VAR method enables us to have the 

differing regimes distinguished by a data-driven algorithm, such that the relevant spread drivers 

within each of these regimes can unambiguously be identified. This differentiates our approach 

from Kalimipalli et al. (2013), who compare (i) a shorter sample including the stress periods in 

1998 (Asian and Russian crisis, LTCM collapse) and around the turn of the millennium in addition 

to all other non-stress periods between 1994 and 2007 to (ii) a longer sample that also covers the 

global financial crisis. Consequently, the regime-specific effects obtained from this exogenously 

imposed separation might in fact represent average effects of both crisis and non-crisis times pre-

vailing between 1994 and 2010. Given that some of the determinants potentially have opposite 

effects on the spreads across regimes, effects could even average out in such a setting. 

2.2. Model specification 

Our model specification follows Krolzig (1997) who provides an elaborate discussion of the Mar-

kov-switching approach to (vector) autoregressive modeling. This methodology has the advantage 

of accommodating structural breaks or changes across regimes not only in the level of each time 

series in the multivariate system, but also with respect to the interdependent autoregressive dynam-

ics and, moreover, the covariance structure between the shocks affecting the variables. A k-

dimensional M-regime MS-VAR model of lag order p can be specified as 

                                                 
4 Note that Timmermann (2000) shows that MS models with autoregressive dynamics are more flexible in 
modeling non-normally distributed data than those without autoregressive terms, since they can generate a 
greater variety of coefficients of skewness and kurtosis as well as patterns in autocorrelation and volatility 
dynamics. 
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yt= v(st) +Ai(st)yt-i+ εt,

p

i=1

 (1) 

where yt, v(st) and εt are k×1 vectors, the Ai(st) are k×k matrices containing the autoregression 

coefficients, and εt ∼iid N (0 , ∑ (st)ε ) follows a multivariate normal distribution with zero mean, 

t = 1, …, T. In case ∑ (st)ε  is nondiagonal, it captures simultaneous co-movements between the k 

variables in yt, whereas the Ai(st) may capture lagged dynamic interdependencies between them. 

st	∈ {1, 2, …, M} is a state variable whose unobservable realization is assumed to evolve according 

to a discrete-time, discrete-state homogeneous first-order Markov process which is irreducible er-

godic and defined by the transition probabilities 

pij=Pr(st+1= j	|	st = i),       0  ≤  pij  ≤  1,									 pij = 1	M

j=1

         ∀i,j ∈	ሼ1, 2, … ,Mሽ.		 (2) 

These conditional probabilities determine how likely a certain regime i at time t will be followed 

by (the same or a different) regime j in the next period, and they can be conveniently collected in 

the transition matrix 

P = ൦p
11

p
12

⋯ p
1M

p
21

p
22

⋯ p
2M⋮ ⋮ ⋱ ⋮

p
M1

p
M2

⋯ p
MM

൪ (3) 

with the components in each row of the matrix summing to unity. The first-order property of the 

Markovian regime-generating process implies that all relevant information about its future is con-

tained in its present state. Hence, the probability of a certain regime realization at time period t+1 

is dependent on the past only through the regime realization in t.5 

In specification (1) the intercept vector, the autoregressive parameter matrices, and the co-

variance matrix of the error term vector are all subject to Markov-switching, i.e., they might adopt 

distinct values according to the regime prevailing at time t. Thus, using the notation of 

Krolzig (1997) the process can be labeled as an MSIAH-VAR(p) model, with the letter H referring 

to Markov-switching heteroskedasticity through regime-specific (co)variances. In contrast to a so-

                                                 
5 The (first-order) Markov regime-generating process is what differentiates MS-VAR models from the mixture-
of-normals models (Clark, 1973; Granger and Orr, 1972; Pearson, 1894) which are characterized by serially 
independently distributed regimes, i.e., the transition probabilities are independent from the history of the 
regimes such that they coincide with the unconditional (“ergodic”) regime probabilities. Since the transition 
matrix P has rank one if Pr(st+1	=	j	|	st	=	i)	=	Pr(st+1	=	j	|	st	=	j)	=	Pr(st+1	=	j),	∀i	≠	j, the mixture-of-normals 
model can be considered a restricted version of the MS-VAR model. The latter is more advantageous to model-
ing non-normally distributed financial time series, since mixture-of-normals cannot bring about time-varying 
conditional variances, and “the Markovian dependency in the mixture probabilities significantly expands the 
scope for asymmetry and fat tails that can be generated by time-independent mixture models” (Timmermann, 
2000; p. 100). 
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called MSMAH-VAR(p) specification in which μy(st), i.e., the mean of yt, is subject to regime 

shifts, the MSIAH-VAR(p) model cannot only accommodate immediate one-time jumps in the 

process mean, but is also appropriate for modeling gradual dynamic adjustments of yt after the 

transition from one regime to the other (Knüppel, 2009; Krolzig, 1997).6 Thus, its flexibility makes 

the MSIAH the specification of choice when no prior knowledge about the specific intra- and inter-

regime dynamic interdependencies between the variables is available. 

3. Data and variables 

3.1. Sample 

We analyze weekly data constructed as averages over the observations for all trading days on the 

NYSE within a week during the sample period. We do so in order to try to circumvent that our 

results may be driven by potential day-of-the-week or weekend effects in the data, which Nippani 

and Arize (2008) found to be inherent in corporate bond indices. Using weekly data might also 

mitigate the index rebalancing effects observed at the end of each month, which is due to corporate 

bond indices being refreshed indices that hold the credit rating as a measure of credit quality con-

stant over time through frequent portfolio rebalancing (Bierens et al., 2005; Duffee, 1998). 

Our final sample spans the period from January 2004 until December 2016, covering a total of 

679 weekly observations for each time series. We choose our period under review such that it starts 

in 2004, i.e. shortly after Phase II of the TRACE (Trade Reporting and Compliance Engine) system 

was implemented by the National Association of Securities Dealers (NASD) in an effort to increase 

transparency and, in turn, liquidity on the U.S. corporate bond market.7 Before TRACE, the sec-

ondary corporate bond market was a largely intransparent decentralized broker-dealer market 

(Chacko, 2006; Hong and Warga, 2000; Schultz, 2001). The TRACE transaction reporting led to 

an increased competition between market makers and a decline in price dispersion for transactions 

completed in the same bond (Bessembinder et al., 2006; Cici et al., 2011; Edwards et al., 2007). 

Hence, it will be interesting to see if, for instance, liquidity shocks in today’s more transparent 

corporate debt markets still play the same role for spreads. The evidence in Kalimipalli et 

al. (2013), for their sample starting in 1994, and Acharya et al. (2013), who study the 1973–2007 

                                                 
6 The letters ‘I’ and ‘A’ in MSIAH stand for Markov-switching in the intercept vector (I) and the autoregres-
sive parameter matrices (A), respectively. The second ‘M’ in MSMAH denotes that – as opposed to an MSI-
AH setup – not the intercept vector, but the mean of yt is permitted to vary between regimes (Krolzig, 1997; 
ch. 1.2.2). 
7 The TRACE system allows for the reporting and real-time dissemination of data concerning transactions 
taking place in the OTC corporate bond market. Regulatory laws established by the Securities and Exchange 
Commission (SEC) require brokers dealing with specific fixed-income securities to report their transactions. 
For further details, please refer to the TRACE Fact Book available online at http://www.finra.org/TRACE. 
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period, suggests so; however, both analyses mainly comprise the less transparent and highly illiq-

uid pre-TRACE times. 

Additionally, the 2004–2016 period includes spread movements of unprecedented magnitude 

which occurred during the global financial crisis as well as the sovereign debt crisis in Europe. To 

the extent that unforeseen crisis times coincide with significantly different spread reactions to 

changes in market conditions, our analysis based on spread data including the global financial crisis 

should paint an up-to-date picture of how spread movements differ from their normal values when 

the market enters a stress regime. 

The MS-VAR model used in our analysis of the regime-specific dynamics of aggregate U.S. 

corporate bond spreads comprises six variables. Besides the spread time series, we include the time 

series of five important spread determinants that capture various sources of risk premia relevant for 

corporate bond market investors. 

3.2. Variables 

3.2.1. Corporate bond spread 

Our key variable under review, SPREAD, denotes the option-adjusted spread calculated for the 

Bank of America Merrill Lynch U.S. High Yield Master II index. Spread data are available in daily 

frequency through the Federal Reserve Economic Data (FRED) system on the web page of the 

Federal Reserve Bank of St. Louis. The underlying corporate bond index is designed to track the 

performance of U.S. dollar-denominated debt that is publicly issued in the domestic corporate cash 

market and has a rating below investment grade based on an average of Moody’s, S&P, and Fitch. 

The index is actively watched by market participants and based on a database of secondary market 

prices for a large group of bonds, each of which must have a fixed coupon schedule, at least one 

year of remaining maturity, and a minimum amount outstanding of USD 100m to be included in 

the index.8 The spreads are calculated as the yield differential between the corporate bond index 

and a spot Treasury curve, corrected for the value of any embedded options as well as coupon and 

index rebalancing effects. Calculating option-adjusted spreads (OAS) gives us the correct yield 

differentials, which are not distorted by time variation observed only due to variations in the value 

of embedded options.9 This correction is particularly important for our period under review, when 

the vast majority of corporate debt which constitutes Bank of America Merrill Lynch corporate 

bond indices was subject to a call provision (Faust et al., 2013; p. 1505). 

