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Non-technical summary

Research Question

Recently, some studies have looked into the connectedness between the rates of change

of exchange rates. However, they were unable to establish any causal links between the

exchange rates because of the methods chosen. This research paper aims to examine the

link between key currency pairs for the period from 2010 to 2017 and to identify a causal

structure. To do so, the currencies of the G10 currencies are analysed, with the pound

sterling serving as the numéraire as it is a comparatively independent currency.

Contribution

This paper uses methods taken from the literature on machine learning in seeking to em-

pirically identify a causal structure between the rates of change of various exchange rates.

The results help to divide the analysed currencies into clusters, whereby the currencies in

a cluster are strongly linked with one another. The results are of particular relevance to

risk management and foreign exchange policy.

Results

The analysis indicates that over the period under observation the US dollar and Norwegian

krone, in particular, are relatively independent currencies and have a comparatively strong

influence on other currencies. By contrast, the Swiss franc and New Zealand dollar have

a negligible impact on other currencies. Moreover, further analyses suggest that the

currencies of the G10 currencies can be divided into three groups, which can be classified as

commodity currencies (Australian dollar, Canadian dollar, New Zealand dollar), European

currencies (euro, Norwegian krone, Swedish krona) and safe haven/carry trade financing

currencies (Swiss franc, US dollar, yen).



Nichttechnische Zusammenfassung

Fragestellung

In der jüngsten Zeit haben verschiedene Studien die Zusammenhänge zwischen Änderungs-

raten von Wechselkursen untersucht. Dabei konnten sie jedoch aufgrund der gewählten 
Methoden keine Aussagen über die Kausalität zwischen den Wechselkursen treffen. Ziel 
dieses Forschungspapiers ist es, die Zusammenhänge zwischen wichtigen Währungspaaren 
für den Zeitraum 2010 bis 2017 zu untersuchen und dabei eine kausale Struktur zu iden-

tifizieren. Dazu werden die G10-Währungen betrachtet, wobei das Pfund Sterling als 
vergleichsweise unabhängige Währung als Numéraire dient.

Beitrag

In diesem Papier werden Methoden aus der Literatur zum maschinellen Lernen verwen-

det, um erstmals empirisch nach einer kausalen Struktur zwischen den Veränderungsraten 
verschiedener Wechselkurse zu suchen. Die dabei gewonnenen Ergebnisse helfen, die be-

trachteten Währungen in Gruppen zu unterteilen, die in aller Regel besonders stark mit-

einander verbunden sind. Die Ergebnisse sind besonders für das Risikomanagement und 
die Währungspolitik von Bedeutung.

Ergebnisse

Die Analyse legt nahe, dass während des Untersuchszeitraums insbesondere der US-Dollar 
und die norwegische Krone relativ unabhängige Währungen waren und einen vergleichs-

weise starken Einfluss auf andere Währungen besaßen. Dagegen sind die Einflüsse des 
Schweizer Frankens und Neuseeland-Dollars auf andere Währungen zu vernachlässigen. 
Außerdem legen weitere Analysen nahe, dass sich die G10-Währungen in drei Gruppen un-

terteilen lassen: Rohstoffwährungen (australischer Dollar, kanadischer Dollar, Neuseeland-

Dollar), europäische Währungen (Euro, norwegische Krone, schwedische Krone) und
”
Sa-

fe Haven“- oder
”
Carry Trade“-Finanzierungswährungen (Schweizer Franken, US-Dollar,

Yen).
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1 Introduction

Triggered by the seminal work of Diebold and Yılmaz (2014), the measurement of spillover
effects and connectedness between asset returns gained popularity in the economic liter-
ature. Their approach, which is based on the forecast error variance decomposition of
a VAR model, hinges on critical assumptions with regard to a recursive ordering of the
variables (e.g., Cholesky). In this paper we propose an alternative and more agnostic ap-
proach for modelling the connectedness between asset returns, which is based on a causal
search algorithm that imposes no a priori recursive ordering. We compare its properties
with those of other identification measures using a Monte Carlo experiment and apply it
to the G10 currencies.1

Given the new procedure, our first goal is to estimate the network structure between
nine currencies vis-à-vis an appropriate numéraire currency (i.e. pound sterling).2 Such
estimates provide important information for policy makers and practitioners. The network
indicates to what extent a certain currency or group of currencies is affected by domestic
and foreign shocks. In this sense, it helps to gain a better understanding of potential
contagion. The second goal is to utilise spillover intensities in order to identify clusters
which can be interpreted as currency blocs or groups of common influence factors such as
target currencies for carry trades.

Research in this area has created several extensions to the original work by Diebold
and Yılmaz (2009), who estimated the return and volatility spillovers with respect to
global equity markets. Diebold and Yılmaz (2014) studied the connectedness of finan-
cial institutions during the financial crisis period. In Diebold and Yılmaz (2015), they
also estimated the connectedness between returns of other asset classes such as bilat-
eral exchange rates, for instance. The approach is based on the idea that the network
– or the spillover effects – between asset returns can be estimated given a forecast er-
ror variance decomposition (FEVD) of a structural vector autoregressive (SVAR) model.
Diebold and Yılmaz (2009) suggest orthogonalising the VAR model residuals with the
help of a Cholesky decomposition, while pointing to the problem that the results of such
a factorisation depend on the ordering of the variables, as zero restrictions are imposed
on the upper triangular variance-covariance matrix without any theoretical or statistical
motivation (i.e. preventing contemporaneous spillover effects between certain variables).
Given the arbitrariness with respect to the ordering of the variables, the estimated model
may not capture the spillover effects correctly. Instead of choosing one specific ordering,
Klößner and Wagner (2014) propose considering all possible variable permutations. They
replicate the paper by Diebold and Yılmaz (2009) and show that given different permuta-
tions, differences in spillover intensity can be large. Their approach, however, is not only
computationally intensive, but also induces a high degree of model uncertainty. In other
words, Klößner and Wagner (2014) average on many misspecified models and one correct
model, which is unknown.

1Note that the G10 currencies refer to the ten most heavily traded currencies and not to the Group
of Ten countries.

2In order to measure spillover effects using variance decompositions, the numéraire currency should
neither be an anchor currency nor be pegged to another currency. Returns of fixed exchange rates have
no volatility, implying that variance decompositions would be meaningless. Moreover, we interpret an
exchange rate as an asset price and focus in our empirical analysis on exchange rate changes. Within this
strand of literature, exchange rate changes (log differences) are referred to as exchange rate returns.
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Apart from Cholesky decompositions, the literature also employs generalized impulse
response functions (see Pesaran and Shin, 1998) in order to obtain variance decompositions
which are invariant to the ordering of the variables. Greenwood-Nimmo, Nguyen, and Raf-
ferty (2016), for instance, use generalized variance decompositions to study exchange rate
return and volatility connectedness. In a rolling-window approach, Greenwood-Nimmo,
Nguyen, and Shin (2017) apply the generalized approach in order to analyse the change of
European debt connectedness distributions over time. The disadvantage of this approach,
however, is that the explained shares of forecast error variance do not sum to unity. In
order to avoid re-scaling the shares, Lanne and Nyberg (2016) propose an alternative gen-
eralized forecast error variance decomposition which yields shares summing up to unity
by construction. However, shocks are not orthogonalised. The weaknesses of generalized
variance decompositions have been pointed out by De Santis and Zimic (2017), who in-
stead propose absolute magnitude restrictions to identify the SVAR models. They show
that generalized variance decompositions tend to overestimate connectedness.

An alternative and more agnostic approach is identification with the help of causal
search algorithms from the machine learning literature. Such an approach for structural
VAR models has been suggested by Swanson and Granger (1997). Demiralp and Hoover
(2003) introduced the causal search methods for identification. These algorithms use
information from the reduced VAR residuals in order to uncover the contemporaneous
causal structure. Applications can be seen in Heinlein and Krolzig (2012) and Demiralp,
Hoover, and Perez (2014). We follow this literature on empirical identification and sys-
tematically analyse in a Monte Carlo experiment as well as in an application on returns of
G10 currencies how the identification strategy impacts on the measures of connectedness.
To the best of our knowledge, the only paper using an empirical identification strategy
in the connectedness literature is Scida (2016), but she does not systematically study the
impact of this approach or compare the empirical identification with other identification
methods. The machine learning approach is very appealing because it does not require
any prior assumptions with regard to the contemporaneous causal structure between the
variables. On the contrary, we derive with our data-driven approach a causal ordering,
which can be evaluated and discussed.

Another important strand of literature in this context focuses on VAR model param-
eter reduction. With an increasing number of variables to be modelled, the number of
coefficients to be estimated increases exponentially. This problem is often referred to as
the curse of dimensionality. Demirer, Diebold, Liu, and Yilmaz (2018) use lasso-type
dimension reduction methods combined with generalized variance decompositions in or-
der to estimate the connectedness between 150 bank stocks. An even sparser approach is
proposed by Barigozzi and Brownlees (2018), who use lasso-type reduction methods not
only to shrink the VAR lag matrices but also to shrink the variance-covariance matrix.
Our causal search algorithm delivers an over-identified model, reducing the number of
coefficients to be estimated, and hence eases the issue of dimensionality.

