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Non-technical summary

Research Question

In macroeconomic forecasting one is often confronted with the task of predicting a few tar-
get variables using a range of indicators. Existing modeling approaches usually disregard
at least one of the following three features: the possible presence of (smooth) structural
changes, mixing publication frequencies and delays, or the joint dynamics between the
target and indicator variables. This leads to the following questions: Can we develop a
model that accounts for all of these features simultaneously? If so, does it deliver com-
petitive short-term forecasts of, say, GDP, or does computational complexity erode any
potential gains?

Contribution

We introduce a time-varying mixed-frequency vector autoregressive model that can handle
various desirable features at the same time. In order to be able to include a comparably
large number of variables within such a computationally intensive approach, we introduce
time variation parsimoniously: only the intercepts are allowed to vary over time and time
variation in the error variances (stochastic volatility) is restricted to be common across all
variables. This novel econometric modeling approach enables researchers to investigate a
system of comparably large size, that accounts for mixed frequencies, structural changes
and the joint dynamics of its variables simultaneously.

Results

Compared to a benchmark model, that disregards time variation altogether, the restric-
tions with respect to time variation enable us to estimate our model in a fairly small
amount of time. In an empirical application with eleven U.S. macroeconomic variables
the results support the presence of time variation in the data, both in terms of time-
varying intercepts and common stochastic volatility. An out-of-sample forecast exercise
with three selected target variables (including GDP) reveals that – compared to the
benchmark model – our approach yields considerable gains with respect to both point
and density forecasts.



Nichttechnische Zusammenfassung

Fragestellung

Bei der Erstellung makroökonomischer Prognosen gilt es oftmals, einige wenige Zielvari-
ablen mit Hilfe einer Reihe von Indikatoren fortzuschreiben. Dabei vernachlässigen existie-
rende Prognosemodelle in der Regel mindestens eines der folgenden drei Charakteristika:
(graduelle) Strukturbrüche, gemischte Publikationsfrequenzen und -verzögerungen sowie
potenzielle Wechselwirkungen zwischen den Zielgrößen und den Indikatoren. Dies wirft
die folgenden Fragen auf: Ist es möglich, ein Prognosemodell zu entwickeln, dass all jene
Charakteristika gleichzeitig berücksichtigt? Falls ja, kann das Modell wettbewerbsfähige
Kurzfristprognosen, z.B. des BIP, liefern oder überlagert die Komplexität des Modells
potenzielle Vorteile?

Beitrag

Wir stellen ein zeitvariierendes vektor-autoregressives Modell mit gemischten Frequenzen
vor, das alle zuvorgenannten Charakteristika simultan berücksichtigen kann. Um eine ver-
gleichsweise große Anzahl von Variablen innerhalb eines solch rechenaufwendigen Ansatzes
betrachten zu können, modellieren wir Zeitvariationen in sparsamer Weise. So erlauben
wir lediglich den konditionalen Mittelwerten (d.h. den Konstanten in jeder Gleichung des
Systems) sich über die Zeit zu verändern; ferner wird die Zeitvariation in den Varianzen
der Fehler (stochastische Volatilität) auf einen Wert für alle Variablen restringiert. Dieser
neuartige Modellierungsansatz erlaubt es dem Anwender, Systeme vergleichsweise großer
Dimension, die gemischte Frequenzen, Strukturbrüche und Wechselwirkungen zwischen
den Variablen zulassen, zu untersuchen.

Ergebnisse

Verglichen mit einem Modell, welches Zeitvariation gänzlich ausschließt, lässt sich unser
Modell aufgrund der Restriktionen in Bezug auf Zeitvariation recht schnell schätzen. In
einer empirischen Untersuchung mit elf makroökonomischen Variablen für die USA weisen
die Resultate auf Zeitvariation in den Daten hin, sowohl bei den konditionalen Mittelwer-
ten als auch bei der gemeinsamen stochastischen Volatilität. Eine empirische Prognose-
studie mit drei ausgewählten Zielgrößen (darunter das BIP) ergibt, dass unsere Methode
gegenüber dem Vergleichsmodell zu nennenswerten Verbesserungen in Bezug auf Punkt-
und Dichteprognosen führt.



To simultaneously consider mixed-frequency time series, their joint dynamics,
and possible structural changes, we introduce a time-varying parameter mixed-
frequency VAR. To keep our approach from becoming too complex, we implement
time variation parsimoniously: only the intercepts and a common factor in the error
variances vary over time. We can therefore estimate moderately large systems in
a reasonable amount of time, which makes our modifications appealing for practi-
cal use. For eleven U.S. variables, we examine the performance of our model and
compare the results to the time-constant MF-VAR of Schorfheide and Song (2015).
Our results demonstrate the feasibility and usefulness of our method.

JEL Codes: C32, C51, C53
JEL Keywords: Mixed Frequencies, Time-Varying Intercepts, Common Stochas-
tic Volatility, Bayesian VAR, Forecasting
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1 Introduction

The biblical story of Joseph and the Pharaoh about seven years of plenty followed by

seven lean years was, perhaps, the first accurate and documented forecast. Of course,

modern economic forecasting is no longer about interpreting dreams, but similar in vein

with today’s practice is the attempt to translate available information from all kinds of

sources into forecasts that are as accurate as possible.

Often, a few quarterly and monthly target variables, such as the gross domestic product

(GDP) or the unemployment rate, are at the center of interest. For all these target

variables we can then select between a large number of potentially useful indicators, such

as surveys and financial market data, released earlier than the actual target variable.

Given these two groups of observations and the different release patterns we develop a

mixed-frequency model that accounts for possible (smooth) structural changes, can handle

a moderately large number of variables, and, as we write the model as a VAR, includes

the joint dynamics between the target variables and the indicators. Many of the existing

forecasting models ignore at least one of these features. For instance, the mixed-frequency

VAR of Schorfheide and Song (2015) excludes time variation and, as such, cannot deal with

structural changes; the large time-varying parameter VAR of Koop and Korobilis (2013)

requires all variables to be transformed into one common frequency; and the univariate

Markov-switching MI(xed) DA(ta) S(ampling) model of Guèrin and Marcellino (2013)

ignores the joint dynamics between the targets and indicators.

The main contribution of our paper, then, is to address all these features simulta-

neously by constructing a (moderately) large time-varying mixed-frequency VAR. Ac-

counting for the mismatch in sampling frequencies, first and foremost between monthly

and quarterly observations, has established itself as the standard in professional short-

term macroeconomic forecasting. The benefits of modeling different frequencies have been

shown throughout the respective field of the literature (see inter alia Andreou et al., 2013,

Foroni et al., 2015 or Götz et al., 2016). But besides the permanent hunting for lower
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forecast errors, a mixed-frequency model gives the economist an invaluable tool for the

current analysis, with updated forecasts of the lower-frequency variable whenever new

releases of indicators flow in during a month. Modeling of time variation, however, and

its potential usefulness for forecasting is not so clear a-priori. Increased computational

complexity, and with that numerical instabilities and pitfalls, can quickly erode any gains.

The usefulness for forecasting, especially for large models, may thus depend on the way

one introduces time variation (see, e.g., D’Agostino et al., 2013, Eickmeier et al., 2015

and Barnett et al., 2014).

We take the Bayesian mixed-frequency VAR (MF-VAR hereafter) of Schorfheide and

Song (2015) as the starting point. Their model is sampled at the higher frequency, imply-

ing that latent high-frequency observations of the low-frequency series, for instance GDP,

need to be estimated on top of the actual VAR parameters, time varying or not. Given al-

ready our concerns that computational complexity may limit the usefulness of models for

forecasting, we focus on implementing time variation in a parsimonious way. Essentially,

we let only the intercepts vary over time and restrict time-variation in the error-variances

(stochastic volatility) to be common across all variables as in Carriero et al. (2015b).