                                                 
8 For further details on the index calculation, see http://fred.stlouisfed.org/series/BAMLH0A0HYM2 and Bank 
of America Merrill Lynch’s ‘Index Rules & Definitions’ at http://www.mlindex.ml.com. 
9 For details on how the present value of the securities’ potential cash flows is evaluated when the securities 
exhibit embedded options, see the calculation methodologies in Bank of America Merrill Lynch’s ‘Bond 
Index Almanac’ available at http://www.mlindex.ml.com. 
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3.2.2. Yield curve 

With respect to the remaining variables entering yt, we review the theoretical and empirical evi-

dence in order to define the set of potential determinants that affect – and might, in turn, be affect-

ed by – aggregate corporate bond spreads. Duffee (1998), e.g., shows that corporate bond spreads 

are exposed to the level and the slope of the Treasury yield curve, since both variables capture cur-

rent as well as expected changes in (risk-free) interest rate levels.10 According to structural credit 

risk models, an increase in the short-term risk-free rate should result in a lower spread via an in-

crease in the risk-neutral drift of the firm value process which decreases the default probability 

(Longstaff and Schwartz, 1995). Similarly, a decrease in the slope may signal the danger of an 

economic downturn accompanied by a higher default rate and, thus, higher market-wide spread 

levels (Collin-Dufresne et al., 2001). We proxy the slope of the Treasury yield curve, which is a 

suitable forward-looking indicator for the state of the economy (Estrella and Hardouvelis, 1991; 

Estrella and Trubin, 2006), by the difference between the 10-year and the 3-month constant maturi-

ty Treasury (CMT) rates provided by the Federal Reserve, and denote this difference by 

YC_SLOPE.11 At this, the 10-year CMT rate represents the level of the yield curve (YC_LEVEL). 

The level is often referred to as the relatively more persistent, long-run component of the yield 

curve, which is closely related to inflation expectations (e.g. Diebold et al., 2006). 

3.2.3. Stock market development 

A corporate bond can be viewed as a combination of a default-free bond and a short position in a 

put option on the value of the firm’s stock with a strike price equal to the face value of the bond 

(Merton, 1974). Thus, just like equities, corporate bond spreads are exposed to movements in the 

aggregate stock market representing a forward-looking measure of the macroeconomic perfor-

mance (Campello et al., 2008; Elton et al., 2001; Huang and Kong, 2003). Stock market index re-

turns can also be interpreted as an aggregate gauge of the firms’ leverage ratios, since negative 

returns imply a decreasing value of the firms’ assets for a given level of debt. Hence, consistent 

with structural credit risk models, an increase in the market-wide leverage ratio through negative 

stock market index returns implies a higher probability of default12, which should in turn induce a 

                                                 
10 Interestingly, Ang and Bekaert (2002) find short- and long-term Treasury rates to be characterized by re-
gime-switching behavior, with the regimes reflecting states of the U.S. business cycle. Hence, it makes sense 
to assume that the two yield curve measures can also exert a regime-dependent influence on the spreads, which 
the MS-VAR model can detect. 
11 Treasury rate time series were retrieved in daily frequency from the ‘H.15 Statistical Release of Selected 
Interest Rates issued by the Board of Governors of the Federal Reserve System’, available at 
http://www.federalreserve.gov/releases/h15/. 
12 Giesecke et al. (2011) find stock market index returns to be significant predictors for subsequent default 
rates. The authors also highlight that “credit risk represents a systematic risk in the macroeconomic envi-
ronment that is priced in financial markets” and review relevant research in the field (ibid.: p. 243). 
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higher spread level. We include log returns of the S&P500 index (STOCK_RET) which we obtain 

from Thomson Reuters Datastream. 

Moreover, structural credit risk models also imply that spreads should increase in stock market 

volatility, since larger fluctuations in firm value increase the probability of hitting the default barri-

er. Corroborating the intuition that more extreme spread movements happen during more volatile 

stock market cycles, Bierens et al. (2005) find the Chicago Board Options Exchange (CBOE) Mar-

ket Volatility Index –commonly known by its ticker symbol VIX– to be a good indicator of the 

probability of jumps in the spreads. In addition, Tang and Yan (2010) document implied volatility 

as the most significant default-risk determinant of corporate bond spreads. Thus, following 

Campbell and Taksler (2003) and Cremers et al. (2008), among others, we include the VIX in our 

model setup. The VIX measures the expected market-wide stock return volatility over the next 30 

days as conveyed by a range of S&P500 stock index option prices. We obtain the time series of the 

VIX –which is quoted as an annualized standard deviation given in percentage points– in daily 

frequency from the CBOE’s website.13 

3.2.4. Market liquidity 

Finally, beyond default and market risk, spreads have also been shown to incorporate a signifi-

cant liquidity premium since the trading frequency of corporate bonds is low as compared to 

Treasury bonds (e.g. Chen et al., 2007; Dick-Nielsen et al., 2012; Hu et al., 2013). Since we use 

index-level (instead of bond-specific) spread data, we cannot resort to liquidity measures at the 

security level, i.e. bid-ask spreads, trade size, or the number of non-trading days. Instead, we utilize 

a market-wide illiquidity measure in order to capture the systematic illiquidity component in the 

corporate bond market. Indeed, prior research documents that many bonds become illiquid around 

the same time, leading to market-wide illiquidity spikes that can be witnessed after shock events 

such as the bankruptcy of Lehman Brothers (Bao et al., 2011; Bongaerts et al., 2012). We choose 

the ‘noise measure’ recently proposed by Hu et al. (2013) to proxy for aggregate illiquidity. This 

metric depicts pricing errors in U.S. Treasury bonds calculated as the root mean squared distance 

between their market yields and the yields implied by a smooth estimate of the zero-coupon yield 

curve. Intuitively, the smaller the observed “noise” in the yields, the larger the amount of arbitrage 

capital available and, in turn, the higher the provision of liquidity in the market. The key advantage 

of the noise measure as opposed to previously used aggregate illiquidity measures14 is that Hu et 

                                                 
13 See http://www.cboe.com/products/vix-index-volatility/vix-options-and-futures/vix-index for further details 
on the methodology. 
14 Previously employed aggregate illiquidity measures for the corporate bond market include the swap spread 
calculated as the yield differential of the 10-year interest rate swap index over the 10-year Treasury (Collin-
Dufresne et al., 2001; Feldhütter and Lando, 2008), the Treasury-Eurodollar (TED) spread, defined as the 
difference between the 3-month London Interbank Offered Rate (LIBOR) and the 3-month Treasury Bill rate 
(Campbell and Taksler, 2003; Kalimipalli et al., 2013), and the LIBOR-OIS (overnight index swap) spread, 
i.e. the difference between the 3-month LIBOR and the OIS rate for the same maturity (e.g. Sengupta and 
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al. (2013) are able to show that – despite originating in the Treasury market – it carries information 

about general illiquidity conditions on the financial markets, capturing “liquidity crises of varying 

origins and magnitudes” during the 1987–2011 period (p. 2344). Specifically, based on arbitrage 

capital allocated across different financial market segments, the measure allows for spillovers of 

liquidity shocks between them and thus addresses general and systematic illiquidity issues. We 

obtain the noise measure time series from Jun Pan’s homepage and denote this final component of 

the vector yt in our model as ILLIQUID.15 

Figure 1 shows the time series of all six variables entering the MS-VAR model for the period 

under review and will be discussed along with the results of the model estimation in the next sec-

tion. 

                                                                                                                                                    
Tam, 2008). However, all three market-wide illiquidity measures are closely connected with the interbank 
lending market, which came close to failure in the global financial crisis. Specifically, Krishnamurthy (2010) 
shows that the swap spread is biased towards anomalous negative values ever since. Moreover, the interbank 
market was later involved in the rate-rigging scandal which resulted in distorted LIBOR rates between 2005 
and 2009 (e.g. Monticini and Thornton, 2013). Hence, one should be cautious when using any of these ag-
gregate illiquidity measures. In section 5.2, we investigate if our findings are robust to the choice of the il-
liquidity measure. 
15 See http://www.mit.edu/~junpan/. 
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Figure 1 
Time series of variables used in MS-VAR model 

 (a) YC_LEVEL  (b) YC_SLOPE 

  

 (c) STOCK_RET  (d) VIX 

  

 (e) ILLIQUID  (f) SPREAD 

  

Notes: The graph plots the time series of all six variables used in the MS-VAR system for the 2004-2016 
sample period under review as described in section 3.2. 

4. Results 

4.1. Regime number and lag length specification 

We model the dynamics in the vector of the k = 6 variables presented in section 3.2 by means of 

an MS-VAR model with two regimes. The restriction in terms of the number of possible different 

states M is made in order to obtain a parsimonious model, since the curse of dimensionality 

already present in a classical (one-regime) linear VAR model is potentiated with each additional 

Markov-switching regime allowed. For given values of k and p, the flexibility of letting all VAR 

model parameters be subject to regime-dependent time-variation takes its toll in the number of pa-
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rameters to be estimated, which grows rapidly in M.16 Moreover, statistical tests for the number 

of regimes are problematic since the test statistics do not follow standard distributions. Standard 

likelihood ratio (LR) test statistics, e.g., are not asymptotically distributed as a χ2. This is due to 

conventional regularity conditions being violated because of components in the transition probabil-

ity matrix which represent nuisance parameters identified only under the alternative, as discussed in 

Davies (1987), Hansen (1992), and Cho and White (2007). Hence, it is common to specify the num-

ber of regimes – typically to two – rather than deciding based on econometric tests. Finally, once we 

introduce a third regime to our MS-VAR setup, we find that it cannot be clearly distinguished from 

one of the other two regimes (Regime 1, discussed below). The probability of having observed 

Regime 3 ex post does not differ much from that of Regime 1, both probabilities are either close to 

zero or oscillate around 0.5, i.e. do not allow for an unambiguous regime classification. This find-

ing corroborates our choice of only two regimes, which is consistent with the number of regimes set 

or identified in the majority of other studies (e.g. Davies, 2008; Maalaoui Chun et al., 2014; Pavlova 

et al., 2015). 

