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Motivation

Macro literature usually focuses on country-level outcomes.

I This can mask regional heterogeneity. County wages

I Can miss interaction between regional and aggregate outcomes.

New economic geography (NEG) literature has looked at regional outcomes, but
chiefly in static models.

I Does not look at business cycles; usually no shocks in the model.

I NEG models are usually not forward looking.

I Dynamic NEG models usually contain just a few regions.
I Difficult to track spatial dynamics.
I Non-atomistic regions make optimal policy very difficult.

I Those in continuous space usually have very restrictive assumptions.

NEG Literature

We attempt to bring two literatures together:

I Propose new approach to building macro models with spatial heterogeneity.

I Study spatial effects of business cycles.
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Spatially correlated shocks

Starting point: spatial heterogeneity driven by spatially correlated shocks.

Economic conditions are correlated across physical space — so too are the driving
shocks: County wages II

I Firms physically closer to frontier firms catch up quicker (Griffith, Redding &
Simpson 2009, Comin, Dmitriev & Rossi-Hansberg 2012, Cardamone 2017).

I Physical distance more important then economic distance in cross-country
spillover of TFP growth (Glass, Kenjegalieva & Paez-Farrell 2013).

Fortunately, spatial correlation enhances tractability of heterogeneous agent
models.

3/ 26



Spatially correlated shocks

Starting point: spatial heterogeneity driven by spatially correlated shocks.

Economic conditions are correlated across physical space — so too are the driving
shocks: County wages II

I Firms physically closer to frontier firms catch up quicker (Griffith, Redding &
Simpson 2009, Comin, Dmitriev & Rossi-Hansberg 2012, Cardamone 2017).

I Physical distance more important then economic distance in cross-country
spillover of TFP growth (Glass, Kenjegalieva & Paez-Farrell 2013).

Fortunately, spatial correlation enhances tractability of heterogeneous agent
models.

3/ 26



Spatially correlated shocks

Starting point: spatial heterogeneity driven by spatially correlated shocks.

Economic conditions are correlated across physical space — so too are the driving
shocks: County wages II

I Firms physically closer to frontier firms catch up quicker (Griffith, Redding &
Simpson 2009, Comin, Dmitriev & Rossi-Hansberg 2012, Cardamone 2017).

I Physical distance more important then economic distance in cross-country
spillover of TFP growth (Glass, Kenjegalieva & Paez-Farrell 2013).

Fortunately, spatial correlation enhances tractability of heterogeneous agent
models.

3/ 26



Consequences of spatial correlation

Individual shocks generate aggregate volatility:

I Partial answer to the question of the origins of aggregate fluctuations.
I Alternative to Gabaix (2011) and Acemoglu et al. (2012).

Means that location matters:

I Welfare costs of fluctuations might be much larger.

I Role for redistribution across space.

I Can help explain internal migration patterns and declines of some regions.

Many interesting questions, for example:

I How do regional asymmetries effect transmission of monetary policy?

I How do local shocks affect internal migration / housing markets / labour
markets across physical space?

I Who are the regional winners/losers to policy programmes or other
macro/local shocks? Example [another paper]
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Contributions

1. We propose a new approach to building macro models featuring spatial
heterogeneity.
I Our approach is quite general:

I Space need not be physical space.
E.g it could be the space of product-categories or labour skill levels.

I The geometry of space is flexible.
E.g. it could be a plane, torus, sphere or network.

I Correlated shocks actually help computation:
I Continuity means relatively few grid points are needed.

I We provide general conditions for the existence of spatially correlated shock
processes.

2. We develop a spatial DSGE model with the key ingredients from the NEG
literature.
I Strong agglomeration forces will lead to persistent movements in population

and capital.

5/ 26



Contributions

1. We propose a new approach to building macro models featuring spatial
heterogeneity.
I Our approach is quite general:

I Space need not be physical space.
E.g it could be the space of product-categories or labour skill levels.

I The geometry of space is flexible.
E.g. it could be a plane, torus, sphere or network.

I Correlated shocks actually help computation:
I Continuity means relatively few grid points are needed.

