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Non-technical summary

Research Question

Currently, the methods used by producers of official statistics do not facilitate the seasonal

and calendar adjustment of time series with daily observations. However, an increasing

number of possibly seasonal series with a weekly or daily periodicity becomes available.

Here, we develop a procedure to estimate and adjust for periodically recurring systematic

effects and the influence of moving holidays in time series with daily observations.

Contribution

Daily time series can contain three different seasonalities. Exemplarily, the currency in

circulation is influenced by a weekday effect as the demand for banknotes increases towards

the weekend. Monthly recurring troughs and peaks can often be observed, because salary

payments tend to be concentrated around the turn of the month. Due to an increase

in consumption the demand for currency reaches its high around Christmas time. In

addition to these seasonal influences, the currency in circulation is positively impacted by

Easter and other public holidays whose date changes from year to year. The procedure

for daily calendar and seasonal adjustment (DSA) introduced in this paper combines a

local regression based iterative seasonal adjustment routine with a time series regression

model for the estimation of moving holiday and outlier effects.

Results

To assess the validity of the developed approach, the DSA adjusted time series are trans-

formed to a monthly basis and then compared to results obtained by established proce-

dures for monthly data for the German currency in circulation as well as a for a set of

simulated time series. The results show that all procedures estimate similar seasonally

adjusted series. The comparison with the established seasonal adjustment routines indi-

cates a high validity of the chosen approach. Thus, the DSA procedure closes a gap by

facilitating the seasonal and calendar adjustment of daily time series.



Nichttechnische Zusammenfassung

Fragestellung

Die in der offiziellen Statistik verwendeten Methoden erlauben derzeit keine Saisonbe-

reinigung von Zeitreihen mit täglichen Beobachtungen. Gleichwohl steigt die Anzahl

verfügbarer höherfrequenter Zeitreihen mit saisonalem Verlauf. Das Ziel der vorliegen-

den Untersuchung ist die Entwicklung eines Verfahrens zur Schätzung und Bereinigung

periodisch wiederkehrender, systematischer Effekte und des Einflusses beweglicher Feri-

entage in Zeitreihen mit täglichen Beobachtungen.

Beitrag

Tägliche Zeitreihen können drei unterschiedliche, sich überlagernde Saisonmuster enthal-

ten. Beispielsweise steigt der Banknotenumlauf aufgrund vermehrter Einkäufe üblicherweise

jeweils besonders stark zum Wochenende. Ein monatlich wiederkehrendes Muster ist ins-

besondere aufgrund von Lohn- und Gehaltszahlungen um den Monatswechsel herum iden-

tifizierbar. Im Jahresverlauf sind die deutlichsten Spitzen in der Banknotennachfrage infol-

ge eines gesteigerten Konsumverhaltens rund um Weihnachten zu beobachten. Zusätzlich

zu diesen saisonalen Regelmäßigkeiten wird der Banknotenumlauf durch die Lage beweg-

licher Feiertage wie Ostern beeinflusst. Das hier vorgestellte Verfahren zur Kalender- und

Saisonbereinigung täglicher Daten (DSA) kombiniert eine mehrstufige, auf lokalen Regres-

sionen basierende Saisonbereinigung mit an die Eigenschaften von Zeitreihen angepassten

Regressionsmodellen zur Schätzung kalendarischer und Ausreißereffekte.

Ergebnisse

Zur Überprüfung der Validität des Ansatzes werden die ermittelten kalender- und sai-

sonbereinigten Zeitreihen in monatliche Zeitreihen transformiert und mit den Ergebnis-

sen etablierter Verfahren zur monatlichen Saisonbereinigung verglichen. Als Grundlage

dient hierbei neben dem deutschen Banknotenumlauf ein Datensatz simulierter Zeitrei-

hen. Die Gegenüberstellung zeigt, dass alle Verfahren vergleichbare saisonbereinigte Rei-

hen schätzen. Auch berechnete Fehlermaße weisen auf eine qualititative Ähnlichkeit hin.

Die Vergleiche mit den Ergebnissen der etablierten Saisonbereinigungsmethoden deuten

auf eine hohe Validität des gewählten Ansatzes. Das DSA-Verfahren lässt sich demnach

zur Saisonbereinigung täglicher Daten verwenden.
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1 Introduction

Progress in information technology will increase the availability of time series with a daily

or even higher periodicity that exhibit seasonal behaviour. Possible examples range from

data on air pollution, web-search keywords, and road traffic data to economic variables

such as online sales, retail prices, and the amount of banknotes in circulation. Often,

new developments cannot be evaluated directly from these unadjusted data, as periodical

influences may obscure underlying tendencies. Furthermore, periodic influences may be

of interest themselves. An increasing number of banknotes towards the end of the year

may be due to the annually recurring Christmas shopping related demand spikes instead

of worrisome money hoarding. Seasonal adjustment aims at detecting and eliminating

these kinds of periodic influences to enhance the interpretability of the data.

Currently, there exists no officially recommended method for seasonal and calendar

adjustment of time series with daily observations (cf Eurostat, 2015). The aim of this

paper is to identify a suitable procedure to estimate and adjust for regularly and peri-

odically recurring systematic effects as well as the influence of moving holidays for daily

time series. The procedure should be flexible enough to estimate all seasonal patterns

with different periodicities. At the same time, it should be sufficiently fast to allow the

adjustment of a large number of series on a daily basis.

In their implementation in various software packages the well-known seasonal adjust-

ment procedures TRAMO/SEATS and Census X-13ARIMA-SEATS (X-13)1 do not allow

for the adjustment of data with a higher than monthly frequency. Alternative methods

have been developed that aim at estimating some or all of the seasonal effects in higher fre-

quency time series. One of the first method’s proposed was Akaike’s BAYSEA procedure

that is based upon Bayesian time series modelling and was developed as an alternative to

X-11 (Akaike, 1980; Young, 1996). In theory, the approach is not restricted to monthly or

quarterly observations. Yet, it can be demonstrated by simulation that BAYSEA does not

yield plausible results for higher frequency data with a substantial intra-annual seasonal

pattern, due to very slow convergence (see appendix A).