With respect to the choice of the lag length p in the two-state MS-VAR model, we rely on the 

commonly used Hannan-Quinn (HQ) information criterion (Hannan and Quinn, 1979). Following 

the modification of Chan et al. (2004) AIC criterion for regime-switching autoregressive models 

proposed by Mittnik and Semmler (2013), we first calculate an overall HQ criterion for the two-

state MS-VAR model specified as 

HQ	=	 TiHQi

2

i=1

 (4) 

where 

HQi	=	l nห∑ iห+
2clnlnTi

Ti
K   , (5) 

with c = 1.1 and K=pk2 + k ( k + 2 ) / 2. Here, p is the autoregressive order assumed to be the 

same in both regimes, Ti reflects the number of observations associated with regime i, and ∑ i is the 

estimated residual covariance matrix of regime i. Second, we also compute the HQ criterion as 

given above for single-equation two-regime Markov-switching autoregressive (MS-AR) models that 

are specified for each of the six variables in the MS-VAR system, for which we replace ∑ i in (5) 

by an unbiased estimate of the regime-specific single equation’s residual variance. For all models, 

we assume lag orders of p = 0, 2, … ,  8 to be possible choices. 

                                                 
16 We refrain from considering time-varying transition probabilities, which would further increase computa-
tional complexity. See, e.g., Durland and McCurdy (1994), Filardo (1994), Filardo and Gordon (1998), and 
Kim et al. (2008) for approaches in which the elements of P are subject to time-variation. However, even 
with constant transition probabilities, the number of components in P to be estimated is already growing 
quadratically in M. 
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Table 1 
Lag order selection analyses – HQ criteria 

The results for the different lag order selection analyses reported in Table 1 suggest that a lag 

length of two is appropriate for the MS-VAR model. The estimation of the two-regime MS-VAR(2) 

model comprising T = 677 observations for each of the six variables as specified in section 3.2 is 

conducted employing the Expectation-Maximization (EM) algorithm.17 The statistical properties of 

the standardized residuals resulting from the estimation support our model specification. 

4.2. Analysis and interpretation of identified regimes 

In MS models, the identified regimes do not necessarily have an obvious interpretation, but instead 

are subject to an identification problem (Krolzig, 1997) which stems from the interchangeability of 

the regime labels and, in turn, the respective linear submodels. Since one can arbitrarily reclassify 

the unobservable states without changing the law of the process yt, the MS-VAR model is not un-

ambiguously identified. However, following many other studies, we identify one regime (henceforth 

Regime 1) as the “normal” state. Regime 1 is characterized by relatively low volatility levels as 

measured by the estimated regime-specific variances of the innovations in all six equations of the 

VAR model. By contrast, Regime 2 marks the high-volatility or “stress” state since it exhibits 

larger values on the main diagonal of its regime-specific residual covariance matrix. Additionally, 

Regime 2 features higher average levels of corporate bond spreads, the VIX, and the illiquidity 

                                                 
17 The EM algorithm was proposed by Dempster et al. (1977) for situations in which the likelihood is intrac-
table or difficult to deal with due to incomplete or latent data. Its application for MS models was initially 
suggested by Hamilton (1990, 1989) for simple MS regression models and revised for the more complex case 
of vector systems with autoregressive dynamics by Krolzig (1997). 

p yt 
YC_LEVEL YC_SLOPE STOCK_RET VIX ILLIQUID SPREAD 

0 6,214.58x -996.92x -692.12x 4,883.27x 1,919.51x -149.30x 517.48x 

1 -6,387.07x -3,283.50x -3,197.22x 4,885.09x 687.11x -1,996.12x -2,368.84x 

2 -6,490.97x -3,308.75x -3,182.15x 4,886.67x 542.26x -2,014.14x -2,553.46x 

3 -5,543.61x -3,279.94x -3,172.94x 4,891.84x 706.16x -1,960.13x -2,523.95x 

4 -5,652.74x -3,266.49x -3,162.87x 4,887.72x 726.72x -1,954.67x -2,517.00x 

5 -5,128.23x -3,240.25x -3,127.43x 4,897.00x 667.38x -1,966.78x -2,496.26x 

6 -4,637.79x -3,226.01x -3,132.15x 4,890.57x 691.51x -1,976.69x -2,492.61x 

7 -4,044.36x -3,233.88x -3,137.68x 4,893.31x 698.65x -1,980.06x -2,487.85x 

8 -3,307.14x -3,171.32x -3,125.19x 4,961.38x 752.99x -1,950.43x -2,471.16x 

Notes: Column yt contains the HQ criterion as specified in equations (4) and (5). The remainder of columns 
contains the HQ criterion evaluated for a reduced version of the vector yt which contains the respective 
column variable as the only element. Bold figures denote the minimum value within the respective column. 
See section 4.1 for a detailed description of measures and methods. 
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measure as compared to Regime 1. The respective values are discussed below. 

Figure 2 
Underlying regimes in corporate bond index spreads 

Figure 2 plots an estimate of the unobservable regime indicator function st obtained in the MS-VAR 

model estimation, i.e. the smoothed probability of being in Regime 2, Pr(st = 2|YT). This probability 

draws on the information contained in the entire sample of size T used for model estimation, denot-

ed by YT={yτ}τ=1
T , in order to make an inference about the unobserved regimes ex post and, thus, 

gives the best estimate of the latent state at any point in time within the sample. It is calculated via 

the Baum-Lindgren-Hamilton-Kim (BLHK) filter and smoother, which is employed in the expecta-

tion step in each iteration of the EM algorithm during the ML estimation of the two-state MS-VAR 

model.18 Following standard practice, we assume periods of high volatility to be identified by values 

of 0.5 or greater for Pr(st	=	2|YT), while the low-volatility regime is assumed to prevail when 

Pr(st	=	1|YT)	=	1	–	Pr(st	=	2|YT) is greater than 0.5. The resulting distinction of regimes proves 

                                                 
18 The BLHK filter might be considered a discrete version of the Kalman filter. Its smoothing part makes use 
of the backward recursions suggested by Kim (1994), which present a major improvement – particularly for 
VAR specifications – over the computationally demanding algorithm introduced by Hamilton (1990, 1989). 
The BLHK smoother provides the calculation of the likelihood function as a by-product, which enables ML 
estimation of the model parameters in the first place; see Krolzig (1997) for details. 

 

 

 

Notes: The upper graph plots the smoothed probability of being in Regime 2, Pr(st=2|YT), based on the 
estimation of the two-state MS-VAR(2) model as specified in equation (1) and using the variables intro-
duced in section 3.2. The bottom graph presents the time series of the corporate bond index spread, with the 
shaded areas indicating periods when Regime 2 prevails, i.e. the smoothed probability of being in Regime 2 
is 0.5 or greater. 
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clear-cut, as shown by the values of Pr(st	=	1|YT) and Pr(st	=	2|YT), respectively, which are almost 

always close to either one or zero. 

In support of the results, the regime classification measure (RCM) proposed by Ang and 

Bekaert (2002) confirms an unambiguous discrimination between the two regimes.19 Specifically, 

the RCM value of 2.99 suggests a remarkably conclusive regime distinction, i.e. proving that the 

MS-VAR model performs very well in discriminating between the regimes based on the time series 

dynamics. 

Regarding the interpretation of the regimes identified, the resulting classification as reported in 

Figure 2 clearly reflects periods of financial market stress. Among the phases assigned to Regime 2, 

we identify the start of the global financial crisis in June/July 2007 when the first subprime mort-

gage defaults became publicly known, as well as spreads skyrocketing triggered by the collapse of 

Lehman Brothers in September 2008 and subsequently fueled by the money market liquidity crisis. 

In March 2009, markets were supported by the expansion of the Fed’s first Quantitative Easing pro-

gram (“QE1”). This intervention led to a steady decline in financial stress with markets apparently 

returning to normal after the third quarter of 2009. However, the beginning of the eurozone debt 

crisis in April 2010 marked new turmoil which even intensified in the second half of 2011 due to (i) 

worries about the resilience of the eurozone banking system, (ii) Standard & Poor’s downgrading 

U.S. Treasury bonds from their AAA status, and (iii) growing fears of another U.S. recession. The 

high-volatility regime phases inferred by the MS-VAR model indeed capture all of these periods of 

actual turbulences in financial markets. Since we cannot think of severe historical crisis periods 

mistakenly assigned to the low-volatility regime, we will henceforth refer to Regime 2 as the stress 

regime.20 

Further inquiry into the behavior of the six time series in y
t during the stress regimes reveals 

that all of them exhibit a pronounced volatility and/or considerable level shifts. Naturally, however, 

not all variables behave the same during all stress regimes. For instance, Figure 1 reveals that the 

increase in values of the illiquidity measure in the second half of 2011 does not coincide with any 
                                                 
19 This metric uses the smoothed regime probabilities and is defined as 

RCM	= 400

T
Pr(st=	1	|	YT)Pr(st=	2	|	YT) T

t=1

 

for a two-regime model. The standardization leads to an RCM value of 100 for the worst classification possi-
ble, when each of the two regimes has a probability of 0.5 at each point t in the sample, whereas a value of 
zero indicates a perfect regime separation, i.e., in each period t, the two regime probabilities equal one and 
zero, respectively. 
20 Note that, at first glance, the switch to the high-volatility regime in the first week of January 2006 appears 
to be an assignment mistake. However, as shown in Figure 1(b), it corresponds to a dramatic drop in the yield 
curve slope (leading to an inverted yield curve shortly afterwards) and rapid declines or surges in either slope 
or level of the yield curve prove typical for the crisis periods during our period under review. Reasons for this 
relation likely include the monetary policy interventions by the Federal Open Market Committee (i.e. QE1-
QE3 or the maturity extension program “Operation Twist”), which all had significant effects on longer-term 
market interest rates, see, e.g., Gilchrist and Zakrajšek (2013), or flight-to-quality effects as many investors 
rebalanced their portfolios away from risky assets towards safe haven securities. 
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extraordinary spread development. Similarly, all variables except for the yield curve slope do not 

look significantly different in January 2006 as compared to their dynamics in the months prior to 

and after that period. Thus, the VAR approach to sorting the regime switches seems able to detect 

an overall picture of the relevant crisis regimes most likely unattainable via single-equation spread 

modeling. 