I We provide general conditions for the existence of spatially correlated shock
processes.

2. We develop a spatial DSGE model with the key ingredients from the NEG
literature.
I Strong agglomeration forces will lead to persistent movements in population

and capital.

5/ 26



An example spatially correlated shock process

Suppose space is 1-dimensional over the interval [0, 1].

One shock process over this space is the Orstein-Uhlenbeck process:

I Continuous time (space) analogue to Gaussian AR(1) process.

I Characterised by covariance structure:

cov (εx , εx̃) = exp
(
−ζ|x − x̃ |

)

E.g. ζ = 8:
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General modelling approach I

1. Define the geometry of the relevant space: plane, circle, torus, network, etc.
I E.g., suppose space is a circle, indexed by x ∈ X .

2. Define the model: objectives, markets, frictions and spatial shock.
I There will be conditions at each location x giving decisions and state evolution.
I There will be some aggregate / market conditions.
I Example spatial stochastic process:

ax,t = ρax,t−1 + σεx,t

cov (εx,t , εx̃,t) = s
(
ζ, d (x , x̃)

)
I ζ will control spatial correlation.
I s and d must fulfil certain conditions to produce a valid process. See paper.
I Often s(ζ, d) = exp (−ζd).
I Note, with at ≡

∫ 1

0
ax,t dx and εt ≡

∫ 1

0
εx,t dx , we have:

at = ρat−1 + σεt
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General modelling approach II

3. Choose grid geometry, e.g. N = 100 evenly spaced points.
I Note on accuracy:

I Bounded variation of shock implies error from using the trapezium rule decays
at 1/N2 at the slowest.

I For sufficiently smooth functions the rate is k−N for some k > 1 (thanks to
periodicity).

I Compare with 1/
√
N, with Monte Carlo used in e.g. Krusell-Smith.

I Approximate outcomes at locations between nodes
via linear interpolation.

I Approximate integrals over space via the
trapezium rule.

I E.g. market clearing conditions of the form:
0 =

∫ 1
0 Bx,t dx become 0 =

∑N
n=1 Bxn,t .

4. Solve via perturbation. e.g., with Dynare.
I We provide a toolkit to help define spatially correlated shocks:

https://github.com/tholden/DynareTransformationEngine

8/ 26

https://github.com/tholden/DynareTransformationEngine


General modelling approach II

3. Choose grid geometry, e.g. N = 100 evenly spaced points.
I Note on accuracy:

I Bounded variation of shock implies error from using the trapezium rule decays
at 1/N2 at the slowest.

I For sufficiently smooth functions the rate is k−N for some k > 1 (thanks to
periodicity).

I Compare with 1/
√
N, with Monte Carlo used in e.g. Krusell-Smith.

I Approximate outcomes at locations between nodes
via linear interpolation.

I Approximate integrals over space via the
trapezium rule.

I E.g. market clearing conditions of the form:
0 =

∫ 1
0 Bx,t dx become 0 =

∑N
n=1 Bxn,t .

4. Solve via perturbation. e.g., with Dynare.
I We provide a toolkit to help define spatially correlated shocks:

https://github.com/tholden/DynareTransformationEngine

8/ 26

https://github.com/tholden/DynareTransformationEngine


Model Overview

I RBC model + standard new economic geography features (following
Krugman 1991).

I Key features:
I Population movement.
I Competing land usage: farming and residential.
I Non-tradeable raw goods (production services).
I Two types of final good: agricultural products and manufactured products.
I Differentiated intermediate manufactured goods subject to iceberg trade costs.
I Firm entry à la Bilbiie, Ghironi & Melitz (2012).
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Agglomeration mechanism

The key mechanism works as follows:

I Productivity shock at x increases wages there.

I People move to x for higher wages.

I The increased demand leads to firm entry.

I More products on sale implies increased productivity due to the taste for
variety.

I This feeds back to higher wages, more migration, more firm entry etc.

I Nearby locations also benefit as iceberg transport costs mean the increased
demand from x is concentrated in its neighbourhood.
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Households and firms over space

I Set of points in space x ∈ X , normalised so
∫
X

dx = 1.