Pierce, Grupe, and Cleveland (1984) use a two-step model-based approach to season-

ally adjust weekly monetary aggregates. Trigonometric functions are designed to capture

any deterministic weekly seasonality and an ARIMA model is fitted to the residuals to

obtain estimates for the remaining stochastic seasonality. Without further adaptations,

simple seasonal ARIMA models do not capture all different seasonal frequencies that

we observe for daily time series. Especially the simultaneous modelling of weekly and

annually recurring patterns is challenging, as will be discussed later.

1These are implemented in X-13ARIMA-SEATS, TSW rev. 924 and JDemetra+ 2.2.
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Dokumentov and Hyndman (2015) develop a regression based seasonal adjustment

procedure, STR, that aims at providing automatic detection of multiple relevant seasonal

cycles. However, the user has only limited influence on the outcome of this procedure.

Depending on the complexity of the time series, the adjustment may also be computa-

tionally expensive. Section 4.2 includes an empirical comparison between STR and the

routine developed in this paper.

The software STAMP 8.2, which is designed to seasonally adjust data using structural

time series modelling, assumes that daily time series have an intra-weekly pattern only (see

Koopman, Harvey, Doornik, and Shephard, 2009). Harvey, Koopman, and Riani (1997)

employ structural models to adjust weekly monetary aggregates. For intra-monthly and

intra-annual effects they suggest using either trigonometric or spline functions. Koopman

and Ooms (2003, 2006) show that state space modelling can be used to analyse seasonal

daily time series as well, though their main focus lies on short-term forecasting instead of

seasonal adjustment as such.

Semi-parametric STL provides another method, which is based on a locally weighted

regression smoother (Loess). Compared to the methods discussed above, its main ad-

vantage is its high flexibility with respect to the frequency of the time series (Cleveland,

Cleveland, McRae, and Terpenning, 1990). Additionally, the fast computation of the

STL algorithm makes it feasible to adjust different seasonal frequencies in an integrated

iterative framework. Other authors have used STL for different applications involving

seasonal time series. Verbesselt, Hyndman, Newnham, and Culvenor (2010) develop a

trend and seasonal change detection method that is based on STL and can be used for

daily and other higher frequency time series. Thus, STL has properties that make it a

suitable candidate for the seasonal adjustment of data with higher frequency.

We contribute to the existing literature by devising a seasonal adjustment routine for

daily data. In addition to STL’s limitations to single seasonal frequencies it cannot deal

with calendar effects such as the influences of moving holidays. Therefore, we use STL as

the basis of the seasonal adjustment and combine it with RegARIMA based estimations

of calendar effects to obtain the daily seasonal adjustment (DSA) procedure.

The remainder of the paper is structured as follows: Section 2 presents key aspects of

STL. Section 3 adapts STL to handle daily time series. Section 4 applies the procedure to

the daily currency in circulation in Germany and to a set of simulated time series and then

compares the results to those obtained from established seasonal adjustment procedures

for monthly data. Section 5 concludes.
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2 STL

Based on the well-known component model

Yt = Tt + St + It ∀ t = 1, ..., N (1)

STL decomposes a time series (Yt) into a trend-cycle (Tt), a seasonal (St) and an irregular

component (It) using Loess regressions and moving averages (Cleveland et al., 1990). In

Loess regressions, a weight is attached to each observation of the time series (Cleveland

and Devlin, 1988). This weight is negatively related to the distance (in time) between

a given observation and the value that is to be smoothed. If the distance is too large,

the weight is zero. Thus, Loess regressions are local regressions because each value is

regressed on a local neighbourhood of a linear or quadratic function of the (weighted)

observations. For any point in time t, the weight of the observation at ti is given by

vi(t) =

[
1−

(
|ti − t|
δγ(t)

)3
]3

(2)

with δγ(t) = |ti− tγ| being the distance between the γth farthest ti and t. The smoothing

parameter γ determines the number of neighbouring observations included in the local

regression. In STL, the user can specify the value of γ for the computation of the trend

and seasonal component. The flexibility of the identified seasonal factor decreases with a

higher value for γ. Correspondingly, the value of γ should be adapted to the variability

of the observed seasonality (see also Section 3 for examples).

Essentially, STL consists of an inner loop that is used for the decomposition of the

series into the trend, seasonal and irregular component, and an outer loop for extreme

value adjustment (see Figure 1). The latter increases the robustness of the decomposi-

tion against outliers and thereby mitigates the influence of extraordinary events on the

identification of the seasonal factors. STL can only adjust the seasonal pattern of a sin-

gle frequency f at a time. The other seasonal patterns will be included in the irregular

component.

2.1 Inner Loop

For the decomposition of Yt, the inner loop goes through the following computations in

the k-th iteration:

1. Trend adjustment:

Yt − T {k−1}
t = S

{k}
t + I

{k}
t ≡ TA

{k}
t , with T

{0}
t = 0. (3)
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2. Preliminary periodwise smoothing: Each subseries of TA
{k}
t , i.e. each weekday,

day of the month or day of the year for a daily time series or each month for a

monthly time series, is smoothed by Loess to yield a preliminary seasonal factor

S
{k}
pre,t. The γ for these regressions is the only parameter without a default in the

STL procedure and thus has to be specified by the user (see Cleveland et al., 1990).

3. Smoothing preliminary seasonal component: A low-pass filter, composed of

moving average- and Loess-filters, is used to capture any low-frequency movements

L
{k}
t from S

{k}
pre,t.

4. Obtaining seasonal component:

S
{k}
t = S

{k}
pre,t − L

{k}
t . (4)

5. Seasonally adjusting the original time series:

Y
{k}
t − S{k}t ≡ SA

{k}
t . (5)

6. Obtaining trend: A Loess filter is applied to SA
{k}
t to yield T

{k}
t .

2.2 Outer Loop

Usually, only a few iterations of the inner loop are needed to ensure convergence of the

results. By default, the number of iterations is set to 3 and the outer loop is omitted.

Only if deemed necessary by the user, robustness weights for the Loess regressions of the

inner loop are determined for each time point as a function of the size of the irregular

component derived when the inner loop has reached its maximum number of iterations.