This paper contributes in several ways to the existing literature. First, we propose an
alternative identification strategy which detects causal linkages. As Demiralp and Hoover
(2003) show, the empirical procedure is very effective in detecting the true causal con-
nections among different variables. Second, we analyse the performance of our algorithm
with respect to the Diebold and Yılmaz (2014) measure of connectedness and show in a
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Monte Carlo experiment that our algorithm outperforms other approaches.3 Third, we
apply our algorithm to the G10 currencies and pay special attention to the choice of the
numéraire currency. This choice is of particular importance because it can have strong
effects on the estimates, as we will discuss later.

Our results suggest that the US dollar as well as the Norwegian krone are the most
independent currencies in our sample. By contrast, the Swiss franc and New Zealand
dollar have a negligible impact on other currencies. Moreover, a cluster analysis suggests
that the currencies can be divided into three groups, which can be identified as: commod-
ity currencies, European currencies and safe haven/carry trade financing currencies. We
show that following the Brexit referendum, the within cluster dispersion is very low.

2 Methodology

For yt being a K × 1 vector of endogenous variables, we consider a SVAR(1) as follows:

B0yt = Byt−1 + wt, (1)

where B refers to theK×K coefficient matrix of the lagged vector of endogenous variables.
B0 defines the K×K contemporaneous coefficient matrix. Uncorrelated structural shocks
are denoted by wt ∼ NID(0,Σw). Note that the off-diagonal entries of Σw are 0. We
follow the notation of Kilian and Lütkepohl (2017). For brevity, we work here with just
one lag and no deterministic terms. For the estimation, however, a constant is included
and the lag order is chosen according to the AIC.

The reduced form of this model can be written as follows:

yt = Ayt−1 + ut, (2)

with A = B−10 B and ut = B−10 wt.
Traditionally, the contemporaneous matrix B0 is uncovered with the help of restric-

tions motivated by economic theory. For a VAR model of exchange rate returns, economic
theory does not provide a unique causal structure that can be imposed on the contempo-
raneous matrix. However, we achieve (over-)identification using a graph theoretical causal
search algorithm which finds contemporaneous causality in the reduced form residuals ut.
The correct contemporaneous effects are an important factor in the computation of the
forecast error variance decomposition and consequently in the connectedness measure of
Diebold and Yılmaz (2014).

2.1 The PC causal search algorithm and its application to the
identification of SVAR models

The PC algorithm belongs to the literature on graph-theoretic analysis of causal struc-
tures, see Pearl (2000) and Spirtes, Glymour, and Scheines (2001).4 A causal structure is

3Previous studies have focussed on the ability of the PC algorithm, a causal search algorithm which
will be explained in the following sections, to detect the correct causal structure. We, however, focus on
the ability of different approaches to detect the correct degree of network connectedness.

4PC stands for the initials of its inventors Peter Spirtes and Clark Glymour.
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represented by a graph with arrows from causes to caused variables. The algorithm uses
the residual variance-covariance matrix of the reduced form model as input to detect the
causal structure of a system, a directed acyclical graph (DAG). The PC algorithm cannot
necessarily determine the DAG uniquely, but only down to a Markov equivalence class of
the DAG. All members of an equivalence class encode the same conditional independence
information. By using the conditional independence information the algorithm can only
determine the equivalence class, but not distinguish between members of a class. In this
way the algorithm finds some undirected edges. We will determine these undirected edges
with the help of a bootstrap procedure, which we will explain in the following.

To find the DAG, the algorithm performs an elimination and an orientation stage. The
elimination stage starts with a graph where all variables are linked to each other with an
undirected link. Then, links are removed based on unconditional and conditional correla-
tion tests, whereby a tuning parameter α for Fisher’s Z-statistic is used as a significance
level. First, connections are removed between two variables which are unconditionally
uncorrelated. Then, connections are eliminated for variables which are uncorrelated con-
ditional on other variables. Here, the correlation of a pair of variables is conditioned on
every other variable individually, then on all possible pairs of variables, thereafter on all
subsets of three variables and so on up to all possible subsets of conditioning. When there
is no more link to be removed, the elimination stage is finished and the skeleton of the
graph is identified.

In the orientation stage, triples of linked variables A — B — C are analysed. Un-
shielded colliders (v-structures) A → B ← C can be determined when A and C are
independent when conditioned on possible sets of variables, but dependent when condi-
tioned also on B. The algorithm searches for unshielded colliders and directs the edges
accordingly. Finally, some more links might be oriented on the basis of logic. Some di-
rections of links would lead to new unshielded colliders or to cyclicality, hence need to
be directed the other way around. Cyclicality, like A → B → C → A, is not permitted,
hence bi-directional links are likewise not possible. Demiralp, Hoover, and Perez (2008)
show that a bootstrap procedure is successful in directing the undirected edges. The
residuals of the reduced form VAR are drawn randomly with replacement and new data
sets are generated, to which the PC algorithm is applied. The undirected edges are finally
directed in the direction which is more often prominent in the bootstrap runs. Sampling
errors or latent variables can lead to conflicting information about edge directions. In
these cases the algorithm returns a bi-directed edge. We decide on the bi-directed edges
via our bootstrap procedure. Thus, the bootstrap procedure decides on the undirected
edges (Markov equivalence class) and on the edges with conflicting information.

If the final graph is a directed acyclical graph (DAG), then it can be mapped in
the contemporaneous matrix B0, and due to the acyclicality property of the DAG, the
contemporaneous matrix can be written as an overidentified lower triangular matrix for
some ordering of the variables. Hence the SVAR model is identified. If the final graph
contains cyclicality, which might arise due to some conflicting information about certain
v-structures, the order condition is fulfilled, but it will not be possible to write the SVAR
model as an overidentified recursive form.5

It is not clear from the onset which alpha value should be chosen in the PC algorithm.
With increasing alpha values the algorithm becomes more liberal and so chooses fewer

5On these grounds, we estimate our SVAR models equation by equation using OLS.
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zero restrictions. Following our Monte Carlo simulation and Demiralp et al. (2014), we
choose an alpha value of 10% in our application.

2.2 A connectedness measure using forecast error variance de-
compositions

We use the connectedness measure of Diebold and Yılmaz (2014). The approach is based
on the computation of forecast error variance decompositions (FEVD).6

The stationary SVAR model in equation (1) can be written in an MA representation
as

yt =
∞∑
i=1

Φiut−i =
∞∑
i=1

Θiwt−i, (3)

where Φi are reduced-form impulse responses and Θi are the structural impulse responses
with Θi ≡ ΦiB

−1
0 . The matrixes Φi can be retrieved recursively by computing Φ0 = IK

and Φi = (B−10 B)i.
We compute a forecast error variance decomposition

dhjk = 100
h−1∑
i=0

(e
′

jΘiek)2/
h−1∑
i=0

K∑
k=1

θ2jk,i, (4)

where θjk,i are the jkth element of Θi and ek is the kth column of IK . The measure
dhjk is the proportion of the h-step forecast error variance of variable j, accounted for
by innovations from variable k. We multiply the fractions by 100 to obtain percentages.
Following Diebold and Yılmaz (2014) the pairwise directional connectedness from k to j
is defined as

Ch
j←k = dhjk. (5)

In general Ch
j←k 6= Ch

k←j, so there are K2−K separate pairwise directional connectedness
measures.

The measure of total connectedness can be defined as

Ch =
1

K

K∑
j,k=1,j 6=k

dhjk. (6)

In the following sections, we will compare this measure with other measures of con-
nectedness. One of these alternative measures is the generalized forecast error variance
decomposition (GFEVD). For the computation of a GFEVD we follow Lanne and Nyberg
(2016)7

dhjk,g = 100

∑h−1
i=0 (e

′
jΦiΣuekσ

−1/2
kk )2∑h−1

i=0

∑K
k=1(e

′
jΦiΣuekσ

−1/2
kk )2

, (7)

where σkk are the diagonal entries of Σu.

6For an introduction to FEVDs, see Lütkepohl (2005).
7Chan-Lau (2017) studies the advantages of the Lanne and Nyberg (2016) approach in a connectedness

application.
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2.3 The algorithm

We make use of the R software package ”pcalg” by Kalisch, Mächler, Colombo, Maathuis,
Bühlmann, et al. (2012).8 Our proposed algorithm (see Algorithm 1) starts with the
estimation of a reduced form VAR model where the lag order is determined by the Akaike
Information Criterion (AIC). Then, we apply the PC algorithm (PC) to the reduced form
residuals and test if the resulting graph is a directed acyclical graph (DAG). If this is
the case, we can proceed and determine the contemporaneous matrix (B0) in accordance
with the obtained DAG. Otherwise, we bootstrap the reduced form VAR 10,000 times,
apply the PC algorithm in each run, and collect the 10,000 suggested graphs. Note that
it is important to draw vectors from the residuals in such a way that the correlation
between the residuals is preserved. Afterwards, we modify the original graph in such a
way that the undirected edges become directed according to the direction preferred by the
bootstrap. Note that we consider the bootstrap only in order to decide on edges which
were originally undirected or bi-directed. Having obtained a DAG, we may proceed with
the specification of B0 (line 10 of Algorithm 1). Finally, the connectedness measure –
or spillover matrix – can be derived from the estimated structural VAR model where the
shocks are orthogonalised by B0.