4.3. Comparison of regime-specific dynamic systems 

4.3.1. MS model parameters 

In this section, we will have a closer look at the ML estimates of the parameters of our MS-VAR 

model. Table 2 presents the estimates for the Markov chain parameters, which correspond to the 

regime classification discussed in section 4.2. 

Table 2 
Results of the ML estimation: log-likelihood values and Markov chain parameters 

max. ln L(θ|YT) 
 linear VAR(2) -8,207.80xx 

 2-regime MS-VAR(2) 988.38xx 

 LR 18,392.36xx 

 p(LR)Davies 0.00xx 

transition probabilities 

 p11 0.97xx 

 p22 0.91xx 

expected durations 

 d1 39.93xx 

 d2 10.69xx 

ergodic regime probabilities 

 π1 0.79xx 

 π2 0.21xx 

Notes: This table reports the maximum log-likelihood function value for the 2-regime MS-VAR(2) model in 
equation (1) and a simple linear (single-regime) VAR(2) model when employed for modeling the 6-variate 
vector yt as specified in section 3.2, respectively. LR=2( ln L(θ1|YT)- ln L(θ0|YT) )  is the likelihood ratio 
statistic for the test of the null hypothesis that the maximum log-likelihood function value of the 2-regime 
MS-VAR(2) model is significantly larger than that of its single-regime counterpart, with θ0 (θ1) denoting the 
set of parameters of the model under the null (alternative) hypothesis. An estimate for the significance level of 
the LR test statistic as obtained from Davies (1987) upper bound test is denoted by p(LR)Davies, with  

Pr ቀχq
2>LRቁ+2 ቀLR

2
ቁq/2

exp ቀ-
LR

2
ቁ /Г(q/2), where Г(·) is the standard gamma function. The transition proba-

bilities p11 and p22 reported are estimates for the elements on the main diagonal of P as defined in (3). Esti-
mates for the expected duration of regime 1 and 2 are given by d1=1/p12 =1/(1-p11) and d2=1/p21 =1/(1-p22). 
π1 and π2 denote estimates for the ergodic regime probabilities in (6). 

Based on the smoothed regime probabilities filtered by the EM algorithm, estimates for the transi-
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tion probabilities in P can be derived. They show that both regimes are very persistent, with proba-

bilities of staying in the respective regime, p11 and p22, of close to one. However, the probability of 

shifting from the high-volatility to the low-volatility regime (p21=1-p22=0.09) appears to be three 

times as large as the probability that a shift from the low-volatility to the high-volatility regime will 

occur (p12=1-p11=0.03). This indicates that the low-volatility Regime 1 is more persistent than Re-

gime 2, which translates to a relatively higher expected duration calculated as the reciprocal of the 

probability of leaving the regime, i.e., d1=1/p12. The expected duration of a continuous period of 

high volatility is about 11 weeks, whereas a less volatile normal market phase is estimated to last 

40 weeks on average. With the transition probabilities on hand, one can also calculate the uncondi-

tional probabilities that the process is in one of the two regimes, which are given by 

Since these probabilities define the stationary or unconditional probability distribution of the re-

gimes, they are also referred to as ergodic, long-run, or steady-state probabilities. Here, rough-

ly four in five weekly observations are supposed to belong to the low-volatility regime in the 

long run, while the high-volatility regime is likely to be observed less frequently. Finally, the max-

imized log-likelihood function value of the two-regime MS-VAR(2) model is considerably higher 

than that of a classical linear VAR(2) model. This difference in the two goodness-of-fit measures 

supports our choice of the two-state MS model, since the nonlinear specification features a much 

better fit. Testing the null hypothesis of one regime against the alternative of two regimes by means 

of a likelihood ratio (LR) is somehow problematic since the asymptotic distribution of the test statis-

tic is nonstandard. However, the value of the common test statistic is substantially larger than any 

conservative choice of a critical value for all conventional confidence levels, i.e. the null of only one 

regime is comfortably rejected.21 Moreover, the estimate p(LR)Davies obtained from Davies (1987) 

upper bound test for the significance level of the LR test statistic, which accounts for the nuisance 

parameters under the alternative, corroborates our test decision.22 Consequently, we note that the 

MS-VAR model provides a significantly better fit than the linear VAR specification. 

4.3.2. Regime-specific moments 

                                                 
21 The value of the respective test statistic is computed as 

LR=2( ln L(θ1|YT)- ln L(θ0|YT) ), 
where θ0 (θ1) denotes the set of parameters of the model under the null (alternative) hypothesis. 
22 Davies (1987) shows that for a single-peaked likelihood function, a valid estimate of the upper bound for the 
significance level of the standard LR test statistic is given by 

Pr ቀχq
2>LRቁ+2 ൬LR

2
൰q/2

exp ൬-
LR

2
൰ /Г(q/2) 

where Г(∙) is the standard gamma function. 

π1=Pr(st=1)= 1 - p22

2 - p11 - p22
       and       π2=Pr(st=2)= 1 - p11

2 - p11 - p22
   . (6) 
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We continue by analyzing the regime-specific differences of the spreads and their five potential 

determinants in more detail. To this end, Table 3 reports estimates for the regime-specific un-

conditional means and variances of all six variables of the MS vector process. It also shows the esti-

mated error term variance for each variable’s equation in the VAR, again for both the low-volatility 

Regime 1 and the high-volatility Regime 2.23 

Table 3 
Results of the ML estimation: regime-specific moments 

 YC_LEVEL YC_SLOPE STOCK_RET VIX ILLIQUID SPREAD 

uncond. means       

μy(st=1)' 3.116 xx 1.929 xx 5.042 xx 16.070 xx 2.041 xx 4.902 xx 

μy(st=2)' 3.495 xx 2.018 xx -8.087 xx 30.488 xx 6.064 xx 8.904 xx 

uncond. variances       

diag(Σy(st=1))' 1.218 xx 1.191 xx 1,182.520 xx 17.981 xx 0.865 xx 2.547 xx 

diag(Σy(st=2))' 0.794 xx 1.081 xx 7,188.987 xx 152.185 xx 22.843 xx 22.087 xx 

diag(Σε(st=1))' 0.006 xx 0.006 xx 0.113 xx 2.368 xx 0.097 xx 0.018 xx 

diag(Σε(st=2))' 0.018 xx 0.041 xx 0.653 xx 15.156 xx 0.181 xx 0.133 xx 

Notes: This table reports estimates for the vectors of regime-specific unconditional means μy(st=1) and 

μy(st=2) and variances diag(Σy(st=1)) and diag(Σy(st=2)) pertaining to the 6-variate vector yt as specified in 

section 3.2. They are computed using the regime-specific ML estimates of the matrices Ai(st) and ∑ε(st), the 
main diagonal elements of the latter being collected in the column vectors diag(Σε(st=1)) and diag(Σε(st=2)), 
while resorting to the appropriate formulas for the respective moments of VAR processes given in 
Lütkepohl (2005). 

Regime-specific differences in moments of the two yield curve measures reveal interesting fea-

tures: after a switch to Regime 2, mean values of both measures do not change dramatically. As 

indicated by the differing values of their respective error term variances, both YC_LEVEL and 

YC_SLOPE are affected by more volatile shocks during Regime 2 as compared to Regime 1. How-

ever, the autoregressive dynamics of the vector process as defined by the matrices Ai(st) can differ 

between the regimes and they determine the propagation of all shocks within the VAR system, i.e. 

the intensity and persistence of the impact of the shocks on the variable itself as well as on all other 

parameters while a particular regime prevails. Here, the relatively more volatile shocks which direct-

ly hit the two yield curve variables during the crisis regime eventually seem to be outweighed by 

shocks in the other variables that exert a weaker influence on the yield curve than during the normal 

                                                 
23 The estimates for the error term variances lie on the principal diagonal of each regime’s estimated error 
term covariance matrix ∑ε(st). The within-state unconditional means and variances are computed using the 
regime-specific ML estimates of the matrices Ai(st) and ∑ε(st) while resorting to the appropriate formulas for 
the respective moments of VAR processes given in Lütkepohl (2005). 
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regime. Thus, the overall fluctuations in YC_LEVEL and YC_SLOPE are less pronounced in crisis 

times, as revealed by their regime-specific variance estimates. Arguably, these results may at least 

partly be attributed to the unconventional monetary policy interventions during the global financial 

crisis. Specifically, short-term and long-term Treasury rates marked all-time lows after cuts in the fed-

eral funds target rate which let effective short-term rates range just slightly above the zero lower 

bound from December 2008 until December 2015. 

For the other four variables in yt, the differences across regimes are more straightforward. The 

stock market is characterized by a slightly positive (negative) mean return during normal times (pe-

riods of financial market stress). By contrast, Figure 1 documents that the means of VIX and 

SPREAD almost double during high-volatility regimes. Moreover, consistent with evidence of a 

liquidity squeeze in the corporate bond market (Bao et al., 2011; Dick-Nielsen et al., 2012), the 

average level of ILLIQUID nearly triples as compared to the normal state. Turning to the fluctua-

tions, we find that, whenever a regime switch is accompanied by an increase in the variance of 

the innovations to a particular variable’s equation, this directly translates into an increase in the 

variance of the respective variable. Apparently, the regimes exhibit substantially different stock re-

turn variances, which is consistent with the increase in stock market volatility as commonly ob-

served in crisis periods.24 Finally, the variances of VIX and SPREAD jump to almost the ninefold 

average of their pre-crisis values, while variation of the illiquidity measure even soars by more than 

2,500 %. 