The irregular component can be obtained by rearranging Equation 1:

It = Yt − Tt − St. (6)

Then, for the Loess regressions in the 2. and 6. part of the inner loop, the weights defined

in Equation 2 are multiplied with the robustness weights given by Tukey’s (1960) biweight

function

ωt =


(

1−
[

|It|
6·median(|{It}Nt=1|)

]2
)2

if |It| < 6 ·median(|{It}Nt=1|)

0 else

(7)

that strongly downweighs highly irregular observations.
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STL Algorithm for a Given Frequency

Deutsche Bundesbank

Figure 1

Input Series:

Y = T+S(f) + I

Trend Adjustment:

Y – T = S(f) + I

Step 1: Step 2:

Periodwise Smoothing:

Loess (S(f) + I) = S(f)pre

Step 3:

Smoothing Preliminary

Component:

f(S(f)pre) = L

Step 6: Step 5: Step 4:

Trend Estimation:

Loess (SA(f)) = T

Seasonal Adjustment:

Y – S(f) = SA(f)
Seasonal Component:

S(f)pre – L = S(f)

Inner Loop

Robustness-Weights

for Loess-Regressions:

g(I)–1 = Weights

Max. number of iterations
for inner loop reached?

Max. number of all
iterations reached?

Irregular Component:

I = Y – T – S(f)

Final Seasonally

Adjusted Series: SA(f)final

Outer Loop

no yes

yes

no

Figure 1:

3 Daily Seasonal Adjustment

Daily time series can contain three different seasonalities. This can be illustrated with

the daily time series of the currency in circulation2: if people primarily need money in

cash to buy groceries for the weekend, the data will display a weekly pattern of increasing

currency in circulation towards the end of the week. An increase around the end of the

month of the circulating currency results from an increased withdrawal of cash following

the payment of salaries. Finally, consumption increases due to Christmas, and thus, the

2For a comprehensive discussion of the factors determining supply and demand of the currency in circu-
lation see Bartzsch, Seitz, and Setzer (2015) and Cabrero, Camba-Mendez, Hirsch, and Nieto (2009).
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currency in circulation increases at the end of each year. Correspondingly, many daily

time series are characterised by weekly, monthly and annually recurring patterns. In

addition, travel activities around moving holidays might increase the demand for bank-

notes as well. Thus, the model described in Equation 1 has to be refined to incorporate

intra-weekly, intra-monthly and intra-annual seasonality, S
(7)
t , S

(31)
t , and S

(365)
t , as well as

moving holiday effects Ct:

Yt = Tt + S
(7)
t + S

(31)
t + S

(365)
t + Ct + It. (8)

STL adjusts each seasonal factor separately, and therefore has to be run three times in

order to capture all S
(f)
t ∀ f ∈ (7, 31, 365).

The idea of iteratively adjusting several seasonal frequencies has already been put

forward by Cleveland et al. (1990). In the case of daily time series, the main obstacle is

the constraint of STL to have a constant period length, i.e. the number of observations has

to be identical in each period. This is not unique to STL, though. For example, seasonal

RegARIMA models usually face the same requirements. While this is unproblematic in

the case of intra-weekly seasonality, the number of days per month and the number of

days per year are not fixed. As a result, the period length has to be standardised, either

by omitting a subset of the data or by artificial prolongation. Possible implementations

are discussed below.

A further task is the development of a calendar and outlier adjustment routine to-

gether with the forecasting of seasonal factors. The latter is necessary for data producers

providing seasonally adjusted figures applying a current adjustment revision policy, i.e.

the policy of reidentifying time series components at set review periods and adjusting

new data points by forecasted seasonal factors in the meantime (Eurostat, 2015). Outlier

adjustment can be important for an unbiased estimation of the calendar effects as well

as for the prediction of the future trajectory of the time series. The calendar and outlier

adjustment needs to be integrated into the iterative seasonal adjustment.

As in X-13 and TRAMO/SEATS, the RegARIMA model could be the basis for all

prior adjustments including estimating calendar effects. In the case of daily time series,

several arguments can be made for changing this order and to begin with adjusting the

intra-weekly movements: firstly, each year of data contains more than 50 observations

of every weekday. The adjustment of the intra-weekly seasonality therefore tends to be

robust against outliers and rare effects such as moving holidays even in the case of short

series. Secondly, the intra-weekly, intra-monthly and intra-annual periodic movements

necessitate different data modifications that are somewhat antagonistic. While the week-

day effects need the full set of available data, the adjustment of the effect of the day of

the year entails the standardisation of the length of the year to be either 365 or 366. If

6



we started by estimating the effects of the moving holidays, there would be a risk that

the estimated effects contain some of the weekday pattern.

Taking all of these considerations into account results in the following algorithm:

• Step I: Adjusting Intra-Weekly Seasonality with STL.

• Step II: Calendar- and Outlier Adjustment with RegArima.

• Step III: Adjusting Intra-Monthly Seasonality with STL.

• Step IV: Adjusting Intra-Annual Seasonality with STL.

It can of course be the case that a given time series does not contain all of the seasonal

and calendar components. In that case it will be advisable to omit the respective seasonal

adjustment steps or leave out regressors that capture the effects of moving holidays.

3.1 Step I: Adjusting Intra-Weekly Seasonality

Before estimating the intra-weekly seasonality with STL, the series may have to be pre-

adjusted. This may include the interpolation of missing values or taking the logarithm of

the data to stabilise the variance of the series.

For most of the computations in STL there exist sensible default values for the smooth-

ing parameters (see Cleveland et al., 1990). Only for the smoothing of the period-wise

sub-series γS(7) , i.e. the number of observations included in the local regression to obtain

the seasonal factor, a specification is needed. In the case of intra-weekly seasonality, γS(7)

has to be large enough so that the weekday effects do not get confounded by other effects

such as moving holidays. Obviously, the parameter γS(7) should not be set too high either

in order to capture changes in the seasonal pattern. As the time series has not been

outlier adjusted yet, usually, the robust version of STL is preferable, so the number of

iterations of the outer loop, which can be set by the user, is one or higher.