Algorithm 1

1: procedure Identification
2: [ut,A]← VAR(data, p=AIC)
3: graph← PC-Algorithm(α, ut)
4: if graph is directed-acyclical-graph then
5: DAG← graph
6: else
7: DAG← Bootstrap(ut, A, α, graph)
8: end if
9: B0 ← DAG

10: connectedness← FEVD[SVAR(B0, A)]
11: end procedure

12: function Bootstrap(ut, A, α, p, graph)
13: for runs ∈ {1, 2, ..., 10,000} do
14: artificial data← Create artificial data(ut, A)
15:

[
uBS

t

]
← VAR(artificial data, p)

16: bootstrap-graph(runs)← PC-algorithm(α, uBS
t )

17: end for
18: return← direct undirected edges in graph according to bootstrap-graph
19: end function

8The chosen settings are: (conservative = TRUE, solve.confl = TRUE , u2pd = c(“relaxed”)).
By choosing the conservative rule instead of the retry option, the algorithm produces a fully order-
independent output; see Colombo and Maathuis (2014).
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3 The effectiveness of the PC algorithm in the con-

nectedness approach – A Monte Carlo study

In this section we evaluate the impact of different identification strategies on the measures
of connectedness by performing a Monte Carlo experiment. We generate artificial data
with the help of a known data generating process (DGP). Afterwards, we estimate the
connectedness matrices for different identification strategies and benchmark them with
the theoretical result of the known DGP. We compare the empirical identification with
the generalized approach (see Lanne and Nyberg, 2016) and the average-of-all-Cholesky-
orderings (see Klößner and Wagner, 2014) approach. The empirical identification is per-
formed with two different algorithms, the PC algorithm and the greedy equivalence search
(GES) algorithm of Chickering (2002).9 Because the appropriate significance level alpha
for the individual conditional independence tests of the PC algorithm is not clear, we use
two conventional options: 5% and 10%.

The artificial data is generated recursively according to the SVAR(1):

yt = B−10 Byt−1 + B−10 wt, (8)

with structural shocks wt ∼ NID(0,Σw) and y0 = 0. To eliminate dependence on the
initial condition we discard the first 80% of the generated data in all cases. The lag
matrix, B, is K × K with random uniform coefficients between -0.05 and 0.05. The
residuals, wt, are drawn randomly from independent normal distributions with mean
0 and variance 1. For the contemporaneous matrix, B0, we generate random directed
acyclic graphs (DAGs) with a fixed expected number of neighbours. We use random
Erdős-Rényi graphs for the DAGs, multiply the matrix entries by -1 and add an identity
matrix. In this way we generate a sparse contemporaneous matrix with some negative
off-diagonal entries between 0 and -1.10 We perform this Monte Carlo study for N=100
data sets in each MC experiment. The categories are: two different system dimensions
(K = 8/16), three different levels of sparsity (d = 1/3/5) and two different sample lengths
(T = 250/2500).11

The results are evaluated as follows. For each identification method we compute four
measures in terms of recovering the true connectedness matrix. For all four measures we
report the mean absolute error (MAE) of the estimated measure relative to measure for
the true connnectedness matrix. The first measure, C, is the MAE of the off-diagonal
elements of the connectedness matrix:

C =
1

N

N∑
i=1

1

K2 −K

K∑
j,k=1,j 6=k

|Ch
j←k,i − Ch∗

j←k,i|, (9)

9Note that the PC algorithm is a constraint-based approach, while the GES algorithm is a score-based
method. Constraint-based approaches work with conditional independence tests. Score-based approaches
assign scores to particular graph structures based on the data fit, for example using scoring metrics like
the BIC score, which we use here.

10Given positive correlations between variables in applications to most markets, it is a reasonable
assumption to focus on negative entries in the contemporaneous matrix.

11In contrast to our application, we perform 100 bootstrap runs in the Monte Carlo experiment.
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whereby the variables with a star are the true connectedness values. C is an important
measure, as it puts a strong weight on the direction of the connectedness. The second
measure, T , is the MAE of the total connectedness:

T =
1

N

N∑
i=1

|Ch
i − Ch∗

i |. (10)

Here, not so much the direction of the links is evaluated, but rather whether the over-
identifying zeros of the PC algorithm are appropriate. The third measure, S, is the MAE
of the skewness of the distribution of the off-diagonal entries of the connectedness matrix:

S =
1

N

N∑
i=1

|Skew{Ch
j←k,i}j,k=1...K,j 6=k − Skew{Ch∗

j←k,i}j,k=1...K,j 6=k|. (11)

While the fourth measure, K, is the MAE of the kurtosis of the distribution of the off-
diagonal entries of the connectedness matrix:

K =
1

N

N∑
i=1

|Kurt{Ch
j←k,i}j,k=1...K,j 6=k −Kurt{Ch∗

j←k,i}j,k=1...K,j 6=k|. (12)

These distributional measures aim to evaluate whether the extreme values in the con-
nectedness matrices of the identification strategies are comparable to the theoretical con-
nectedness. The results of the Monte Carlo experiments are displayed in Tables (1) and
(2).

The PC algorithm performs, in general, better than the average-of-all-Cholesky-orderings
approach and the generalized approach. While the other two identification strategies usu-
ally split the connectedness between j and k in such a way that Ch

j←k ≈ Ch
k←j, the causal

search algorithm manages to find the true causal connectedness. Even when the PC al-
gorithm might find incorrect directions for some links, overall the true causal structure
is uncovered to a much higher degree, which can be seen in the lower MAE values of our
measure C. The generalized approach overestimates the total connectedness in all cases,
which can be seen in the high MAE in the measure T . This result is in line with find-
ings by De Santis and Zimic (2017). There is no clear favorite between a PC algorithm
with 5% and 10% significance level. The GES algorithm performs equally well as the PC
algorithm and is particularly strong for sparse contemporaneous matrices.

To reinforce the relevance of the Monte Carlo simulation to our empirical application,
we perform a simulation experiment where we mimic the settings of the application, see
Table (3). In the application we have a dimension of 9, a level of sparsity of d=3.8 and
2,048 observations.12 In the Monte Carlo experiment the causal search PC algorithm
performs strongly, achieving low MAEs, especially in category C, which measures the
direction of connectedness.

12We identified 17 links in our application. Hence, the sum of in- and out-degree is 34. 34 divided by
9 is 3.8.
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Table 1: Monte Carlo simulation: comparing connectedness measures for different identi-
fication strategies relative to the correct connectedness measures using 100 random DAGs
dimension 8.

d = 1 T=250 T=2500

C T S K C T S K
avgChol 1.849 3.648 1.798 14.836 1.487 0.558 1.576 13.606
GFEVD 2.823 12.233 1.523 11.965 2.233 7.126 1.260 10.400
PCalg 5% 1.644 2.594 0.455 4.245 1.031 0.534 0.228 2.166
PCalg 10% 1.664 2.824 0.452 4.334 1.045 0.548 0.245 2.300
GES 1.421 2.731 0.444 4.243 1.017 0.405 0.238 2.290

d = 3 T=250 T=2500

C T S K C T S K
avgChol 5.386 4.337 1.331 5.342 5.195 2.219 1.310 5.350
GFEVD 8.276 28.478 1.207 4.644 8.284 23.241 0.862 3.637
PCalg 5% 4.722 3.249 0.520 3.261 3.584 2.738 0.354 2.217
PCalg 10% 4.668 3.256 0.502 3.086 3.630 2.554 0.366 2.247
GES 5.221 3.983 0.411 2.449 4.143 1.811 0.363 2.208

d = 5 T=250 T=2500

C T S K C T S K
avgChol 9.695 6.007 1.559 3.596 9.643 5.091 1.564 3.586
GFEVD 11.552 30.634 1.113 3.098 13.508 28.869 0.858 2.642
PCalg 5% 9.592 8.656 0.754 3.730 9.157 6.858 0.576 2.561
PCalg 10% 9.728 7.621 0.671 3.217 9.227 6.807 0.579 2.634
GES 10.914 6.249 0.442 1.865 10.628 5.452 0.415 1.762

Notes: 100 random Erdős-Rényi graphs with 8 nodes. d (1, 3, 5) corresponds to the expected
number of neighbours per node, more precisely the expected sum of the in- and out-degree. Sample
size 250/2500 observations. C is the MAE of the off-diagonal entries of the connectedness matrix.
T is the MAE of the total connectedness. S and K are the MAEs of the skewness and kurtosis of
the distribution of the off-diagonal entries of the connectedness matrix.
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Table 2: Monte Carlo simulation: comparing connectedness measures for different identi-
fication strategies relative to the correct connectedness measures using 100 random DAGs
dimension 16.