4.4. Impulse response functions 

4.4.1. General considerations 

After having analyzed the time-varying means and variances of all six variables, we are now inter-

ested in the extent to which the dynamics of the VAR system differ between the two regimes. Re-

gime-specific differences in both the simultaneous and the lagged interdependencies between all six 

variables are collectively determined by the within-regime estimates of the matrices Ai(st) and the 

off-diagonal elements in ∑ε(st). In order to provide an overall picture of the combined effect of these 

estimated VAR parameters on the behavior of each variable in a certain regime, we follow the stand-

ard practice in the VAR literature and conduct impulse-response analyses allowing us to visualize the 

simultaneous and lagged impact of shocks hitting the variables in the system on corporate bond index 

spreads. 

In the vein of Tillmann (2004), Kanas and Kouretas (2007) and Mittnik and Semmler (2013), we calcu-

late regime-dependent impulse response functions (IRFs) employing the methodology suggested in 

                                                 
24 The regime-specific variances identified here correspond to an annualized volatility of 13.63 % (29.55 %) for 
the broad U.S. stock market return during the low-volatility (high-volatility) regime. 
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Krolzig et al. (2002) and Ehrmann et al. (2003). In fact, regime-dependent IRFs permit a straight-

forward analysis of potential asymmetries in the responses between different regimes. To show how 

fundamental shocks impact the model’s variables conditional on a given regime, traditional linear 

responses are calculated separately for each distinct regime based on the parameter estimates for the 

respective regime-specific linear VAR. Since these types of responses are based on the assumption 

that the process remains within a given regime during the horizon of the response, the responses in 

the low-volatility regime, for instance, are representative for normal market phases so long as the 

shocks are small enough not to trigger a transition to the high-volatility regime. That is why these 

within-regime IRFs can be considered “a study of the local dynamic behavior” of the MS-VAR 

system (Mittnik and Semmler, 2013; p. 1488). Provided that the expected duration of a certain re-

gime does not differ markedly from the response horizon, this regime conditioning is not only valid 

for presenting the short-term effects, but also gives a meaningful picture of the differing VAR dy-

namics and correlations over time.25 

                                                 
25 Alternatively, one could calculate generalized impulse response functions (GIRFs), in which the re-
sponses are history-dependent, i.e. conditional on past realizations of the states and the shocks, as well as 
dependent on the sign and the size of the shock considered; see Koop et al. (1996) for details. However, GIRFs 
are less helpful in understanding the differences between the regimes regarding the variables' dynamic interac-
tions. 
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Figure 3a 
Impulse of corporate bond spread to shocks during (low-volatility) Regime 1 

Figure 3a (Figure 3b) plots IRFs of the corporate bond spreads to shocks in all their determinants 

occurring while Regime 1 (Regime 2) prevails. All regime-dependent IRFs are calculated assuming 

a shock to the variable under review in the amount of one regime-specific standard deviation of the 

corresponding residual. The shaded areas indicate the 99 % bootstrap confidence intervals which 

were calculated following Hall (1992) percentile interval method using 10,000 replications. 

 (a) Shock to YC_LEVEL  (b) Shock to YC_SLOPE 

  

 (c) Shock to STOCK_RET  (d) Shock to VIX 

  
 (e) Shock to ILLIQUID  (f) Shock to SPREAD 

  

Notes: This graph plots orthogonalized impulse response functions (IRF) of the corporate bond index spread 
SPREAD (in percentage points) to a one standard deviation shock to the respective variable of the regime-
specific VAR system during Regime 1, based on the estimation of the two-state MS-VAR(2) model as speci-
fied in equation (1) using the variables introduced in section 3.2. The structural innovations are identified 
using a triangular Cholesky factorization of the residuals’ regime-specific covariance matrix, for which the 
causal ordering ILLIQUID → YC_LEVEL → YC_SLOPE → VIX → SPREAD → STOCK_RET is im-
posed. The shaded areas indicate the respective 99% bootstrap confidence interval calculated following 
Hall (1992). 
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Figure 3b 
Impulse of corporate bond spread to shocks during (high-volatility) Regime 2 

The structural innovations are identified using a triangular Cholesky factorization of the regime-

specific covariance matrix of the residuals, for which we impose the causal ordering ILLIQUID → 

YC_LEVEL → YC_SLOPE → VIX → SPREAD → STOCK_RET. The ordering can be justified 

by the notion that the equity market and the actively traded part of the corporate bond market incor-

porate new information comparably fast, while market liquidity only responds to shocks as well as 

fund flows between the various asset markets with a lag. Note, however, that our results obtained 

 (a) Shock to YC_LEVEL  (b) Shock to YC_SLOPE 

  

 (c) Shock to STOCK_RET  (d) Shock to VIX 

  
 (e) Shock to ILLIQUID  (f) Shock to SPREAD 

  

Notes: This graph plots orthogonalized impulse response functions (IRF) of the corporate bond index spread 
SPREAD (in percentage points) to a one standard deviation shock to the respective variable of the regime-
specific VAR system during Regime 2, based on the estimation of the two-state MS-VAR(2) model as speci-
fied in equation (1) using the variables introduced in section 3.2. The structural innovations are identified 
using a triangular Cholesky factorization of the residuals’ regime-specific covariance matrix, for which the 
causal ordering ILLIQUID → YC_LEVEL → YC_SLOPE → VIX → SPREAD → STOCK_RET is im-
posed. The shaded areas indicate the respective 99% bootstrap confidence interval calculated following 
Hall (1992). 
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from the IRFs are qualitatively robust to alternative orderings.26 To preview the detailed results be-

low, the regime-dependent IRFs confirm our expectations that the five economic and financial de-

terminants have significantly different impacts on corporate bond spreads in high- versus low-

volatility regimes. 

4.4.2. Impact of shocks to level and slope of the yield curve 

Regarding the influence of the yield curve, we observe a negative relation between the level of the 

risk-free rate and the spread during low volatile markets, which is consistent with the theoretical 

predictions of Merton (1974) and the empirical evidence in Longstaff and Schwartz (1995) and 

Duffee (1998). A shock to the risk-free rate of about 8 bps leads to an instantaneous drop in the 

spread by about 14 bps, with the maximum impact (in absolute terms) of about 17 bps attained after 

one week. Moreover, the effect is remarkably persistent and only becomes insignificant after rough-

ly five months. 

On the contrary, the impact of an initial interest rate shock turns out higher in magnitude (albeit 

short-lived) during phases of high volatility. When a tense corporate bond market is hit by a sudden 

jump in the long-term Treasury yield of about 13 bps, the spread decreases by about 25 bps 

within the same week and reaches its low in the subsequent week at a level 31 bps below its pre-

shock value. However, the influence of the shock has vanished after two weeks already. This points 

to a short-term market overreaction, while there is no significant long-run impact of unexpected 

interest rate movements on spreads during tense market phases – most likely because of other factors 

that come to the fore.27 

Moreover, we find a significant spread response for shocks to the slope of the yield curve during 

the low-volatility regime. Specifically, following an unexpected 8 bps increase in the yield curve 

slope, the spread decreases by about 5 bps and reaches its low at around 7 bps within the first week 

subsequent to the shock. By contrast, we do not observe a significant spread reaction to a shock to 

YC_SLOPE during Regime 2. Note, however, that the Fed’s zero-nominal-rate policy resulted in 

short-term Treasury rates being virtually zero from end-2008 to end-2015. Hence, the short end of 

the yield curve (which typically accounts for most of the variation in its slope) features virtually no 

variation for more than half of our sample period. 

4.4.3. Impact of shocks to the stock market 

                                                 
26 Following the suggestion of an anonymous referee, we investigate whether our results are robust to the 
exact position of the illiquidity factor within the causal ordering. Figures A1a and A1b in the appendix plot 
IRFs resulting from an alternative causal ordering in which the illiquidity factor is the most endogenous of all 
six variables. The evidence obtained from this specification is largely similar to the main results presented in 
Figures 3a and 3b, i.e. corroborating the robustness of our results with respect to the specific causal ordering 
employed. 
27 In their analysis of European CDS indices, Alexander and Kaeck (2008) find CDS spreads to be signifi-
cantly affected by interest rate movements only during low-volatility regimes, too. 
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When an increase in the aggregate stock market return takes corporate bond investors by surprise, 

their aggregate reaction also depends on the regime the market is in. When spreads are low (and 

daily stock market returns are little volatile and on average positive), a better-than-expected stock 

index level is not heavily traded upon. Specifically, an increase in the daily mean index return – 

calculated over one business week – of about 34 bps leads to only a modest reduction of the spread 

by about 9 bps. When excitement and nervousness dominate markets, on the other hand, a sudden 

stock market upswing of about 81 bps decreases market tension, which may be interpreted as an 

increase in the attractiveness of corporate bonds relative to Treasuries such that the spread level 

drops by as much as 18 bps. This effect also appears to be somewhat less transient, since the con-

vergence of the IRF to zero not so much resembles an exponential decay as it does in the normal 

regime. While qualitatively unchanged, reactions carry reversed signs once we compare the two 

state-dependent spread responses triggered by innovations in the option-implied expected equity 

market volatility. In line with expectations, an unanticipated increase in the VIX by an annualized 

1.5 percentage points lets corporate bond investors demand a higher premium during calm market 

phases. As a result, the spread shows a simultaneous increase of roughly 7 bps, with a peak in the 

IRF of about 12 bps one week after the shock. The subsequent decline in the spread response indi-

cates that the bad news has been entirely processed by the market after roughly eight weeks already, 

when the increase in the spread is no longer significant. In times of economic and financial stress, a 

shock to the VIX exerts a relatively higher influence on the corporate bond market. Specifically, a 

jump in the VIX by 3.9 percentage points causes the spread to increase by as much as 64 bps. This 

maximum impact is reached after about five to seven weeks past the shock and subsequently washes 

out. Thus, the disproportionately high and persistent spread expansion during bearish as opposed to 

bullish markets provides additional evidence of nonlinearities in the spread behavior over time. 

