Structural Reforms in Granular Economies

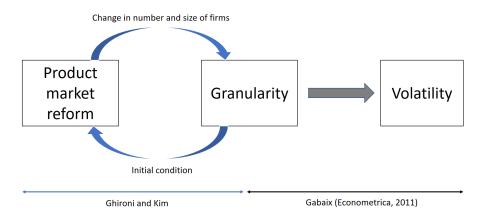
Fabio Ghironi and Jonghyun Kim

University of Washington

Conference on Heterogeneous Households, Firms and Financial Intermediaries: New Theory and Evidence

Deutsche Bundesbank, Frankfurt

September 28, 2018

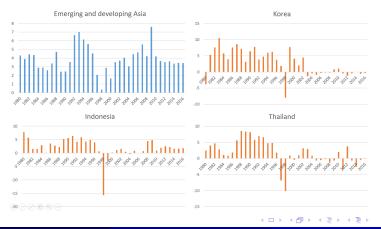

- Structural reforms designed to increase market flexibility are often advocated as part of policy menu to boost economic performance.
 - For instance, Draghi and Lagarde speeches, and many others...
- This paper focuses on product market reforms (reductions in barriers to producer entry) and their consequences in "granular" economies.

- Granularity requires fat-tailed distribution of firm size.
- In this environment, idiosyncratic shocks to large firms have aggregate effects (Gabaix, 2011).
- Policy actions that affect the size distribution of operating firms matter for extent to which economy is granular.
 - di Giovanni-Levchenko (2012): Trade integration and Melitz reallocation of market share to large firms.

• Our interest:

(1) How do product market reforms propagate over time in granular vs non-granular economies?

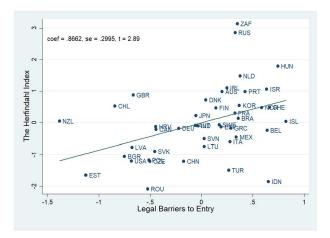
(2) How do they affect granularity and its consequences?


Sept. 28, 2018 5

э

Sac

Motivation: Reforms after Asian financial crisis


- After the Asian crisis, countries were asked to implement pro-market reforms.
 - Transition appeared costly, particularly in Korea which is a prime example of granular economy.

Fabio Ghironi and Jonghyun Kim (UW) Structural Reforms in Granular Economies

Motivation: Entry costs and granularity

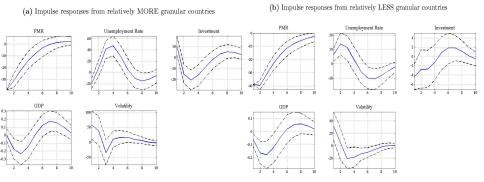

• From OECD, WB and Mini Global data for 44 countries, barriers to entry are positively correlated with market concentration.

TABLE 1: GRANULAR	ITY AND BAI	RRIERS TO E	NTRY	
	(1)	(2)	(3)	(4)
Dep. Var: Log(Herfindahl index)				
Log(Legal barriers to entry)	$\begin{array}{c} 0.536 \ (1.56) \end{array}$	0.866^{**} (2.89)	0.825^{*} (2.67)	0.793^{*} (2.58)
Log(Trade-to-GDP ratio)		1.529^{***} (4.26)	$\begin{array}{c} 1.715^{***} \\ (3.67) \end{array}$	1.490^{**} (3.01)
Log(GDP share)			$0.0853 \\ (0.63)$	$0.0239 \\ (0.17)$
Log(GDP per capita)				0.222 (1.29)
Constant	5.451^{***} (29.05)	-1.104 (-0.71)	-1.859 (-0.94)	-3.806 (-1.42)
Observations	44	44	44	44
R^2	0.0548	0.3450	0.3514	0.3778
Note: t statistics in parentheses.	* significan	t at 10%, $*$	* at 5%, **	* at 1%

Motivation: Reforms and economic performance under granularity

• More granular group displays stronger "short-term pain" after reforms than less granular group.

