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Non-technical summary

Research Question

Dynamic term structure models face significant econometric challenges, which are related

to the high persistence of interest rates. In the euro area, further difficulties arise from

a small sample size and a prolonged period of interest rates at or near the effective

lower bound. These data features make the model results and thus the information

extracted from the yield curve sensitive to modeling and estimation methods. We aim at

developing a euro area term structure model that produces a good model fit and generates

economically plausible short rate expectations that can be used for policy analysis.

Contribution

We propose a non-linear (‘shadow-rate’) term structure model for the euro area overnight

index swap (OIS) yield curve which includes a lower bound specification that allows for

current as well as future changes in the effective lower bound. Our model also accounts

for the spread between the short rate and the deposit facility rate as observed in the data.

Most importantly, we incorporate survey information on interest rate forecasts into our

model to better pin down the expected future path of the short rate, which is important

when decomposing interest rates and deriving monetary policy expectations from the yield

curve. We also empirically asses the effects of conventional and unconventional monetary

policy measures on the components of the OIS curve by explicitly accounting for the

non-linearities associated with the effective lower bound.

Results

The estimated model allows to adequately assess short-term monetary policy expecta-

tions. The model-implied most likely path of the short rate follows a trajectory which is

in line with survey forecasts and which is consistent with the intended policy rate path of

the ECB’s Governing Council according to its forward guidance. At more distant horizons

rate expectations correlate with an estimated equilibrium nominal short rate. Our anal-

ysis also highlights the signaling channel of non-standard monetary policy in the run-up

to the Eurosystem’s sovereign bond purchases. Our preferred model outperforms alterna-

tive modeling specifications in terms of economic plausibility and model fit. Simulations

confirm that survey information is key to determine expectations on interest rates priced

into the yield curve.



Nichttechnische Zusammenfassung

Fragestellung

Für dynamische Zinsstrukturmodelle stellt die hohe Persistenz von Zinsen eine signifi-

kante ökonometrische Herausforderung dar. Im Euroraum entstehen aufgrund des kleinen

Datensatzes und einer anhaltenden Periode von Zinsen an oder nahe der effektiven Zins-

untergrenze weitere Schwierigkeiten. Diese Dateneigenschaften führen dazu, dass sowohl

Modellergebnisse als auch die aus den Zinsen abgeleiteten Informationen sensibel auf

Modellierungs- und Schätzansatz reagieren. Wir versuchen, ein Zinsstrukturmodell für

den Euroraum zu entwickeln, welches eine hohe Schätzgüte produziert und ökonomisch

plausible Kurzfristzinserwartungen generiert, die für die Politikanalyse nutzbar sind.

Beitrag

Wir schlagen ein nicht-lineares (Schatten-) Zinsstrukturmodell für die Overnight Index

Swap-Kurve des Euroraums vor, dessen Zinsuntergrenzenspezifikation aktuelle und zukünf-

tige Änderungen der effektiven Zinsuntergrenze berücksichtigt. Außerdem trägt unser

Modell auch der in den Daten zu beobachtenden Differenz zwischen Kurzfristzins und

Einlagesatz Rechnung. Vor allem informieren wir das Modell zudem mit Umfragen über

Zinsvorhersagen, um den erwarteten künftigen Zinspfad besser bestimmen zu können, was

für die Zerlegung der Zinsen in verschiedene Komponenten und die Herleitung von geld-

politischen Erwartungen von Bedeutung ist. Darüberhinaus untersuchen wir empirisch

die Effekte konventioneller und unkonventioneller Geldpolitik auf die Komponenten der

Zinsstrukturkurve. Dabei berücksichtigen wir explizit Nicht-Linearitäten in Verbindung

mit der effektiven Zinsuntergrenze.

Ergebnisse

Das geschätzte Modell erlaubt eine adäquate Einschätzung der kurzfristigen geldpoliti-

schen Erwartungen. Der modell-implizite wahrscheinlichste Kurzfristzinspfad ist konsis-

tent mit Prognosen aus Umfragen und dem vom EZB-Rat beabsichtigten Zinspfad, wie er

gemäß Forward Guidance spezifiziert wurde. Zinserwartungen für die fernere Zukunft kor-

relieren mit einem geschätzten nominalen Gleichgewichtszins. Unsere Analyse hebt zudem

den Signaling-Kanal der unkonventionellen Geldpolitik im Vorfeld der Staatsanleihekäufe

des Eurosystems hervor. Unser bevorzugtes Modell übertrifft alternative Modellspezifi-

kationen bezüglich ökonomischer Plausibilität und Modellgüte. Simulationen bestätigen,

dass Umfrageinformationen der Schlüssel sind, um in der Zinsstrukturkurve eingepreiste

Zinserwartungen zu bestimmen.
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The estimation of dynamic term structure models (DTSMs) turns out to be chal-
lenging in the presence of a small sample. It is exacerbated if the sample is char-
acterized by a prolonged period of low interest rates near a time-varying effective
lower bound. These challenges all weigh heavily when estimating a DTSM for the
euro area OIS yield curve. Against this background, we propose a shadow-rate term
structure model (SRTSM) that includes a time-varying effective lower bound and
accounts for the spread between the policy and short-term OIS rate. It also allows
for future changes in the effective lower bound and incorporates survey information.
The model allows to adequately assess short-term monetary policy rate expectations
and it generates far-distant rate expectations that are correlated with an estimated
equilibrium nominal short rate derived from a macroeconomic model set-up. Our
results also highlight the signaling channel of non-standard monetary policy shocks
in the run-up to asset purchases identified based on a non-linear high-frequency ex-
ternal instrument approach. Our model outperforms DTSM specifications without
above modeling features from a statistical and economic perspective. We confirm
our findings employing a Monte Carlo simulation.
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1 Introduction

Dynamic term structure models (DTSMs) provide valuable information for policy makers.
Such models allow to infer market participants’ views on the outlook for monetary policy
and at the same time to assess to what extent risk-averse investors demand a risk premium
for holding bond instruments in an environment of interest rate uncertainty. In general,
however, inference based on term structure models is accompanied by great econometric
challenges (Hamilton and Wu, 2012). In essence, these challenges are related to the
high persistence of interest rates, which makes the estimation of the model parameters of
the underlying data generating process very difficult and sensitive to model specifications.
This is especially true in a small sample characterized by low interest rate volatility. With
the existence of an effective lower bound (ELB), estimation challenges of term structure
models even increase because it introduces non-linearities into the term structure model
and estimation process. Due to the absence of closed-form solutions for bond prices, they
need to be simulated or approximated analytically within a non-linear filtering framework
to extract the risk factors which may impact estimation accuracy (Priebsch, 2013; Wu and
Xia, 2016). These considerations all weigh heavily when estimating a term structure model
with a euro area data sample which only covers a small sample period and essentially only
one complete interest rate cycle (2001-08). Moreover, the sample is characterized by a
prolonged period of persistently falling interest rates which approached the ELB in July
2012 when the Eurosystem lowered the deposit facility rate (DFR) to 0 and subsequently
adopted negative interest rate policies (NIRP).

Against this background, we develop a DTSM for the euro area OIS yield curve which
explicitly accounts for the above features and fulfills two criteria, i.e. (i) a good model
fit and (ii) plausible short- and long-term rate expectations that can be used for policy
analysis. We find that given the severe small sample problem with a protracted period of
low interest rates near the time-varying ELB, a shadow short rate model specification that
incorporates actual as well as expected changes of the ELB is important from a statistical
and economic point of view. Moreover, by incorporating survey forecasts on short- and
long-term interest rate expectations (our ‘friends’), the model is able to better pin down
the future path of short rates, which is important when decomposing longer-term yields
and forward rates.

Our model is able to provide a good model fit of the yield curve across time. In the
ELB period the mean absolute fitting error is less than 1 basis point for the 1-month rate
and 2 basis points for the ten-year rate, respectively. In contrast to alternative model
specifications that do not account for a time-varying effective lower bound, our model
is able to replicate the temporarily negative slope of the yield curve which was recorded
during the course of 2016 when markets were expecting further DFR cuts. Accounting
for expected policy rate changes, therefore, is important to ensure a good model fit at the
short end of the yield curve, a finding also documented by Wu and Xia (2017).

The model generates expected short rate paths that do not violate lower bound re-
strictions. The most likely path of the short rate follows a trajectory which is in line
with survey forecasts and which is consistent with the intended policy rate path of the
ECB’s Governing Council according to its forward guidance. As the possible lift-off of
policy rates is linked to the end of net asset purchases of the extended asset purchase pro-
gramme (APP), changes in the expected duration of net asset purchases should translate
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into changes of the most likely short rate path. Our model can replicate this hypothesis
and it highlights the announcement of asset purchases as a commitment device for future
short rates.

In particular, we estimate the impact of monetary policy shocks on the forward curve
and its components based on a high frequency external instrument approach. To do so,
we employ predictive regressions of the factor innovations on selected monetary policy
instruments which allows us to model the reaction of the forward curve in a non-linear
way. We identify both conventional as well as unconventional monetary policy shocks. Our
model produces a U-shaped response of the forward curve in response to a conventional
monetary policy shock which emphasizes the shock’s communication / forward guidance
character. The median reaction to an unconventional monetary policy shock at the long
end is negative and spills over to medium-term maturities. The largest impact on the
forward curve stems from the forward premium at the 10-year maturity horizon pointing to
the transmission of non-standard measures through duration extraction. At medium-term
maturities our model attributes a more prominent role to the expectations component. In
the run-up to the start of asset purchases in March 2015 unconventional monetary policy
shocks considerably contributed to the drop in long-term interest rates according to our
model. Term premia as well as short rate expectations fell in response to these monetary
policy shocks thereby also highlighting the signaling channel of non-standard monetary
policy measures.