Taken together, modeling time-varying intercepts and common stochastic volatility may

overcome possible losses in accuracy that could result from ignoring one or the other ef-

fect. Time-varying intercepts could capture variable-specific effects that would otherwise

distort the estimation of the common volatility factor. The obvious benefit of simplifying

our model along these dimensions lies in the reduced complexity, which, in turn, allows us

to estimate moderately large systems in a reasonable amount of time. We further improve

upon computational efficiency by using sparse and block-banded matrix algebra as, for

instance, in Chan and Jeliazkov (2009) and Chan (2018). Even when computing power

is available in abundance, running time is still an issue from a practical point of view.

Especially so when many models need to be updated several times during a month, as is

the case in the regular forecasting process at central banks and other institutions.

In our application we consider a VAR with the same eleven U.S. macroeconomic vari-
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ables as in Schorfheide and Song (2015): three at quarterly frequency, including GDP, in-

vestment and government spending, and eight monthly variables, including the consumer

price index, the federal funds rate and others. Besides our main model with time-varying

intercepts and common stochastic volatility we also run intermediate versions, turning off

either one of the two features. We find that, compared to Schorfheide and Song (2015),

considerable gains are possible for point and density forecasts, especially so for our main

model. For the intermediate versions, the time-varying intercept seems to be somewhat

more beneficial for the forecast performance than the common stochastic volatility factor.

1.1 Motivating Experiment

Before formally introducing our model, we provide an example to motivate that, compared

to a fully fledged time-varying model (as in Primiceri, 2005) with mixed frequencies, lim-

iting time variation to the intercepts and a common stochastic volatility factor has indeed

some merits. First, the amount of time-varying parameters and as such the computa-

tional burden decreases tremendously: only n instead of n + n2p VAR and one instead

of n(n+ 1)/2 variance-covariance parameters need to be estimated (n and p are size and

lag order of the VAR). Table 1 illustrates the computational gains as functions of various

combinations of n and p (combinations of large values of n and p are computationally not

feasible). While we already save more than 50% running time in a three-variable VAR

with three lags, the gains go up to almost 90% in a VAR with six variables. Note that

increasing the lag length seems comparably less harmful than enlarging the number of

variables.

Second, if the forecast accuracy of, say, GDP as one of the main target variables

deteriorates compared to the fully-fledged model, any gains in terms of computing time

and tractability would not warrant our parsimonious modeling approach. We therefore

conduct a quick forecast exercise using a three-variable subversion (GDP, CPI, Fed funds

rate) of the larger model we will present later. Table 2 shows root mean squared forecast

errors (RMSFE) and average log predictive likelihoods (logPL) for GDP of our parsi-
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monious model relative to the fully-fledged model. RMSFE ratios larger than one and

logPLs smaller than zero would imply that our parsimonious modeling approach may not

be warranted empirically.

The only case, however, in which the fully-fledged model seems to have an edge over

ours, is the first density forecast at horizon −1 (i.e., a backcast actually). In all other

instances forecast accuracy improves.

1.2 Related Literature

An alternative to the so-called parameter-driven (Cox et al., 1981) approach we are using

to model the mixed frequencies is Ghysels (2016). Their approach depends exclusively on

observable data.1 The VAR is stacked with the low frequency and stacks the corresponding

high- (and low-) frequency observations into a single vector.2 Hence, in contrast to the

MF-VAR, the model of Ghysels (2016) does not deliver, for instance, a monthly GDP

series that might be a desirable byproduct.

Closer related to our work are three other simultaneously and independently written

papers. One is by Cimadomo and D’Agostino (2016) who develop a small structural time-

varying mixed-frequency VAR model for estimating the effects of government spending

shocks. Their paper has to be praised for extending the estimation of a fully fledged time-

varying parameter model, such as Primiceri (2005), to the mixed-frequency case. This

generality, however, does not come without its costs and restricts their model to include

only a few variables and lags. Antolin-Diaz et al. (2017), the second paper, use a dynamic

factor model (DFM) with time-varying intercepts and stochastic volatility to capture

long-run shifts in the variables of interest with a focus on the drivers of the slowdown in

1The observation-driven model represents the multivariate extension of MIDAS models, first intro-
duced in Ghysels et al. (2004). Because of their simplicity and wide range of applicability, MIDAS
regressions became popular for forecasting macroeconomic or financial time series (see Clements and
Galvão, 2008 or Götz et al., 2016, 2014 among many others). Foroni and Marcellino (2013) provide
an excellent survey on the subject matter. The development of time-varying MIDAS models has been
initiated in Schumacher (2014) with related approaches such as the model of Guèrin and Marcellino
(2013).

2The augmentation of the observation-driven mixed-frequency VAR to allow for time variation, and
a comparison with the model presented here, is beyond the scope of this paper.
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real U.S. GDP growth. The third one is Banbura and van Vlodrop (2018). Although their

time-varying VAR model includes only a single frequency it shares a common feature with

our model: time variation is restricted to certain parameters. Unlike us, however, they

model time variation in the unconditional mean rather than the intercept (i.e., conditional

mean). While this complicates the estimation (see, e.g., Villani, 2009), it is typically

easier to elicit informative priors for the unconditional mean. Banbura and van Vlodrop

(2018) take even one promising step further and link the unconditional mean to long-run

Consensus forecasts.

2 The Modeling Framework

Our framework is a combination of different methods and modeling approaches. We take

the mixed-frequency VAR of Schorfheide and Song (2015) as the core and combine it

with elements from the time-varying parameter (e.g., Primiceri, 2005) and the common

stochastic volatility (e.g., Carriero et al., 2015b) literature.

We use some modeling and notational conventions throughout the paper. We refer

to Block I as the part of the model that deals with the mixed-frequency and, related

to that, the ragged-edge problem. Block II, then, covers modeling and estimating the

(time-varying) VAR parameters. As implied by the approach of Schorfheide and Song

(2015), we write the entire model in the higher, monthly frequency.3 An expression zτ

denotes the complete history of a generic variable (or parameter) zt up to time τ , i.e.,

zτ = [z′1, . . . , z
′
τ ]
′. We reserve the letter yT (and Y T ) for the incomplete data matrix

which contains missing values either through the mismatch in sampling frequency or

because of variable-specific publication lags (i.e., ragged edge); xT (and XT ), then, denotes

the corresponding complete data matrix that includes estimates of the latent monthly

equivalents of the quarterly variables and the missing values over the ragged edge.

3An application of our approach to different frequency pairs, e.g., month/week or year/quarter, follows
straightforwardly.
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2.1 Block I: The Mixed-Frequency Problem

Let xm,t and xq,t be the nm×1 and nq×1 vectors of the original monthly variables and the

latent monthly values of the quarterly variables. Further, let Xm,t =
[
x′m,t, . . . , x

′
m,t−p+1

]′
and Xq,t =

[
x′q,t, . . . , x

′
q,t−p+1

]′
be the pnm× 1 and pnq× 1 vectors of current and p lagged

observations. We can then write our model in a way where the distinction between the

two frequencies becomes apparent, i.e.,

xm,t
xq,t

 =

Φmm Φmq Φmc

Φqm Φqq Φqc



Xm,t−1

Xq,t−1

1

+

Φmc,t

Φqc,t

+

um,t
uq,t

 ,
um,t
uq,t

 ∼ N


0

0

 ,
Σmm,t Σmq,t

Σqm,t Σqq,t


 .

(1)

We deliberately breakup the intercepts into a constant and time-varying part, imposing

the initial condition Φmc,0 = Φqc,0 = 0. As it will become clear at the estimation stage,

breaking up the intercepts in this way proves convenient.

To address the ragged-edge feature of macroeconomic data sets (see, e.g., Marcellino

and Schumacher, 2010) the time index t = 1, . . . , Tb denotes the “balanced” sample run-

ning until the last month for which we have all observations available, while Tb + 1, . . . , T

denotes the rest of the sample until the month for which we observe at least one variable.

We also use the convention that t = 1, 4, 7, . . . refers to the first month in a given quarter.

The reason why we separate in (1) the original monthly variables from the latent

monthly series of the quarterly variables is that, for t = 1, . . . , Tb, it is sufficient to

consider a “reduced” state-transition equation for the latent monthly series, xq,t, only.