Motivation: Entry costs and volatility

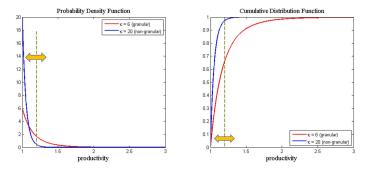
• From data for 42 OECD and non-OECD countries, 1998-2013, product market regulation is positively related to GDP volatility.

• Taken together, these observations suggest that granularity matters for the outcomes of reforms and that policies which affect granularity have implications for fluctuations.

We use a standard macro model with heterogeneous firm dynamics,

- building on Bilbiie, Ghironi, and Melitz (2012).
- We begin by studying how reforms are propagated and affect the distribution of firm size in absence of idiosyncratic volatility.
 - This is necessary to understand how reforms can affect the environment in which idiosyncratic shocks may have aggregate effects.
- Next, we extend the model to study the effects of idiosyncratic shocks (cheating).

- In the long run, reforms reduce market concentration and are beneficial for productivity and economic performance.
 - Long-run benefits are larger if the economy is granular.
- In the short run, reforms imply transition costs and higher market concentration, the more so in granular economies.
- In the presence of idiosyncratic shocks, reforms can cause higher aggregate volatility along the transition dynamics before eventually delivering the benefit of lower volatility.
- Basic intuition: Immediate effects vs. gradual adjustment in competitive conditions as number of firms evolves over time


Literature

- Granularity and volatility
 - Gabaix (2011): aggregate fluctuations from idiosyncratic shocks under fat-tailed firm distribution.
 - di Giovanni and Levchenko (2012): country size and trade openness in Melitz-Pareto model.
- Structural reforms under various initial conditions
 - Cacciatore et al. (2015, 2016a, 2016b and 2017): Product and labor market reforms in different scenarios for business cycles and their interaction with macro policy.
 - Hamano and Zanetti (2017): Product market reforms with heterogeneity.
 - Patureau and Poilly (2017): Product market reforms, tax policy reforms, and pricing to market.
- No analysis of reforms in granular economies so far.

- We use a modified Ghironi-Melitz (2005) model (or an extended BGM):
 - 1) Simplify as closed economy version.
 - 2) Add fixed production costs.
 - 3) Control degree of exogenous granularity by varying Pareto shape parameter κ . (Economy is granular if $\frac{\kappa}{\theta-1} \approx 1$)
 - 4) Size distribution of operating firms will be endogenous.

cf. Pareto distribution

- As the shape parameter κ decreases, the distribution of possible productivity draws becomes fat-tailed.
- As reforms take place, the size distribution of operating firms changes.

Notes: Blue(non-granular), Red(granular), and Yellow(cutoff productivity) under the value of $\theta = 6$.

The model: households

• The representative household supplies *L* units of labor inelastically in each period and maximizes the expected intertemporal utility

$$E_t \sum_{s=t}^{\infty} \beta^{s-t} \frac{C_s^{1-\gamma}}{1-\gamma}$$

subject to

$$C_t + \tilde{e}_t (N_t + N_{E,t}) x_{t+1} = \left((1 - G(z_t^c)) \tilde{d}_t + \tilde{e}_t \right) N_t x_t + w_t L$$

The household consumes the basket of goods C_t, defined over a continuum of goods Ω

$$C_t = \Big(\int_{\omega\in\Omega} c_t(\omega)^{rac{ heta-1}{ heta}} d\omega\Big)^{rac{ heta}{ heta-1}}$$

The model: firms

- Each monopolistically competitive firm z produces a differentiated output with only labor and faces a fixed production cost of $f_{X,t}$ units of consumption.
- Firm-specific productivity z, drawn upon entry, is distributed Pareto with lower bound z_{min} and shape parameter $\kappa > \theta 1$.
- A firm z sets profit maximizing price

$$\rho_t(z) = \frac{\theta}{\theta - 1} \frac{w_t}{z_t Z_t}$$

and its profit is given by

$$d_t(z) = \frac{1}{\theta} \rho_t(z)^{1-\theta} Y_t^c - f_{X,t}$$

where Z_t is an exogenous aggregate productivity.