In order to pass judgment on the economic plausibility of the level and the variability
of expected short rates, we compare our model-implied expectations component with
an estimate of the equilibrium nominal short rate in the medium- to long-term derived
from a macroeconomic model (see Holston, Laubach, and Williams, 2017). Indeed, our
model estimates resemble the level as well as the dynamics of the equilibrium nominal
rate remarkably closely even though the two models do not share any information in the
estimation. Thus, long-term forward rates appear to reflect trends in key macroeconomic
variables in both real and nominal terms, which play an important role in the formation
of longer-term interest rate expectations.

Our benchmark model outperforms alternative specifications in terms of economic
plausibility. GATSM estimations generate model-implied short rate expectations that
violate lower bound restrictions and imply far-distant short rate expectations that seem
too low from an economic perspective or may even become negative. De-meaning the
pricing factors in the first place as in Adrian, Crump, and Moench (2013) at least ensures
that the unconditional mean of the short rate matches the sample mean which pushes up
the level of expected short rates. Still, model estimates fail to range at levels consistent
with long-term survey expectations or with far-distant short rate expectations derived
from a macro model. Only if surveys are incorporated do GATSMs and SRTSMs generate
survey and macro consistent short rate expectations. Interestingly, despite the small euro
area sample, our findings indicate that with respect to the considered euro area yield
curve sample, estimated DTSMs always produce a very high persistence of the short
rate process under the P-measure. Therefore, the difference between non-bias- and bias-
corrected estimates are not substantially large. Insofar, short rate expectations in a
bias-corrected GATSM do not exhibit implausible large time variation compared to a
non-bias-corrected GATSM as partly documented for bias-corrected estimates based on
US data (Wright, 2014).
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To cross-check our results, we conduct a Monte Carlo exercise in which we simulate
yield curve data sets. We ensure that that these samples include an extended period
(more than 12 months but less than 60 months) of interest rates stuck at the effective
lower bound. In our analysis we compare performance across models in identifying the
unconditional mean and persistence of the data generating process. The exercise confirms
our previous findings. Only the model specifications including surveys are able to pin
down the unconditional mean of the data generating process fairly close while producing
high persistence in model-implied interest rates.

Our paper is related to various strands in the literature. SRTSMs which focuses on
US, UK and Japanese yield curve data typically assume a constant ELB set or estimated
to be close to zero. For the US, see Krippner (2015b); Christensen and Rudebusch (2015);
Bauer and Rudebusch (2016); Wu and Xia (2016); Priebsch (2013). SRTSMs based on
Japanese data are Ichiue and Ueno (2013); Kim and Singleton (2012); and for UK data,
see Andreasen and Meldrum (2015). For the euro area some models likewise implemented
SRTSMs based on a fixed, but estimated ELB (see the online implementations of Wu
and Xia, 2016; Krippner, 2015b). However, given the NIRP and the subsequent steps of
the DFR into negative territory, more recent applications for the euro area implemented
a time-varying ELB (Lemke and Vladu, 2016; Kortela, 2016; Wu and Xia, 2017). With
respect to the modeling of the time-varying ELB, our model is closely related to Wu and
Xia (2017), who allow for time-varying expectations of future DFR cuts in agents’ bond
pricing.

Our work also relates to the vast amount of research that documents the challenges
with respect to the estimation of term structure models. In essence, these challenges are
first and foremost related to the very high persistence of interest rates, which in combina-
tion with small samples, impedes the estimation procedure and consequently the robust
revelation of the mean-reverting characteristics of the short rate process (Kim, 2008; Duf-
fee, 2011; Duffee and Stanton, 2012). Research has addressed this issue by improving
and speeding up the estimation process (Joslin, Singleton, and Zhu, 2011; Christensen,
Diebold, and Rudebusch, 2011; Hamilton and Wu, 2012; Adrian et al., 2013), applying
bias correction (Bauer, Rudebusch, and Wu, 2012) for GATSMs or incorporating survey
information into the estimation process (Kim and Orphanides, 2012).

There are also many studies that examine the impact of monetary policy shocks on the
yield curve based on high-frequency identification schemes (Kuttner, 2001; Cochrane and
Piazzesi, 2002; Gurkaynak, Sack, and Swanson, 2005; Gertler and Karadi, 2015; Abra-
hams, Adrian, Crump, Moench, and Yu, 2016; Crump, Eusepi, and Moench, 2017). Stud-
ies that focus on APP announcements on the euro area yield curve are Motto, Altavilla,
and Carboni (2015); Lemke and Werner (2017).

The paper is structured as follows: Section 2 introduces our preferred benchmark
model with a focus on modeling the time-varying ELB. Section 3 discusses our estimation
strategy. In Section 4 we present our main results with a focus on the above defined
criteria, i.e. (i) model fit and (ii) plausible short- and long-term rate expectations that
can be used for policy analysis. We then assess the impact of monetary policy on the
forward curve based on our benchmark model. Moreover, we compare our model estimates
to alternative DTSM specifications and check our results in terms of robustness and the
impact of modeling choice. Finally, we present implications for the various estimation and
model variants based on a Monte Carlo simulation study using simulated yield curve data
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sets that are characterized by a protracted period in which the ELB is binding. Section
5 concludes.

2 Model

The class of SRTSMs introduces the concept of a (time-varying) effective lower bound,
lt, together with a shadow short rate, si1,t. Similar to standard GATSMs, it is assumed
that the pricing factors Xt follow a first-order Gaussian vector autoregressive process both
under the risk-neutral (Q) and the historical (P) probability measure

Xt = µQ + ρQXt−1 + Σut, ut ∼ N(0, I) (1)

Xt = µP + ρPXt−1 + Σut, ut ∼ N(0, I). (2)

The shadow short rate, si1,t, is an affine function of the pricing factors and it holds

si1,t = δ0 + δ′1Xt. (3)

The short rate, i1,t is then described as the maximum function

i1,t = max(si1,t, lt). (4)

By assumption, the short rate corresponds to the shadow short rate as long as the latter
is above the lower bound. If, however, the shadow short rate falls below the lower bound,
the short rate is constrained by the lower bound. This set-up allows for the possibility
that the expected path of the short rate remains at this lower bound for an extended
period of time, provided that the shadow short rate is expected to prevail below lt.

Under the condition of no-arbitrage, the price of a zero-coupon bond with residual
maturity n is defined as

Pn,t = EQ
t

[
exp

(
−

n−1∑
i=0

i1,t+i

)]
(5)

and continuously compounded spot rates thus as

in,t = −n−1 lnPn,t. (6)

Given the lower bound restriction, the mapping of pricing factors into interest rates is
non-linear and in this case no closed-form solutions for bond prices exist. Therefore, we
follow Wu and Xia (2017), who show that generally, implied one-period forward rates h
periods ahead, fh,t, can be expressed as

fh,t ≈
∫ (

lt+h + σQ
h g

(
sfh,t − lt+h

σQ
h

))
PQ
t (lt+h) dx (7)

where g(x) = xΦ(x) +φ(x) with Φ(x) the standard normal cdf, φ(x) the standard normal

4



pdf and σQ
h the conditional variance of future shadow short rates. The variable sfh,t is

the shadow forward rate h-periods ahead. It is affine in the pricing factors with loadings
ãh and b̃h and computed as fh,t = ãh+ b̃hXt. Notice that in this general form, the forward
rate is calculated as the average of future short rates with lt+h weighted by the risk-neutral
probability of lt+h.

With respect to the lower bound, we want to account for several stylized facts which
can be observed for euro area OIS rates linked to the EONIA, one of these being that the
latter can be considered as bound by the DFR.1 However, it is important to note that the
DFR does not necessarily constitute the ELB, as typically the EONIA stays a few basis
points away from the DFR even in times of very high excess liquidity.2 Therefore, the
ELB can be thought of as the sum of two elements, the DFR and the minimum spread
between EONIA and the DFR. The DFR itself is subject to discrete changes over time as
documented, e.g., by subsequent cuts into negative territory in the course of 2014-2016,
which were to some extent expected as documented by survey evidence (see Lemke and
Vladu, 2016). Finally, the dynamics of forward rates during this period hint at the fact
that markets might have expected even further DFR cuts over and above the DFR cuts
that were largely anticipated of the next respective Governing Council meeting.

To account for these features and to preserve an approximate analytical solution for
bond prices, we specify the time variation in the ELB in the following way:

lt+h =


0 if prior to ELB period and ∀h = 0, 1, 2, . . .

γti
DFR
t + (1− γt)iDFRt+1 + spt if ELB period and h = 0

min(lt, f̄t) if ELB period and ∀h = 1, 2, . . .

(8)

with f̄t = min(ft,h) forh = [1, 2, . . . , N ]. In the period before reaching the ELB, we set
the current and expected ELB to zero. Following Wu and Xia (2017), from then onwards,
the current ELB, lt, equals the weighted average of the DFR in period t and the expected
DFR in period t+ 1, which in our specification is treated as known in period t, where γt
is the fraction of days between the end of month and the next Governing Council meeting
in the following month. Moreover, in order to allow for further DFR cuts to be expected
by agents in the following months, we approximate the expected ELB as the minimum of
the current ELB and the minimum forward rate 1 to N periods ahead observed in period
t. Notice that we do not explicitly model the DFR expectations process in an internally
consistent way as in Wu and Xia (2017).3 However, we think that our modeling approach
is a reasonable shortcut to produce a very good fit of the yield curve at shorter tenors
during the ELB period and to be able to generate short rate paths that do not violate
lower bound restrictions and are broadly in line with survey evidence (see Section 4 in

1Transactions underlying the computation of EONIA take place between counterparties that all have
access to the deposit facility of the Eurosystem. Thus, they are expected to have no incentive to lend
below that rate.

2In times without excess liquidity, EONIA closely follows the main refinancing rate set by the Eurosys-
tem. Then, with increasing excess liquidity, however, EONIA moves away from that rate and non-linearly
approaches the deposit facility rate offered by the Eurosystem (Deutsche Bundesbank, 2014).