Our preferred state-vector is therefore St =
[
x′q,t, . . . , x

′
q,t−p

]′
and we write the state-
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transition equation as

St =

Φqq 0

Ipnq 0

St−1 +

Φqm

0

Ym,t−1 +

Φqc,t

0

+

uq,t
0

 , (2)

or more compactly as

St = ΓsSt−1 + ΓyYm,t−1 + Γc,t + Γuuq,t,

in which the pnm × 1 vector Ym,t denotes the actual observations of the original monthly

observations, i.e., Ym,t = Xm,t. By acknowledging that Xm,t is fully observed for t ≤ Tb we

can work with a reduced state-vector of dimension (p+ 1)nq, instead of (p+ 1)(nm + nq).

Why we use p+ 1 here will become clear momentarily.

The corresponding measurement equation takes the form

yt =

ym,t
yq,t

 =

 0 Φmq,1 Φmq,2 Φmq,3:p

1/3 Inq
1/3 Inq

1/3 Inq 0

St

+

Φmm

0

Ym,t−1 +

Φmc + Φmc,t

0

+

um,t
0

 (3)

if we are in the last month of a quarter and contains only the first equation in (3) otherwise.

Introducing an appropriate switching mechanism, denoted by the selector matrix Wt, we

can write (3) for all t more compactly as

Wtyt = Wt (ΛsSt + ΛyYm,t−1 + Λc,t + Λuum,t) .

A few special features of the state-space representation (2) and (3) are worth com-

menting. From the aggregation scheme it is clear that the number of lags must be larger

or equal than two, i.e., p ≥ 2.4 The inclusion of contemporaneous states requires the

4In the case of p = 2 the last column in the first matrix on the right-hand side of (3) vanishes.
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state vector St to be of dimension (p + 1)nq, for otherwise we would loose the p-th lag

in (3). Moreover, the aggregation of the latent monthly series to match the quarterly

observations in (3) requires to specify the quarterly variables in (log) levels. This is the

natural choice from a Bayesian perspective (see, e.g., Uhlig, 1994).5

When we move to the ragged edge of our data set, i.e., t = Tb + 1, . . . , T , we

switch to the larger state vector, as we also have to take care of missing observations

of the original monthly variables. Then, for xt =
[
x′m,t, x

′
q,t

]′
, the state vector becomes

St =
[
x′t, . . . , x

′
t−p
]′

, and the proper selector matrix W ∗
t in the measurement equation

selects the variables and states that are actually observed over the ragged edge.6 Mod-

ifying the “reduced” state-space model (2) and (3) yields the “full” state-transition and

measurement equations,

St =


Φmm,1 Φmq,1 · · · Φmm,p Φmq,p 0

Φqm,1 Φqq,1 · · · Φqm,p Φqq,p 0

Ip(nm+nq) 0

St−1 +


Φmc + Φmc,t

Φqc + Φqc,t

0

+


um,t

uq,t

0

 , (4)

with the obvious dimensions for the zero matrices, and

W ∗
t

ym,t
yq,t

 = W ∗
t

Inm 0 0 0 0 0 0

0 1/3 Inq 0 1/3 Inq 0 1/3 Inq 0

St, (5)

or more compactly

St = Φ∗St−1 + Φ∗c,t + [In, 0]′ ut, ut ∼ N(0,Σt), and W ∗
t yt = W ∗

t MSt.

5Of course, what works better in terms of forecasting—levels or growth rates—is ultimately an em-
pirical question. In a large-scale assessment of specification choices and forecast accuracy, Carriero et al.
(2015a) find that specifications in levels and growth rates deliver by and large comparable forecasts. In
this paper we focus on the specification in levels, the route taken in Schorfheide and Song (2015). If one,
however, wants to specify the model in growth rates, the aggregation in the second equation of (3) must
be replaced, specifically by the one in Mariano and Murasawa (2003), and the minimum lag order would
increase to four.

6In our specific forecast setting with GDP, or other main national accounts aggregates as the only
source for quarterly variables, no quarterly observation will become available over the ragged edge, t =
Tb + 1, . . . , T , and yq,t will be an empty set. If one, however, includes quarterly survey data this may not
be the case.
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Conditional on the parameters and residual variance-covariances, the measurement

equations (3) and (5) are linear and have Gaussian innovations with known variance.

Standard estimation algorithms, such as Carter and Kohn (1994), based on Kalman filter

and smoother techniques are therefore available to elicit the latent states St. For more

details we refer to Appendix A.

2.2 Block II: Parameters and Time Variation

To close our model we first need to define a law of motion for the time-varying intercepts

in (1). In particular, we let them evolve in the usual way as random walks, i.e.,

Φc,t = Φc,t−1 + νt, νt ∼ N (0, Q) , and Q =

Qm 0

0 Qq

 . (6)

We have sneaked in one detail here: we separate the laws of motion for the monthly and

quarterly variables. The distinction may prove convenient if one has different prior beliefs

about the amount of time-variation in the two groups of variables. We further assume

that the innovation matrices Qm and Qq are diagonal. This assumption is not essential,

and Qm and Qq could be replaced by full matrices with only small modifications of the

estimation procedure.

Second, we need to specify how the time-varying variance-covariance matrix in (1) can

be driven by a single common factor. The commonality can be treated either as additive

(see, e.g., Mumtaz and Surico, 2012) or, as we do, multiplicative, adopting the common

stochastic volatility model variant of Carriero et al. (2015b). While the representation

(1) of our model was convenient in Block I to get a better picture of the different groups

of parameters in a mixed-frequency environment, it will be more convenient now to work

with the VAR in standard matrix form. Then, from stacking the n = nm+nq vector of data[
x′m,t, x

′
q,t

]′
, the lagged data including an intercept

[
x′m,t−1, x

′
q,t−1, . . . , x

′
m,t−p, x

′
q,t−p, 1

]′
, the
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time-varying intercepts
[
Φ′m,t,Φ

′
q,t

]′
, and the residuals

[
u′m,t, u

′
q,t

]′
over t = 1, . . . , T we get

X = ΦZ + ΦT
c + U (7)

with respective dimensions n× T , (np+ 1)× T , n× T , and n× T . The link between the

coefficient matrix Φ here and the one in (1) is

Φ =

Φmm,1 Φmq,1 · · · Φmm,p Φmq,p Φmc

Φqm,1 Φqq,1 · · · Φqm,p Φqq,p Φqc

 .
Now let us consider a general Kronecker structure for the variance-covariance matrix

of U (see, e.g., Chan, 2018):

u = vec(U) ∼ N (0,Ω⊗Ψ) , (8)

in which vec(·) denotes a column stacking operator and ⊗ is the Kronecker product.

The T × T and n × n matrices Ω and Ψ can be interpreted as governing the serial

and cross-sectional variance-covariance structures in the data. The common stochastic

volatility model of Carriero et al. (2015b) can then be nested in (8) by suitably defining

Ω = diag (exp(h1), . . . , exp(hT )) as diagonal matrix and

ht = ρht−1 + ηt, ηt ∼ N
(
0, σ2

h

)
(9)

with |ρ| < 1. The n×n blocks along the diagonal of Ω⊗Ψ correspond to the time-varying

variance-covariance matrices in (1).

3 Bayesian Estimation

The two blocks in the preceding section constitute the two main conditional distributions

over which we now build our Markov chain Monte Carlo (MCMC) sampling scheme.
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Besides working out a proper MCMC sampler, we also focus on applying computationally

efficient sparse and block-banded matrix algebra whenever possible. Exploiting fast and

efficient matrix algebra in software packages such as Matlab, Gauss, or R complements

our general strategy of simplifying matters in order to build a model that can handle a

moderately large number of variables (i.e., reducing the state-vector in Block I and using

a parsimonious specification of time variation).