4.4.4. Impact of market-wide liquidity shocks 

Regarding the exposure of corporate bonds to illiquidity shocks, our results suggest that a substantial 

fraction of the observed increase in spreads during crisis times can be ascribed to a liquidity premi-

um. Graph (e) of Figure 3b shows that the spread exhibits a substantial increase which peaks at more 

than 100 bps in response to a decline of liquidity. Even one year after the shock, the spread is still 

roughly 25 bps above its pre-shock level. By contrast, graph (e) of Figure 3a shows that illiquidity 

shocks do not appear to have any significant impact on spreads under normal market conditions. 

These interesting regime-specific differences provide further evidence for an asymmetric spread 

reaction conditional on the extent of market anxiety. 

With respect to both magnitude and persistence, the spread response to an aggregate illiquidity 

shock displayed in Figure 3b turns out to be the most pronounced of all responses and thus sug-

gests that shocks to liquidity provision accounted in large part for the unprecedented spread levels 

observed during the global financial crisis, i.e. that the global financial crisis can be classified a 
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liquidity crisis to a large extent, which corroborates the findings of Bao et al. (2011). Moreover, 

following Wang and Wu (2015), the marked spread reaction may be interpreted as evidence of a 

flight-to-liquidity effect, i.e., investors divest corporate bonds in exchange for comparatively more 

liquid U.S. Treasuries. 

Our findings are consistent with the results of Acharya et al. (2013) who document mostly insig-

nificant effects of liquidity shocks on corporate bond prices during low-volatile markets as identified 

by their MS model over the 1973–2007 period. At the same time, however, the authors show that, in 

stress regimes, prices of speculative-grade bonds are strongly negatively affected by deteriorating 

liquidity. Specifically, their static model predicts that the magnitude of the impact of liquidity risk 

on bond returns roughly doubles in crisis periods. Based on a more recent sample including the 

global financial crisis, we extend this evidence and find a much more pronounced difference in the 

regime-dependent relevance of liquidity risk. For a given shock to the illiquidity measure, our MS-

VAR model exhibits a rise in the spread level during high-volatility periods which amounts to more 

than eightfold the increase predicted for low-volatility periods. Moreover, our dynamic modeling 

approach for the first time allows for an investigation of the spread response as time elapses. Inter-

estingly, we find that it gradually intensifies and reaches its maximum about two months after the 

shock. At this, our findings partly corroborate the evidence in Kalimipalli et al. (2013), who also 

find that (i) illiquidity matters predominantly in high-volatility regimes and (ii) that it has about 

fourfold the impact on spreads when their sample includes the global financial crisis. However, the 

linear VAR models of Kalimipalli et al. (2013) indicate that the (non-regime-specific) effect of il-

liquidity shocks on spreads is only very short-lived. According to their results, the market quickly 

recovers from an unexpected liquidity squeeze, typically within one month, and this short-term ef-

fect is independent of whether or not the sample includes the global financial crisis. By contrast, we 

document that a shock to market liquidity has a distinct long-term impact on spreads if it hits the 

market during a high-volatility regime. 

4.4.5. Regime-specific persistence in aggregate corporate bond spread levels 

Finally, the spread response to shocks hitting its own equation also reveals regime-specific differ-

ences. The reaction during Regime 1 exhibits a spread increase of about 18 bps, which gradually 

declines until it is no longer significant after roughly eleven months. Compared to that, the spread 

jump during Regime 2 is larger in magnitude, though less persistent. The spread’s recovery from 

the shock follows a rather unsteady, somewhat oscillating downward trend towards the pre-shock 

level. Even after one year, the shock seems to disarrange the system it is still stuck in, yet the re-

percussions do not appear statistically significant. This asymmetric spread behavior across regimes 

indicates different degrees of mean reversion, i.e., the spreads appear highly serially correlated in 

the stress regime – potentially close to containing a unit root – while much less so in the normal 
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regime.28 Together with level jumps and changing volatility at regime switches, the regime-specific 

persistence hence represents yet another cause for the nonlinear spread behavior. 

5. Robustness analysis 

5.1. Sample extension 

As a first check with respect to the robustness of our main findings, we extend our sample period to 

investigate if the relations between the credit spreads and their determinants, as estimated in the MS-

VAR model over the 2004-2016 period, are robust to the inclusion of more than one business cycle 

during the period under review, or – alternatively – if they are specific to the global financial crisis.29 

Figure A2 in the appendix reports the corresponding results for the regime classification using the 

extended sample covering the 1997-2016 period. The resulting regimes in the latter years of the sam-

ple clearly resemble those identified in the baseline specification using the 2004-2016 sample as exhib-

ited in Figure 2. The model estimation based on the extended sample now also assigns several phases 

during the 1997-2003 period to Regime 2. The regime classification, however, is less clear-cut, as is 

evident from a RCM of 9.57.30 Moreover, the early realizations of both regimes turn out to be relative-

ly short-lived, which yields an expected duration of Regime 2 (Regime 1) of about 4.2 weeks 

(13.6 weeks) for the full 1997-2016 sample. The somewhat inconclusive results obtained for the early 

years might be attributed to several crises coinciding with the 2001 recession, e.g. the 1997 Asian Fi-

nancial Crisis, the 1998 Russian Financial Crisis, and the September 11 attacks.31 Alternatively, they 

could very likely owe to the inferior quality of data on the US corporate bond market prior to the 

launch of the TRACE system. 

Figures A3a and A3b in the appendix report the IRFs regarding the regime-specific spread re-

sponses to shocks in all variables modelled in the MS-VAR system. While qualitatively unchanged, 

the negative spread reaction following a shock the level of the risk-free rate now turns out slightly 

smaller in magnitude during low volatile markets when extending the period under review. Like-

wise, in periods of high volatility, the effect of an interest rate shock is again higher in magnitude 

and appears rather short-lived. 

Other than for the baseline sample period, the spread now shows a significant positive reaction 

following a shock to the slope of the yield curve, i.e. consistent with the empirical findings of Morris 

                                                 
28 The nonlinearities induced by the regime-dependency of the mean reversion as well as the change in means 
and variances through regime switching may lead to traditional unit root tests – which do not account for 
nonlinearities and are thus misspecified in this setting – not rejecting the null of nonstationarity even though 
the overall data-generating process underlying the spreads is globally stationary. 
29 We thank an anonymous referee for raising this relevant question. 
30 Note that the RCM decreases to 2.64 when computed for the 2004-2016 subperiod instead of the full 1997-
2016 sample. 
31 See the recession periods as identified by the NBER available at http://www.nber.org/cycles.html. 
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et al. (1998).32 Yet, note that the positive spread response is only small in magnitude. At the same 

time, the spread reaction to a shock to YC_SLOPE during Regime 2 now turns out significant dur-

ing the three months after the shock but otherwise proves largely similar for the extended sample 

period. 

Moreover, spread responses to shocks to both the aggregate stock market return and the VIX are 

virtually unchanged when including the years 1997 to 2004 in the sample period. Corroborating our 

evidence of nonlinearities in the spread behaviour obtained from the main specification, reactions 

are even more persistent for the extended period under review. 

Similarly, we observe regime-specific differences regarding the exposure of corporate bond re-

turns to liquidity shocks for the extended period under review, too. Specifically, spreads increase 

substantially in response to a decline of liquidity in times of crisis, while they are not significantly 

influenced by liquidity shocks during low-volatility markets. 

Finally, we also document regime-specific persistence in aggregate corporate bond spread lev-

els, with the spread reactions for the different regimes being largely similar to the baseline specifi-

cation. 

5.2. Alternative illiquidity measures 

Recall that we use the noise measure introduced by Hu et al. (2013) to proxy for the liquidity factor. 

However, the Hu et al. (2013) metric might be affected by the measurement error in the function 

smoothing the zero-coupon yield curve.33 Thus, as a second robustness check, we apply the MS-

VAR model using alternative measures of illiquidity. 

To this end, we first use the TED spread, i.e. the 3-month LIBOR less the 3-month CMT rate, as 

an alternative illiquidity proxy. Second, we substitute the noise measure by the 3-month USD 

LIBOR-OIS spread. Figure A4 in the appendix plots the noise measure as well as the two 

alternative illiquidity measures.34 While sharing a common trend in levels, the three measures still 

exhibit distinct differences. For instance, the TED spread (LIBOR-OIS spread) shows pronounced 

spikes in 2005/2006 (2004) already, when the noise measure does not feature any significant peaks. 

The noise measure, in turn, shows the relatively strongest persistence during the global financial 

crisis, while the other two proxies rebound to pre-crisis levels rather quickly by the end of 2008. 

Figure A5 (Figure A6) in the appendix exhibits the regime classification resulting from 

estimating the MS-VAR model with the TED spread (LIBOR-OIS spread) as illiquidity proxy. The 

results obtained for the two alternative illiquidity proxies are qualitatively similar to the original 

                                                 
32 At this, the observed positive relationship can be attributed to the role of the long-term interest rate in dis-
counting future cash flows. The underlying rationale is that a rise in the long-term interest rate reduces the 
universe of investments with a positive net present value available to a company. This restricts the compa-
ny’s growth perspectives, curbs its valuation and thereby ultimately reduces its creditworthiness. 
33 We thank an anonymous referee for drawing our attention to this issue. 
34 Time series of the TED spread and the LIBOR-OIS spread were obtained from Thomson Reuters Datastream. 
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regime classification provided in Figure 2. While using the noise measure yields a slightly less 

ambiguous identification of Regime 2 during the global financial crisis and in the second half of 

2011, the two alternative measures indicate a few more high-volatility regimes in 2004 and 2006 

already. Note that RCM values decrease to 2.04 and 2.18 when applying the TED spread and the 

LIBOR-OIS spread, respectively. 