3In order to preserve an approximative analytical solution, Wu and Xia (2017) specify PQ
t (lt+h) within

a regime-switching model in which the lower bound is modeled as two-state Markov chain to describe
the persistence and the momentum of the policy lower bound and to allow agents to be forward-looking
with respect to future lower bound changes that affect bond pricing.
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this repsect). With this deterministic lower bound specification we follow Wu and Xia
(2016) and Equation 7 can then be approximated analytically as

fh,t ≈ lt+h + σQ
h g

(
sfh,t − lt+h

σQ
h

)
. (9)

Further, as discussed above, the high persistence of yields which are only available
in short samples for the euro area leaves the model with only little information about
the data generating process P as well as the drift in far-distant short rate expectations.
To possibly arrive at more precise estimates of the parameters under the P-measure,
we link model-implied expectations to survey forecasts on short rate expectations as a
further central feature of our model following Kim and Singleton (2012). Given the well
known potential drawbacks that may come with incorporating survey forecasts, we add
measurement errors when we align model-implied expectations with the corresponding
survey forecasts.4 For any given survey interest rate forecast with residual maturity n in
j-periods ahead, we add the following equation to our model set-up

isurveyn,t+j = EP
t [in,t+j] + esurveyn,t (10)

where esurveyn,t is the measurement error.

3 Estimation

For estimation purposes, we cast our benchmark model SRTSMB in state space form
with the transition equation given by Equation 2

Xt = µP + ρPXt−1 + Σut, ut ∼ N(0, I). (11)

The measurement equation takes the form of

Ŷt = Yt + et (12)

in which Yt is the J-vector of model-implied interest rates with Yt = g(Xt, µ
Q, φQ,Σ, δ0, δ1, lbt)

and Ŷt corresponds to the J-vector of observed interest rates as well as survey forecasts
adjusted for a vector of measurement errors et with standard deviation σi for yields5 and

4First, as pointed out by Kim and Orphanides (2012), surveys report average expectations, while
market prices are driven by marginal expectations on interest rates – a problem that might be exacerbated
by relatively low numbers of participants compared to the number of participants in the market. A
further explanation why survey-based expectations may only be an approximate reflection of market
expectations may be the potential variation in the information available to participants and the point in
time at which they submit their answers. Therefore, it can be assumed that the subjective expectations of
survey participants deviate from the objective statistical expectations held under the P-measure. Second,
there might be incentives for survey participants not to reveal their true expectations, leaving surveys
biased themselves, making them an inaccurate measure of participants’ true expectations (Cochrane and
Piazzesi, 2008; Chernov and Mueller, 2012).

5We assume that the measurement errors of yields are the same across the maturities considered.
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σsurveyn for survey expectations6 (for GATSMs it holds that Yt = A+B′Xt). As the map-
ping between interest rates and pricing factors in the measurement equation is non-linear,
we apply the non-linear extended Kalman filter when maximizing the likelihood function.
7 With respect to the model identification, we closely follow Bauer and Rudebusch (2016)
and estimate our model with L = 3 latent pricing factors based on the normalization of
Joslin et al. (2011) with ρQ = diag(ρQ1 , ρ

Q
2 , ρ

Q
3 ) and in Jordan form, µQ = [kQ∞, 0, 0]′, Σ is

lower triangular and δ0 = 0, δ1 = [1, 1, 1]′.
In order to make the interpretation of latent pricing factors derived from our model

easier, we can also transform the factors to an equivalent representation with new latent
pricing factors Pt that resemble principal components in terms of level and dynamics along
the procedure sketched out in Lemke and Vladu (2016).8 This transformation makes it
possible to directly compare estimated parameters with those of estimated GATSMs
based on principal components used as pricing factors. Therefore, we also report param-
eter estimates in terms of δ0,P , δ1,P and µP , ρP ,ΣP both under the P- and Q-measure.

In our estimation, we use monthly overnight index swap (OIS) rates based on EONIA
for the period January 1999 to October 2017 covering the maturities M in 1,3 and 6
months as well as 1,2,3,5,7 and 10 years. Hence, our yield curve data consist of T = 226
months for J = 8 maturities of interest rates. As these rates are reliably available only
from July 2005 onwards, we follow Lemke and Vladu (2016) and augment our data set with
spread adjusted zero-coupon rates based on EURIBOR swaps prior to 2005. Moreover,
we follow the authors’ specification of defining the ELB period from July 2012 onwards
when the DFR hit the zero bound. We focus on the OIS term structure as in our view
OIS interest rates represent the yield curve in the euro area with the closest link to
expected monetary policy actions priced into interest rates. First, it is risk-free in the
sense that it does not carry sovereign credit risk, the pricing of which might change over
time and might distort the decomposition of interest rates. Second, as OIS rates are swap
contracts in which cash flows are swapped, they do not serve as a store of value and thus
should not be influenced by flight-to-safety and -liquidity investors to the same extent as
sovereign bonds. And finally, the OIS curve is intrinsically linked to (one of) the monetary
policy instruments(s) which the Eurosystem directly controls, as one leg of the contract
is associated to the EONIA path which usually closely follows the MRO or - in times of
large excess liquidity – the DFR of the Eurosystem.

With respect to modeling the time variation in the ELB, we specify Equation 8 the
following way. First, as confirmed by survey and estimation evidence, the DFR cuts in
June 14, December 15 and March 16 were largely expected by market participants, while
the cut in September largely came as a surprise (Lemke and Vladu, 2016; Wu and Xia,
2017). Therefore, we allow the current ELB, lt, to already incorporate these DFR cuts
in the respective months previous to their realization by weighting the DFR cut with the

6In contrast to yield measurement errors, we allow the measurements errors of survey expectations to
differ for each survey horizon.

7Alternative non-linear filters include the iterated extended as well as the unscented Kalman filter
(Kim and Singleton, 2012; Priebsch, 2013; Krippner, 2015c).

8An affine transformation of the latent factors Xt to the pricing factors Pt implies that Pt = AW +
WBXt where W is the weighting matrix which maps the set of observed yields into the first three principal
components; A and B represent the affine loadings from an estimated GATSM based on Joslin et al.
(2011). It then holds that µP = WBµ −WBρ(WB)−1, ρP = WBρ(WB)−1, ΣP Σ′P = WBΣΣ′(WB)′,
δ0,P = δ0 − ρ′(WB)−1WA and δ1,P = ((WB)−1)′ρ. See Joslin et al. (2011).
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parameter γt. Second, for the dynamics of the ELB h-periods ahead, we choose lt+h to
be the minimum observed one-month forward rate in 1 to 24 months.9

With respect to the use of survey information, we rely on selected Consensus Eco-
nomics interest rate forecasts of the 3-month Euribor in 12- and 24-months time (available
quarterly and semi-annually). Moreover, we also add to the survey measurement equa-
tions the long-horizon forecast for the average 3-month Euribor in 6 to 10 years which is
available on a quarterly basis since September 2016. Survey data up to the 2-year horizon
are adjusted by the Euribor-OIS spread, respectively. We exclude other available survey
information at very short horizons and intermediate horizons. We do so because survey
information might only be biased approximations of model-implied expectations and we
want to let the yield curve data speak for itself as much as possible on the parameters
governing the P-measure.

4 Results

4.1 Goodness of fit

Overall, our benchmark model (SRTSMB) performs well in terms of model fit (see Table
1, parameter estimates are reported in Table A.1). The mean absolute fitting error (MEA)
of yields over the complete sample is 3 basis points and around 18 basis points for short-
term surveys, which is comparable in size with other SRTSM estimates including survey
information (see Priebsch, 2017, for US results). Notice that during the ELB period, both
the yield and survey fit improves. The MAE for the 1-month rate is 1 basis point and the
fit of short-term surveys is between 6 and 10 basis points, while the MEA of long-term
surveys ranges at 15 basis points.

This good average model fit is largely confirmed when depicting the model-implied
yield curve at selected dates and comparing it to observed yields (see Figure 1). However,
during the ELB period the model fit somewhat varies depending on the specific observation
dates. For instance, in October 2012 and July 2015, when the short end of the yield curve
was very flat, our model is able to replicate this feature to a very good extent. In February
2016, when market participants were broadly expecting a further DFR cut, our model is
able to replicate a downward sloping yield curve, but delivers higher fitting errors up to
the 2-year maturity horizon.

Our analyses show that with respect to the short rate, even small fitting errors may
generate an economically significant impact on the expected and most likely short rate
path and, thus, on assessing monetary policy expectations. Therefore, fitting the short
rate is important when evaluating the future short rate distribution over time. In order to
do that, we explicitly allow the current spread between EONIA and the DFR in addition
to expected DFR shifts to enter the ELB in lt. This leads to a very good model fit of the
short rate during the ELB period (see Figure 2). Closely related to this, our model implies
a shadow short rate which is less prone to other modeling specifications. This finding is
again mostly related to the incorporation of the spread into the ELB definition, which
ensures that the ELB is binding for the model-implied short rate during the ELB period
by construction. This modeling strategy thus makes the timing of when the shadow short

9f̄t = min(ft,h) forh = [1, 2, . . . , 24] months.
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Table 1: In-sample model fit of yields and survey forecasts

maturity in months 1 3 6 12 24 36 60 84 120 avg

yields
total sample: 4 3 3 3 2 3 3 2 3 3
pre-ELB sample: 5 4 3 4 3 3 3 1 3 3
ELB sample: 1 2 2 1 1 2 3 2 2 2

expected 3-month rate in months 12 24 60− 120

surveys
total sample: 12 24 15
pre-ELB sample: 15 30 −
ELB sample: 6 10 15

Note: This table shows the mean absolute errors (MAE) of model-implied yields and short
rate expectations compared to observed yields and survey forecasts for selected sample periods
in basis points. The total sample covers the period January 1999 to October 2017 while the
pre-ELB sample covers the period January 1999 to June 2012 and the ELB sample the period
July 2012 to October 2017.

rate first moves below the ELB insensitive to other modeling specifications which may
affect the dynamics of the pricing factors (see Figure A.1).10

4.2 Model-implied short-term rate expectations

We start our analysis on model-implied interest rate expectations by decomposing forward
rates into short rate expectations as well as forward premia for selected short-term and
long-term maturities (panel(a) of Figure 3) based on our benchmark model. At the 1Y1Y
forward horizon (see panel a), most of the variation in forward rates stems from changes
in short rate expectations. Prior to the ELB period, forward premia ranged between 0
and 1%. Note that forward premia turned slightly negative by mid-2011 and remarkably
remained anchored at this level from 2012 onwards. The prominent role of short rate
expectations can also be identified when conducting a variance decomposition for the
variation in the level and the change of the 1Y 1Y rate. As shown in Table A.2, about
88% of the variation in the level is due to the expectations component over the total
sample. During the ELB period, it even accounts for over 111% of the variation in the
monthly change of the 1Y1Y forward rate.