3.1 Priors and Hyperparameters

To begin with, we form our baseline prior for Φ and Ψ in (7) and (8) following the

Minnesota tradition (see, e.g., Litterman, 1986), assuming that (most) macroeconomic

variables are unit root processes, assuming that we do not know much about how they

drift, and assuming that more distant lags have less influence in a VAR. So in case we

assume a unit root process, we set the prior parameter of the own first lag to one and to

zero everywhere else. We use three hyperparameters to control how strongly we belief in

our prior: the first two, λ1 and λ2, separately control the prior on the coefficients of the

endogenous variables and the intercept. If λ1, λ2 → 0 the posterior shrinks towards the

prior and otherwise, if λ1, λ2 → ∞, the posterior mimics ordinary least squares (OLS)

estimates. The third hyperparameter, λ3, sets the decay rate with which the prior variance

decreases with increasing lag length. To account for different scales of the variables in the

Minnesota prior, we use the residual variances from simple univariate AR(1) regressions

over a pre-sample. We implement our prior beliefs through dummy observations, Xd and

Zd, and refer to Bańbura et al. (2010) and Schorfheide and Song (2015) for details on how

to construct these “artificial” observations.

We further refine the baseline Minnesota prior by the so-called sum-of-coefficients and

dummy-initial-observation priors. The hyperparameter κ1 and κ2 control the variances

of these priors. In the case of the sum-of-coefficients prior, κ1 → 0 implies the presence

of a unit root in each equation without any cointegrating relation, while for the dummy-

initial-observation prior, κ2 → 0 implies the presence of an unspecified number of unit
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roots in the system, leaving the possibility of cointegration. For κ1, κ2 → ∞ the priors

become uninformative. See Sims and Zha (1998) on the advantages of these refinements,

and Bańbura et al. (2010) and Schorfheide and Song (2015) on how they can be imposed

through additional dummy variables.

Our prior beliefs for Φ and Ψ are natural conjugate and belong to the family of normal

inverse Wishart distributions, i.e.,

vec(Φ)|Ψ ∼ N
(

vec(Φ0), VΦ0 ⊗Ψ
)

and Ψ ∼ IW
(
U0U

′
0, Td − np− 1

)
, (10)

in which Td denotes the length of the constructed dummy variables. The prior parameters

Φ0, VΦ0 , and U0 follow from simply regressing the dummy variable Xd on Zd, i.e.,

Φ0 =
(
ZdZ

′
d

)−1 (
ZdX

′
d

)
, VΦ0 =

(
ZdZ

′
d

)−1

, and U0 = Xd − Φ0Zd. (11)

Now, given these prior beliefs we can elicit an initial value S0 (and its covariance VS0) in

the state-transition equation (2) from running the Kalman filter forward recursion based

on the state-space model (2) and (3) over a pre-sample t = −τ + 1, . . . , 0 (see Appendix

A for the equations of the Kalman filter recursions). Note that we implicitly assume the

model to be time-invariant over the pre-sample, i.e., Φτ
c = 0 and Ω = Iτ . This implicit

assumption is also one of the reasons why it is convenient to break up the intercept into

a constant and time-varying part.

For the time-varying intercepts in (6), Φc,t = [Φ′mc,t,Φ
′
qc,t]
′, we assume independent

inverse Gamma priors of the form:

Qm ∼ IG
(
Q0, k

2
Qm
·Q0 ·Ψ1:nm

)
and Qq ∼ IG

(
Q0, k

2
Qq
·Q0 ·Ψnm+1:n

)
, (12)

in which kQm and kQq are the hyperparameters controlling the amount of time variation

we a-priori allow for, and Ψ1:nm and Ψnm+1:n denote the corresponding diagonal elements

of the (cross-sectional) prior variance-covariance Ψ in (10). In the expression above we
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can explicitly set different priors for the amount of time variation in the intercepts of the

monthly and quarterly variables. In the empirical application, however, we will not make

use of this option and set kQq = kQm = kQ. Our point here is that the specification of

the Qs (12) is fairly general and could be further generalized to allow for different priors

for each intercept. As an example, choosing kQi
→ 0 would more or less shut down time

variation of the intercept in equation i.

Finally, we assume independent priors for the AR(1) coefficient ρ in the law of motion

for the common stochastic volatilities and the innovation variance σ2
h; see equation (9).

Specifically, we have the following two prior distributions,

ρ ∼ N
(
ρ0, Vρ0

)
I (|ρ| < 1) and σ2

h ∼ IG
(
νh0

, Vh0

)
, (13)

with a truncated normal distribution ensuring that the law of motion is not explosive.

While, so far, we have been rather general in the description of our priors, Table 3

summarizes the values of priors and hyperparameters for our empirical application. The

specific values should be interpreted as a good starting point for an arbitrary data set;

they represent a mix of the related literature, such as Bańbura et al. (2010), Chan and

Jeliazkov (2009), and Chan (2018). Maximizing the (approximate) marginal data density,

as in Schorfheide and Song (2015), by searching through a grid of hyperparameters goes

beyond the scope of our paper. The specific values in Table 3 are therefore not directly

comparable with Schorfheide and Song (2015). The optimal selection of hyperparameters

will be part of a follow-up paper.

3.2 Posterior Analysis

Having specified priors and hyperparameters, we can now obtain posterior draws by se-

quentially sampling from Block I, I.a) p(ST |Φ,Ψ,ΦT
c , h

T , yT ), and from Block II, II.a)

p(Φ,Ψ|ΦT
c , h

T , ST , yT ), II.b) p(ΦT
c |Φ,Ψ, hT , Q, ST , yT ), II.c) p(Q|ΦT

c ), II.d) p(hT |Φ,Ψ,ΦT
c ,

ρ, σ2
h, S

T
q , S

T , yT ), II.e) p(σ2
h|hT , ρ), and II.f) p(ρ|hT , σ2

h). For brevity, all the conditioning
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sets above contain only quantities actually required in each step to compute the posterior.

In Step I.a we draw the latent states ST by recursively applying the Kalman filter

to the state space model laid out in Section 2.1. Given the initialization S0|0 = S0 and

V0|0 = VS0 the conditional posterior distribution is Gaussian,

St|Φ,Ψ,ΦT
c , h

T , yT ∼ N
(
St|T , Vt|T

)
, t = 1, . . . , T. (14)

While, in principle, standard textbook formulas apply for the posterior quantities St|T and

Vt|T , casting the mixed-frequency data feature into the required form of the Kalman filter

forward and backward recursions (essentially the algorithm of Carter and Kohn, 1994)

takes some work. We relegate a summary of the equations to Appendix A.

As shown by Chan (2018), given the Kronecker structure in the variance-covariance

matrix (8) and the natural conjugate prior for (Φ,Ψ), the usual result of a normal inverse

Wishart posterior distribution with analytical expressions holds. This result also goes

through with time-varying intercepts by simply rewriting (7) as X̃ = X −ΦT
c = ΦZ +U .

Specifically, in Step II.a we first sample Ψ marginally and then conditional on Ψ we draw

Φ, i.e.,

Ψ|ΦT
c , h

T , STq , S
T , yT ∼ IW

(
Ψ̂, ν0 + T

)
vec(Φ)|Ψ,ΦT

c , h
T , STq , S

T , yT ∼ N
(

vec(Φ̂), K−1
Φ ⊗Ψ

)
.

(15)

with the following set of posterior parameters:

KΦ = V −1
Φ0

+ ZΩ−1Z ′ with Ω = diag (exp(h1), . . . , exp(hT )) ,

Φ̂ = K−1
Φ

(
V −1

Φ0
Φ0 + ZΩ−1X̃ ′

)
,

Ψ̂ = Ψ0 + Φ0V
−1

Φ0
Φ′0 + X̃Ω−1X̃ ′ − Φ̂KΦΦ̂′.