Figure A7a and Figure A7b (Figure A8a and Figure A8b) in the appendix plot the regime-

specific IRFs observed when using the TED spread (LIBOR-OIS spread) as a measure of illiquidi-

ty. As can be inferred from the graphs, the respective spread reactions to shocks in the MS-VAR 

system’s equations are qualitatively very similar to the ones obtained in the baseline specification 

plotted in Figure 3a and Figure 3b. The lack of significance in spread responses to a shock to the 

VIX and the impact of shocks to the slope of the yield curve during the low-volatility regime, 

which now turns out positive again, mark the only notable exceptions to this pattern. Moreover, 

regardless of the alternative illiquidity proxy under review, regime-specific spread reactions to 

shocks to aggregate liquidity are largely comparable to the default setting, albeit slightly less pro-

nounced in magnitude and characterized by a somewhat faster rebound to pre-shock levels if we 

use the LIBOR-OIS spread as a substitute for the noise measure. 

5.3. Alternative measure of default risk 

Finally, while the literature supports our choice of VIX and stock market development as prox-

ies for aggregate default risk (e.g. Giesecke et al., 2011), we investigate if our main findings 

are robust to the choice of the default risk measure. In particular, we substitute the VIX by 

Fitch Ratings’ 1-Year-Ahead Probability of Default (PD) Index for North America.35 Pooling 

individual PDs of corporate debt issuers, this index generates an aggregate forecast of credit 

quality, i.e., it reflects systematic rather than firm-specific credit risk.36 Figure A9 in the ap-

pendix plots the PD index against the corporate bond index spread. 

As shown in Figure A10 in the appendix, the regime classification obtained when employing 

the PD index is very similar to the baseline specification reported in Figure 2. The global financial 

crisis still stands out prominently. Moreover, while the crisis regime at the end of 2011 is now 

somewhat less pronounced, we observe stronger support of a high-volatility regime in 2015/2016. 

Note that, at 2.92, the RCM is close to the one for the baseline model reported in section 4.2, too. 

A comparison of the regime-specific IRFs given in Figures A11a and A11b in the appendix 

with those of the main specification reported in Figures 3a and 3b yields a very similar spread 

reaction to shocks in all variables regardless of the default risk proxy employed in the MS-VAR 

model. A minor difference in the low-volatility regime is that the spread reaction to shocks in 

                                                 
35 We thank an anonymous referee for suggesting the potential need for an aggregate PD proxy. 
36 For further details on the PD index, the reader is referred to Fitch Solutions (2008, 2007). 
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YC_SLOPE vanishes entirely once VIX is substituted by PD. Moreover, spread reactions to shocks 

in STOCK_RET and shocks in ILLIQUID now feature a larger magnitude in the high-volatility 

regime. However, the spread does not show a significant reaction to shocks in PD in either regime. 

Given this evidence, we conclude that the variables used in our model setup adequately capture 

information about market-wide default risk relevant for pricing corporate bonds. 

6. Conclusion 

We study the dynamic interdependencies between corporate bond spreads and their key determi-

nants over time. In particular, we investigate to what extent these relationships are affected by the 

respective market regime prevailing, which can essentially be characterized as a phase of either 

relatively low or exceptionally high volatility on corporate bond and equity markets. At this, we are 

the first to choose a MS-VAR approach to model the spread dynamics, which does a decent job in 

mapping the nonlinear spread behavior, predominantly level jumps and persistence. 

Using weekly data covering the 2004–2016 period, we detect significant differences in how de-

fault- and non-default-related factors impact aggregate corporate bond spreads conditional on the 

prevailing market regime. Specifically, a shock to market-wide liquidity proves to have the rela-

tively largest impact on spreads during the high-volatility regime in terms of magnitude and persis-

tence. Moreover, aggregate liquidity also exhibits the most pronounced regime-specific differences 

in its effect on corporate bond spreads. Extending prior research, most prominently the studies by 

Acharya et al. (2013) and Kalimipalli et al. (2013), we document a highly significant and persistent 

impact of illiquidity on spreads during high-volatile market regimes. Thus, our results suggest that, 

during highly unstable times like the global financial crisis, investors demand a premium for taking 

on liquidity risk which constitutes a substantially higher fraction of the corporate bond spread than 

previously assumed – a piece of evidence which might contribute to explaining the corporate bond 

spread puzzle. 

Moreover, the relative impact of credit risk is larger during tense markets, when spreads exhibit 

a disproportionately large and much longer-lasting increase following unexpected jumps (drops) in 

the VIX (stock market return). Finally, shocks to the risk-free interest rate also result in asymmetric 

spread behavior. While interest rate risk plays a fundamental role in normal times, it appears to 

have less of an impact relative to other risk factors when a bearish or generally anxious market 

sentiment prevails. 

Our results suggest several avenues for further research. We show that the aggregate illiquidity 

proxy proposed by Hu et al. (2013) provides valuable information for high-yield corporate bond 

spreads when used in a regime-switching context. It would be interesting to investigate if liquidity 

measures generated directly from the corporate bond market are equally informative about the 

time-varying liquidity exposure of corporate bonds. Moreover, investors as well as bond issuers 
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might be interested in whether the regimes identified by the MS-VAR model ex post can also be 

predicted ex ante, such that the nonlinear dynamics in the spread process can be exploited in a prof-

itable issuance or trading strategy. If the asymmetric spread behavior was predictable, this would, 

e.g., be of material value for hedging strategies related to corporate bond portfolios. We leave in-

vestigations along these lines to future contributions in the field.  
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Appendix 

 
Figure A1a 

Impulse of corporate bond spread to shocks during (low-volatility) Regime 1 
– Alternative causal ordering – 

 (a) Shock to YC_LEVEL  (b) Shock to YC_SLOPE 

  

 (c) Shock to STOCK_RET  (d) Shock to VIX 

 (e) Shock to ILLIQUID  (f) Shock to SPREAD 

  

Notes: This graph plots orthogonalized impulse response functions (IRF) of the corporate bond index spread 
SPREAD (in percentage points) to a one standard deviation shock to the respective variable of the regime-
specific VAR system during Regime 1, based on the estimation of the two-state MS-VAR(2) model as speci-
fied in equation (1) using the variables introduced in section 3.2. The structural innovations are identified 
using a triangular Cholesky factorization of the residuals’ regime-specific covariance matrix, for which the 
causal ordering YC_LEVEL → YC_SLOPE → VIX → SPREAD → STOCK_RET → ILLIQUID is im-
posed. The shaded areas indicate the respective 99% bootstrap confidence interval calculated following 
Hall (1992). 
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Figure A1b 
Impulse of corporate bond spread to shocks during (high-volatility) Regime 2 

– Alternative causal ordering – 

 (a) Shock to YC_LEVEL  (b) Shock to YC_SLOPE 

  

 (c) Shock to STOCK_RET  (d) Shock to VIX 

  
 (e) Shock to ILLIQUID  (f) Shock to SPREAD 

  

Notes: This graph plots orthogonalized impulse response functions (IRF) of the corporate bond index spread 
SPREAD (in percentage points) to a one standard deviation shock to the respective variable of the regime-
specific VAR system during Regime 2, based on the estimation of the two-state MS-VAR(2) model as speci-
fied in equation (1) using the variables introduced in section 3.2. The structural innovations are identified 
using a triangular Cholesky factorization of the residuals’ regime-specific covariance matrix, for which the 
causal ordering YC_LEVEL → YC_SLOPE → VIX → SPREAD → STOCK_RET → ILLIQUID is im-
posed. The shaded areas indicate the respective 99% bootstrap confidence interval calculated following 
Hall (1992). 
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Figure A2 
Underlying regimes in corporate bond index spreads 

– Extended sample – 

 

 

Notes: The upper graph plots the smoothed probability of being in Regime 2, Pr(st=2|YT), based on the 
estimation of the two-state MS-VAR(2) model as specified in equation (1) and using the variables intro-
duced in section 3.2 for the extended sample period 1997-2016. The bottom graph presents the time series of 
the corporate bond index spread, with the shaded areas indicating periods when Regime 2 prevails, i.e. the 
smoothed probability of being in Regime 2 is 0.5 or greater. 
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Figure A3a 
Impulse of corporate bond spread to shocks during (low-volatility) Regime 1 

– Extended sample – 

 (a) Shock to YC_LEVEL  (b) Shock to YC_SLOPE 

  

 (c) Shock to STOCK_RET  (d) Shock to VIX 

  
 (e) Shock to ILLIQUID  (f) Shock to SPREAD 

  

Notes: This graph plots orthogonalized impulse response functions (IRF) of the corporate bond index spread 
SPREAD (in percentage points) to a one standard deviation shock to the respective variable of the regime-
specific VAR system during Regime 1, based on the estimation of the two-state MS-VAR(2) model as speci-
fied in equation (1) using the variables introduced in section 3.2 for the extended sample period 1997-2016. 
The structural innovations are identified using a triangular Cholesky factorization of the residuals’ regime-
specific covariance matrix, for which the causal ordering ILLIQUID → YC_LEVEL → YC_SLOPE → VIX 
→ SPREAD → STOCK_RET is imposed. The shaded areas indicate the respective 99% bootstrap confi-
dence interval calculated following Hall (1992). 
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Figure A3b 
Impulse of corporate bond spread to shocks during (high-volatility) Regime 2 

– Extended sample – 

 (a) Shock to YC_LEVEL  (b) Shock to YC_SLOPE 

  

 (c) Shock to STOCK_RET  (d) Shock to VIX 

  
 (e) Shock to ILLIQUID  (f) Shock to SPREAD 

  

Notes: This graph plots orthogonalized impulse response functions (IRF) of the corporate bond index spread 
SPREAD (in percentage points) to a one standard deviation shock to the respective variable of the regime-
specific VAR system during Regime 2, based on the estimation of the two-state MS-VAR(2) model as speci-
fied in equation (1) using the variables introduced in section 3.2 for the extended sample period 1997-2016. 
The structural innovations are identified using a triangular Cholesky factorization of the residuals’ regime-
specific covariance matrix, for which the causal ordering ILLIQUID → YC_LEVEL → YC_SLOPE → VIX 
→ SPREAD → STOCK_RET is imposed. The shaded areas indicate the respective 99% bootstrap confi-
dence interval calculated following Hall (1992). 
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Figure A4 
Noise measure against alternative illiquidity measures 