The model: cutoff productivity

- Due to the existence of fixed production cost, firm z produces if and only if $d_t(z) > 0$. Otherwise, the firm is switched off without losing its sunk investment.
- Cutoff productivity z_t^c is defined by

$$z_t^c = \inf\{z : d_t(z) > 0\}$$

• Then, average productivity of firms producing in period t is

$$\tilde{z}_t = \left(\frac{1}{1 - G(z_t^c)} \int_{z_t^c}^{\infty} z^{\theta - 1} dG(z)\right)^{\frac{1}{\theta - 1}} = \nu z_t^c$$
where $\nu = \left(\frac{\kappa}{\kappa - (\theta - 1)}\right)^{\frac{1}{\theta - 1}}$

The model: entry and exit

• Entry occurs until the expected post-entry value

$$\tilde{e}_t \equiv E_t \sum_{s=t}^{\infty} \beta_{t,s} (1-\delta)^{s-t} (1-G(z_s^c)) \tilde{d}_s$$

equals a sunk entry cost $f_{E,t}$ (in units of effective labor).

- Firms can be hit by exogenous exit shock with probability δ at the end of each period.
- Given one-period time-to-build lag, the total number of firms (active and idle) obeys the law of motion:

$$N_t = (1 - \delta)(N_{t-1} + N_{E,t-1})$$

• Define aggregate demand for the consumption bundle as the sum of household consumption and the use of the bundle by operating firms to cover fixed costs:

$$Y_t^c = C_t + N_t \left(\frac{z_{min}}{z_t^c}\right)^{\kappa} f_{X,t}$$

• Aggregating the budget constraint across households and imposing equity market equilibrium $(x_{t+1} = x_t = 1)$ yields

$$Y_t^c + N_{E,t}\tilde{e}_t = w_t L + N_t \left(\frac{z_{min}}{z_t^c}\right)^{\kappa} \tilde{d}_t$$

- Reminder: Only operating firms actually distribute dividends.

The model: summary

Model summarv $z_t^c = \frac{\theta}{\theta - 1} \frac{w_t}{Z_t} \left(\frac{\theta f_{X,t}}{Y^c} \right)^{\frac{1}{\theta - 1}}$ Cutoff productivity $\tilde{z}_t = \nu z_t^c$ Average productivity $\tilde{\rho}_t = \frac{\theta}{\theta - 1} \frac{w_t}{\tilde{z}_t Z_t}$ Average price of goods $\tilde{d}_t = \frac{1}{\theta} \tilde{\rho}_t^{1-\theta} Y_t^c - f_{X,t}$ Average profit Free entry $\tilde{e}_t = \frac{w_t}{Z} f_{E,t}$ Number of firms $N_t = (1 - \delta)(N_{t-1} + N_{E_{t-1}})$ $1 = \tilde{\rho}_t^{1-\theta} N_t \left(\frac{z_{\min}}{z^c} \right)^{\kappa}$ Price index $\tilde{e}_t = \beta(1-\delta) E_t \left[\left(\frac{C_{t+1}}{C_t} \right)^{-\gamma} \left(\tilde{e}_{t+1} + \left(\frac{z_{min}}{z_{t+1}^{\alpha}} \right)^{\kappa} \tilde{d}_{t+1} \right) \right]$ Euler equation (shares) $C_t + N_t \left(\frac{z_{min}}{z^c}\right)^{\kappa} f_{X,t} = w_t + N_t \left(\frac{z_{min}}{z^c}\right)^{\kappa} \tilde{d}_t - N_{E,t} \tilde{e}_t$ Aggregate accounting $Y_t^c = C_t + N_t \left(\frac{z_{min}}{z^c}\right)^{\kappa} f_{X,t}$ Agg. demand for consumption goods