d = 1 T=250 T=2500

C T S K C T S K
avgChol 1.291 8.006 2.603 33.602 0.864 0.997 2.219 30.262
GFEVD 2.066 20.489 2.572 30.278 1.334 8.775 1.763 22.862
PCalg 5% 1.020 5.867 0.613 10.554 0.581 0.680 0.322 5.870
PCalg 10% 1.023 6.179 0.586 9.586 0.586 0.670 0.321 5.810
GES 0.995 6.202 0.602 9.510 0.497 0.641 0.251 4.384

d = 3 T=250 T=2500

C T S K C T S K
avgChol 3.021 7.009 1.791 12.483 2.762 2.477 1.752 12.510
GFEVD 4.871 36.769 2.112 13.264 4.468 26.757 1.460 9.546
PCalg 5% 2.309 2.932 0.505 5.531 1.729 1.896 0.494 5.094
PCalg 10% 2.276 3.332 0.515 5.633 1.671 1.796 0.453 4.607
GES 2.455 5.582 0.430 4.572 1.881 1.850 0.417 4.272

d = 5 T=250 T=2500

C T S K C T S K
avgChol 5.018 8.309 2.163 10.084 4.900 5.410 2.140 10.111
GFEVD 6.420 37.451 1.720 9.183 6.684 33.617 1.593 8.289
PCalg 5% 4.662 4.533 0.772 6.909 3.952 4.408 0.640 5.155
PCalg 10% 4.606 4.381 0.822 7.276 4.000 4.532 0.685 5.542
GES 5.262 7.762 0.648 4.871 4.854 5.255 0.511 3.802

Notes: 100 random Erdős-Rényi graphs with 8 nodes. d (1, 3, 5) corresponds to the expected
number of neighbours per node, more precisely the expected sum of the in- and out-degree. Sample
size 250/2500 observations. C is the MAE of the off-diagonal entries of the connectedness matrix.
T is the MAE of the total connectedness. S and K are the MAEs of the skewness and kurtosis of
the distribution of the off-diagonal entries of the connectedness matrix.

Table 3: Monte Carlo simulation: comparing connectedness measures for different identi-
fication strategies relative to the correct connectedness measures using 100 random DAGs.
Specification similar to the application: dimension=9, d=3.8, T=2048.

C T S K
avgChol 6.042 3.342 1.332 4.750
GFEVD 9.371 28.402 0.803 3.249
PCalg 5% 4.863 4.033 0.467 2.725
PCalg 10% 4.875 3.661 0.484 2.831
GES 5.410 2.939 0.463 2.645

Notes: 100 random Erdős-Rényi graphs with 9 nodes. d=3.8 corresponds to the expected number
of neighbours per node, more precisely the expected sum of the in- and out-degree. Sample size
2048 observations. C is the MAE of the off-diagonal entries of the connectedness matrix. T is
the MAE of the total connectedness. S and K are the MAEs of the skewness and kurtosis of the
distribution of the off-diagonal entries of the connectedness matrix.
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4 An application to exchange rate data

The bilateral exchange rate can be interpreted as the relative price between two curren-
cies. Here, it is defined as the foreign currency price of buying one unit of home currency
(quantity quotation). A positive shock to the bilateral exchange rate in quantity quota-
tion can thus be interpreted as a positive shock to the demand of the home currency or
a negative shock to the demand of the foreign currency. These shocks can trigger move-
ments in other exchange rates as well. The reasons behind the international effects are
manifold. One could think of currency (basket) pegs or international substitution effects,
for instance.

The aim of this exercise is to uncover the network of spillover effects between exchange
rate returns. We apply the proposed algorithm to the G10 bilateral euro exchange rates
and cluster the exchange rates in order to unveil potential currency blocs afterwards. All
bilateral exchange rates are downloaded in daily frequency from the ECB statistical data
warehouse (SDW) and correspond to the ECB reference rates, representing the 14:15 CET
fixing.13 The sample covers the period between January 2010 and December 2017. We
start in 2010 in order to exclude potential effects arising from the 2008 financial crisis.
As ECB reference rates are expressed in quantity quotation and quoted against the euro,
we transform the rates in such a way that the pound sterling becomes the numéraire. All
transformed series enter our model in log differences. The reasoning behind changing the
numéraire currency is discussed in the following section.

4.1 Choice of the numéraire currency

The bilateral (or multilateral) nature of exchange rates poses a problem for researchers
and practitioners. When regressing exchange rates on exchange rates, the correct choice of
the numéraire currency (or basket) is crucial, because the numéraire can have substantial
effects on the estimates. This problem has been extensively discussed by Frankel and
Xie (2010) in the context of estimations with regard to currency weights in baskets.
Several studies such as Frankel and Wei (2008) and Ohno (1999) relied on the Swiss franc
as numéraire currency. The Swiss franc seemed to be an appealing choice, because its
trading volume is high and the currency was independent at that time. The Swiss franc
lost this property when the Swiss National Bank introduced a minimum rate vis-á-vis
the euro on 6 September 2011.14 When the numéraire currency is pegged to another
currency in the sample, the exchange rate has no variance, which can be explained by
other currencies. Apart from the numerical problems that arise from this, the series
would not have a variance and should thus not be employed within the Diebold and
Yılmaz (2014) approach.15

The literature on basket weights proposes to use a basket of different currencies as
numéraire. Frankel and Xie (2010) claim that monetary authorities are more likely to use
a weighted average of currencies as reference for possible interventions when the exchange

13Note that all exchange rates are fixed at the same time. Hence, trading times do not overlap.
14The minimum rate was abandoned on 13 January 2015, which caused the Swiss franc to appreciate

strongly against several major currencies.
15Note that even if the numéraire is an independent currency, hard pegs among other currencies in the

sample cause collinearity.
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rate regime is a managed float or target zone and propose the IMF Special Drawing Right
(SDR) basket as numéraire. On the other hand, Aloosh and Bekaert (2018) propose
the use of unweighted baskets in a somewhat different setting. Nevertheless, a closed
basket as numéraire cannot be employed in the Diebold and Yılmaz (2014) approach,
because the first currency basket is nothing but a linear combination of the other N − 1
currency baskets. A VAR model cannot be estimated for such a dataset. Hence, also
when using baskets, one currency needs to be excluded. Therefore, we have to find a
suitable numéraire currency which is freely floating, not a anchor currency and preferably
not, or at least only to a small extent, part of currency baskets which central banks peg
their currency to. A currency which sufficiently fulfills these criteria is the pound sterling
(see IMF, 2016).16

4.2 Uncovering the causal structure

We follow the proposed algorithm and estimate the VAR model equation (2) for the rate
of change in nine G10 exchange rates, taking the pound sterling as numéraire currency.
The number of observations is 2,048 and the lag length of p = 1 is chosen according to the
Akaike Information Criterion (AIC). Before applying the PC algorithm, we investigate
the correlation structure of the residuals ut (see Table (4)).

Table 4: Correlation between residuals (ut)

AUD CAD CHF EUR NOK NZD SEK USD JPY
AUD 1.00
CAD 0.66 1.00
CHF 0.31 0.33 1.00
EUR 0.44 0.42 0.61 1.00
NOK 0.53 0.50 0.40 0.64 1.00
NZD 0.76 0.57 0.33 0.43 0.48 1.00
SEK 0.51 0.45 0.44 0.75 0.73 0.46 1.00
USD 0.34 0.53 0.39 0.43 0.24 0.31 0.30 1.00
JPY 0.31 0.36 0.48 0.45 0.22 0.33 0.28 0.64 1.00

Notes: The table shows the cross-correlation between reduced form VAR residuals. Correlation
coefficients > 0.5 are marked in bold.

The table unveils relatively strong correlations between the residuals of commodity
currencies such as the Australian dollar, Canadian dollar, New Zealand dollar and Nor-
wegian krone. Particularly striking is the strong correlation between the Australian dollar
and the New Zealand dollar (ρut

AUD,NZD = 0.76). The correlation between the Swedish
krona and euro residuals (ρut

SEK,EUR = 0.75) is similarly strong. The Swedish krona residu-
als, however, are also correlated with the Norwegian krone residuals, thus linking the euro
to the commodity currencies. The euro itself is also correlated with the Swiss franc. The
correlation between the Japanese yen and the US dollar (ρut

JPY,USD = 0.66) is somewhat
uncoupled. These correlations provide us with a first insight into international exchange

16The yen is also a very independent currency, but evidence suggests that there are ties between the
yen and other Asian currencies. Therefore, we prefer to use the pound sterling as numéraire.
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rate connectedness. They suggest the existence of a commodity currency bloc which is
connected with the euro and a strong relationship between the Japanese yen and US dol-
lar. These correlations, however, do not reflect any type of causality. We only learn that
certain relationships may exist.