To add to this finding, we depict 1-month forward premia for the 1, 3, 6-month as
well as 1 and 2-year horizon (panel (b) of Figure 3). For comparability, forward premia

10For a detailed discussion on the impact of model specification on the derivation of a shadow short
rate, see Krippner (2015a).
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Figure 1: Yield curve model fit at selected dates
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Note: This figure plots the model-implied yield curve based on various term structure model
specifications including SRTSMB, SRTSMDFR and GATSM up to 3 years based on selected
dates.

are scaled to unit per month and reported in basis points. The figure shows that after
turning negative in 2011, term premia for shorter maturities reduced to 0, where they
have stuck since the DFR cut to zero. Simultaneously, forward premia up to the 1- and
2-year horizon have stayed slightly negative with very low volatility compared to the
time before 2011. These model-implied results can be seen against the background of a
deterioration of the macroeconomic outlook with severe downside risks to price stability
and an increasing probability of a deflationary scenario. The Eurosystem responded to
these risks by introducing NIRP, strengthening its policy rate forward guidance as well
as preparing and implementing its various asset purchase programmes. In this context,
model-implied forward premia for shorter horizons show that the Eurosystem was able to
anchor short-term interest rate expectations extremely well. Moreover, our results also
seem to suggest that in addition to policy rate forward guidance, which has been in place
since as far back as July 201311, signalling its willingness to dive deeper into non-standard
monetary policy measures has been also important to steer short-term rate expectations
and to reduce interest rate uncertainty priced in forward premia. In this respect, our

11The Eurosystem’s Governing Council introduced its interest rate forward guidance in July 2013 by
expressing its expectations that “key interest rates will remain at present or lower levels for an extended
period of time”. In June 2014, the Governing Council decided to delete the word “lower” from its forward
guidance. This was only reintroduced when the Council decided to link its interest rate forward guidance
to its expanded asset purchase programme (APP) by stating the expectation that “the Governing Council
expects the key ECB interest rates to remain at present or lower levels for an extended period of time,
and well past the horizon of our net asset purchases.”
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Figure 2: Model fit of the short rate
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Note: This figure plots the model-implied short rate based on various term structure model
specifications including SRTSMB,SRTSMDFR and GATSM together with the effective lower
bound (ELB) of the SRTSMB model.

results also emphasize the signaling channel of non-standard monetary policy measures
including asset purchases which affect both short rate expectations and risk compensation
demanded by market participants (see Bauer and Rudebusch, 2014, for US evidence).

Given the asymmetry of the distribution of future short rates during the ELB period,
our model also accounts for the wedge between the mean and the mode, i.e. the most likely
future short rate path which is eminent at short- and medium-term horizons where the
ELB implies a truncated distribution. The wedge between these two statistical numbers
is important when assessing monetary policy expectations that are priced into the yield
curve. The bigger the wedge the tighter the ELB constraint binds for the yield curve
(Swanson and Williams, 2014; Bauer and Rudebusch, 2016).12 To illustrate this point,
we plot the dynamics of the mean and the mode of the future short rate for a fixed-
horizon forecast in March 2019 together with the corresponding forward rate path and
the expected ELB (panel (a) of Figure 4). The figure highlights the bias when relying
on the forward rate or the expected short rate path during the ELB period. First, the
forward rate path is biased due to the existence of substantial time variation in forward
premia. Second, due to the asymmetry, the expected short rate path shows a constant
upward bias. Correct inference with regard to monetary policy expectations can only be
drawn from the modal path of the short rate which represents the optimal forecast under
absolute error loss (Bauer and Rudebusch, 2016). Closely related to this, the model can

12In line with Bauer and Rudebusch (2016), we define the mode of the short rate path as
max(Et[si1,t+i], lbt+i).
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Figure 3: Short-term forward rate decomposition

(a) 1Y1Y forward rate
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(b) (Normalized) short-term forward premia
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Note: Panel (a) plots the time series of the decomposition of the 1Y1Y forward rate. Panel
(b) plots the time series of normalized 1-month forward premia at the 1, 3, 6, 12 and 24-months
horizons. Forward premia are normalized by maturity in months. End-of-month values for
January 1999 to October 2017.

inform on the median of the lift-off distribution of the short rate which measures the time
at which the short rate is likely to cross a certain threshold level.13 Panel (b) of Figure 4

13The lift-off distribution is calculated by simulating a large number of short rate paths under the
P-measure and then saving the future horizon at which each single path rises above a certain threshold.
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depicts the lift-off horizon based on the modal path as well as the lift-off distribution for
a specification that gives an idea about the point in time at which market participants
regard a first 10 bp rate hike as most likely. Both indicators move fairly close to each
other. With the transition to the ELB period, the crossing time constantly moved out
further. For instance, in summer 2016, market participants did not believe they would see
a first 10 bp rate hike before 2020. Since then and going forward in time, both indicators
signaled a gradual reduction in the number of months until a first DFR hike is regarded
as most likely. For the end of the sample in October 2017, this assessment implies a first
DFR hike in the summer of 2019.

4.3 Model-implied longer-term rate expectations

In this Section, we turn to the implications of model-implied intermediate and long-term
expectations as well as term premia based on our benchmark model. To start with,
in Table 3 we report summary statistics for the (shadow) short rate based on the P-
measure. The model is estimated with an unconditional mean of 4.55% and a fairly high
persistence of the pricing factor process of the transition matrix, which is expressed by
a largest eigenvalue of 0.990 in φP. Indeed, a shock to the most persistent pricing factor
has a half-life of roughly 5.75 years. Although our model implies that the short rate will
converge to a constant in the very long run, according to the short rate summary statistics,
our model also implies a substantial time variation of far-distant short rate expectations
up to the 10-year horizon.

To see this, we plot the 9Y1Y forward rate together with its decomposition into the
expected short rate and forward premium component in panel (a) of Figure 5. A high
degree of the variability in forward rates can be attributed to the forward premium which
exhibits a marked decline over the sample period from close to 2% into negative territory,
standing at about -89 bp at the end of the sample. In particular, a first large drop can
be observed in the wake of the Greenspan conundrum between June 2004 and June 2006.
Following a short upward movement, it then began to follow a lasting downward trend
after the outbreak of the financial crisis in 2008. The market’s anticipation of widespread
asset purchases since the beginning of 2014 then triggered another sharp drop leading
the premium into negative territory, where it has remained since, although its downward
trend came to a halt. This time variation of forward premia is also reflected at more
intermediate horizons (see panel (b) of Figure 5). Note that at these intermediate to
long-term maturities, forward premia co-move more linearly than at shorter maturities
(see panel (b) of Figure 3). However, the decline in the long-term forward rate reflects also
the time variation in far-distant short rate expectations which have trended downwards
since the height of the financial and economic crisis in 2008.

A variance decomposition for the 9Y1Y forward rate confirms that over the total
sample roughly 56% of the variation in the level of the 9Y 1Y rate is due to the forward
premium component (see Table A.3). In the ELB period, the share of the forward premium

While determining these future horizons, the fact can be accounted for that some paths cross the threshold
due to shocks, but then may again fall back below. This is done by requiring a path to stay above the
threshold to be chosen for a certain amount of time, e.g. 12 months. This way, it is ensured that the
inspected path has really lifted off. Ideally, the median of that distribution corresponds to the future
point in time at which the modal path crosses the threshold, but it might deviate if enough paths fall
back below the threshold too quickly after lifting off for the first time (Bauer and Rudebusch, 2016)
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Figure 4: Distribution of short rates

(a) Future short rate in March 2019
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Note: Panel (a) plots the model-implied dynamics of the expected and most likely path of
the short rate together with the forward rate for a fixed horizon in March 2019 based on the
SRTSMB model. Panel (b) plots the timing of the first DFR hike by +10 bp based on the short
rate distribution and the modal path of the short rate. End-of-month values for January 1999
to October 2017.

variation increases to roughly 60%. In terms of variation in the change in the forward rate,
73% can be attributed to the change in forward premia, highlighting their prominent role
at longer tenures. At the same time, these numbers imply that the variation of long-term
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Figure 5: Long-term forward rate decomposition

(a) 9Y1Y forward rate
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(b) (Normalized) long-term forward premia
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Note: Panel (a) plots the time series of the decomposition of the 9Y1Y forward rate. Panel (b)
plots the time series of normalized 1-month forward premia at the 6, 8, 8, 9 and 10-year horizons.
Forward premia are normalized by maturity in months. End-of-month values for January 1999
to October 2017.

forward rates in terms of level and change is explained by the expectations component,
too. Importantly, this also holds true in the run-up to the decisions of the Eurosystem
to implement large-scale asset purchases that had been increasingly anticipated since
summer 2014. Indeed, our model suggests that roughly one half of the observed decline of
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the 10Y-OIS rate from September 2014 to March 2015 can be explained by changes in the
average path of the expected short rate over the 10-year horizon. This stands in contrast
to the findings of Lemke and Werner (2017), who find that almost all of the long-term
yield decline during this period was due to the decline in the term premium within the
portfolio rebalancing channel.