• The steady-state levels of key variables we are interested in are

1)
$$N = \frac{\alpha Z}{f_E}$$

2) $N_o = N(\frac{z_{min}}{z^c})^{\kappa} = \left[(\alpha Z)^{\kappa+1} \frac{\zeta^{\kappa}}{f_X^{\kappa} f_E} \right]^{\frac{\theta-1}{\kappa(\theta-2)+(\theta-1)}}$
3) $\tilde{d} = (\nu^{\theta-1} - 1) f_X$
4) $z^c = \left[\frac{f_X^{\theta-1}}{\alpha \zeta^{\theta-1} f_E^{\theta-2} Z} \right]^{\frac{1}{\kappa(\theta-2)+(\theta-1)}}$
5) $C = (\theta \nu^{\theta-1} - 1) \left[\frac{\zeta^{\kappa(\theta-1)} (\alpha Z)^{(\kappa+1)(\theta-1)}}{f_E^{\theta-1} f_X^{\kappa-\theta+1}} \right]^{\frac{\kappa(\theta-2)+(\theta-1)}{\kappa(\theta-2)+(\theta-1)}}$

where
$$\alpha = \frac{(1-\nu^{1-\theta})\beta(1-\delta)}{\theta(1-\beta(1-\delta))-(1-\beta)(1-\nu^{1-\theta})} > 0$$
, $\zeta = \left(\frac{\theta-1}{\theta}\right) \left(\frac{1-\beta(1-\delta)}{\beta(1-\delta)}\right) \left(\frac{\nu}{\nu^{\theta-1}-1}\right) > 0$

э

 Lowering entry costs eventually leads to higher cutoff, larger number of firms and more consumption:

$$\frac{\partial z^{c}}{\partial f_{E}}, \ \frac{\partial N}{\partial f_{E}}, \ \frac{\partial N_{o}}{\partial f_{E}}, \ \text{and} \ \frac{\partial C}{\partial f_{E}} < 0$$
$$\frac{\partial \tilde{d}}{\partial f_{F}} = 0$$

• According to the Herfindahl index definition:

$$\begin{aligned} HHI_t &= \frac{\theta(\kappa - (\theta - 1))}{\kappa - 2(\theta - 1)} \frac{f_{X,t}}{Y_t^c} \\ &\frac{\partial HHI}{\partial f_E} > 0 \end{aligned}$$

- The intuition is straightforward.
 - 1) N increases as new firms enter following $f_E \downarrow$.

2) Increased competition raises z^c and \tilde{z} , but expansion of N prevails in determining higher N_o .

3) $N_o \uparrow$ with $\tilde{z} \uparrow$ leads to increase in production, wage and C.

4) \tilde{d} stands still because bigger Y^c and smaller market share per firm offset.

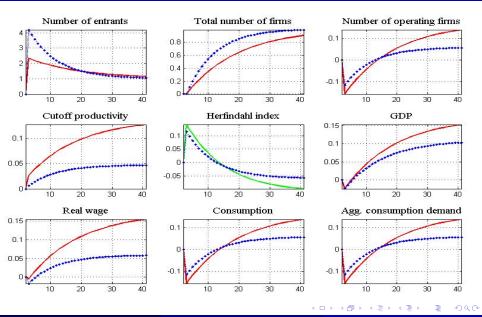
5) Larger N_o prevails on higher z^c in inducing lower concentration in the long run, reforms make the economy more productive $(\tilde{z} \uparrow)$ and increase in consumption $(C \uparrow)$, they reduce granularity $(HHI \downarrow)$.

- We analyze short- to medium-term dynamics triggered by reform by means of simulation.
 - We can solve the log-linearized model analytically, but we focus on illustration here.
- We compare the dynamics in a "granular" (κ =6) scenario to those in a non-granular one (κ =20).

- Granular economy: $1 < \kappa /(\theta - 1) < 2$

Table2. Parameter setting

Risk aversion	$\gamma = 2$	Discount factor	$\beta = 0.99$
Elasticity of substitution	$\theta = 6$	Producer exit	$\delta = 0.01$
Pareto support	$z_{min} = 1$	Aggregate productivity	Z = 1
Producer entry cost	$f_E = 1$	fixed production cost	$E/f_X = 4.5$


э

æ

Image: A match a ma

SAC

Simulation result

Fabio Ghironi and Jonghyun Kim (UW) Structural Re

Structural Reforms in Granular Economies

Sept. 28, 2018 26

Intuition

• The changes in *z^c* and *N* are most important to understand the mechanism.