In order to estimate the causal structure we apply the PC algorithm with an α size of
0.1 to the residuals. The algorithm yields the adjacency matrix

F =

AUD CAD CHF EUR NOK NZD SEK USD JPY



1 1 0 0 1 0 1 0 0 AUD
0 1 0 0 1 0 0 1 0 CAD
0 0 1 1 0 1 0 0 1 CHF
0 0 0 1 1 0 1 1 1 EUR
0 0 0 0 1 0 1 0 0 NOK
1 1 1 0 0 1 0 0 1 NZD
1 0 0 0 1 0 1 0 0 SEK
0 0 0 1 0 0 0 1 1 USD
0 0 0 0 0 0 0 1 1 JPY

,

where 1 indicates that the currency of the related column is causing the currency of the
corresponding row. By contrast, 0 indicates that the currency of the related column is not
causing the currency of the corresponding row. Hence, if F [i, j] 6= F [j, i] (with i 6= j) the
algorithm was able to direct the link between the two currencies: if F [i, j] = F [j, i] = 0,
then there is no contemporaneous relationship between the two currencies and an over-
identification of the variance covariance matrix is possible. A problem occurs, however, if
F [i, j] = F [j, i] = 1 (see underlined numbers). In that particular case, the PC algorithm
was unable to direct the link between the two currency pairs (Markov equivalence class).
This is the case for the pairs AUD — SEK, CHF — NZD, EUR — USD, NOK
— SEK and USD — JPY . As explained earlier, we apply the bootstrap approach by
Demiralp et al. (2008) in order to direct the undirected edges.17

More specifically, we bootstrap the VAR, let the PC algorithm determine the causal
structure between the residuals, and save the output of the algorithm for each of the
10,000 runs. The results are reported in Table (5). Of particular interest are the entries
F [7, 1] (AUD — SEK), F [6, 3] (CHF — NZD), F [8, 4] (EUR — USD), F [7, 5] (NOK
— SEK), and F [9, 8] (JPY — USD).

The table shows for currency pair AUD — SEK that AUD → SEK is preferred
over AUD ← SEK by 35.68% vs. 1.17% of the draws. The results are slightly less clear
for CHF — NZD, as only 9.23% of the draws prefer CHF → NZD. According to the
bootstrap, the edge EUR — USD should be directed such that EUR ← USD. Lastly,
we direct the edges NOK — SEK and JPY — USD such that NOK → SEK and
JPY ← USD.

Given the bootstrap information, the matrix F can now be updated and written as

17Bi-directed edges have not been found in our application. Where a bi-directed edge is detected in
the bootstrap of the application, these edges are displayed under “bi-directed” in Table (5). Overall,
bi-directed edges are not prominent in our application, no bi-directed edge has been found on the original
data, and only one edge showed a relevant occurrence of bi-directed outcomes in the bootstrap. The ab-
sence of bi-directed edges indicates that the system of exchange rates is contemporaneously self-contained.
Latent variables, which might affect several exchange rates, seem to enter only with a lag.
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Table 5: PC algorithm results in percent (bootstrap with 10,000 draws)

F [i, j] # of # of # of # of # of
i j PC undirected left no edge right bi-directed

2 1 -1 38.41 0.60 0.00 60.98 0.01
3 1 0 0.00 0.01 99.99 0.00 0.00
4 1 0 0.00 0.00 100.00 0.00 0.00
5 1 -1 43.65 12.72 2.28 41.28 0.07
6 1 1 46.13 22.10 0.00 31.59 0.18
7 1 2 62.26 35.68 0.84 1.17 0.05
8 1 0 11.00 0.07 87.40 1.53 0.00
9 1 0 0.00 0.00 99.95 0.00 0.05
3 2 0 0.00 0.00 100.00 0.00 0.00
4 2 0 0.00 0.00 100.00 0.00 0.00
5 2 -1 39.84 11.43 0.00 48.60 0.13
6 2 1 12.79 77.39 8.15 0.66 1.01
7 2 0 0.19 0.05 99.71 0.05 0.00
8 2 -1 46.67 1.15 0.00 51.29 0.89
9 2 0 2.15 0.22 97.28 0.35 0.00
4 3 -1 31.55 5.88 0.00 62.56 0.01
5 3 0 0.81 1.45 97.59 0.15 0.00
6 3 2 31.41 9.23 54.85 4.46 0.05
7 3 0 11.48 1.49 85.70 1.33 0.00
8 3 0 16.96 2.04 79.69 1.31 0.00
9 3 -1 32.84 4.85 0.00 62.31 0.00
5 4 -1 33.40 4.74 0.00 61.78 0.08
6 4 0 9.68 4.57 83.26 2.33 0.16
7 4 -1 55.26 10.49 0.00 34.24 0.01
8 4 2 57.21 8.06 18.79 15.81 0.13
9 4 -1 1.90 0.03 37.10 60.97 0.00
6 5 0 18.55 12.59 68.59 0.27 0.00
7 5 2 67.08 29.71 0.00 3.19 0.02
8 5 0 0.01 0.00 99.99 0.00 0.00
9 5 0 0.00 0.00 100.00 0.00 0.00
7 6 0 0.68 0.17 98.79 0.36 0.00
8 6 0 0.00 0.00 100.00 0.00 0.00
9 6 -1 6.54 4.32 15.80 60.98 12.36
8 7 0 0.03 0.01 99.95 0.01 0.00
9 7 0 0.89 0.03 98.77 0.31 0.00
9 8 2 75.20 17.25 0.00 7.55 0.00

Notes: The table shows the decisions of the PC algorithm for each entry in the adjacency ma-
trix F [i, j]. The PC column refers to the PC algorithm decision with respect to the VAR point
estimate residuals. Here, “0” denotes “no edge”, “1” stands for “right”, “-1” for “left” and “2”
for an “undirected” linkage. The columns for the percentages (abbreviated as #) of the decisions
“undirected”, “left”, “no edge”, “right” and “bi-directed” refer to the bootstrap. Whenever the
algorithm finds no direction using the point estimate residuals (i.e. where the PC column has the
entry 2), the edge is directed according to the (maximum) percentage in the “left” and “right”
columns.
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FBS =

AUD CAD CHF EUR NOK NZD SEK USD JPY



1 1 0 0 1 0 0 0 0 AUD
0 1 0 0 1 0 0 1 0 CAD
0 0 1 1 0 0 0 0 1 CHF
0 0 0 1 1 0 1 1 1 EUR
0 0 0 0 1 0 0 0 0 NOK
1 1 1 0 0 1 0 0 1 NZD
1 0 0 0 1 0 1 0 0 SEK
0 0 0 0 0 0 0 1 0 USD
0 0 0 0 0 0 0 1 1 JPY

.

This matrix no longer exhibits any cycles or undirected edges and can now be used to
(over-)identify the variance-covariance matrix of the VAR model. Each 1-entry represents
a coefficient which has to be estimated. Figure (1) presents the adjacency matrix FBS as
a graph.

Figure 1: Visualisation of the adjacency matrix FBS

USD

JPY

NOK

CAD

AUD

SEK

EUR

CHF

NZD

Notes: This figure shows the contemporaneous causality structure which is
used to orthogonalise the SVAR residuals (see matrix B0). Note that this
graph does not represent the connectedness matrix, which will be estimated in
section (4.3).

For a better understanding of the dynamics, we re-order the adjacency matrix into
the over-identified matrix B0 in such a way that we recover its recursive form.18

18Note that due to the over-identifying restrictions, this ordering is not unique. For example, the
Japanese yen could also be ordered behind the Norwegian krone and the following other currencies, but
it needs to be before the euro. Hence, some other orderings would also be consistent with the output
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B0 =

USD JPY NOK CAD AUD SEK EUR CHF NZD



1 USD
b21 1 JPY
0 0 1 NOK
b41 0 b43 1 CAD
0 0 b53 b54 1 AUD
0 0 b63 0 b65 1 SEK
b71 b72 b73 0 0 b76 1 EUR
0 b82 0 0 0 0 b87 1 CHF
0 b92 0 b94 b95 0 0 b98 1 NZD

.

This enables us to unveil and interpret the causal structure between the structural
shocks. Note here that the ordering is entirely determined by the data-driven causal-
search algorithm (PC). We observe that the USD is ordered first, suggesting that it
is the most independent currency in the sample. Shocks to the US dollar affect the
Japanese yen, the Canadian dollar and the euro contemporaneously, while no foreign
shock has contemporaneous effects on the US dollar. The New Zealand dollar is ordered
last. Thus, shocks to this currency have no contemporaneous effects on any other currency
in the sample. However, it is affected by shocks to the Japanese yen, the Canadian
dollar, the Australian dollar and the Swiss franc. Interestingly, these are all currencies
which are related to carry trades. The commodity currencies (AUD, CAD) are often
referred to as carry trade target currencies, while the other two (CHF, JPY) are used by
market participants for carry trade funding (see Hossfeld and MacDonald, 2015; Ferreira
Filipe and Suominen, 2013). The Norwegian krone appears to be another important
currency. It is ordered third, but the PC algorithm suggests that shocks to the US dollar
and the Japanese yen, which is ordered second, have no contemporaneous effects on the
krone. However, shocks to the krone affect other commodity currencies (CAD, AUD)
and geographic neighbours (EUR, SEK) contemporaneously. Overall, we observe a causal
structure which is not only closely related to the correlation of reduced form residuals
(Table 4), but also economically plausible.

The coefficients in the contemporaneous matrix (B0) can be obtained by re-estimating
the (structural) VAR equation by equation, whereby the contemporaneous effects (accord-
ing to B0) are included in each equation. The estimates are presented in Appendix (A).