In order to pass judgment on the economic plausibility of the level and the variability
of the expected short-term interest rates in intermediate and long-term forward rates (and
therefore also on the forward premia), we compare the expectations component with an
estimated equilibrium nominal short-term interest rate derived from a macroeconomic
model. Interest rate expectations contained in financial market prices at the long end
of the term structure should position themselves at this level if it is assumed that the
term structure reflects macroeconomic information, particularly with regard to long-term
inflation expectations and the equilibrium real interest rate. The latter is determined by
estimating a natural rate of interest which is consistent with a permanently closed output
gap and a stable inflation rate in the medium to longer term, after the economy recovers
from all cyclical fluctuations.14

Indeed, 5Y5Y interest rate expectations derived from our benchmark model capture
the level and path of the nominal natural interest rate quite well. In this period, the
latter is primarily driven by the real natural interest rate path while simultaneously
longer-term inflation expectations are rather stable. This observation is interesting as
the two models do not share any information in the estimations. While SRTSMB solely
contains term structure information, the macroeconomic model only takes the inflation
rate, the level of GDP and the ex ante short-term real interest rate into consideration.
Long-term forward rates thus appear to reflect trends in key macroeconomic variables in
both real and nominal terms, which play an important role in the formation of far-distant
rate expectations (see also Bauer and Rudebusch, 2017; Crump et al., 2017; Cieslak and
Povala, 2015; Dijk, Koopman, Wel, and Wright, 2014) on this assessment).

We also compare our intermediate and far-distant forward rate decomposition (5Y5Y
fwd) to US estimates based on Kim and Wright (2005), who also incorporate survey in-
formation into their term structure model. As shown in Figure A.2, until the beginning
of 2013 the expectations component in US and euro area 5Y5Y forward rates is similar
in terms of both level and variation. The high co-movement in US and euro area for-
ward rates during this period of time is also related to a significant extent to US and
euro area forward premia.15 From summer 2013 onwards however, initiated by the US
taper tantrum and followed by a deteriorating economic and inflation outlook as well as
increasing expectations of large-scale asset purchases in the euro area, US and euro area
far-distant short rate expectations decoupled significantly with the latter falling. The

14We exemplarily choose the real natural rate estimate based on Holston et al. (2017) and add medium-
to long-term inflation expectations based on Consensus forecasts to present the rate in nominal terms.
The maturity perspective of the derived natural rate of interest in this model estimation is not explicitly
defined, but refers to a longer-term perspective due to the modeling strategy and the definition of the
latent variable and shock processes: “Our definition takes a ‘longer-run’ perspective, in that it refers to
the level of real interest rates expected to prevail, say, five to ten years in the future, after the economy
has emerged from any cyclical fluctuations and is expanding at its trend rate.” (Laubach and Williams,
2016).

15Indeed correlation coefficients during this period are 0.9 and 0.8 for the expectations component and
the forward premium.

16



Figure 6: 5Y5Y short rate expectations and longer-run equilibrium nominal rate
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Note: This figure plots the time series of the SRTSMB model-implied average short rate ex-
pectations in 5 to 10 years together with an estimate of the longer-run nominal equilibrium
rate based on Holston et al. (2017). The equilibrium nominal rate is derived by adjusting the
estimated longer-run real equilibrium rate and adding longer-run inflation expectations based
on Consensus forecasts.

same holds for the dynamics of the euro area forward premium, which was much more
depressed than its US counterpart in the run-up to the APP decision in January 2015.16

Finally, we check to what extent the asymmetry of the short rate distribution also
matters for long-term interest rates. By comparing interest rates and shadow interest
rates under both the Q- and P-measure, it is possible to compute a measure of the degree
the time-varying ELB exerts influence at the long end of the term structure of interest
rates. Indeed, our findings suggest that it does so, in particular since the beginning of
2014 (Figure A.3). The ELB wedge widened not only under the Q-measure but also
under the P-measure, though not to the same quantitative extent. A somewhat more
nuanced picture can be observed for far-distant forward rate (Figure A.4). While under
the Q-measure the ELB wedge widened from 2014, the mean and the mode of the short
rate under the P-measure at the 10Y 1M -horizon is essentially identical.

16Correlation coefficients declined to 0.4 and 0.6 for the expectations component and the forward
premium.

17



4.4 Assessing the impact of monetary policy

To provide evidence on how monetary policy influences the various components of the
term structure, we investigate how forward rates, short rate expectations and forward
premia respond to monetary policy shocks within our model. As these shocks are not
directly observable, a viable workaround is to assume that changes of selected interest rates
around monetary policy announcement dates are reliable observable proxies for monetary
policy shocks which can then be used to study the response of interest rates (Kuttner,
2001; Cochrane and Piazzesi, 2002; Gurkaynak et al., 2005; Piazzesi and Swanson, 2008;
Nakamura and Steinsson, 2018, among others). Recent applications to estimated term
structure models are Abrahams et al. (2016); Crump et al. (2017).

However, this identification strategy may run the risk of capturing only part of the
underlying monetary policy shock, and they may be measured with error. Therefore,
tight windows around monetary policy announcements are typically required in order to
reduce endogeneity and noise concerns (Gurkaynak et al., 2005; Nakamura and Steinsson,
2018). Moreover, the literature implicitly assumes that the reaction of interest rates to
monetary policy (and other) shocks is constant over time by applying linear regression
techniques. Our benchmark model challenges this assumption, as it convincingly shows
that interest rates are actually non-linear functions of the pricing factors and the reaction
of interest rates to innovations in the pricing factors crucially depends on how large the
ELB wedge is at a given point in time (see Sections 4.2 and 4.3 above).

To alleviate these concerns, we treat changes in interest rates around monetary policy
announcements as instrument variables and not as directly observable monetary policy
shocks. This approach has been applied in the macroeconomic proxy SVAR literature
that aims to identify the dynamic causal effects of various macroeconomic shocks (Stock
and Watson, 2012; Mertens and Ravn, 2012; Gertler and Karadi, 2015).

Following standard terminology, we assume that the L reduced-form innovations ut of
the transition equation 11 are L linear combinations of structural shocks εt. Therefore, it
holds that

ut = Hεt = [H1, . . . , HL] (ε1,t, . . . , εL,t)
′ (13)

where H1 is the first column of H and ε1,t is the first structural shock. With Ωu = ΣΣ′,
it also holds that Ωu = HΩεH

′. Given invertibility of the system, structural shocks can
be expressed as linear combinations of reduced-form innovations

εt = H−1ut. (14)

As discussed in Stock and Watson (2012, 2018), structural shocks and hence H can
be recovered by a predictive regression of the relevant instrument zt on the innovations
ut up to scale and sign. The scale and sign of the structural shock, say ε1,t and H1, are
determined by normalizing the shock to have a unit current impact on a specific pricing
factor. Most importantly, while the link between the instrument and the innovations
remains linear, the instrument approach allows us to model the reaction of yields and
forward rates in a non-linear way in line with Equation 7. Thus, monetary policy shocks
may exhibit a different impact on the yield and forward curve at a given point in time
depending on the size of the ELB wedge.
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In the following we identify conventional (CMP) and unconventional monetary policy
(UMP) shocks based on the instrument data set of Mandler and Scharnagl (2018). The
data set consists of daily changes of various financial market variables used as instruments
for monetary policy related shocks during days of press conferences following meetings
of the ECB’s Governing Council, press releases concering non-standard monetary policy
measures, speeches and interviews by both the President and the Vice-President of the
ECB and events related to allotment days of non-standard refinancing operations. The
daily changes of these instruments at defined events are then aggregated to monthly
frequency. We use the first principal component of the daily change of five variables,
the 1Y Bund yield, the 1st EURIBOR as well as the 1st, 2nd and 3rd EONIA future
contract as instrument for a conventional monetary policy shock. As instrument for an
unconventional monetary policy shock we take the first principal component of the daily
change in the 10Y Bund, French and Italian yield. We separate CMP from UMP periods
by estimating the CMP shocks based on the sample period January 1999 to June 2014
and UMP shocks based on the sample period July 2014 to October 2017.

Note that our instruments do not inform why they changed during monetary policy
related events. They may change due to a monetary policy target shock, they may change
due to monetary policy communication and forward guidance or they reveal changes of
the central bank’s stand on the future path of output or inflation via information effects
Nakamura and Steinsson (2018). In so far, in identifying monetary policy shocks, we
measure the total impact of monetary policy news and do no isolate the various channels
through which monetary policy actions may impact the yield curve.

In order to compute economically interpretable impulse response functions based on
the identified monetary policy shocks, we rotate our benchmark model SRTSMB as
described in Section 3. In particular, we transform the three latent factors in a way that
they resemble the 1-months, 2-year and 10-year (shadow) rate. We then normalize the
CMP shock in sign and size so that a 10 basis point change in this shock implies an
equally large change in the (shadow) short rate. A UMP shock is normalized so that on
(median) impact this shock triggers a change in the 10-year yield by 10 basis points.