(16)

Now, drawing form the normal distribution in (15) would require the inversion of the

(np+ 1)× (np+ 1) matrix KΦ and the Cholesky decomposition of the large n(np+ 1)×

n(np + 1) matrix K−1
Φ ⊗ Ψ. By acknowledging the Kronecker structure we can limit the

computational cost to two separate Cholesky decompositions of KΦ and Ψ. Specifically,
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Chan (2018) shows that instead of conventionally drawing Φ in (15), we can equivalently

compute Φ as (this follows from standard results on the matrix normal distribution)

Φ = Φ̂ + (C ′K\D)CΨ, (17)

in which CK and CΨ are the respective Cholesky decompositions, D denotes a (np+1)×n

matrix of independent N(0, 1) random variables, and the backslash operator “\” refers to

the unique solution to a triangular system of the generic form Cu = e obtained by forward

substitution, i.e., C\e = C−1e.7 The advantage of this solution method in triangular

systems is that the “inversion” problem requires only the same number of operations

as the multiplication Cu. We can further exploit the computational advantages from

forward substitution by rewriting the expression for Φ̂ in (16) in terms of the Cholesky

decomposition CKC
′
K = KΦ, i.e.,

Φ̂ =
(
CKC

′
K

)−1 (
V −1

Φ0
Φ0 + ZΩ−1X̃ ′

)
= C ′K\

(
CK\

(
V −1

Φ0
Φ0 + ZΩ−1X̃ ′

))
. (18)

For drawing the time-varying intercepts ΦT
c in Step II.b we use the same efficient for-

ward substitution method to the matrix inversion problem. In addition, we will introduce

sparse and block-banded matrix algebra which further speeds up computation. Note that

we can write the law of motion for Φc,t in (6) by stacking over t = 1, . . . , T , i.e.,

Hvec(ΦT
c ) = vec(νT ), vec(νT ) ∼ N(0, IT ⊗Q), (19)

7The software packages Matlab uses this efficient solution method by default when using the back-
slash (or slash) operator. Forward (and backward) substation is also available in other software packages
such as Gauss and R.
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in which the Tn× Tn matrix H contains the law of motion as follows:

H =



In

−In In

−In In

. . . . . .

−In In


. (20)

Premultiplying (19) by H−1 implies that the joint density vec(ΦT
c )|Q is given by

vec(ΦT
c )|Q ∼ N

(
0, (H ′(IT ⊗Q)−1H )−1

)
. (21)

The conditional Gaussian posterior distribution follows directly from Bayes’ rule by com-

bining the joint density above with the data, i.e.,8

ΦT
c |Φ,Ψ, hT , Q, STq , ST , yT ∼ N(Φ̂T

c , P
−1
Φc

), (22)

in which the mean Φ̂T
c and the precision matrix PΦc are given by

Φ̂T
c = P−1

Φc

(
(Ω+ ⊗Ψ−1) · vec(X̃ − ΦZ)

)
,

PΦc = H ′(IT ⊗Q)−1H + Ω+ ⊗Ψ−1.

(23)

Ω+ is defined as the inverse of a diagonal matrix, i.e., Ω+ = diag(exp(−h1), . . . , exp(−hT )).

Since PΦc is a sparse and block-banded matrix, its Cholesky decomposition CPΦ
C ′PΦ

= PΦc

can be computed efficiently and can be used in the same way as in (17) and (18) to draw

the time-varying intercepts ΦT
c , i.e.,

ΦT
c = C ′PΦ

\
(
CPΦ
\
(

(Ω+ ⊗Ψ−1) · vec(X̃ − ΦZ)
)

+D
)
, (24)

8The derivation is standard and can be found in references such as Gelman et al. (2003); see also
Chan and Jeliazkov (2009).
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in which D is now a Tn × 1 vector of independent N(0, 1) random variables. Note that

to better disentangle the constant and time-varying parts of the intercept we demean ΦT
c

after each draw. Compared to standard samplers used in time-varying parameter models

based on the Kalman filter and smoother recursions, such as Carter and Kohn (1994), the

above precision sampler generates faster run times; see Chan and Jeliazkov (2009).

In Step II.c, drawing the diagonal elements of the innovation matrixQ in (6) is straight-

forward and standard results for the conditional inverse Gamma posterior distribution ap-

ply. Drawing the parameters hT , ρ, and σ2
h in the common stochastic volatility part—Steps

II.d, II.e, and II.f—follows exactly the algorithm in Chan (2018) and Chan and Hisiao

(2014). Specifically, for hT it first involves computing the mode and the corresponding

negative Hessian of the underlying density by a Newton-Raphson algorithm. We then use

the resulting proposal distribution to directly sample hT using an acceptance-rejection

Metropolis-Hastings step.

4 Application

To evaluate how the forecasting performance and other properties of our mixed-frequency

VAR with time-varying intercepts and common stochastic volatility performs, we consider

an empirical analysis using a dataset of eleven U.S. macroeconomic variables.

Aside from our “full” model, i.e., the one including common stochastic volatility

and time-varying intercepts, we consider two “intermediate” model versions: a mixed-

frequency VAR with time-varying intercepts but time-invariant volatilities and a mixed-

frequency VAR with common stochastic volatility but constant intercepts. The outcomes

of these model variants allow us to identify the individual contributions of both modifica-

tions and to unveil interactions between the two. We label the corresponding three models

TVi-CSV-MF-VAR, TVi-MF-VAR and CSV-MF-VAR. Since the model of Schorfheide

and Song (2015) served as a starting point to our analysis, we assess the usefulness of

our proposed modifications against their MF-VAR. Table 5 provides an overview of the
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models under consideration. All models have p = 6 monthly lags as in Schorfheide and

Song (2015).

We run 12,000 iterations of our MCMC sampler, but discard the first 2,000 as burn-in

phase.9 As outlined in Section 3.1, we reserve the initial four years of data (1986 to 1989)

as pre-sample to initialize our prior beliefs.

4.1 Data

We collect eleven macroeconomic variables for the U.S. from the FRED database of the

Federal Reserve Bank of St. Louis: gross domestic product (GDP), private domestic in-

vestment (INV), government expenditures (GOV), the unemployment rate (UNR), hours

worked (HRS), the consumer price index (CPI), the industrial production index (IPI), the

personal consumption expenditures index (PCE), the federal funds rate (FF), the treasury

bond yield (TB), and the S&P 500 index (SP500). Note that the first three series are

sampled at quarterly frequency, whereas the remaining ones are occurring on a monthly

basis.10 Variables sampled at even higher frequencies, such as the federal funds rate, are

time-aggregated to monthly frequency. All series are seasonally adjusted except for the

financial variables. Following Schorfheide and Song (2015), all indicators enter the model

in log-levels; exceptions are the unemployment rate, the federal funds rate and the trea-

sury bond yield, which are scaled by 100 to make their scale comparable to the variables

in log-levels. Table 4 provides detailed information about the series under consideration.

We have downloaded the data on July 31st, 2017, close of business. All variables start

from 1986:Q1 (1986:M1) and are characterized by the familiar ragged-edge structure (see,

e.g., Marcellino and Schumacher, 2010) because of different publication delays (see Table

4). As an example, the industrial production index is available until 2017:M6, whereas the

9We use Matlab to carry out all computations.
10In contrast to Schorfheide and Song (2015) we use domestic instead of fixed investment and an index

for personal consumption expenditures. Because of changes in the base years, fixed investment and actual
PCE are available in chain-linked dollars only for a comparably short period of time. Schorfheide and
Song (2015) circumvent this problem implicitly by conducting their analysis in real time, i.e., by using
the respective data vintage at each point a forecast is made.
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federal funds rate for 2017:M7 just got published. As we assume forecasts to be computed

at the end of each month, the ragged-edge structure obtained when downloading the data

is representative of our analysis. Note that we consider second releases for the quarterly

variables, implying that they get released halfway through the respective quarter. In other

words, on 31st of July the latest available GDP-figure corresponds to the first quarter.