The matrix B0 is overidentified with 19 zero restrictions. When testing the 19 re-
strictions with a likelihood ratio test, the null hypothesis that all these 19 coefficients can
be restricted to zero needs to be rejected with a test statistic of 268.66 and a p value
of 0.000. When we return more coefficients to the contemporaneous matrix, beginning
with the highest entries in the variance covariance matrix of the SVAR model, we find
that already with 7 overidentifying restrictions the null needs to be rejected with a test
statistic of 16.17 and a p value of 0.024. We attribute this finding to the fact that we are
working with bilateral exchange rates. The contemporaneous correlations of the currency
pairs are high in all cases, see Table (4), which might be due to a UK effect in all ex-
change rates. To further scrutinise this point we perform a robustness check at the end of
section (4.3), where we compare the connectedness matrix for the PC algorithm approach
with the connectedness matrix of a version of the SVAR model without overidentifying

of the causal search algorithm. However, the computed connectedness measures in the following are not
influenced by our choice of a recursive ordering.
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restrictions on the contemporaneous matrix.

4.3 Connectedness

This section shows the connectedness between exchange rates for different identification
methods. First, we use a simple Cholesky decomposition as in the seminal paper by
Diebold and Yılmaz (2009). As we are completely agnostic with regard to causality,
the ordering of the variables is random. Table (6) presents the forecast error variance
decomposition (i.e. the connectedness). The entries represent the shares of forecast
error variance (in percent) of the variables in rows, which are explained by shocks to the
variables in columns. Hence, rows sum up to 100. For instance, the estimates suggest that
16.8% of US dollar forecast error variance is explained by shocks to the Canadian dollar,
while only 0.3% of Canadian dollar forecast error variance is explained by shocks to the
US dollar. This result is surprising, because the United States is usually considered as a
large and less dependent economy. Accordingly, one would expect causality to point from
USD to CAD rather than the other way round. Later, we will see that a different causal
ordering yields completely different results from those obtained by the PC algorithm.
But also the measures of total connectedness show a surprising picture. The row “IN”
represents the contribution of international shocks to the forecast error variance of the
variables in rows (i.e. the row sum minus the idiosyncratic contribution). This measure
is referred to as in-connectedness. Particularly the Australian dollar, which is ordered
first, is almost entirely driven by its own shocks. Then again, the out-connectedness
of the Australian dollar (OUT; i.e. the column sum of contributions subtracted by the
idiosyncratic component) is extraordinarily high compared with other currencies. Overall,
we observe that the shares on the lower diagonal are substantially higher than those on
the upper diagonal, reflecting the lower diagonal structure of the Cholesky factorisation
which has been applied. Hence, a Cholesky decomposition has to be applied with caution.

Table 6: Connectedness: Cholesky (random ordering)

AUD CAD CHF EUR NOK NZD SEK USD JPY IN
AUD 99.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2
CAD 43.8 55.5 0.0 0.0 0.1 0.1 0.0 0.3 0.1 44.5
CHF 9.9 2.7 86.9 0.0 0.1 0.0 0.3 0.0 0.0 13.1
EUR 18.8 3.2 22.0 55.4 0.0 0.0 0.1 0.2 0.3 44.6
NOK 28.5 3.6 4.5 13.3 49.5 0.0 0.2 0.0 0.4 50.5
NZD 58.1 0.6 0.8 0.4 0.0 39.9 0.0 0.0 0.2 60.1
SEK 25.9 2.3 7.2 24.9 7.0 0.0 32.2 0.1 0.4 67.8
USD 12.0 16.8 5.4 1.7 3.2 0.0 0.1 60.9 0.0 39.1
JPY 9.4 4.1 14.0 1.8 2.9 0.4 0.2 16.9 50.3 49.7
OUT 206.5 33.4 53.8 42.2 13.4 0.5 0.9 17.4 1.5 C10=41.1

Notes: The table shows the (10 periods ahead) forecast error variance decomposition of the SVAR
model which is identified by a Cholesky decomposition with random ordering. The column “IN”
corresponds to the row sum of the non-diagonal variance shares (i.e. the total share of variance
which is explained by (international) shocks). The column “OUT” corresponds to the column sum
of the non-diagonal variance shares (i.e. the total share of variance, which is explained by the
corresponding column variable). C10 refers to the measure of total connectedness (see section 2.2).
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A way to circumvent this problem is to apply a generalized forecast error variance
decomposition. This decomposition is derived from generalized impulse response functions
which were originally proposed by Pesaran and Shin (1998). The intuition behind this
approach is that every variable is treated as it would be ordered first in a Cholesky
decomposition. Hence, any variable can have contemporaneous effects on any variable
in the system. The problem, however, is that this approach does not orthogonalise the
shocks, implying that forecast error variance shares do not sum to unity for any given
variable.19 Instead of normalising the variance shares in such a way that they sum to unity
(see Greenwood-Nimmo et al., 2016, for instance), we proceed as outlined in section (2.2)
and apply an alternative form of the generalized forecast error variance decomposition
where variance shares sum to unity by construction (see Lanne and Nyberg, 2016). This
decision is based on the results of Chan-Lau (2017), who finds that the generalized variance
decomposition by Lanne and Nyberg (2016) performs better than the one by Pesaran and
Shin (1998).

Table 7: Connectedness: GFEVD (Lanne and Nyberg, 2016)

AUD CAD CHF EUR NOK NZD SEK USD JPY IN
AUD 33.7 11.4 3.8 3.9 9.3 21.6 8.0 2.8 5.5 66.3
CAD 17.2 28.9 4.7 4.1 9.6 13.3 7.1 7.5 7.7 71.1
CHF 4.6 3.8 44.1 8.9 7.6 5.0 8.1 4.3 13.5 55.9
EUR 7.4 5.2 13.8 20.6 13.6 7.1 17.4 4.3 10.6 79.4
NOK 11.7 7.3 6.5 9.2 32.9 9.3 17.8 1.5 3.9 67.1
NZD 20.8 8.7 4.4 4.0 7.9 38.7 6.8 2.3 6.3 61.3
SEK 10.3 6.0 7.4 12.1 17.4 8.2 30.9 2.2 5.4 69.1
USD 6.0 10.4 7.7 5.2 4.4 4.7 4.0 31.3 26.2 68.7
JPY 4.1 4.1 9.8 4.8 3.9 4.5 3.4 11.2 54.0 46.0
OUT 82.2 56.9 58.0 52.2 73.7 73.7 72.6 36.2 79.3 C10=65.0
Notes: The table shows the (10 periods ahead) forecast error variance decomposition of the SVAR
model which is identified by using generalized impulse responses. The column “IN” corresponds to
the row sum of the non-diagonal variance shares (i.e. the total share of variance which is explained
by (international) shocks). The column “OUT” corresponds to the column sum of the non-diagonal
variance shares (i.e. the total share of variance which is explained by the corresponding column
variable). C10 refers to the measure of total connectedness (see section 2.2).

The results of the GFEVD measure are presented in Table (7). Now, we observe that
the differences between in- and out-connectedness have decreased for all currency pairs.
For many pairs, the degrees have even become roughly equivalent: 3.9% of the Japanese
yen’s forecast error variance is explained by the Norwegian krone and vice versa. Overall,
the linkages are qualitatively similar to those obtained from the Cholesky decomposition
with the difference that the information with regard to the direction of causality has been
lost.

The same applies to the results based on the fastSOM algorithm by Klößner and
Wagner (2014), which represent the average variance shares over all possible Cholesky
permutations (Table 8). Here, the differences between in- and out-connectedness are even
smaller than in the previous case. We learn, for instance, that the Australian dollar and

19We observe that the sum of variance shares is close to unity, but not exactly unity.
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Table 8: Connectedness: fastSOM

AUD CAD CHF EUR NOK NZD SEK USD JPY IN
AUD 53.5 11.2 1.3 2.8 5.5 17.6 4.7 1.9 1.5 46.5
CAD 11.4 59.3 1.6 2.5 5.0 6.9 3.2 7.8 2.3 40.7
CHF 1.3 1.5 69.7 10.1 3.1 1.7 3.7 3.0 5.9 30.3
EUR 2.8 2.6 8.7 51.0 9.3 2.8 15.3 3.3 4.1 49.0
NOK 5.8 4.8 2.8 9.7 56.3 4.0 14.6 0.9 1.1 43.7
NZD 18.6 7.1 1.7 2.9 4.1 58.9 3.4 1.4 1.9 41.1
SEK 4.8 3.3 3.4 15.7 14.1 3.4 52.4 1.3 1.6 47.6
USD 2.1 8.4 3.0 3.8 1.0 1.5 1.3 65.1 13.8 34.9
JPY 1.4 2.3 5.8 4.5 1.0 1.8 1.2 14.2 67.8 32.2
OUT 48.2 41.3 28.4 52.0 43.0 39.7 47.6 33.7 32.1 C10=40.7

Notes: The table shows the (10 periods ahead) forecast error variance decomposition of the SVAR
model as an average of all possible Cholesky orderings. The column “IN” corresponds to the row
sum of the non-diagonal variance shares (i.e. the total share of variance which is explained by
(international) shocks). The column “OUT” corresponds to the column sum of the non-diagonal
variance shares (i.e. the total share of variance which is explained by the corresponding column
variable). C10 refers to the measure of total connectedness (see section 2.2).

the New Zealand dollar are connected, but the differences between the variance shares
(AUD → NZD [18.6%] and AUD ← NZD [17.6%]) are not strong enough to make a
statement about the direction. Additionally, when studying all possible permutations of
orderings, the maximum and minimum levels of connectedness per country pair can be
computed, see Appendix (B). It is obvious that the connectedness between currency pairs
depends crucially on an arbitrary ordering of the variables in the model.