Results for the instantaneous response of the components of the forward curve to
an expansionary conventional monetary policy shock during the period January 1999 to
June 2014 are depicted in panel (a) of Figure 7. Note, however, that the figure does
not show uncertainty around the impulse responses. It merely shows the distribution of
impulse responses to monetary policy shocks at different points in time and highlights the
asymmetry of responses depending on the strength of the binding character of the ELB.
The nominal forward curve exhibits the largest response at the 1- to 2-year maturity
horizon with a negative reaction even at very long-term maturities. Hence, our model
implies a very high persistence of conventional monetary policy shocks along the forward
curve. Interestingly, at maturities up to 2 years, the decline in the forward curve is
due to both, changes in the expected short rate and forward premia, with the former
dominating the overall effect. Also at longer maturities, the effect on the forward curve is
dominated by the expectations component.17 The U-shaped response of the forward curve
also highlights the communication / forward guidance component of CMP shocks. While
our identification strategy does not allow to separate pure target from communication
shocks, we can still identify pure target shocks in our rotated model representation as

17See Nakamura and Steinsson (2018) for a similar result based on US data.
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Figure 7: Instantaneous response to monetary policy shocks

(a) Conventional MP shock (01/99-06/14)
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(b) Unconventional MP shock (07/14-10/17)
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Note: Panel (a) plots the median instantaneous response of the forward curve and its components
with [15%−85%] quantiles to a conventional monetary policy shock (CMP) for the sample period
January 1999 to June 2015. Panel (b) plots the median instantaneous response of the forward
curve and its components with [15% − 85%] quantiles to an unconventional monetary policy
shock (UMP) for the sample period July 2014 to October 2017.

a shock to the first pricing factor is a shock to the short rate prior to the ELB period.
Indeed, a comparison of the forward curve reaction in response to the model-derived
target shock and the estimated CMP shock indicates that much of the response based
on our identification comes from monetary policy announcements that lead to changing
beliefs about the future path of monetary policy rates explaining the U-shaped pattern.18

18For a similar result see Leombroni, Vedoli, Venter, and Whelan (2017) who decompose ECB monetary
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Finally, panel (a) of Figure 7 also illustrates the increasingly binding character of the ELB
between mid-2012 and mid-2014 which is expressed by the muted response of the forward
rate components at the 85% percentile.

Panel (b) of Figure 7 depicts the corresponding instantaneous response of the forward
curve together with the expected short rate and forward premium curve between July
2014 and October 2017 to UMP shocks. The median reaction at the long end is negative
and spills over to medium-term maturities. Up to the 2-year horizon, however, there is
essentially no reaction as rates are stuck at the ELB. The largest impact on the forward
curve stems from the forward premium at the 10-year maturity horizon, emphasizing the
transmission of non-standard measures through duration extraction. At medium-term
maturities our model attributes a more prominent role to the expectations component.
However, even at very long-term maturities, the expected short rate falls in reaction to an
unconventional monetary policy shock. Therefore, our model also highlights the signaling
channel of non-standard monetary policy measures.19

In Table 2, we perform a historical decomposition of the 10-year OIS rate for various
sample periods in order to assess the contribution of UMP shocks to the change of this
rate. Between June 2014 and the start of asset purchases in March 2015, the rate dropped
by 0.77%, which is attributed almost entirely to UMP shocks according to our model
estimates. Both the term premium and the expectations component contributed to this
decline. Between March 2015 and September 2016, one third of the observed change in
the 10-year OIS rate stems from non-identified shocks affecting mainly the term premium
component while UMP shocks continue to exert downward pressure on the yield via the
expectations and term premium component . From September 2016 onwards, UMP and
others shocks again contribute to the rise of the 10-year OIS rate by 0.6%.

Finally, we take a closer look at the shadow short rate and analyze to what extent
its dynamics are related to UMP shocks (Figure A.6). It turns out that although these
shocks increasingly affected the shadow short rate throughout 2015 and at the end of
2016, given the high persistence of UMP shocks, much of the variation stems from other,
non-identified shocks. Therefore, its move deep into negative territory should not be
interpreted as a pure reflection of a sequence of UMP shocks.

4.5 Specification analysis and robustness of model-implied rate
expectations

4.5.1 In-sample fit

In this Section, we compare the results of our benchmark model to those of alternative
modeling specifications. We run estimations of further DTSMs including GATSMs and
SRTSMs that do or do not account for a time-varying ELB or survey information. In

policy surprises into target and communication shocks. They also find a humped- (U-) shaped pattern
in reaction to communication shocks while the effects of target shocks are small and cancel out quickly.

19Swanson (2017) uses high-frequency regressions around FOMC announcements to estimate effects
of LSAP and forward guidance shocks on asset prices based on additional identification restrictions. He
finds that both forward guidance as well as LSAPs were about equally effective for medium-term Treasury
yields, stocks, and exchange rates. Forward guidance had larger effects on short-term Treasury yields
while LSAPs had larger effects on long-term Treasury yields, corporate bond yields, and interest rate
uncertainty.
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Table 2: Contribution of unconventional monetary policy
shocks to change in interest rates

10Y -OIS rate total expectations term premium

07/14− 03/15: total -77 -37 -40
UMP shock -89 -56 -32
other 12 19 -7

03/15− 09/16: total -34 -41 6
UMP shock -65 -39 -26
other 30 -1 32

09/16− 10/17: total 62 56 6
UMP shock 37 13 23
other 26 43 -17

Note: This table shows the contribution of unconventional monetary
policy shocks to the change in the 10Y-OIS rate for selected sample
periods based on the SRTSMB model and unconventional monetary
policy (UMP) shocks identified with external instruments.

particular, we estimate two additional SRTSM specifications, one in which the ELB equals
the DFR (SRTSMDFR) and one in which we implement the same ELB set-up as in our
benchmark model, but in which we exclude survey information (SRTSMwoS). In addition,
we estimate three GATSM model variants (GATSMOLS, GATSMS, GATSMBC) based
on Joslin et al. (2011) which differ with respect to the use of surveys and with respect
to the application of bias correction to the parameters under the P-measure in line with
(Bauer et al., 2012).

We start by comparing the overall in-sample model fit. As shown in Table A.4, all
models generate a similar average model fit, ranging between 2 and 3 basis points based
on the mean absolute error. As a result, there is no model specification that performs
significantly better in terms of average model fit. However, the comparison of model-
implied yield curves with observed yields at selected dates reveals noticeable differences
across models (see Figure 1).20 The following observations stand out: Prior to the ELB
period, all inspected models generate a similar fit of the yield curve. However, this changes
with the beginning of the ELB period. Both SRTSMB and GATSMOLS fit the observed
data during this period slightly better than SRTSMDFR.21 We show this exemplarily
for February 2016. At this time, market participants were broadly expecting a further
DFR cut at the next meeting of the ECB’s Governing Council. Given their downward
flexibility, both models are able to fit the negative slope of the yield curve. While in

20For readability, we do not show the model variants GATSMS , GATSMBC and SRTSMwoS in Figure
1.

21This is in line with findings by (Kortela, 2016; Wu and Xia, 2017)

22



GATSMOLS this flexibility is ensured by the absence of a lower bound, in SRTSMB

accounting for expected ELB shifts is crucial to generate a satisfying yield curve fit. In
contrast, a specification that does not account for expected DFR shifts as in SRTSMDFR

fails to reproduce a downward sloping forward curve which trades below the current DFR.
This shortcoming has important implications for the distribution of short rates and yield
curve decompositions, a finding we will discuss later in Subsection 4.5.2. While a look
at the yield curve in February 2016 shows that GATSMOLS is best capable of fitting the
downward sloping yield curve at the lower bound, SRTSMB plays out its strengths vis-
a-vis GATSM whenever the short end of the yield curve is flat over an extended period
of time (see October 2012).

4.5.2 Short rate summary statistics and rate expectations

Comparing the implications of different model specifications for short rate summary statis-
tics, the most notable difference is related to the model-implied unconditional mean of
the short rate (see Table 3). While the estimated models without surveys (SRTMSwoS,
GATSMOLS, GATSMBC) generate an unconditional mean between 0.79 and 1.78, the
models with surveys (SRTSMB, SRTSMDFR and GATSMS) imply values between 3.67
and 4.38 for the short rate. Clearly, the inclusion of surveys leads to markedly higher
levels of far-distant short rate expectations. To partly overcome the shortcoming of a
very low unconditional mean in a data sample that is characterized by a prolonged pe-
riod of low interest rates such as the one considered in this paper, the pricing factors
could also be de-meaned as in Adrian et al. (2013). Alternatively, it could be specified
that the unconditional mean of the pricing factors EP[Xt] must equal their sample mean
(Bauer et al., 2012). Both approaches ensure that the unconditional mean of the short
rate EP[i1,t] matches its sample mean, thereby partly alleviating the small sample problem
with respect to the level of far-distant expected short rates (see the result for GATMSOLS
in brackets as well as GATMSBC). Still, based on the short rate summary statistics, far-
distant short rate expectations are lower compared to survey-based estimations. Including
an ELB specification, in contrast, does not result in a clear difference with respect to the
unconditional mean. While SRTSMB produces the highest unconditional mean, the sec-
ond highest level can be found in GATSMS followed by SRTSMDFR with the DFR as
ELB specification.

Turning to the mean reversion characteristics of the pricing factors with its impli-
cations for the persistence of the short rate process, interestingly, all estimated models
produce a rather slow mean reversion, so that far-distant short rate expectations react
to shocks to the pricing factors to a significant extent. The maximum eigenvalue of the
matrix ρP in all model variants is larger or equal 0.99. SRTSMDFR implies the lowest
half-life of the most persistent factor process with around 5.5 years. In contrast to the
US findings of Kim and Priebsch (2013), our estimated GATSMs exhibit an even higher
persistence of the short rate process. The half-life of a shock to the most persistent pric-
ing factor for the the non-bias corrected GATSM variants is between 7.3 and 11.6 years,
although the models are estimated over the entire ELB period. Also, the inclusion of
short- and long-term interest rate survey information as in GATSMS does not change
this result. Our findings indicate that with respect to the considered euro area yield curve
sample, estimated DTSMs always produce a very high persistence of the short rate process
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Table 3: (Shadow) short rate summary statistics – P-estimates

model SRTSMB SRTSMDFR SRTSMwoS

unconditional mean EPi1: 4.546 4.130 0.743
eigenvalues under P-measure: 0.990 0.989 0.990

0.908 0.919 0.895
0.837 0.861 0.895

half-life in years: 5.75 5.50 6.33

model GATSMOLS GATSMS GATSMBC

unconditional mean EPi1: −0.789 4.647 1.778
(1.778)

eigenvalues under P-measure: 0.996 0.992 0.999
0.917 0.938 0.918
0.917 0.812 0.918

half-life in years: 11.58 7.33 99.50
sample mean (i1): 1.78

under the P-measure. Therefore, the estimated difference in the persistence of the pricing
factors between non-biased and biased-corrected estimates up to the 10-year horizon are
not substantially large, which stands in contrast to US evidence (Bauer, Rudebusch, and
Wu, 2014; Wright, 2014).