4.2 Running Time

Before turning to the heart of our application we briefly comment on some computational

aspects. As argued throughout the methodological part of the paper, we face a trade-off

between considerably fast estimation and model complexity when extending the mixed-

frequency VAR of Schorfheide and Song (2015). The mixed-frequency time-varying VAR

of Cimadomo and D’Agostino (2016), for instance, adopts the full-blown time-varying

parameter model (TVP-VAR) of Primiceri (2005), which marks more or less the upper

bound in terms of complexity. While their paper needs to be praised for merging a mixed-

frequency VAR with the prototypical TVP-VAR, such a complex model structure forces

them to make sacrifices in terms of model size. They restrict themselves to three variables

and two lags. One could perhaps add a few more variables or lags before reaching the

limit of their sampler. Our application with eleven variables and six lags, in contrast,

could be easily enlarged to, say, 20 variables.11

Here, we address the trade-off between computational demand and model complexity

by parsimoniously specifying time variation and by using efficient matrix algebra as out-

lined in Section 3.2. In Table 6 we show the running times of our models compared to

the benchmark MF-VAR of Schorfheide and Song (2015).12 It turns out that the addition

of time-varying intercepts alone bears little extra computational costs. In contrast, the

computation of the common stochastic volatility is a bit more demanding, as we need

11Computationally even more demanding than increasing the cross-section is the time dimension.
Starting the sample in 1970 rather than 1990 makes a considerable difference in terms of running time.

12Note that Block I is identical for all models implying that any differences must stem from the
estimation procedure in Block II.
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to run through an acceptance-rejection Metropolis-Hastings step. Our results of running

time slightly less than two times that of the MF-VAR are roughly in line with Chan

(2018), reporting a relative running time of 2.19 for a common-frequency Bayesian VAR

with common stochastic volatility (compared to one without).

4.3 Full Sample Estimation

We now turn to the first main set of empirical results. Using the full sample from 1990:M1

to 2017:M7 (recalling that we discard a pre-sample of four years prior to 1990 and that

GDP is only available until 2017Q1), we take a closer look at the estimated intercepts,

common stochastic volatility, and the latent monthly GDP series.

Figure 1 reports the time-varying intercepts of three of our eleven variables – quite co-

incidentally those that we consider in our recursive out-of-sample forecast exercise: GDP,

the unemployment rate and the federal funds rate.13 In particular, the solid (red) line rep-

resent the median value of the intercept in each time period for the TVi-CSV-MF-VAR,

whereas the dotted (blue) line marks the corresponding outcome for the time-invariant

MF-VAR model. Note that the corresponding median values have been demeaned to

make them comparable in terms of scale.

The data clearly support the presence of time variation in the intercepts. Note that our

choice kQ =
√

0.001 does not particularly penalize time variation in the intercepts; larger

values for kQ would favor a higher degree of time variation at the cost of incurring more

outliers rather than smoothly changing trends. Empirically, capturing slowly changing

trends is, perhaps, the main reason why our model should have an edge over the time-

invariant MF-VAR. As VAR-intercepts typically reflect the conditional mean of a series we

cannot simply interpret their movements as fluctuations in the (long-run) growth rates.14

What we may deduct, however, is the change in the contribution of the intercept to the

13Results for the remaining variables are available upon request.
14In the dynamic factor model of Antolin-Diaz et al. (2017) without lagged endogenous variables or

the time-varying VAR of Banbura and van Vlodrop (2018) the time-varying intercepts directly measure
the unconditional mean or (long-run) growth rate.
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variable in the respective equation between two points: In 2017 the intercept contributes

about 0.35 percentage points less to monthly GDP growth than it did in 1990. For the

unemployment rate, though, the intercept’s contribution increased over time by about

0.28 percentage points. For the fed funds rate its contribution started off negatively, then

increased by about 0.1% percentage points by mid 2010, yet ended with almost nil impact

at the end of the sample. This may reflect the fact that the rate remained very close to the

zero lower bound at the end of the sample, thereby not resembling much of an individual

time-varying effect.

Figure 2 provides a closer look into the common stochastic volatility factor. In partic-

ular, it plots the standardized values of ht, i.e., exp(ht/2). First and as expected, there is

considerable time variation in the volatilities. Apart from smaller rises and falls, one spike

clearly stands out: the one for the Great Recession in 2007. At the end of the sample,

the results provide rather low evidence for time variation; the solid (red) line lies even

beneath the dotted (blue) one. This may also hint towards the aftermath of the crisis

being characterized by less erratic movements of the time series involved, similar to the

fed funds rate outlined before.

Figure 3 plots the growth rates of the median values of the monthly GDP series

(scaled by 3 to make them comparable to quarter-on-quarter rates). It turns out that

the outcomes are fairly similar. Monthly GDP of the TVi-CSV-MF-VAR, however, often

extends beyond the estimates under the MF-VAR, especially when larger changes in

growth rates occur. This is most likely due to much more pronounced (common) stochastic

volatility, also suggested by the – once again – less volatile behavior at the end of the

sample period.

4.4 Forecasting Exercise

We base the evaluation of our models on the forecast accuracy with respect to the three

target variables considered already above: the unemployment rate, the federal funds rate

and GDP. To this end we conduct a forecast exercise in pseudo-real time and consider
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an increasing sequence of estimation samples, always imposing the ragged-edge structure,

starting with the period 1990:M1-2006:M2 until 1990:M1-2017:M7. We also impose the

laws of motion in (6) and (9) for the time-varying intercepts and the common stochastic

volatility over the forecast horizon. Subsequently, we compute up to twelve monthly

forecasts for each indicator, assuming that we are always at the end of the month.15

The specific forecast period for the quarterly series is determined by their respective

publication delays. For example, in 2007:M1 the latest available GDP observation corre-

sponds to 2006:Q3. Hence, we would look at forecasts over the period 2006:M10-2007:M9.

When evaluating these forecasts it is decisive which month of the quarter constitutes the

end of the estimation sample: being in the first month, the average of the first three fore-

casts is, in fact, a backcast as it corresponds to the previous quarter (see, e.g., Bańbura

et al., 2011). Consequently, the next value represents a nowcast, whereas the third and

fourth figures are “truly” forecasts (with quarterly horizons of one and two). At the end

of the second and third month, however, the GDP-value corresponding to the previous

quarter is already available, causing the first figure to be a nowcast and the remaining

ones to be one-, two and three-quarter-ahead forecasts. Considering the increasing infor-

mation content as we move from one month to the next, we obtain performance measures

for, in total, twelve different forecast horizons. Counting the amount of months between

the moment we compute the forecast and the end of the reference quarter, we label these

horizons hGDP = −1, 0, . . . , 10: hGDP = −1 corresponds to the backcast made at the end

of the first month, hGDP = 0, 1 refer to the nowcasts made at the end of the second and

third month, and so forth, until hGDP = 10 applies to the three-quarter-ahead forecast

made at the end of the second month.

The situation is slightly different for our two monthly target variables, which are

characterized by much shorter publication delays. For the unemployment rate, at the end

of month t, we always need to compute one nowcast, as we observe it with a delay of t−1,

the rest are forecasts. For the federal funds rate, which becomes available just when we

15One could align the timing of the forecasts to the publication date of each indicator and update the
forecasts several times a month.
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start a new forecasting round, we deal with forecasts only.

To evaluate our forecasts we use two metrics: root mean squared forecast errors

(RMSFE) for point forecasts, and average log predictive likelihoods (logPL) for den-

sity forecasts. We refer the reader to any standard textbook for the precise formulae.

Tables 7 to 9 contain the outcomes for our three target variables in turn. Each table

shows the results for point forecasts in the top half and the ones for density forecasts in

the bottom half. For our full model and two intermediate versions we report the forecast

accuracy measures relative to the MF-VAR of Schorfheide and Song (2015). Hence, for

point forecasts values smaller than one and for density forecasts values larger than zero

indicate a better forecast performance Note that absolute RMSFEs (multiplied by 100)

are provided for the MF-VAR.