 

 
Notes: The upper (bottom) graph plots the noise measure together with the TED spread (LIBOR-OIS spread). In both 
graphs each time series is normalized such that the respective maximum value is unity. 
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Figure A5 
Underlying regimes in corporate bond index spreads 

– TED spread as illiquidity proxy – 

 

 
Notes: The upper graph plots the smoothed probability of being in Regime 2, Pr(st=2|YT), based on the esti-
mation of the two-state MS-VAR(2) model as specified in equation (1) and using the variables introduced in 
section 3.2. In this specification, the noise measure is replaced by the alternative illiquidity proxy TED 
spread. The bottom graph presents the time series of the corporate bond index spread, with the shaded areas 
indicating periods when Regime 2 prevails, i.e. the smoothed probability of being in Regime 2 is 0.5 or 
greater. 
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Figure A6 
Underlying regimes in corporate bond index spreads 

– LIBOR-OIS spread as illiquidity proxy – 

 

 

Notes: The upper graph plots the smoothed probability of being in Regime 2, Pr(st=2|YT), based on the 
estimation of the two-state MS-VAR(2) model as specified in equation (1) and using the variables intro-
duced in section 3.2. In this specification, the noise measure is replaced by the alternative illiquidity proxy 
LIBOR-OIS spread. The bottom graph presents the time series of the corporate bond index spread, with the 
shaded areas indicating periods when Regime 2 prevails, i.e. the smoothed probability of being in Regime 2 
is 0.5 or greater. 
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Figure A7a 
Impulse of corporate bond spread to shocks during (low-volatility) Regime 1 

– TED spread as illiquidity proxy – 

 (a) Shock to YC_LEVEL  (b) Shock to YC_SLOPE 

  

 (c) Shock to STOCK_RET  (d) Shock to VIX 

  
 (e) Shock to ILLIQUID  (f) Shock to SPREAD 

  

Notes: This graph plots orthogonalized impulse response functions (IRF) of the corporate bond index spread 
SPREAD (in percentage points) to a one standard deviation shock to the respective variable of the regime-
specific VAR system during Regime 1, based on the estimation of the two-state MS-VAR(2) model as speci-
fied in equation (1) using the variables introduced in section 3.2. In this specification, the noise measure is 
replaced by the alternative illiquidity proxy TED spread. The structural innovations are identified using a 
triangular Cholesky factorization of the residuals’ regime-specific covariance matrix, for which the causal 
ordering ILLIQUID → YC_LEVEL → YC_SLOPE → VIX → SPREAD → STOCK_RET is imposed. The 
shaded areas show the respective 99% bootstrap confidence interval calculated following Hall (1992). 
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Figure A7b 
Impulse of corporate bond spread to shocks during (high-volatility) Regime 2 

– TED spread as illiquidity proxy – 

 (a) Shock to YC_LEVEL  (b) Shock to YC_SLOPE 

  

 (c) Shock to STOCK_RET  (d) Shock to VIX 

  
 (e) Shock to ILLIQUID  (f) Shock to SPREAD 

  

Notes: This graph plots orthogonalized impulse response functions (IRF) of the corporate bond index spread 
SPREAD (in percentage points) to a one standard deviation shock to the respective variable of the regime-
specific VAR system during Regime 2, based on the estimation of the two-state MS-VAR(2) model as speci-
fied in equation (1) using the variables introduced in section 3.2. In this specification, the noise measure is 
replaced by the alternative illiquidity proxy TED spread. The structural innovations are identified using a 
triangular Cholesky factorization of the residuals’ regime-specific covariance matrix, for which the causal 
ordering ILLIQUID → YC_LEVEL → YC_SLOPE → VIX → SPREAD → STOCK_RET is imposed. The 
shaded areas show the respective 99% bootstrap confidence interval calculated following Hall (1992). 
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Figure A8a 
Impulse of corporate bond spread to shocks during (low-volatility) Regime 1 

– LIBOR-OIS spread as illiquidity proxy – 

 (a) Shock to YC_LEVEL  (b) Shock to YC_SLOPE 

  

 (c) Shock to STOCK_RET  (d) Shock to VIX 

  
 (e) Shock to ILLIQUID  (f) Shock to SPREAD 

  

Notes: This graph plots orthogonalized impulse response functions (IRF) of the corporate bond index spread 
SPREAD (in percentage points) to a one standard deviation shock to the respective variable of the regime-
specific VAR system during Regime 1, based on the estimation of the two-state MS-VAR(2) model as speci-
fied in equation (1) using the variables introduced in section 3.2. In this specification, the noise measure is 
replaced by the alternative illiquidity proxy LIBOR-OIS spread. The structural innovations are identified 
using a triangular Cholesky factorization of the residuals’ regime-specific covariance matrix, for which the 
causal ordering ILLIQUID → YC_LEVEL → YC_SLOPE → VIX → SPREAD → STOCK_RET is im-
posed. The shaded areas show the respective 99% bootstrap confidence interval calculated following 
Hall (1992). 
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Figure A8b 
Impulse of corporate bond spread to shocks during (high-volatility) Regime 2 

– LIBOR-OIS spread as illiquidity proxy – 

 (a) Shock to YC_LEVEL  (b) Shock to YC_SLOPE 

  

 (c) Shock to STOCK_RET  (d) Shock to VIX 

  
 (e) Shock to ILLIQUID  (f) Shock to SPREAD 

  

Notes: This graph plots orthogonalized impulse response functions (IRF) of the corporate bond index spread 
SPREAD (in percentage points) to a one standard deviation shock to the respective variable of the regime-
specific VAR system during Regime 2, based on the estimation of the two-state MS-VAR(2) model as speci-
fied in equation (1) using the variables introduced in section 3.2. In this specification, the noise measure is 
replaced by the alternative illiquidity proxy LIBOR-OIS spread. The structural innovations are identified 
using a triangular Cholesky factorization of the residuals’ regime-specific covariance matrix, for which the 
causal ordering ILLIQUID → YC_LEVEL → YC_SLOPE → VIX → SPREAD → STOCK_RET is im-
posed. The shaded areas show the respective 99% bootstrap confidence interval calculated following 
Hall (1992). 
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Figure A9 
Fitch Ratings’ 1-Year-Ahead PD index (North America) against corporate bond index spreads 

 

  
Notes: The upper graph plots Fitch Ratings’ 1-Year-Ahead Probability of Default (PD) index for North 
America (in basis points); the bottom graph plots the corporate bond index spreads (SPREAD, in percentage 
points). 
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Figure A10 
Underlying regimes in corporate bond index spreads 

– Fitch Ratings’ 1-Year-Ahead PD index (North America) as default risk proxy – 

 

 
Notes: The upper graph plots the smoothed probability of being in Regime 2, Pr(stൌ2|YT), based on the 
estimation of the two-state MS-VAR(2) model as specified in equation (1) and using the variables introduced 
in section 3.2. In this specification, the VIX is replaced by Fitch Ratings’ 1-Year-Ahead Probability of De-
fault Index for North America (PD) as an alternative proxy for aggregate default risk. The bottom graph 
presents the time series of the corporate bond index spread, with the shaded areas indicating periods when 
Regime 2 prevails, i.e. the smoothed probability of being in Regime 2 is 0.5 or greater. 
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Figure A11a 
Impulse of corporate bond spread to shocks during (low-volatility) Regime 1 

– Fitch Ratings’ 1-Year-Ahead PD index (North America) as default risk proxy – 

 (a) Shock to YC_LEVEL  (b) Shock to YC_SLOPE 

  

 (c) Shock to STOCK_RET  (d) Shock to PD 

  
 (e) Shock to ILLIQUID  (f) Shock to SPREAD 

  

Notes: This graph plots orthogonalized impulse response functions (IRF) of the corporate bond index spread 
SPREAD (in percentage points) to a one standard deviation shock to the respective variable of the regime-
specific VAR system during Regime 1, based on the estimation of the two-state MS-VAR(2) model as speci-
fied in equation (1) using the variables introduced in section 3.2. In this specification, the VIX is replaced by 
Fitch Ratings’ 1-Year-Ahead Probability of Default Index for North America (PD) as an alternative proxy for 
aggregate default risk. The structural innovations are identified using a triangular Cholesky factorization of 
the residuals’ regime-specific covariance matrix, for which the causal ordering ILLIQUID → YC_LEVEL 
→ YC_SLOPE → VIX → SPREAD → STOCK_RET is imposed. The shaded areas show the respective 
99% bootstrap confidence interval calculated following Hall (1992). 
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Figure A11b 
Impulse of corporate bond spread to shocks during (high-volatility) Regime 2 

– Fitch Ratings’ 1-Year-Ahead PD index (North America) as default risk proxy – 

 (a) Shock to YC_LEVEL  (b) Shock to YC_SLOPE 

  

 (c) Shock to STOCK_RET  (d) Shock to PD 

  
 (e) Shock to ILLIQUID  (f) Shock to SPREAD 

  

Notes: This graph plots orthogonalized impulse response functions (IRF) of the corporate bond index spread 
SPREAD (in percentage points) to a one standard deviation shock to the respective variable of the regime-
specific VAR system during Regime 2, based on the estimation of the two-state MS-VAR(2) model as speci-
fied in equation (1) using the variables introduced in section 3.2. In this specification, the VIX is replaced by 
Fitch Ratings’ 1-Year-Ahead Probability of Default Index for North America (PD) as an alternative proxy for 
aggregate default risk. The structural innovations are identified using a triangular Cholesky factorization of 
the residuals’ regime-specific covariance matrix, for which the causal ordering ILLIQUID → YC_LEVEL 
→ YC_SLOPE → VIX → SPREAD → STOCK_RET is imposed. The shaded areas show the respective 
99% bootstrap confidence interval calculated following Hall (1992). 
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