I Distance between any x , x̃ ∈ X given by d (x , x̃).

I Firms, capital and population have a density over space.

I Land is uniform over space.

I Representative household at each location, each household is part of a
representative family.

I Representative family maximises a utilitarian social welfare function.
I Equivalent to complete markets.
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Productive sectors at x ∈ X

Raw goods, Zx,t
(non-tradeable)

Agricultural goods, Fx,t

(freely tradeable)

Differentiated
intermediate
goods, Yj,x,t

(tradeable at cost)

Homogeneous final
goods, Yx,t

(non-tradeable)

Ax,t
Kx,t
Hx,t

Mx,t

x̃

yj,x̃,t
Fx̃,t

Fx,t Cx,t , Ix,t

Lx,t
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Production at x ∈ X

Skip details

I Raw good: Zx,t =
[
Kα
x,t−1

(
Ax,tHx,t

)1−α
]1−κ

Mκ
x,t

I Non-tradeable.
I Sold at Px,t .

I Agriculture: Fx,t = Lγx,tZ
1−γ
F ,x,t

I Freely tradeable.
I Numeraire.

I Manufactured good: Yj,x,t = Zj,x,t .
I Firm entry cost φt units of raw good, exit rate δt .
I Tradeable subject to iceberg costs (increasing in distance, τt controls rate).
I Sold at price Pj,x,t .

I Aggregator: Yx,t =

∫
X

∫ Jx̃,t
0

(
Yj,x̃,x,t

exp[τtd(x,x̃)]

) 1
1+λ

dj dx̃

1+λ

I Price Px,t .
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(
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I Price Px,t = (1 + λ)

[∫
X
Jx̃,t

(
Px̃,t exp

[
τtd (x , x̃)

])− 1
λ

dx̃

]−λ
.
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Capital holding companies at x ∈ X

I Capital law of motion:

Kx,t = (1− δK )Kx,t−1 +

1− Φ

(
Ix,t
Ix,t−1

)
Ix,t


I Capital rented out at RK ,x,t per unit to firms at x .

I Standard CEE assumptions about investment adjustment costs, Φ (·).

I Location specific capital stocks and adjustment costs make it particularly
hard to move capital between locations.
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Households and the representative family

Family head maximizes: FOCs

Et

∞∑
s=0

 s∏
k=1

βt+k−1

∫
X

Nx,t+s−1

U1−ς
x,t+s

1− ς
dx ,

s.t.∫
(Px,tCx,t + Ex,t) dx + Bt =

∫
(RL,x,tLx,t + Wx,tHx,t) dx + Rt−1Bt−1 + Tt

where:

Ux,t =

(
Cx,t

Nx,t−1

)θC (
Ex,t

Nx,t−1

)θF (
1− Lx,t
Nx,t−1

)θL
· · ·

Nt−1 ≡
∫
X

Nx̃,t−1 dx̃ , Dx,t ≡
∫
X

d (x , x̃)Nx,x̃,t dx̃ ,

Nx,t ≡
∫
X

Nx,x̃,t dx̃ , Nx,t = GN,tNx,t−1 −
∫
X

Nx,x̃,t dx̃ +

∫
X

Nx̃,x,t dx̃

1 = θC + θF + θL + θH + θN + ψ1 + ψ2 + ψ3.
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− 1

1 + ν

(
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)1+ν
θH 1

2
Ω2 − 1

2

(
log

(
Nx,t−1

Nt−1

))2
θN
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(
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Nx,t

)ψ2

exp

ψ3
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X

Nx̃,t−1

Nt−1
log

(
Nx,x̃,t

Nx,t−1
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dx̃
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Market clearing

Bt = 0

Yx,t = Cx,t + Ix,t + Mx,t

Zx,t = ZF ,x,t + φt
[
Jx,t − (1− δJ)Jx,t−1

]
+

∫ Jx,t

0

Zj,x,t dj∫
Ex,t dx =

∫
Fx,t dx
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Stochastic processes

Technology:

Ax,t = AP
t A

T
x,t

AP
t = GA,tA

P
t−1

logGA,t =
(
1− ρGA

)
logGA + ρGA

logGA,t−1 + σGA
εGA,t

logAT
x,t = ρA logAT

x,t−1 + σAεA,x,t

Similar AR(1) processes for GN,t , τt , φt and βt .
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Choice of space

I We choose a torus since this has a uniform steady state:

I Distance metric and continuous stochastic process: ACF

d
(
[x1, x2] , [x̃1, x̃2]

)
=

√(
min

{
|x1 − x̃1| , 1−|x1 − x̃1|

})2
+
(

min
{
|x2 − x̃2| , 1−|x2 − x̃2|

})2

cov
(
εA,x,t , εA,x̃,t

)
= s

(
ζ, d (x , x̃)

)
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Shock calibration

I We have experimented with various specifications for calibrating the spatial
persistence of the shock, using quarterly regional wages (1983-2016) as a
proxy for productivity.

I Our results are robust across all the specifications we have tried including:
I both state level and county level wages,
I both fixed effect, dynamic factor and state space approaches to removing

common variation over time,
I both in differences and filtered.

I In all cases we estimate Σi,j = σiσj exp
[
−ζdi,j

]
, where di,j is the geodesic

distance between region centroids, normalized so that the maximum distance
is
√

2.

I We estimate ζ ≈ 7 and set ζ = 8 as our model also generates endogenous
spatial persistence.
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Selected calibration

I U.S. evidence suggests that the average home buyer stays in their house for
around 13 years (NAHB/DHUD).
I Calibrate ψ3 to hit a proportion of 1

12.5×4
= 1

50
household members moving

each quarter.

I About 75% U.S. land is in broadly agricultural usage (USDA).
I Set θL = 1−0.75

0.75
γθF .

I Spending on food in U.S. is around 20% of personal consumption expenditure
excluding housing (BEA).
I Set θF = 1

4
θC .

I U.S. population density is 41.5/km2, but ranges between 2.33/km2 for
Wyoming and 470/km2 for New Jersey.
I Correspond to absolute log ratios to the whole U.S. of 2.88 and 2.43

respectively.
I Set Ω = 3 to allow for such dispersion.
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Remaining parameters

I Set θH = θC , and ψ1 = ψ2 = θF
2 , so one remaining degree of freedom in

preference share parameters.

I We set θN to generate a high degree of persistence in population movements,
while ensuring stability of the symmetric steady-state.
I A more careful calibration will be in future versions.

I All parameters:

α = 0.3, γ = 0.5, κ = 0.5, ν = 2, ς = 1.5, ζ = 8, λ = 0.1, δj = 0.01, δk = 0.03,

Γ = 1,Ω = 3,Φ
′′

(1) = 4,

θC = θH = 0.2618, θF =
θC
4
, θL = 0.0109, θN = 0.3338,

ψ1 = ψ2 =
θF
2
, ψ3 = 0.007,

GA = 1.005,GN = 1.0025, τ = 1, φ = 1, β = 0.99,

ρA = 0.9, ρGA
= 0.8, ρGN

= 0.5, ρτ = 0.95, ρφ = 0.95, ρβ = 0.95,

σA = σGA
= σGN

= στ = σφ = σβ = 0.001.
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Numerical Simulations

I Use a 9× 9 square grid.

I IRF simulations:
I 1% spatial productivity shock.
I Focus on shock centred on the point

(
1
2
, 1

2

)
.

I 10,000 year stochastic simulation (video).
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IRF to spatial productivity shock I
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IRF to spatial productivity shock II
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1000 years of population movements (Alternative link)
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https://www.youtube.com/watch?v=tuIs_sh4V4E


Conclusions

I This paper has presented a new approach to building heterogeneous agent
models in which heterogeneity is across space.
I Wide range of possible applications (not just physical space).

I Presented a DSGE model featuring key components of the new economic
geography literature.
I Including firm entry and strong agglomeration forces.
I Model generates very persistent movements in population.
I Leads to the birth and death of cities.