For the unemployment rate the point forecasts of the TVi-MF-VAR clearly beat the

MF-VAR. The models containing common stochastic volatility, however, lead to sacrifices

in terms of point forecast accuracy. Like the model just including a time-varying intercept,

TVi-CSV-MF-VAR outperforms the benchmark, yet to a lesser extent for small horizons

due to the effect of stochastic volatility. The situation is similar for density forecasts,

except that also the CSV-MF-VAR model leads to forecast improvements in almost all

cases. The full model, including both channels of time variation, is thus the preferred

choice most of the time.

The results for the federal funds rate feature a couple of similarities. Once again,

the time-varying intercept seems to be more beneficial for the forecast performance than

common stochastic volatility. Interestingly, point forecasts still benefit from the latter,

whereas density forecasts only do so for small horizons. Like before, the TVi-CSV-MF-

VAR model, which combines both features, delivers large improvements over the time-

invariant MF-VAR of Schorfheide and Song (2015).

Finally, and most importantly due to its role as the most important summarizing

indicator for the economic activity, we consider the outcomes for GDP. For both, point

and density forecasts, we mostly record small improvements of the intermediate models
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over the benchmark. When being combined in the full model, though, the results are

oftentimes even better. Hence, there appear to be some diversifying effects when adding

both channels of time variation at the same time such that we achieve comparably large

forecast gains with respect to point and density forecasts of GDP.

All in all, it emerges that time-varying intercepts are somewhat more beneficial for

forecasting than common stochastic volatility, whereby the interactions between the two

features in the full model often lead to the best outcomes overall. Our full model thus

presents itself as a useful alternative to the standard MF-VAR model of Schorfheide and

Song (2015).

5 Conclusion

We introduce time-varying mixed-frequency VAR models for macroeconomic forecast-

ing purposes. Since combining time-varying parameters with mixed frequencies requires

considerable computational effort, we restrict time variation to the intercepts and er-

ror variances. For the error variances we further reduce model complexity by forcing

the stochastic volatilities to be common across all variables. This frees us from computa-

tional restrictions usually implied by increasing the number of variables and lags (Carriero

et al., 2015b). We show how estimation of the model requires the separation into two

separate blocks; one in which the mixed-frequency and ragged-edge features of the data

are handled, and another, in which we estimate the VAR parameters. With respect to

the first block we rely on the approach of Schorfheide and Song (2015), which also serves

as main competitor for our method. In the second block the Kronecker structure of the

error terms, for which the common stochastic volatility restriction is a special case, allows

us further to exploit gains from using sparse and block-banded matrix algebra (see, e.g.,

Chan, 2018).

We demonstrate the feasibility and usefulness of our approach within an empirical

analysis involving eleven U.S. macroeconomic time series. We discuss several computa-
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tional aspects of our “full” model and two “intermediate” ones, where either one of the two

channels, through which time variation can enter, is switched off. It turns out that costs

in terms of computing time are acceptable given the gains in flexibility. We show that the

data support time variation in both the intercepts and volatilities. Finally, a pseudo-real

time forecasting exercise reveals that, first and foremost, our models yield overall bet-

ter point and density forecasts for the three target variables in question, among which

is GDP. Furthermore, in our specific case, time-varying intercepts seem to be somewhat

more beneficial for forecasting than common stochastic volatility.
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A Details of Block I

Given S0|0 = S0 and V0|0 = VS0 the forward pass of the Kalman filter, over the balanced

and ragged-edge part of the data, is given by the following system of equations:

The balance part t = 1, . . . , Tb

St|t−1 = ΓsSt−1|t−1 + ΓyYm,t−1 + Γc,t,

Vt|t−1 = ΓsVt−1|t−1Γ′s + ΓuΣqq,tΓ
′
u,

Kf,t =
(
Vt|t−1Λ′s + ΓuΣmq,tΛ

′
u

) (
ΛsVt|t−1Λ′s + ΛuΣmm,tΛ

′
u

+ ΛsΓuΣqm,tΛ
′
u + ΛuΣmq,tΓ

′
uΛ
′
s

)−1
,

ŷt = ΛsSt|t−1 + ΛyYm,t−1 + Λc,t,

St|t = St|t−1 +Kf,t (yt − ŷt) ,

Vt|t = Vt|t−1 −Kf,t

(
ΛsVt|t−1 + ΛuΣmq,tΓ

′
u

)
.

In case t corresponds to the last month of a quarter we need to premultiply all Λ’s by the

selector matrix Wt, defined in (3).

The ragged-edge part t = Tb + 1, . . . , T

St|t−1 = Φ∗St−1|t−1 + Φ∗c,t,

Vt|t−1 = Φ∗Vt−1|t−1Φ∗′ + [In, 0]′Σt,

Kf,t =
(
Vt|t−1W

∗′
t

) (
W ∗
t Vt|t−1W

∗′
t

)−1
,

ŷt = W ∗′
t St|t−1,

St|t = St|t−1 +Kf,t (W ∗
t yt − ŷt) ,

Vt|t = Vt|t−1 −Kf,t

(
W ∗
t Vt|t−1

)
.

Once we arrive at the end of the forward recursions we draw ST ∼ N
(
ST |T , VT |T

)
and

run the backward pass from T − 1 until the beginning. At each recursion we then draw a

new set of states, i.e. St ∼ N
(
St|t+1, Vt|t+1

)
. Note that during the backward pass we no

longer need to check whether we are in the last month of a quarter or wether there are
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missing values.

The ragged-edge part t = T − 1, T − 2, . . . , Tb

St+1|t = Φ∗St|t + Φ∗c,t,

Vt+1|t = Φ∗Vt|tΦ
∗′,

St|t+1 = St|t + Vt|tΦ
∗′V −1

t+1|t
(
St+1 − St+1|t

)
,

Vt|t+1 = Vt|t − Vt|tΦ∗′V −1
t+1|tΦ

∗Vt|t.

The balanced part t = Tb − 1, Tb − 2, . . . , 1

St+1|t = ΓsSt|t + Γyym,t + Γc,t,

Vt+1|t = ΓsVt|tΓ
′
s + ΓuΣqq,tΓ

′
u,

St|t+1 = St|t + Vt|tΓ
′
sV
−1
t+1|t

(
St+1 − St+1|t

)
,

Vt|t+1 = Vt|t − Vt|tΓ′sV −1
t+1|tΓsVt|t.
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B Figures

Figure 1: Selected Time-Varying Intercepts

Notes: Demeaned medians of the time-varying intercepts (Φc + ΦT
c ); multiplied by 100, changes

between two points are thus in units of percentage points.
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Figure 2: Common Stochastic Volatility

Notes: Medians of the common stochastic volatility in standard deviations, i.e., exp(ht/2).
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Figure 3: Monthly GDP

Notes: Growth rates of the medians of monthly GDP; scaled by 3 to make them comparable to

quarter-on-quarter rates.

C Tables

Table 1: Running Time Advantages Relative to a Fully-Fledged Model

Number of variables, n

Number of lags, p 3 4 6

3 42.9 34.4 10.6

6 33.9 16.4

12 25.0

Note: Numbers are percent of running time of our parsimonious mixed-frequency model with time-

varying intercepts and common stochastic volatility relative to a fully-fledged model (Primiceri, 2005,

extended to the mixed-frequency case). The n = 3, 4, 6 variables represent a subset of the ones described in

Table 4: GDP, CPI, Fed funds rate, unemployment rate, industrial production, and personal consumption

expenditures.
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Table 2: Forecast Performance Relative to a Fully-Fledged Model

Horizon -1 1 3 5 7

Rel. RMSFE 1.02 0.84 0.95 0.95 0.86

Rel. logPL -0.64 0.04 0.18 0.18 0.14

Note: Comparison of our parsimonious mixed-frequency model with time-varying intercepts and common

stochastic volatility and a fully-fledged model (Primiceri, 2005, extended to the mixed-frequency case).

The specification is n = 3 and p = 3; the n = 3 variables represent a subset of the ones described in

Table 4: GDP, CPI, Fed funds rate. The forecast horizon is defined as the amount of months between

the moment a forecast is made (assumed to be at the end of each month) and the end of the reference

quarter; -1 is a backcast, 0 and 1 are nowcasts, the remaining horizons refer to forecasts. RMSFE ratios

smaller than one and logPLs larger than zero imply that our parsimonious model performs better.