We now turn to the derivation of model-implied near- and far-distant short rate ex-
pectations. We start with short-term horizons and check whether the inclusion of an
ELB specification has an important impact on the behavior of the short rate path at
short-term horizons. Assuming our ELB specification in SRTSMB to be a reasonable
approximation of the true ELB, we first check the number of ELB violations by counting
the number of months in which the expected short rate path falls below the (expected)
ELB, lt+h, for the various model variants (Table A.5). While ELB violations are excluded
by construction in SRTSMB and SRTSMwoS, in SRTSMDFR few violations occur in
periods in which the DFR is a binding restriction for the short rate while being below
the ELB (mainly as there exists a positive spread between the DFR and the short rate).
Obviously, all GATSMs fail to respect the ELB restrictions observed in the data during
the ELB period. The violations in these models amount to between 22 and 52 months.

The importance of specifying a DTSM for the euro areas as a SRTSM with an ELB
specification can also be highlighted when assessing near-term monetary policy rate ex-
pectations. In Figure A.7, we simulate the median lift-off distribution of a +10 BP DFR
hike for the various model variants.22 Clearly, GATSMs produce a wide spectrum of

22The lift-off distribution is calculated by simulating a large number of short rate paths under the
P-measure and then saving the future horizon at which each single path rises above a certain threshold.
We define the threshold for a +10 bp DFR hike as our benchmark ELB specification plus 10 bp. For
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results. On the one hand, the lift-off measure based on GATSMBC turns out to be highly
volatile with month-to-month changes amounting to several years, which seems rather
unreliable. On the other hand, GATSMS produces almost no variation in the lift-off
measure at all. GATSMOLS comes out between those two extreme results, still offering
a rather high amount of variation, reacting strongly to movements in interest rates.

Compared toGATSMBC , but also toGATSMOLS, the models SRTSMB, SRTSMDFR

and SRTSMwoS all produce less volatile lift-off series which are very similar in terms of
dynamics but reveal larger differences in terms of level. The results suggest that survey
information on the one hand reduces the degree of stickiness of the short rate at the lower
bound in times when forward rates as well as DFR expectations are tilted to the downside.
On the other hand, this additional information also dampens the reaction of short rate
expectations to large swings in interest rates as observed during the Bund tantrum at the
beginning of 2015 or in the wake of the global hike in rates in fall 2016. With respect to
the ELB specification and associated fitting errors of the model-implied short rate, both
features have a pronounced impact on the median distribution of the most likely short
rate path (see the simulation results for SRTSMDFR).

Regarding long-term rate expectations, Figure A.8 depicts the 10Y1M expected short
rate of our benchmark model (modal path) together with estimated confidence interval
bands based on parameter estimation and current state filter uncertainty.23 All survey-
based models lie within the confidence interval bands of SRTSMB, so that we conclude
that the results for long-term rate expectation are robust to model specification and eco-
nomically plausible as long as survey information is included. In contrast, SRTSMwoS,
GATSMOLS and GATSMBC generate a significantly lower level of short rate expecta-
tions at far-distant horizons. Interestingly, up to the ELB period, far-distant short rate
expectations in GATSMBC do not exhibit implausibly large time variation compared to
GATSMOLS as partly documented for bias-corrected estimates based on US data (Wright,
2014).

4.5.3 Monte Carlo exercise

As a robustness check, we conduct a Monte Carlo simulation study for which we simulate
interest rates with J = 1, 3, 6, 12, 24, 36, 60, 84, 120 months of maturities based on an
SRTSM with a fixed ELB at 0%. In light of the high persistence of interest rates observed

example, if currently the short rate were trading at a 5 BP spread above the DFR, the threshold for an
expected +10 bp DFR hike would be −25 bp. Thus, the simulated lift-off horizon partly depends on the
observed spread. Alternatively, one could assume a constant spread across all times. However, this would
not affect results signficantly.

23The Monte Carlo integration approach to simulate parameter and current state filter uncertainty
relies on Hamilton (1994, 898) but we exclude forecasting uncertainty with respect to the risk factors.
At first hand, what seems surprising is that estimation uncertainty with respect to the expected short
rate in 10 years falls significantly during the ELB period. However, this finding originates from the fact
that the shadow short rate which embeds both filter and parameter uncertainty is way below the ELB
in negative territory during the ELB period. The conditional short rate distribution is censored below
the ELB (which is itself deterministic), with a point mass of Prob(i1,t+h ≤ lt+h) at lt+h. This implies
that a significant proportion of estimation uncertainty is likewise censored below the ELB and thus is
not reflected in long-term expected short rates. Moreover, due to the incorporation of long-term survey
information, the unconditional mean of the short rate under the P-measure is estimated very precisely
with a standard deviation of roughly 0.3% based on parameter uncertainty.
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in the euro area sample and given the high computational costs associated with non-linear
estimations, in the Monte Carlo exercise we simulate a sample length of T = 720 months
(compared to T = 226 in the euro area sample) in order to check whether our specification
analysis can also be confirmed in a much longer data sample. Notice that we only consider
those samples that comprise at least 12 and not more than 60 months in which the short
rate is stuck at the lower bound. A total number of 50 samples is then used during
this exercise.24 In line with Kim and Singleton (2012), we also simulate survey data by
generating model-implied expectations and adding measurement errors similar in size of
those estimated in our benchmark model. We add those surveys at quarterly frequency
for 3 months rate expectations in 12 and 24 months, and at bi-annual frequency for 3
months rate expectations in 6 to 10 years. For each sample we run estimations based on
our SRTSMs and GATSMs specifications.

The results of this exercise confirm our finding that survey information is essential to
pin down the data generating process (DGP) in an environment of very persistent interest
rates and prolonged ELB periods. This result holds despite using long samples comprising
60 years of monthly observations (see Table 4). Indeed, only the models that include
survey information (SRTSMB,GATMSS) are able to pin down the unconditional mean
of the DGP fairly closely while producing high persistence in model-implied interest rates.
GATSMOLS and GATSMBC , on the other hand, underestimate both the unconditional
mean and the persistence of the true DGP. While their estimate for the unconditional
mean matches the sample mean of simulated yields, the latter itself is an insufficient proxy
for the unconditional mean of the short rate because the ELB period biases the sample
mean downward.

Table 4: Simulation results (median) – long samples

model DGP SRTSMB SRTSMwoS GATSMOLS

unconditional mean EP(i1,t): 3.693 3.565 3.371 2.862
sample mean: 2.888

max eigenvalues under P: 0.992 0.986 0.979 0.977

model DGP GATSMS GATSMBC

median unconditional mean EP(i1,t): 3.693 3.530 2.880
median sample mean: 2.888

median max eigenvalues under P: 0.992 0.987 0.984

24In our simulations approximately 2 out of 100 samples were classified as lower bound sample.
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5 Concluding remarks

We propose a shadow rate term structure model for the euro area OIS yield curve that
preforms well when evaluated against two criteria (i) good model fit and (ii) the derivation
of plausible short-and long-term rate expectations which can be used for policy analysis.
Our model explicitly accounts for the specific features of the euro area yield curve sample
which can be regarded as very small and characterized by highly persistent interest rate
dynamics near or at the time-varying effective lower bound for a prolonged period of
time. To do so, our model features such a lower bound that is forward-looking in the
sense that anticipated changes in the DFR are taken into account before their realization
and it considers the spread between the policy rate, i.e. the deposit facility rate in times
of negative interest rate policies, and the short rate of the OIS yield curve. To better pin
down short- and especially long-term expectations embedded in yield curve data, we also
inform the model with survey-based interest rate forecasts.

We use our model to assess monetary policy expectations derived from the short end of
the yield curve by accounting for the asymmetry of the distribution of short rates during
the effective lower bound period. The forward curve itself gives an upward biased picture
with respect to future monetary policy rate decisions given negative forward premia even
at 1-year horizons. Similarly, mean estimates of future monetary policy rates are upward
biased given the truncated distribution of future short rates. Correct inference with
respect to monetary policy expectations can only be drawn from the modal, i.e. most
likely, path of future short rates.

At far-distant horizons our model delivers short rate expectations that are highly cor-
related with an estimated nominal equilibrium short rate derived from a macroeconomic
modeling set-up, even though the considered models do not share any information during
the estimations. According to our model results, long-term forward rates thus appear
to reflect trends in key macroeconomic variables in both real and nominal terms, which
play an important role in the formation of far-distant rate expectations. Moreover, non-
standard monetary policy measures together with interest rate forward guidance not only
depressed forward premia but also the expectations component embedded in intermediate
and long-term forward rate maturities, thereby highlighting the signaling channel of asset
purchases.

We confirm this narrative by assessing the impact of conventional and unconventional
monetary policy shocks based on high frequency identification external instrument ap-
proach. Our model produces a U-shaped response of the forward curve in response to a
conventional monetary policy shock which emphasizes its communication / forward guid-
ance character. The median reaction to an unconventional monetary policy shock at the
long end is negative and spills over to medium-term maturities. In the run-up to the start
of asset purchases in March 2015 unconventional monetary policy shocks considerably
contributed to the drop in long-term interest rates according to our model. Term premia
as well as short rate expectations fell in response to these monetary policy shocks thereby
also highlighting the signaling channel of non-standard monetary policy measures.