3.2 Step II: Calculating the Effects of Moving Holidays and Out-

liers

Following the notation of Ghysels and Osborn (2001) a seasonal RegARIMA model for a

time series with 365 observations per year can be written as

φp(B)φP (B365)(1−B)d(1−B365)D

(
yt −

r∑
i=1

βixit

)
= θq(B)θQ(B365)εt (9)
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where φ(B) and θ(B) are polynomials of order p, P , q, and Q, while B is the backshift

operator. βi captures the impact of the i-th regressor xit on the time series yt and εt

is the error term. The ARIMA part of Equation 9 can be written in short form as

(p d q)1(P DQ)365 with the AR order p, MA order q and number of differences d and

capitals indicating seasonal terms (for a thorough discussion of ARIMA modelling see

Box and Jenkins, 1970; Brockwell and Davis, 1987).

As a higher periodicity increases the computational burden, it is not always feasible

to use seasonal ARIMA models with daily series. In these situations, popular alternatives

include estimating the seasonal factor by trigonometric functions or dummy variables in

a non-seasonal RegARIMA model. The former can be expressed as a function of sines

and cosines (Campbell and Diebold, 2005; De Livera, Hyndman, and Snyder, 2011):

Ŝt =
J∑
j=1

(
β̂1,j sin

(
2πjG(t)

365

)
+ β̂2,j cos

(
2πjG(t)

365

))
(10)

where G(t) is a unit step function indicating the day of the year, i.e. cycles through 1, ...,

365. The optimal size of J is determined by the corrected Akaike information criterion

(AICc).3 J will usually be no larger than 30 and thus the trigonometric variant is more

parsimonious than the dummy variable approach. It is therefore the preferred option in

the DSA procedure.

The order of the ARIMA model is either specified by the user or can be determined

by automatic model detection. For the latter the Hyndman-Khandakar algorithm is

implemented (Hyndman and Khandakar, 2008), though other methods could be used

as well (e.g. Gómez and Maravall, 2001).

The outlier adjustment is similar to that described by Chen and Liu (1993).4 The

procedure consists of two parts. Part one contains the iterative one-by-one detection of

possible outliers at all time points based on the residuals of an ARIMA model. Part two

includes all potential outliers as regressors in a final ARIMA model and then removes all

candidates from the set of potential outliers that do not surpass a prespecified threshold

for the t-statistics. For monthly time series, these two parts are iterated until conver-

gence. In the case of daily time series, convergence is infrequent and divergence, i.e. an

increasing number of outliers found in each iteration, a serious possibility. To avoid this,

the threshold for keeping outliers is higher, often a critical value of the t-statistic of 7 or

3In our case, the AICc is preferable to the Bayesian information criterion (BIC) as it asymptotically
selects the model that minimises the mean squared prediction error (Vrieze, 2012). Also, empirical
results show that sometimes the BIC selects a value for J that is close or equal to one, so that only basic
annual and no monthly movements are estimated, even if intra-monthly seasonality is clearly present.

4That procedure is implemented in the R package tsoutliers (López, 2015). The procedure described here
adapts some of the implemented methods to the features of daily time series.
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more is used. Additionally, the number of iterations may be chosen to be smaller than

for low frequency time series.

If one or several moving holidays have an impact on the original time series, regressors

for these holidays can be incorporated into the estimation process. Often, it can be difficult

to decide on an optimal functional form of the regressors, which always will depend on the

characteristics of the given time series. Section 4.1 discusses alternatives for the currency

in circulation. Evidently, the impact of other variables could be accounted for by including

appropriate regressors into the RegARIMA model.

For data producers carrying out seasonal adjustment on a regular basis, it can become

time-consuming to recalculate the complete seasonal adjustment every time a new data

point is added to a series. To overcome the necessity of daily re-estimation, forecasted

seasonal factors can be used for the adjustment of additional data. We can extend the

series adjusted for intra-weekly seasonality using forecasts of length h based on the final

RegARIMA model. As the next two steps, i.e. removing intra-monthly and intra-annual

seasonality, are based on the series adjusted for intra-weekly and moving holiday effects,

the final seasonally adjusted series will include an h-step ahead forecast. Thus, it is

straightforward to compute forecasts for the intra-monthly and intra-annual seasonal fac-

tors. The forecasts of the intra-weekly seasonal factors have to be obtained independently.

The forecast of the original series will be given by the forecast of the seasonal factor

of the weekday, S
(7)
t , and the forecast of the original series adjusted for weekday effects,

SA
(7)
t :

Ŷt+h = Ŝ
(7)
t+h + ŜA

(7)

t+h. (11)

As discussed, ŜA
(7)

t+h is obtained using the RegARIMA model. Ŝ
(7)
t+h is forecasted using

Holt’s (2004) double exponential smoothing with heterogenous seasonal effects to extra-

polate the seasonal factors for the day of the week.5 The level lt and the slope bt of S
(7)
t

are given by:

ltj = αjS
(7)
tj + (1− αj)(lt−7,j + bt−7,j) ∀ j ∈ (1, ..., 7). (12)

btj = µj(ltj − lt−7,j) + (1− µj)bt−7,j ∀ j ∈ (1, ..., 7). (13)

with αj and µj estimated from the data. This is equivalent to estimating double expo-

5In the Census X-11 method without RegARIMA modelling, the seasonal factors are forecasted assuming
that the change of each period’s seasonal factor is proportional to the last year’s change (Ladiray and
Quenneville, 2001). For a given number of observations per seasonal cycle f , the seasonal factors are
extrapolated by St+f = St + α?(St + St−f ) ∀ t ∈ (N + 1− f, ..., N + h− f) with α? usually set to 1/2.
The disadvantage of this heuristic is that the rate of change α? has to be set by the user. Also, for daily
data, h can become quite high. This increases the importance of estimating rather than specifying α?.
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nential smoothing equations for each weekday separately. Equations 12 and 13 are used

to obtain an h-step ahead forecast:

Ŝ
(7)
t+h,j = ltj + hbtj. (14)

Adding the forecast of the intra-weekly seasonal factors to the RegARIMA forecasts yields

the forecasts for the original series. These can be used to compute implicit seasonal factors

given by the difference between the original and the seasonally adjusted time series.

3.3 Step III: Adjusting Intra-Monthly Seasonality

While the length of any year is always the same except for the leap year, the number

of days in a month ranges 28 to 31 with an average of 30.4 days per month. Ignoring

the change of the number of days by assuming each month to have 30 days would blend

together the effects of different days of the month.