1) In the short run, $N_o \downarrow$ because $z^c \uparrow$ is immediate and $N \uparrow$ is gradual.

$$N_{o,t} = N_t \left(\frac{z_{min}}{z_t^c}\right)^{\kappa}, \quad N_t = (1-\delta)(N_{t-1}+N_{E,t-1})$$

2) Combined with $C \downarrow$ for financing new entrants, GDP \downarrow .

3) $z^{c} \uparrow f$ in a granular economy: average size of entrants is bigger and so is the marginal impact of new entry on firms' survival.

4) Due to $N_o \Downarrow$, the economu experiences deeper contraction as well as more concentration of activity in the immediate aftermath of reform.

- Over time,
 - 1) As the increase in z^c slows down, $N \uparrow$ leads into $N_o \uparrow$.

2) The rate of increase in N_o is slower in the non-granular economy, due to its larger portion of small entrants.

- 3) Also, the granular economy gains $\widetilde{z}\Uparrow$ from $z^c\Uparrow$
- 4) The $N_o \Uparrow$ and $\tilde{z} \Uparrow$ brings more expansionary effect, and market concentration decreases by more in the granular economy.
- Bottom line: Reforms in granular economies likely associated with larger long-run gain, but also more short-run pain.

Comparison short- and long-term effects of reforms

	Short-run		Long-run	
Degree of Granularity	granular	non-granular	granular	non-granular
Cutoff productivity	$z_t^c \Uparrow$	$z_t^c \uparrow$	$z_t^c \uparrow$	$z_t^c \uparrow$
Average productivity	$ ilde{z}_t \Uparrow$	$ ilde{z}_t\uparrow$	$\tilde{z}_t \Uparrow$	$\tilde{z}_t \uparrow$
Number of firms	$N_t\uparrow$	N_t \Uparrow	N_t \uparrow	N_t \Uparrow
Number of operating firms	$N_{o,t} \Downarrow$	$N_{o,t}\downarrow$	$N_{o,t}$ \Uparrow	$N_{o,t}\uparrow$
Consumption	$C_t \Downarrow$	$C_t\downarrow$	C_t \Uparrow	$C_t \uparrow$
Market concentration	↑	1	₩	\downarrow

э

3

æ

SAC

Relevant empirical study

• Marrazzo and Terzi (2017) suggests that emerging economies experience bigger short-term pain from reforms, but reap more benefits than advanced countries in the long-run.

post-reform effect					
		short term	long term		
in p.p		[t, t+4]	[t+5, t+10]		
23 reform episodes: full sample					
Divergence between reformers and control	1.022***	-0.336	1.556**		
	(0.38)	(0.68)	(0.63)		
18 reform episodes: emerging markets					
Divergence between reformers and control	1.123**	-0.651	1.831**		
	(0.48)	(0.86)	(0.79)		
5 reform episodes: advanced economies					
Divergence between reformers and control	0.656***	0.796**	0.570		
	(0.18)	(0.40)	(0.38)		

Notes : β_1 coefficients of Model [6] after the reform, subdivided in short- and long term. Positive values indicate a widening gap between reformers and control. Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. See text for additional details.

- By affecting N_o, z^c, and the economy's market concentration (HHI), reforms cause the extent to which the economy is granular to vary over time.
- Since HHI initially rises before its eventual decrease, the impact of idiosyncratic shocks on the aggregate economy in a granular environment may initially be magnified before eventually becoming smaller.
- We explore this intuition next by extending the model to account for idiosyncratic volatility.

- We add idiosyncratic shock $a_t(\omega)$, which is an i.i.d. draw from a time-invariant distribution.
- A firm's productivity is determined not only by $z_t(\omega)$, but also by $a_t(\omega)$.
- $\bullet\,$ Firm $\omega{}'s$ profit-maximizing price becomes

$$\rho_t(\omega) = \frac{\theta}{\theta - 1} \frac{w_t}{Z_t z_t(\omega) a_t(\omega)}$$

• di Giovanni and Levchenko (2012) assumptions:

Assumption 1: The marginal firm is small enough that it ignores the impact of its own realization of $a_t(\omega)$ on the total expenditure (X_t) and the price level (P_t) of the economy.