The ambiguity diminishes drastically when our proposed algorithm is applied (Table
9). Clear causal patterns appear which help in understanding the network topology of
G10 exchange rates and the direction of edges, in particular. The estimates suggest
that the US dollar and the Norwegian krone are both important drivers of international
exchange rate fluctuations. Their in-connectedness is very low (0.7 and 1.4, respectively),
suggesting that they are barely affected by shocks to foreign currencies. However, their
out-connectedness is relatively high (91.1 and 152.4, respectively). Shocks to the US dollar
explain 21.2% of Canadian dollar and 41.2% of Japanese yen forecast error variance. Note
that these are clearly not bi-directed linkages. Our estimates suggest that the causality
is directed from the US dollar to both currencies. The Norwegian krone appears to
explain high shares of the Australian dollar, Canadian dollar, Swiss franc, euro, New
Zealand dollar and Swedish krona forecast error variance. Hence, there seem to be strong
ties between commodity currencies and European currencies. The strong effects of the
Norwegian krone are somewhat surprising. It is possible that the Norwegian krone also
reflects influences of other currencies of oil exporting countries.

We also find evidence suggesting that the Australian dollar causes the New Zealand
dollar, which was not obvious when other measures of connectedness were applied. The
same accounts for the USD → JPY relationship. Another interesting edge is the EUR→
CHF link, which reflects the minimum exchange rate of CHF 1.20 per EUR.20

20The minimum exchange rate was introduced by the Swiss National Bank on 6 September 2011 and
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Table 9: Connectedness: PC algorithm (α = 0.1)

AUD CAD CHF EUR NOK NZD SEK USD JPY IN
AUD 53.0 16.8 0.1 0.0 24.1 0.0 0.0 5.9 0.1 47.0
CAD 0.1 61.6 0.1 0.1 16.8 0.0 0.0 21.2 0.1 38.4
CHF 0.1 0.0 61.9 9.1 8.4 0.0 3.5 8.9 8.0 38.1
EUR 0.5 0.3 0.1 39.6 36.1 0.0 13.8 6.9 2.7 60.4
NOK 0.4 0.1 0.0 0.0 98.6 0.0 0.2 0.2 0.5 1.4
NZD 24.3 11.2 0.4 0.0 14.5 42.3 0.0 6.6 0.6 57.7
SEK 1.6 0.6 0.0 0.0 52.0 0.0 45.1 0.3 0.5 54.9
USD 0.2 0.1 0.0 0.1 0.2 0.0 0.0 99.3 0.0 0.7
JPY 0.0 0.0 0.0 0.0 0.3 0.0 0.1 41.2 58.4 41.6
OUT 27.1 29.2 0.7 9.4 152.4 0.1 17.6 91.1 12.5 C10=37.8

Notes: The table shows the (10 periods ahead) forecast error variance decomposition of the SVAR
model which is identified by the PC algorithm. The column “IN” corresponds to the row sum of the
non-diagonal variance shares (i.e. the total share of variance which is explained by (international)
shocks). The column “OUT” corresponds to the column sum of the non-diagonal variance shares
(i.e. the total share of variance which is explained by the corresponding column variable). C10

refers to the measure of total connectedness (see section 2.2).

As a robustness analysis, we estimate the spillover matrix of Table 9 without over-
identifying restrictions on the contemporaneous matrix. More specifically, we use one of
the possible causal orderings which is consistent with the findings of the PC algorithm
and estimate the structural VAR using a Cholesky decomposition. The obtained spillover
matrix (see Table 12 in Appendix C) shows a very similar pattern when compared to
Table 9.21 The total connectedness increases slightly because of missing over-identifying
restrictions.22 However, the relative importance of the shocks remains the same, therefore
the results are qualitatively similar. For instance, shocks to the euro explain 8.1% (9.1%
with over-identifying restrictions) of Swiss franc forecast error variance and only 0.3%
(0.0% with over-identifying restrictions) of New Zealand forecast error variance, although
the coefficient b97 is now unrestricted. It is also surprising to see that the measure of
total connectedness, C10 = 41.0 is very similar to the Cholesky application with random
ordering (here, C10 = 41.1). This finding is in favour of Diebold and Yılmaz (2014),
who argue that the system-wide summary measure (Ch) is often robust to the Cholesky
ordering. However, this does not change the fact that the result is due to a random
ordering and thus (potentially) a result of misspecification.

In summary, the PC algorithm provides us with well defined directed edges, which
enable us to unveil a directed network of exchange rates. This gives the PC algorithm a
clear advantage over the other presented methods. However, the PC algorithm is com-
putationally also the most intense procedure, particularly because of the time-consuming
bootstrap.23

abandoned on 15 January 2015. It served as a key monetary policy instrument.
21Note that in Table 12 in the appendix the currencies follow the recursive ordering.
22Given the Cholesky decomposition, we no longer have exact zero entries in the lower diagonal of the

contemporaneous matrix. The non-zero coefficients translate into minor changes in the variance shares.
23However, we found that working with a small number of bootstrap runs usually leads to the same

result as with a large number of runs. For example, for our application we made 100 experiments with
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4.4 Cluster analysis

In this section we exploit the connectedness between exchange rates (displayed in Table
9) in order to divide the network into clusters (also known as communities or modules).
A cluster is characterised by a high number of edges between nodes within the cluster,
relative to the number of edges to nodes outside the cluster. In this sense, we visualise the
previously estimated connectedness and identify groups of exchange rates with a relatively
high intra-group connectedness. These groups can be interpreted as currency blocs. The
currencies of a bloc are likely to move in tandem, which is important information for policy
makers and the management of currency risk. Note that our definition of a currency bloc
is more general than the definition by Fischer (2016), for instance.

The quality of the partitioning of a whole network, which can consist of as many
clusters as nodes, is thus often expressed by a measure, depending on the differences
between the numbers of edges within clusters and the numbers of edges that would exist
if it were a random network model. Hence, positive values indicate the existence of
clusters. This measure is referred to as modularity. For a detailed explanation, we refer
the reader to Blondel, Guillaume, Lambiotte, and Lefebvre (2008), who propose a popular
algorithm (hereafter: Louvain algorithm) which detects the best clustering by maximising
modularity. Initially, the algorithm assigns each node to a single cluster. In a second
step, the algorithm moves nodes to new clusters if gains in modularity can be achieved
until no additional gain can be achieved (see Blondel et al., 2008). One drawback of the
Louvain algorithm is that it is designed for undirected networks. Consequently, it is not
feasible given the causal structure of our network. Dugué and Perez (2015) provide a
solution to this common problem. They modify the Louvain algorithm in such a way that
it accommodates for directed modularity as defined by Leicht and Newman (2008).

Using the Directed Louvain algorithm by Dugué and Perez (2015), we aim to partition
the network in Table (9). We observe in Figure (2) that the algorithm classifies the G10
currencies into three different clusters. The first cluster contains the AUD, CAD and
NZD, which are often referred to as commodity currencies. Another common property
is that investments in these countries provide the investor with a relatively high yield.
The NOK is often also referred to as a commodity currency, but it is part of the second
cluster. In addition to the NOK, this cluster also contains the EUR as well as the SEK
and thus European currencies only. The third cluster contains the CHF, USD and JPY.
These currencies are often referred to as safe haven and/or carry funding currencies (see
Hossfeld and MacDonald, 2015; Ferreira Filipe and Suominen, 2013). Thus, the latter
group has the tendency to appreciate in times of financial stress, either because investors
are seeking a safe haven for their investments or due to the unwinding of carry trades.

4.5 Empirical assessment of the clustering: Brexit referendum

In this section we assess the quality of the partition suggested by the Directed Louvain
algorithm. To this end we normalise all exchange rates before the referendum on UK’s
membership of the EU, the result of which surprised many market participants, and
discuss their movements during the trading days following the referendum (see Figure (3)).

bootstraps with 100 runs each and found that 86 experiments lead to the same contemporaneous matrix as
a bootstrap with 10,000 runs, while in 14 experiments one of the edges is found to be directed differently.
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Figure 2: Partition according to the Directed Louvain algorithm
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Notes: This figure shows the exchange rates clustered according to the spillover
matrix of the PC algorithm (Table (9)). Cluster 1 (red): AUD, CAD, NZD;
Cluster 2 (green): EUR, NOK, SEK; Cluster 3 (blue): CHF, USD, JPY. Cau-
sation propagates clockwise.
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The Brexit referendum is an appealing example, as it is a shock to the numéraire which
affects all other currencies. Following the referendum, the pound sterling depreciated
against all currencies in our sample. Figure (3) shows the movements of the pound sterling
exchange rates against all currencies in quantity quotation (cross rates of ECB reference
rates). In order to simplify the interpretation, exchange rates have been normalised to 100
on the day of the referendum (23 June2016 is day 0).24 The similarity of movements within
clusters is striking. Currencies within the first (red and solid lines) and second (green and
dashed lines) cluster, in particular, move closely in tandem. Only currencies in the third
cluster (blue and dotted lines) display a slightly larger dispersion. Nor is it surprising
that the pound sterling depreciates strongly against the third cluster, which reflects safe
haven and carry funding currencies. These are supposed to appreciate in times of financial
stress. Additionally, it is expected that the European currencies appreciate the least of
the three clusters, because the uncertainty surrounding Brexit means uncertainty for the
European Monetary Union. The Swiss franc, which has been found by our procedure to
belong to the cluster of safe havens, moves in the case of the Brexit experiment more
closely in line with European currencies.