The problem of confused effects can be circumvented by extending each month to 31

days. There are basically two methods of achieving this. Either the course of each month

has to be stretched to 31 days by interpolation after warping the time axis, or the deficit

days have to be filled up. The characteristics of the intra-monthly seasonality determine

which of these options is preferable. If the seasonal pattern is compressed in shorter

months, i.e. peaks and troughs have the same magnitude but occur in less time, then

stretching is the optimal response. The latter method is preferable if the typical seasonal

movement of months with 31 days is cut-off or halted in the other months.

For the extension of the time series, several different methods can be utilised. While

regression based techniques have the advantage of possibly incorporating much or all of

the information that is contained in the actual series, in the context of time series analysis

they can become computationally expensive. Therefore, it seems preferable to use a more

parsimonious approach, namely cubic splines that can be used for stretching or extending

the time series to span over 31 days.6 Efficient algorithms are readily available and have

the benefit of a high degree of smoothness, and thus are an alternative to simple linear

interpolation that does not take into account the local dynamics of the series, though

differences are usually small. The smoothness is ensured as cubic splines have continuous

first and second derivatives by definition.

For the ith interval that ranges from ti to ti+1, the spline function for our interpolated

time series Y ? can be represented by a simple cubic polynomial

Y ?
i (t) = a1,i(t− ti)3 + a2,i(t− ti)2 + a3,i(t− ti) + a4,i. (15)

6Depending on the characteristics of the time series other interpolation techniques may be preferred. If
smoothness is not desirable, linear interpolation or carrying the last observation forward can be used.
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To obtain a solution for the parameters a1,i, a2,i, a3,i, and a4,i the first and second deriva-

tives are required to be continuous, i.e.

dY ?
i (ti)

dt
=
dY ?

i−1(ti)

dt
(16)

and
d2Y ?

i (ti)

dt2
=
d2Y ?

i−1(ti)

dt2
:= η, (17)

where η has to be specified in order to obtain a unique solution (Forsythe, Malcolm,

and Moler, 1977; Press, Teukolsky, Vetterling, and Flannery, 1992). Here, the Forsythe-

Malcolm-Moler algorithm is applied to obtain values for the additional data points needed

to have 31 days in each month. Then, the intra-monthly seasonal influences are estimated

based on the resulting time series, for which γS(31) has to be chosen to fit the characteristics

of the intra-monthly seasonal pattern.

3.4 Step IV: Adjusting Intra-Annual Seasonality

As the time series has been extended in step II, the excess days including every 29th of

February are removed so that each year contains 365 days. Then γS(365) has to be chosen:

now that potential outliers and the influence of moving holidays have been removed from

the series, the main objective in choosing γS(365) is capturing the variability of the intra-

annual seasonality optimally. As in step I and III, the intra-annual seasonality is estimated

and adjusted for using STL.

3.5 Post-adjustment and Forecast

As discussed in Section 3.2, the forecasts of the original series are calculated as the sum of

the ARIMA based forecasts of the original series adjusted for intra-weekly seasonality and

the forecasts of the intra-weekly seasonal factors. The main objective of these forecasts

is the provision of seasonal factors so that data providers can use a (controlled) current

adjustment scheme for the adjustment of their data (Eurostat, 2015). This is of practical

importance, because it is time-consuming to re-identify the model, the filters, and the

regression parameters each time new data are available.

After all seasonal factors have been estimated, the 29th of February is added to the

seasonally adjusted series using a spline interpolation. Finally, the effects of the outliers

are added to the seasonally adjusted time series.
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4 Application: Adjusting the German Currency in

Circulation

The currency in circulation is calculated as the cumulated differences of cash outflows

from and inflows to the central bank. The distribution of banknotes to the public runs

primarily through commercial banks. The series’ trend is closely related to nominal GDP,

but is also marked by periodical influences (Cabrero et al., 2009). Figure 2 highlights

the different seasonal fluctuations of the time series. Most noticeably, the currency in

circulation increases in Germany some weeks before Christmas, peaking just before the

end of December. In addition, the series is characterised by an increase towards the end

of most months as well as towards the end of the week. Finally, an increased demand for

banknotes can be observed around moving holidays such as Easter and Pentecost.

For the currency in circulation in Germany data for all denominations from 5 to 500

Euro are available on a daily basis except for the weekend. The time series contain about

7 years of data, starting in 2011. As no new currency is circulated on the weekend it is

plausible to assume that the number of banknotes is the same as on the previous Friday.

Here, the discussion will focus primarily on the total currency in circulation, but results

for each denomination are shown in Appendix C.

4.1 Specifications of the Seasonal and Moving Holiday Adjust-

ment

Using the robust STL, the value for γS(7) that controls the stability of the estimated

seasonal factor is set to 151, i.e. about 3 years of neighbouring observations are included in

the local regression. This is sufficiently high to avoid including annual periodic movements

into the intra-weekly seasonal factors, while also taking into account the high stability of

the weekly seasonal pattern. To assess the flexibility of the seasonal factors, one strategy

is to inspect the SI-ratio, i.e. the combined seasonal-irregular component, together with

the seasonal factor of interest. Both should follow a similar trajectory, except that the

seasonal-irregular component will fluctuate more (see Cleveland and Terpenning, 1982).

As already mentioned, it will often prove difficult to find the optimal functional form of

the regressors that capture the influence of moving holidays and which holidays to include.

In the case of the currency in circulation, it seems plausible to assume that Easter and

Ascension have an effect on the demand for banknotes. This is because more money is

spent, for example on presents, travel or other activities. Whether or not people decide

to travel during their holidays depends in part on the dates of Easter and Ascension. In

addition, the exact timing of an increase in money demand depends on random events

13



that change from year to year. The effects of these contingencies tend to even out over

the course of a month. But for daily time series, the objective is to estimate the influence

of Easter on the currency in circulation of every potential day and thus, the available data

can be quite noisy.

One option for modelling calendar effects is to use a dummy variable for each of m

days before and for each of n days after Easter Sunday and for the other holidays resulting

in m + n + 1 dummy variables per holiday. Obviously, this approach has its drawbacks.