Assumption 2: The marginal firm treats X_t and P_t as fixed.

Gabaix (2011) and di Giovanni-Levchenko (2012): discrete environment. Gabaix: no model of firm behavior.

di Giovanni-Levchenko shortcut: assumptions consistent with continuity. We take continuity as (rough?) approximation to discrete environment. See Al-Najjar (1995).

Aggregate volatility

•

• As di Giovanni and Levchenko (2012), we compute the economy's aggregate volatility as:

$$Var_{a}\left(rac{ riangle X_{t}}{E_{a}X_{t}}
ight) = \sigma^{2}HHI_{t}$$

where σ is the standard deviation of the growth rate of individual firm sales.

• In the presence of idiosyncratic shocks, the Herfindahl index in our model can be calculated as follows:

$$\int_{\omega} \left(\frac{E_a \left[x_t(z,a) \right]}{E_a X_t} \right)^2 d\omega = N_{o,t} \frac{1}{1 - G(z_t^c)} \int_{z_t^c}^{\infty} \left(\frac{E_a \left[x_t(z,a) \right]}{E_a X_t} \right)^2 dG(z)$$

• Since the expected share of a firm's revenue is

$$\frac{E_{a}\left[x_{t}(z,a)\right]}{E_{a}X_{t}} = \frac{\left(\frac{\theta}{\theta-1}\frac{w_{t}}{Z_{t}z}\right)^{1-\theta}X_{t}}{X_{t}} = \left(\frac{\theta}{\theta-1}\frac{w_{t}}{Z_{t}z}\right)^{1-\theta}$$

• The Herfindahl index becomes

$$HHI_t = N_{o,t} \frac{1}{1 - G(z_t^c)} \int_{z_t^c}^{\infty} \left(\frac{\theta - 1}{\theta} \frac{Z_t z}{w_t}\right)^{2(\theta - 1)} dG(z)$$
$$= N_{o,t} \left(\frac{\theta - 1}{\theta} \frac{Z_t}{w_t}\right)^{2(\theta - 1)} \frac{1}{1 - G(z_t^c)} \int_{z_t^c}^{\infty} z^{2(\theta - 1)} dG(z)$$

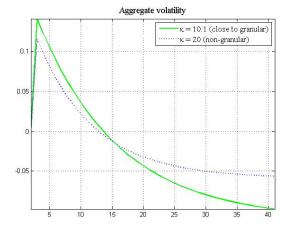
The Herfindahl index

• Then, if
$$\kappa / (\theta - 1) > 2$$
, $HHI_t = \frac{\theta(\kappa - (\theta - 1))}{\kappa - 2(\theta - 1)} \frac{f_{X,t}}{Y_t^c}$

and

$$Var_{a}\left(rac{ riangle X_{t}}{E_{a}X_{t}}
ight) = \sigma^{2}\left(rac{ heta(\kappa - (heta - 1))}{\kappa - 2(heta - 1)}rac{f_{X,t}}{Y_{t}^{c}}
ight)$$

- Note 1: Higher aggregate consumption demand is associated with lower HHI and volatility.
- Note 2: Higher fixed costs are intuitively associated with more concentration and volatility.


Volatility depending on the degree of granularity

 Ceteris paribus, holding Y^c and f_x constant, aggregate volatility increases exponentially as ^κ/_{θ-1} approaches the threshold of granularity.

Aggregate volatility after reform

• Impulse response of aggregate volatility:

 Product market reform affects volatility through its impact on Y^c and market concentration.

1) Y^c initially falls (HHI rises), leading to initially larger exposure to idiosyncratic volatility.

2) Over time, Y^c rises (HHI falls) making the economy more resilient to idiosyncratic shocks.

• The marginal impact of reform is larger in a (more) granular economy.

- We studied the effect of product market reforms in "granular" economies.
- Reforms are beneficial in terms of productivity, market concentration, consumption, and output in the long run.
- However, they can exacerbate the consequences of granularity in the short run.