Overall, we observe that exchange rate movements follow a very similar pattern, but
we also see that the dispersion within clusters is strikingly low.

Figure 3: Exchange rate movements following the Brexit referendum
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Notes: This figure shows pound sterling exchange rate movements following
the Brexit referendum (pound sterling in quantity quotation). Exchange rates
are coloured according to their corresponding cluster. Cluster 1 (red, solid):
AUD, CAD, NZD; Cluster 2 (green, dashed): EUR, NOK, SEK; Cluster 3
(blue, dotted): CHF, USD, JPY. Source: ECB.

24Note that the fixing of ECB reference rates takes place at 14:15 UTC – before the results of the
referendum were published.
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5 Conclusions

The literature on connectedness between exchange rates has so far ignored a potential
causal structure. Research along the lines of Diebold and Yılmaz (2014) is based on a
forecast error variance decomposition in a VAR framework. The difficulty in this context
is the identification of the variance-covariance matrix in order to orthogonalise the shocks.
We show that a Cholesky decomposition, which is frequently used, can lead to arbitrary
results, as the outcome depends heavily on the ordering of the variables. A generalized
FEVD is independent of the ordering of the variables, but it is unable to detect causal-
ity between the shocks. The same applies when all possible orderings of variables are
considered (see Klößner and Wagner, 2014).

We address this problem by employing a causal search algorithm from the machine
learning literature, which is able to find causality in contemporaneous data. This approach
is then applied to the G10 currencies, whereby nine currencies are modelled vis-á-vis the
pound sterling as numéraire currency. Our results suggest that the US dollar and the
Norwegian krone are the most independent currencies in our sample. Shocks to these
currencies affect a large set of other currencies. We also observe that connectedness
between commodity currencies and those that are often referred to as safe haven and/or
carry funding currencies is particularly high.

Using a clustering algorithm we identify three currency clusters which confirm the
previous findings. The first cluster contains commodity currencies such as the AUD,
CAD and NZD. The second cluster comprises the European currencies EUR, NOK and
SEK. Finally, the third cluster contains the CHF, USD and JPY – currencies which are
often referred to as safe haven or carry funding currencies. They have the tendency to
appreciate in times of financial stress.

In an additional exercise we evaluate the movements of currencies with respect to their
clusters following the Brexit referendum. We observe that the dispersion of exchange rate
movements within clusters is indeed relatively low, particularly for the first and second
clusters. The third cluster shows the strongest appreciation against the pound sterling
following the referendum. The Swiss franc, however, appears to move more closely in line
with other European currencies (second cluster).

Overall, these estimates provide important information for policy makers and practi-
tioners, as they shed light on potential co-movements between certain exchange rates.
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A Estimated matrices

B0 =

AUD CAD CHF EUR NOK NZD SEK USD JPY



1.0000 -0.6059 0.0000 0.0000 -0.2865 0.0000 0.0000 0.0000 0.0000 AUD
0.0000 1.0000 0.0000 0.0000 -0.3645 0.0000 0.0000 -0.4582 0.0000 CAD
0.0000 0.0000 1.0000 -0.6591 0.0000 0.0000 0.0000 0.0000 -0.2328 CHF
0.0000 0.0000 0.0000 1.0000 -0.1597 0.0000 -0.4512 -0.0956 -0.1258 EUR
0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 NOK

-0.7157 -0.0903 -0.0692 0.0000 0.0000 1.0000 0.0000 0.0000 -0.0542 NZD
-0.1559 0.0000 0.0000 0.0000 -0.6207 0.0000 1.0000 0.0000 0.0000 SEK
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 USD
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.9102 1.0000 JPY

,

which can be inverted and scaled by the standard deviations of the residuals to

AUD CAD CHF EUR NOK NZD SEK USD JPY



0.0047 0.0026 0.0000 0.0000 0.0032 0.0000 0.0000 0.0015 0.0000 AUD
0.0000 0.0044 0.0000 0.0000 0.0023 0.0000 0.0000 0.0026 0.0000 CAD
0.0002 0.0001 0.0053 0.0020 0.0020 0.0000 0.0012 0.0020 0.0019 CHF
0.0003 0.0002 0.0000 0.0031 0.0030 0.0000 0.0018 0.0013 0.0008 EUR
0.0000 0.0000 0.0000 0.0000 0.0062 0.0000 0.0000 0.0000 0.0000 NOK
0.0034 0.0023 0.0004 0.0001 0.0026 0.0045 0.0001 0.0018 0.0005 NZD
0.0007 0.0004 0.0000 0.0000 0.0044 0.0000 0.0041 0.0002 0.0000 SEK
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0056 0.0000 USD
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0051 0.0060 JPY

.
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B Maximum and minimum connectedness

Table 10: Maximum connectedness considering all permutations of recursive orderings

AUD CAD CHF EUR NOK NZD SEK USD JPY
AUD 99.8 44.0 9.9 18.9 28.4 58.1 26.0 11.8 9.5
CAD 43.8 99.1 11.0 17.7 24.7 31.9 20.2 28.4 12.7
CHF 9.9 11.0 99.5 36.5 15.9 11.2 18.8 15.4 23.0
EUR 18.8 17.7 36.5 99.3 40.6 18.7 55.7 18.3 20.2
NOK 28.5 24.5 15.8 40.3 98.6 22.6 52.5 5.6 5.2
NZD 58.1 32.0 11.2 18.8 22.6 99.7 20.7 9.5 10.8
SEK 25.9 20.1 18.9 55.6 52.7 20.6 99.0 9.0 8.5
USD 12.0 28.4 15.4 18.2 5.7 9.6 9.1 99.4 41.1
JPY 9.4 12.7 23.0 19.9 4.9 10.7 8.1 41.2 99.6

Notes: The table shows (10 periods ahead) forecast error variance decomposition values of SVAR
models which are identified by a Cholesky decomposition. The entries of the matrix show the
maximum entries which can be achieved with a Cholesky decomposition approach considering all
possible orderings.

Table 11: Minimum connectedness considering all permutations of recursive orderings

AUD CAD CHF EUR NOK NZD SEK USD JPY
AUD 32.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
CAD 0.0 42.3 0.0 0.0 0.1 0.0 0.0 0.0 0.1
CHF 0.0 0.0 57.1 0.0 0.0 0.0 0.1 0.0 0.0
EUR 0.0 0.0 0.0 30.7 0.0 0.0 0.0 0.0 0.2
NOK 0.3 0.0 0.0 0.0 38.9 0.0 0.0 0.0 0.2
NZD 0.0 0.0 0.0 0.0 0.0 39.4 0.0 0.0 0.1
SEK 0.0 0.0 0.0 0.0 0.0 0.0 32.1 0.0 0.3
USD 0.0 0.0 0.0 0.0 0.1 0.0 0.0 45.6 0.0
JPY 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 50.3

Notes: The table shows (10 periods ahead) forecast error variance decomposition values of SVAR
models which are identified by a Cholesky decomposition. The entries of the matrix show the
minimum entries which can be achieved with a Cholesky decomposition approach considering all
possible orderings.
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C Robustness analysis

Table 12: Connectedness: Cholesky (ordering according to PC algorithm)

USD JPY NOK CAD AUD SEK EUR CHF NZD IN
USD 99.4 0.0 0.2 0.1 0.2 0.0 0.1 0.0 0.0 0.6
JPY 41.2 58.4 0.3 0.0 0.0 0.1 0.0 0.0 0.0 41.6
NOK 5.6 1.2 92.5 0.1 0.4 0.2 0.0 0.0 0.0 7.5
CAD 28.4 0.1 14.6 56.5 0.1 0.0 0.1 0.1 0.0 43.5
AUD 11.8 1.3 20.9 16.2 49.6 0.0 0.0 0.1 0.0 50.4
SEK 9.0 1.9 44.4 0.3 1.1 43.2 0.0 0.0 0.0 56.8
EUR 18.3 5.2 28.6 0.2 0.1 12.3 35.1 0.1 0.0 64.9
CHF 15.4 8.9 8.5 0.0 0.0 2.0 8.1 57.2 0.0 42.8
NZD 9.5 3.0 16.1 10.6 21.0 0.0 0.3 0.1 39.4 60.6
OUT 139.2 21.6 133.6 27.5 22.9 14.7 8.6 0.4 0.1 C10=41.0

Notes: The table shows the (10 periods ahead) forecast error variance decomposition of the SVAR
model which is identified by a Cholesky decomposition determined by the PC algorithm. The
column “IN” corresponds to the row sum of the non-diagonal variance shares (i.e. the total share
of variance which is explained by (international) shocks). The column “OUT” corresponds to the
column sum of the non-diagonal variance shares (i.e. the total share of variance which is explained
by the corresponding column variable). C10 refers to the measure of total connectedness (see
section 2.2).
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