Firstly, we face a potentially large loss of degrees of freedom. Secondly, the model may

be overfitting, especially if only a few years of observations are available. In that case,

the estimate of the effect of at least some regressors will lead to a poor out-of-sample

fit. And lastly, m and n have to be chosen. Using information criteria such as the AICc

the number of days to be included before and after Easter can be determined. As this

means comparing a large set of different models, a more practical approach is to estimate

a RegARIMA model with large values of m and n and then delete all non-significant

dummy variables.7

The number of cosine and sine terms to be included in Equation 10 to capture the

monthly and annual seasonal movements is also determined by the lowest AICc which in

this case leads to the inclusion of 28 x 2 trigonometric terms. This suggests that intra-

annual as well as intra-monthly movements have a significant influence. Note here that

multiples of 12 capture monthly patterns. The RegARIMA results show that the effects

of Easter and Ascension are significant and 13 dummy variables are needed as m = 7 and

n = 5.

The outlier detection found three outliers that all impact the series in the end of 2012

or beginning of 2013.

For the computation of the intra-monthly seasonal factors the length of the seasonal

Loess filter γS(31) := 51, i.e. more than 4 years of observations are included in the estima-

tion of each value of the intra-monthly seasonal factor. Additionally, the robust version

of STL is used. This ensures that annual effects do not influence the computations. As

the series adjusted in this step includes the forecasts from the RegARIMA models, the

intra-monthly seasonal factors already include forecasted values.

For the final step, choosing a long seasonal filter results in an almost stable seasonal

factor, i.e. the value of the intra-annual seasonal factor is close to being identical in all

years. On the other hand, a too small value for γS(365) may lead to excessive variability

7An alternative that uses fewer regressors can be derived by noting that usually there is an increase in the
currency in circulation before Easter Sunday that fades out but lasts until a few days after. A similar
relation can be found for Ascension, although less pronounced. For Easter, this pyramid-like pattern
can be modelled parsimoniously by means of the function xt = (n+m+2

2 − |i− −m+n
2 |)1t=Easter+i ∀ i ∈

[−m;n].
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in the trajectory of the seasonal factor. To avoid single observations dominating the

estimation of the local regressions and moving averages, again, the robust version of STL

is used, the number of inner and outer loops of the STL algorithm is increased, and the

Loess parameter for the seasonal factor γS(365) := 13.

Comparing the smoothed periodogram (Venables and Ripley, 2002) of the differenced

original and the differenced final adjusted series indicates that the spectral peaks at the

seasonal frequencies have been filtered out (see Figure 3. Frequency 12 and 24 are the

first monthly cycles; W1, W2, W3 are the first three weekly cycles corresponding to
365
7

, 730
7

, 1095
7

cycles a year). So based on the spectral diagnostics, we can conclude that

the seasonal movements of the currency in circulation have been eliminated successfully.

Figure 4 shows the original series of the total currency in circulation in Germany and its

calendar and seasonally adjusted counterpart.
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Table 1: Mean Absolute Deviation (MAD), Root Mean Square Deviation (RMSD, Both in
Million Euro), and Mean Absolute Percentage Deviation (MAPD) of the Seasonally Ad-
justed Currency in Circulation in Germany Obtained Using DSA from Results Obtained
by Other Methods.

Time series aggregated to
monthly means month-end values

MAD RMSD MAPD MAD RMSD MAPD

5 Euro TRAMO/SEATS 19.51 22.80 0.23 22.06 25.70 0.26
X-13 20.32 22.99 0.24 22.03 25.58 0.26
STR 22.15 26.16 0.26 23.02 27.98 0.27
STR* 23.76 28.37 0.28

10 Euro TRAMO/SEATS 24.95 32.14 0.11 62.80 73.68 0.27
X-13 23.20 29.34 0.10 64.30 74.08 0.28
STR 32.33 43.39 0.15 48.31 66.94 0.22
STR* 40.80 57.76 0.19

20 Euro TRAMO/SEATS 63.33 79.59 0.17 160.81 189.03 0.44
X-13 67.26 83.93 0.18 153.35 185.09 0.43
STR 96.37 118.44 0.27 111.16 139.81 0.30
STR* 106.57 133.17 0.29

50 Euro TRAMO/SEATS 201.55 240.02 0.14 384.08 455.45 0.27
X-13 200.83 242.94 0.14 431.69 492.68 0.31
STR 210.19 254.55 0.14 324.39 417.41 0.23
STR* 263.00 334.68 0.18

100 Euro TRAMO/SEATS 95.10 116.48 0.11 109.76 141.30 0.13
X-13 128.91 165.13 0.13 131.08 156.33 0.14
STR 240.11 296.46 0.25 248.41 315.93 0.26
STR* 247.22 310.25 0.26

200 Euro TRAMO/SEATS 41.38 58.51 0.18 49.70 59.96 0.20
X-13 38.73 53.62 0.15 39.95 52.32 0.15
STR 43.65 55.94 0.17 43.34 56.47 0.17
STR* 48.81 68.43 0.20

500 Euro TRAMO/SEATS 156.46 217.31 0.11 171.28 226.84 0.12
X-13 175.70 234.28 0.11 197.38 251.97 0.13
STR 420.10 574.59 0.27 439.81 591.26 0.29
STR* 436.53 596.60 0.28

Total Euro TRAMO/SEATS 326.11 390.54 0.07 728.78 850.39 0.15
X-13 353.96 437.62 0.07 762.06 867.99 0.16
STR 429.14 525.70 0.09 537.71 692.39 0.11
STR* 498.21 634.72 0.11

* STR without any temporal aggregations, i.e. using daily figures.
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4.2 Comparison with other seasonal adjustment procedures

We compare the results to those obtained from X-13 and TRAMO/SEATS in the JDeme-

tra+ package (version 2.2) by transforming the daily figures to end-of-month values and

monthly means respectively (see Figure 6 and 7 in Appendix C). Additionally, we in-

clude results obtained from using the seasonal adjustment routine STR developed by

Dokumentov and Hyndman (2015).

For the time series aggregated to monthly means, neither the RegARIMA procedure in

X-13 nor the TRAMO method in TRAMO/SEATS automatically detects Easter effects. If

we include these manually the regressors are not significant. They are though, if daily data

are used in the DSA procedure (see Table 3 in Section B). Of course, these results depend

on how the Easter effect is modelled. The built-in regressors in JDemetra+ indicate the

location of the six respectively eight days before Easter, while a slightly different variant

is used for the daily time series (see Section 3.2). Similarly, effects of the number of

weekdays have not been detected by the common seasonal adjustment procedures. The

availability of more data and equivalently the higher “visibility” of weekly patterns is one

major advantage of the seasonal adjustment of daily compared to lower frequency time

series.