We test alternative modeling specifications including shadow short rate models with
different effective lower bound definitions. We also exclude survey information from our
preferred model and we estimate various Gaussian affine term structure variants. Overall,
we find that these alternative models either exhibit an unsatisfying model fit and / or
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produce implausible short- and long-term rate expectations from an economic perspective
in addition to less convincing outcomes when assessing short-term monetary policy rate
expectations. We finally confirm our findings by a Monte Carlo analysis comprising
simulated yield curve samples including prolonged periods at the effective lower bound.
We find that when facing such samples, including survey information is important to
recover the true data generating process.

Going forward, there are important issues which could be explored further. For in-
stance, it would be interesting to see how our model estimates the effects of monetary
policy shocks on the term structure if we isolate the various channels (pure target shocks,
forward guidance, information effects) through which high-frequency changes of financial
market variables transmit to the yield curve at monetary policy announcement dates. To
do so, it would be worthwhile to filter our model on a daily basis. Moreover, the presented
model is specified to provide a good performance for the OIS curve from a statistical as
well as economic perspective. Augmenting our model to jointly estimate the euro area
OIS yield curve together with a sovereign yield curve would be very fruitful. With such
a joint model, we could disentangle the drivers of the spread between OIS and sovereign
yields and we could include additional long-term survey forecasts which are available for
a much longer time span for sovereign bonds. In particular, it would be interesting to
analyze how the interplay between the ELB of the OIS curve as well as possible scarcity
factors in sovereign bond markets drive the spread between the two curves. This is up for
future research.
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A Appendix

Figure A.1: Shadow short rates
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Note: This figure plots the model-implied shadow short rate based on various term structure
model specifications including SRTSMB,SRTSMDFR and SRTSMwoS . End-of-month values
for January 1999 to October 2017.
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Figure A.2: 5Y5Y forward rate decomposition US vs. euro area
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(b) Forward premium
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Note: Panel (a) plots the expectations component of the time series of the decomposition of the
5Y5Y forward rate. Panel (b) plots the corresponding forward premium component. Based on
SRTMSB for the euro area and Kim and Wright (2005) for the US. End-of-month values for
January 1999 to October 2017.
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Table A.1: Parameter estimates for SRTSMB

X-factor representation P -factor representation

µP 0.0617 -0.2226 0.2208 µP
P 0.4834 -0.1907 0.1350

(0.0518) (0.5135) (0.5008) (0.3311) (0.4328) (0.1207)

ρP 0.9921 0.0356 0.0351 ρPP 0.9917 -0.1018 -0.7059
(0.0202) (0.1295) (0.1361) (0.0075) (0.1151) (0.4258)

0.0176 0.9402 0.0730 -0.0036 1.0287 0.5770
(0.0809) (0.2683) (0.2861) (0.0120) (0.1916) (0.3848)
-0.0267 -0.0464 0.8031 0.0006 -0.0407 0.7151

(0.1077) (0.1206) (0.1436) (0.0053) (0.0512) (0.1101)

µQ 0.0278 0 0 µQ
P 0.2927 -0.1897 0.0873

(0.0019) (0.1977) (1.6098) (0.6824)

ρQ 0.9970 0 0 ρQP 1.0051 -0.0402 -0.6685
(0.0004) (0.0060) (2.5336) (10.9948)

0 0.9398 0 -0.0045 1.0484 0.5011
(0.0050) 0 (0.0002) (0.0006) (0.0019)

0 0 0.9238 0.0010 -0.0291 0.8071
(0.0045) (0.0000) (-0.0000) (0.0003)

Σ 0.3050 0 0 ΣP 0.4601 0 0
(0.0250) (0.0335)
-0.8456 2.3844 0 0.0575 0.2725 0

(0.4430) (1.3180) 0 (0.0542) (0.0313) 0
0.5422 -2.3823 0.1779 -0.0241 -0.0586 0.0719

(0.4347) (1.3208) (0.0249) (0.0134) (0.0108) (0.0105)

δ0 0 δ0,P -0.0690
δ1 1 1 1 δ1,P 0.3177 -0.3778 0.5159

σi 0.0416
σsurvey12M 0.1898 σsurvey24M 0.3079
σsurvey6Y−>10Y 0.2243

Note: Parameter estimates of the SRTSMB based on the X-factor as well as rotated P -factor
representation. Asymptotic quasi-maximum likelihood standard errors in parentheses. σi denotes
the standard deviation of measurement errors of the considered yields which is the same across
considered maturities. σsurvey is the standard deviation of measurement errors of 3M interest
rate survey expectations for the respective forecast horizons.
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Table A.2: 1Y1Y forward rate variance decomposition

model SRTSMB SRTSMDFR SRTSMwoS

Level
total sample:

expectations 0.88 0.87 0.75
forward premium 0.12 0.13 0.25

pre-ELB sample:
expectations 0.85 0.86 0.75
forward premium 0.15 0.14 0.25

ELB sample:
expectations 1.11 1.14 0.94
forward premium −0.11 −0.14 0.06

Difference
total sample:

expectations 0.74 0.73 0.95
forward premium 0.26 −0.27 −0.05

pre-ELB sample:
expectations 0.73 0.72 0.95
forward premium 0.27 0.28 0.05

ELB sample:
expectations 0.96 0.94 1.05
forward premium 0.04 0.06 −0.05

model GATSMOLS GATSMS GATSMBC

Level
total sample:

expectations 0.82 0.87 0.87
forward premium 0.18 0.13 0.13

pre-ELB sample:
expectations 0.84 0.88 0.89
forward premium 0.16 0.12 0.11

ELB sample:
expectations 0.69 0.87 0.73
forward premium 0.31 0.13 0.27

Difference
total sample:

expectations 1.03 0.75 1.09
forward premium −0.03 0.25 −0.09

pre-ELB sample:
expectations 1.04 0.75 1.10
forward premium −0.04 0.25 −0.10

ELB sample:
expectations 0.92 0.74 0.98
forward premium 0.08 0.26 0.02
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Table A.3: 9Y1Y forward rate variance decomposition

model SRTSMB SRTSMDFR SRTSMwoS

Level
total sample:

expectations 0.44 0.41 0.29
forward premium 0.56 0.59 0.71

pre-ELB sample:
expectations 0.38 0.39 0.26
forward premium 0.62 0.61 0.74

ELB sample:
expectations 0.40 0.40 0.32
forward premium 0.60 0.60 0.68

Difference
total sample:

expectations 0.27 0.31 0.23
forward premium 0.73 0.69 0.77

pre-ELB sample:
expectations 0.24 0.28 0.22
forward premium 0.76 0.62 0.78

ELB sample:
expectations 0.32 0.37 0.26
forward premium 0.68 0.68 0.74

model GATSMOLS GATSMS GATSMBC

Level
total sample:

expectations 0.55 0.48 0.86
forward premium 0.45 0.52 0.14

pre-ELB sample:
expectations 0.57 0.50 0.88
forward premium 0.43 0.50 0.12

ELB sample:
expectations 0.36 0.35 0.56
forward premium 0.64 0.65 0.44

Difference
total sample:

expectations 0.41 0.64 0.41
forward premium 0.59 0.36 0.59

pre-ELB sample:
expectations 0.44 0.69 0.43
forward premium 0.56 0.31 0.57

ELB sample:
expectations 0.32 0.51 0.36
forward premium 0.68 0.49 0.64
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Table A.4: In-sample model fit across models

model SRTSMB SRTSMDFR SRTSMwoS

total sample: 3 3 3
pre-ELB sample: 3 3 3
ELB sample: 2 3 2

model GATSMOLS GATSMS GATSMBC

total sample: 2 3 2
pre-ELB sample: 3 3 3
ELB sample: 2 2 2

Note: This table shows the mean absolute error of model-implied
yields to observed yields for different sample periods. The total sam-
ple covers the period 1999M1-2017M10, while the pre-ELB sample
covers the period 1999M1-2012M6 and the ELB sample the period
2012M7-2017M10.

Table A.5: Lower bound violations of expected short rate paths

number of months for which EP
t [i1,t+n] < lt+h

for n = 1, 2, . . . , 120 and t = 1, 2, . . . , 226

model SRTSMB SRTSMDFR SRTSMwoS

0 15 0

model GATSMJSZ GATSMS GATSMBC

22 40 52
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Figure A.3: 10-year yield and 10-year shadow yield
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Note: Panel (a) plots the 10-year yield and shadow yield under the Q-measure and panel (b)
under the P-measure based on SRTMSB. End-of-month values for January 1999 to October
2017.
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Figure A.4: 10Y1M forward rate and 10Y1M shadow forward rate

(a) Q-measure
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Note: Panel (a) plots the 10Y1M forward rate and shadow forward rate under the Q-measure
and panel (b) under the P-measure based on SRTMSB. End-of-month values for January 1999
to October 2017.
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Figure A.5: Instantaneous response to monetary policy shocks

(a) CMP shock
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(b) Target shock
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Note: Panel (a) plots the median instantaneous forward curve response and its components
based on SRTSMB and a high frequency identification approach for the sample period January
1999 to June 2014. Panel (b) plots the median instantaneous forward curve response and its
components based on SRTSMB and a shock to the short rate.
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Figure A.6: Historical decomposition of the shadow short rate

(a) level of the shadow short rate
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Note: Panel (a) plots the shadow short rate from June 2014 to October 2017 based on SRTSMB.
Panel (b) plots the corresponding historical decomposition with a focus on unconventional mon-
etary policy shocks.
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Figure A.7: +10 BP DFR hike (median distribution)
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Note: This figure plots the number of months of the median distribution of a +10 BP DFR hike
based on various model specifications. End-of-month values January 2012 to October 2017. The
shaded area lies between the 15% and 85% quantile of our benchmark median distribution.
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Figure A.8: 10Y1M short rate expectations
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Note: This figure plots model-implied expected short rates based on various term structure
model specifications together with 15% and 85%- quantile confidence intervals based on our
preferred SRTSMB model. Confidence intervals refer to parameter estimation and current
state filter uncertainty. End-of-month values for January 1999 to October 2017.
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