Table 3: Selected Values for Priors and Hyperparameters

Parameter Value Description

λ1 0.2 controls prior variance of endogenous VAR coefficients

λ2 105 controls prior variance of intercepts

λ3 1 quadratic decay rate of prior variance with increasing lags

κ1 2 tightness of sum-of-coefficients prior

κ2 2 tightness of dummy-initial-observation prior

ν0 n+ 3 prior degrees of freedom in inverse Wishart for Ψ

kQm

√
0.001 prior amount of time variation of intercepts (monthly)

kQq

√
0.001 prior amount of time variation of intercepts (quarterly)

Q0 48 prior shape parameter for Qs (equal to length of pre-sample)

ρ0 0.9 prior for AR(1) coefficient in law of motion for CSV

Vρ0 0.22 prior variance of ρ0

νh0 5 prior shape parameter for the CSV innovation variance σ2
h

Vh0 0.01(νh0 − 1) prior scale parameter for the CSV innovation variance σ2
h
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Table 4: Data and Stylized Release Calendar

Series ID Transf. Pub-Lag Description FRED Mnemonic

GDP Log 1 Qrt* Real gross domestic product, sa GDPC1

INV Log 1 Qrt* Real gross private domestic invest-

ment, sa

GPDIC1

GOV Log 1 Qrt* Real government consumption expen-

ditures and gross investment, sa

GCEC1

UNR 1/100 1 Mth Civilian unemployment rate, sa UNRATE

HRS Log 1 Mth Index of aggregate weekly hours, sa AWHI

CPI Log 1 Mth Consumer price index for all urban con-

sumers, sa

CPIAUCSL

IPI Log 1 Mth Industrial production index, sa INDPRO

PCE Log 1 Mth Personal consumption expenditures in-

dex, sa

PCEPI

FF 1/100 ./. Effective federal funds rate, nsa FEDFUNDS

TB 1/100 ./. 10-year treasury constant maturity

rate, nsa

GS10

SP500 Log ./. S&P 500 stock index, adjusted close

price, nsa

SP500**

Note: GDP, INV and GOV are available on a quarterly basis, the remaining series are sampled at monthly

frequency. The table contains information about transformations applied to the variables (“Transf.”);

the publication delay or lag (“Pub-Lag”), whereby second releases are considered for *quarterly series

implying that they get published halfway through the respective quarter; a description of each series

(“Description”); and the corresponding FRED mnemonic of the St. Louis Fed (**index not available

anymore in FRED, downloaded from the database of the Deutsche Bundesbank). Within our stylized

release calendar framework we assume each month to contain exactly 22 working days. Data downloaded

on the July 31st, 2017, close of business.
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Table 5: Overview of Competing Models

Model Description

MF-VAR Mixed-frequency VAR à la Schorfheide and Song (2015)

TVi-MF-VAR Mixed-frequency VAR with only time-varying intercepts

CSV-MF-VAR Mixed-frequency VAR with only common stochastic volatility

TVi-CSV-MF-VAR Mixed-frequency VAR with time-varying intercepts and common

stochastic volatility

Table 6: Running Time Relative to the MF-VAR

Model Relative Time

MF-VAR 1.00

TVi-MF-VAR 1.32

CSV-MF-VAR 1.88

TVi-CSV-MF-VAR 1.92
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Table 7: Forecast Performance Relative to the MF-VAR for the Unemployment Rate

relative RMSFE

Model/Horizon -1 0 1 2 3 4 5 6 7 8 9 10

MF-VAR (abs.) 0.17 0.24 0.31 0.39 0.48 0.59 0.70 0.81 0.92 1.03 1.15

TVi-MF-VAR 0.92 0.89 0.87 0.85 0.83 0.85 0.86 0.87 0.87 0.87 0.87

CSV-MF-VAR 1.05 1.09 1.12 1.12 1.11 1.08 1.06 1.05 1.04 1.21 1.01

TVi-CSV-MF-VAR 0.98 0.97 0.98 0.96 0.93 0.91 0.90 0.88 0.87 0.86 0.85

relative logPL

Model/Horizon -1 0 1 2 3 4 5 6 7 8 9 10

TVi-MF-VAR 0.07 0.10 0.15 0.24 0.35 0.50 0.80 1.17 1.24 1.29 1.21

CSV-MF-VAR -0.02 -0.01 0.03 0.13 0.25 0.47 0.65 0.94 0.71 0.82 0.75

TVi-CSV-MF-VAR 0.02 0.06 0.15 0.29 0.42 0.67 0.94 1.42 1.66 1.86 1.85

Note: For the unemployment rate the table displays root mean squared forecast errors (RMSFE) and log predictive likelihoods (logPL) of the TVi-MF-

VAR, the CSV-MF-VAR, and the TVi-CSV-MF-VAR relative to the MF-VAR of Schorfheide and Song (2015). The absolute RMSFEs corresponding to

the benchmark model are also displayed in the top row. The estimation samples underlying the analysis go from 1990:M1-2006:M2 to 1990:M1-2017:M7.

As we compute forecasts at the end of each month, the values corresponding to the previous month are already available and thus the blank column at

hUNR = −1.
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Table 8: Forecast Performance Relative to the MF-VAR for the Federal Funds Rate

relative RMSFE

Model/Horizon -1 0 1 2 3 4 5 6 7 8 9 10

MF-VAR (abs.) 0.14 0.26 0.37 0.47 0.57 0.66 0.76 0.85 0.95 1.04

TVi-MF-VAR 0.94 0.95 0.95 0.96 0.96 0.95 0.95 0.95 0.96 0.97

CSV-MF-VAR 1.01 0.99 0.99 0.98 0.97 0.96 0.96 0.96 0.96 0.97

TVi-CSV-MF-VAR 0.95 0.93 0.93 0.93 0.92 0.91 0.91 0.91 0.92 0.93

relative logPL

Model/Horizon -1 0 1 2 3 4 5 6 7 8 9 10

TVi-MF-VAR 0.09 0.11 0.08 0.09 0.14 0.08 0.13 0.06 0.14 0.14

CSV-MF-VAR 0.34 0.40 0.36 0.07 -0.24 -0.26 -0.39 -0.45 -0.53 -0.50

TVi-CSV-MF-VAR 0.37 0.41 0.55 0.48 0.52 0.50 0.50 0.42 0.46 0.53

Note: As we compute forecasts at the end of each month, the values corresponding to the current month are already available and thus the blank columns

at hFF = −1, 0. For the rest see Table 7.
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Table 9: Forecast performance relative to the MF-VAR for GDP

relative RMSFE

Model/Horizon -1 0 1 2 3 4 5 6 7 8 9 10

MF-VAR (abs.) 0.58 0.59 0.58 0.99 1.08 1.04 1.43 1.53 1.47 1.92 2.03 1.97

TVi-MF-VAR 0.98 0.99 1.07 0.99 0.98 1.07 0.95 0.97 1.04 0.92 0.93 0.99

CSV-MF-VAR 0.96 0.93 0.96 0.94 0.94 0.97 0.97 0.98 1.00 0.99 0.99 1.01

TVi-CSV-MF-VAR 0.92 0.89 0.95 0.95 0.91 1.00 0.95 0.94 0.99 0.96 0.94 0.99

relative logPL

Model/Horizon -1 0 1 2 3 4 5 6 7 8 9 10

TVi-MF-VAR 0.06 0.15 -0.10 0.03 0.22 0.14 0.06 0.34 0.23 0.08 0.16 0.08

CSV-MF-VAR 0.13 0.19 0.09 0.03 0.21 0.22 0.02 0.30 0.19 0.01 0.07 0.05

TVi-CSV-MF-VAR 0.16 0.22 0.10 0.06 0.25 0.23 0.06 0.37 0.26 0.10 0.18 0.13

Note: Quarterly forecasts are obtained by averaging the respective monthly figures. For the rest see Table 7.
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