Overall, for monthly aggregates, the discrepancies between the DSA procedure, X-13

and TRAMO/SEATS are fairly small for the currency in circulation (see Table 1). The

mean absolute percentage difference (MAPD) between the DSA result and those obtained

by either TRAMO/SEATS or X-13 ranges from 0.08 to 0.24 percent for all series aggre-

gated to monthly means. Correspondingly, the MAPD for these series ranges from 0.07

to 0.24 percent for the implicit combined calendar and seasonal factor. For the series

aggregated to end-of-month values the MAPD ranges from 0.12 to 0.44 percent for the

seasonally adjusted series as well as for the implicit factors. The difference to STR is

similar and depending on the data transformation used, the difference is even smaller.

Measured by MAPD the differences between DSA and STR range from 0.09 to 0.27 per-

cent based on monthly averages and 0.11 to 0.30 percent based on end-of-month values. If

we use the daily figures without any temporal aggregation, the MAPD lies between 0.11

and 0.29 percent.

The small differences may be a consequence of the structure of the time series, espe-

cially given that the seasonal influences are dominated by a strong trend. Therefore, as

a further comparison, a small set of daily time series of different length was simulated by

means of a structural model, where an ARIMA process is combined with seasonal factors,
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Table 2: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean
Absolute Percentage Error (MAPE) of the Estimated Seasonal Factors

Simulated daily time series aggregated to
monthly means month-end values

MAE RMSE MAPE MAE RMSE MAPE

DSA 2.18 2.69 2.83 2.51 3.15 3.21
TRAMO/SEATS 2.71 3.37 3.51 3.34 4.25 4.38
X-13 2.17 2.74 2.72 3.13 3.89 4.10
STR 2.37 3.01 3.23 2.61 3.30 3.55

S
(f)
t ∀ f ∈ (7, 31, 365), obtained from trigonometric terms and time-varying effects:

Yt = SAt + S
(7)
t + S

(31)
t + S

(365)
t . (18)

SAt =
(1− θ1)

(1− φ1B − φ2B2 − φ3B3)(1−B)
εt. (19)

S
(f)
t =

J(f)∑
j=1

(
β

(f)
j,t sin

(
2πjG(t)

f

)
+ β

(f)
j,t cos

(
2πjG(t)

f

))
. (20)

β
(f)
j,t = ρ(f)β

(f)
j,t−1. (21)

The time series are simulated with θ1 := −0.4, φ1 := −0.2, φ2 := 0.5, φ3 := 0.1, error terms

are drawn from a standard normal distribution, for the weekly seasonal pattern ρ(7) ∼
N (1, 10−4) and β

(7)
j,0 = 1.6 · 0.7j, for the monthly seasonal pattern ρ(31) ∼ N (1, 0.00015)

and β
(31)
j,0 = 1.6 · 0.6j, and for the annual seasonal pattern ρ(365) ∼ N (1, 0.00025) and

β
(365)
j,0 = 4.4 · 0.9j.

Visual inspection of Figure 8 and 9 in the Appendix corroborates the assertion from

before that DSA produces seasonally adjusted series similar to those obtained by X-13

and TRAMO/SEATS.

For the series obtained through taking means over the whole month, the mean ab-

solute error (MAE) of the estimated seasonal factors are 2.2, 2.7, 2.2, and 2.4 for DSA,

TRAMO/SEATS, X-13, and STR. Based on the end-of-the-month figures, the MAEs are

2.5, 3.3, 3.1, and 2.6. For the seasonally adjusted series without any temporal aggregation,

the MAE is 2.5 and 2.6 for DSA and STR, respectively (see also Figure 10). Thus, the

MAE do not find that any method completely outperforms all others, as somewhat similar

seasonally adjusted time series are obtained. The same conclusions can be drawn from

the root mean squared error (RMSE) and the mean absolute percentage error (MAPE)

as can be seen in Table 2. Again, this indicates a high validity of the estimated seasonally

adjusted series.
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5 Discussion

The procedure presented here closes a gap in the methods for seasonal and moving hol-

iday adjustment of daily time series. As shown with the currency in circulation and a

set of simulated series, the procedure yields sensible results and is able to adjust the

intra-weekly, intra-monthly and intra-annual periodic movements in addition to moving

holidays. The comparison of the aggregated daily series with the results obtained by using

the well-established seasonal adjustment procedures for monthly time series implemented

in JDemetra+ indicates the validity of the results of DSA.

Future developments should aim at improving the computational speed and reliability

of the outlier detection and estimation. Also, optimal default settings for the length of

the seasonal Loess filter γS(f) should be investigated. Post-smoothing of the seasonal

factors may increase the stability of the seasonal factors for series with highly harmonic,

steady seasonal movements and few observations. Finally, reliable seasonality tests that

are attuned to the characteristics of daily time series are needed.
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A Example of Seasonal Adjustment with BAYSEA

Results for Seasonal Adjustment based on the BAYSEA Algorithm 

for Simulated Time Series
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Figure 5:

The so-called bayesian seasonal adjustment, BAYSEA, was developed as a structural

model based alternative to existing methods such as Census X-11 for the seasonal ad-

justment of quarterly and monthly time series (Akaike, 1980; Akaike and Ishiguro, 1983).

Again, the idea is to decompose a time series Yt with seasonal frequency f into a trend-

cycle Tt, a seasonal St and an irregular component It (see Equation 1) based on assump-

tions of the behaviour of the components. The systematic part, i.e. St and Tt, should

not deviate systematically from the time series Yt, so that (Yt − Tt − St)
2 ought to be

small. The assumption of a locally smooth behaviour of the trend translates into the

minimisation of the second difference of Tt. Finally, the seasonal component is supposed

to be stable. Simultaneously, this can be achieved by minimising

((Yt − Tt − St)2 + κ2
1{κ2

2[(Tt − Tt−1)− (Tt−1 − Tt−2)]2+

(St − St−f )2 + κ2
3(St + St−1 + . . .+ St−f+1)2})
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using constrained least squares, where κ1, κ2, and κ3 are constants, usually determined

by using information criteria.