I Lots of plans for future work and extensions.
I Comments appreciated!
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US county-level average weekly wage oty % change (BLS)
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US county-level average weekly wage oty % change (BLS)
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New economic geography

Starts with Krugman (1991). See Krugman (1998) and Redding (2013) for
reviews.

Branches of the existing literature:

I Stochastic, forward-looking, but few locations, e.g., two-bloc model:
I E.g., Caselli & Coleman II (2001).

I Stationary equilibria, or purely backward looking decisions, with discreet
space:
I E.g., Michaels, Rauch & Redding (2012), Nagy (2016) and Eckert & Peters

(2017).

I Continuous space, dynamic but backward-looking:
I E.g., Desmet & Rossi-Hansberg (2014) and Desmet, Nagy & Rossi-Hansberg

(2015).

I Some dynamic stochastic models in continuous space but with restrictive
assumptions:
I E.g., Quah (2002), Brito (2004), Duranton (2007), Rossi-Hansberg & Wright

(2007) and Boucekkine, Camacho & Zou (2009).
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Auto-covariance function

We recommend (and use) the following auto-covariance function on a circle
(identified with [0, 1]) or torus (identified with [0, 1]× [0, 1]):

cov (εx , εx̃) = s
(
ζ, d (x , x̃)

)
where:

s (ζ, d) =
exp

(
−ζd + ζd̄

)
+ exp

(
ζd − ζd̄

)
exp

(
ζd̄
)

+ exp
(
−ζd̄

)
and:

d̄ ≡ sup
x,x̃∈X

d (x , x̃)

is the maximum distance between points.

The reasons for this choice are made clear in the paper. Return



For example... [To be examined fully in another paper]

The shale oil and gas ”revolution” in the US provides a natural experiment to look
at the effects of regional shocks on broader outcomes.

I Even with assorted controls, “high oil (gas) growth” (ERS-USDA) counties
experienced 43.3ppts (25.4ppts) higher wage growth than other counties
between 2000 and 2011.

I Over the period, population growth was significantly above average in such
counties.

I Looking at the Bakken Shale Play area in North Dakota, up to 2012 we see
sharp increases in population and wage growth not just in the shale counties,
but also in neighbouring ones.

I After 2012, there is a corresponding decline.
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Household first order conditions I

I Euler equation:

1 = Et

[
Ξt,t+1Rt

]
I where:

Ξt,t+1 ≡ βt
Nx,tEx,tU

1−ς
x,t+1

Nx,t−1Ex,t+1U
1−ς
x,t

I and:

Ex,t

Nx,t−1U
1−ς
x,t

=
Ex̃,t

Nx̃,t−1U
1−ς
x̃,t
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Household first order conditions II

I Consumption:

θCEx,t = θFPx,tCx,t

I Land:

θLEx,t = θFRL,x,t

(
1− Lx,t

)
I Labour:

θH

(
Hx,t

Nx,t−1

)ν
= θF

Nx,t−1

Ex,t
Wx,t

 1

1 + ν
Γ1+ν − 1

1 + ν

(
Hx,t

Nx,t−1

)1+ν

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Household first order conditions III

I Population:

µN,x,t = βtEt



µN,x,t+1GN,t+1 + U
1−ς
x,t+1

+ (1 − ς) U
1−ς
x,t+1


θH

(
Hx,t+1
Nx,t

)1+ν

1
1+ν

Γ1+ν− 1
1+ν

(
Hx,t+1
Nx,t

)1+ν − θN
log

(
Nx,t
Nt

)
1
2

Ω2− 1
2

(
log

(
Nx,t
Nt

))2

+ψ1
Nx,t+1

Nx,t−Nx,t+1
−
(
θC + θF + θL + ψ3

)





I Migration:

µN,x,t = µN,x̃,t + (1 − ς) Nx,t−1U
1−ς
x,t

ψ3
Nx̃,t−1

Nt−1Nx,x̃,t

− ψ1
1

Nx,t−1 −Nx,t
− ψ2

d (x, x̃)Nx,t − Dx,t

d̄N2
x,t −Nx,tDx,t


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