As Figure 5 shows, the main drawback of BAYSEA is its need for very long time

series, when the number of observations per year increases. Therefore it does not lend

itself easily to the seasonal adjustment of daily time series.
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B RegARIMA Results

Table 3: RegARIMA Results for Currency in Circulation in Germany. Based on Time
Series only Adjusted for Intra-Weekly Seasonal Effects.

Regressor Coefficient S.E. T-Value Regressor Coefficient S.E. T-Value

ma1 0.08910 0.03018 2.95 S22 0.00011 0.00006 1.93
drift 0.00023 0.00003 8.26 C22 −0.00007 0.00006 −1.28
S1 −0.00264 0.00121 −2.18 S23 0.00008 0.00005 1.41
C1 0.00325 0.00129 2.51 C23 −0.00016 0.00005 −3.02
S2 0.00252 0.00060 4.18 S24 0.00020 0.00005 3.84
C2 0.00124 0.00061 2.04 C24 0.00028 0.00005 5.58
S3 0.00230 0.00040 5.75 S25 −0.00001 0.00005 −0.29
C3 0.00087 0.00040 2.17 C25 −0.00004 0.00005 −0.90
S4 0.00159 0.00030 5.27 S26 −0.00010 0.00005 −2.11
C4 −0.00060 0.00030 −1.98 C26 −0.00004 0.00005 −0.76
S5 0.00164 0.00024 6.80 S27 −0.00012 0.00005 −2.51
C5 −0.00112 0.00024 −4.63 C27 −0.00001 0.00005 −0.16
S6 0.00086 0.00020 4.29 S28 −0.00008 0.00005 −1.66
C6 −0.00093 0.00020 −4.61 C28 −0.00004 0.00004 −0.78
S7 0.00015 0.00017 0.87 Eas{-7} 0.00033 0.00024 1.39
C7 −0.00117 0.00017 −6.77 Eas{-6} 0.00041 0.00035 1.19
S8 −0.00033 0.00015 −2.22 Eas{-5} 0.00046 0.00042 1.10
C8 −0.00096 0.00015 −6.37 Eas{-4} 0.00125 0.00047 2.68
S9 −0.00046 0.00013 −3.41 Eas{-3} 0.00225 0.00050 4.50
C9 −0.00054 0.00013 −4.01 Eas{-2} 0.00347 0.00052 6.69
S10 −0.00040 0.00012 −3.34 Eas{-1} 0.00486 0.00053 9.25
C10 −0.00007 0.00012 −0.57 Eas{0} 0.00437 0.00052 8.42
S11 −0.00043 0.00011 −3.92 Eas{1} 0.00436 0.00050 8.73
C11 0.00011 0.00011 1.05 Eas{2} 0.00436 0.00047 9.36
S12 0.00091 0.00010 9.03 Eas{3} 0.00497 0.00042 11.94
C12 0.00055 0.00010 5.48 Eas{4} 0.00331 0.00035 9.56
S13 −0.00013 0.00009 −1.41 Eas{5} 0.00079 0.00024 3.27
C13 0.00041 0.00009 4.38 Asc{-7} −0.00072 0.00024 −3.02
S14 −0.00003 0.00009 −0.40 Asc{-6} −0.00141 0.00035 −4.08
C14 0.00040 0.00009 4.63 Asc{-5} −0.00120 0.00042 −2.88
S15 0.00012 0.00008 1.44 Asc{-4} −0.00062 0.00047 −1.33
C15 0.00025 0.00008 3.07 Asc{-3} 0.00005 0.00050 0.09
S16 0.00028 0.00008 3.71 Asc{-2} 0.00031 0.00052 0.61
C16 0.00002 0.00008 0.26 Asc{-1} 0.00057 0.00053 1.09
S17 0.00033 0.00007 4.60 Asc{0} 0.00078 0.00052 1.49
C17 −0.00004 0.00007 −0.60 Asc{1} 0.00223 0.00050 4.47
S18 0.00024 0.00007 3.51 Asc{2} 0.00129 0.00047 2.77
C18 −0.00016 0.00007 −2.32 Asc{3} −0.00002 0.00042 −0.05
S19 0.00012 0.00007 1.77 Asc{4} −0.00028 0.00035 −0.80
C19 −0.00012 0.00006 −1.85 Asc{5} −0.00012 0.00024 −0.51
S20 0.00011 0.00006 1.74 LS12.12.02 0.00947 0.00025 37.65
C20 −0.00013 0.00006 −2.12 TC12.12.03 −0.00401 0.00022 −18.14
S21 −0.00002 0.00006 −0.27 AO13.01.03 0.00122 0.00015 8.23
C21 −0.00014 0.00006 −2.31

Model order: (0 1 1), trigonometric sinusoid (Sj) and cosinusoid (Cj) regressors with j cycles per year, Eas{m} is the
effect m days after Easter, Asc{n} is effect n days after Ascension. ZZyy.mm.dd is an outlier of type ZZ on the follow-
ing day: year yy, month mm and day dd.

25



C Comparison of Seasonal Adjustment Procedures

Comparison of Seasonal Adjustment Procedures based on End-of-Month Figures

Deutsche Bundesbank
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Comparison of Seasonal Adjustment Procedures based on End-of-Month Figures (cont.)

Deutsche Bundesbank

Figure 6
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Comparison of Seasonal Adjustment Procedures based on Monthly Means

Deutsche Bundesbank
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Comparison of Seasonal Adjustment Procedures based on Monthly Means (cont.)

Deutsche Bundesbank

Figure 7
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Comparison of Seasonal Adjustment Procedures based on End-of-Month Figures

of Simulated Time Series

Deutsche Bundesbank
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Comparison of Seasonal Adjustment Procedures based on End-of-Month Figures

of Simulated Time Series (cont.)

Deutsche Bundesbank
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Comparison of Seasonal Adjustment Procedures based on 

Monthly Means of Simulated Time Series

Deutsche Bundesbank
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Comparison of Seasonal Adjustment Procedures based on 

Monthly Means of Simulated Time Series (cont.)

Deutsche Bundesbank
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Comparison of Seasonal Adjustment Procedures based on 

Daily Figures of Simulated Time Series

Deutsche Bundesbank
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