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Non-technical summary

Research question

How can parameter uncertainty be taken into account in the evaluation of quantita-
tive easing (QE) with accompanying forward guidance (FG)? Studies that assess
the macroeconomic effects of QE with accompanying FG typically provide only
point estimates. The uncertainty about parameter estimates is usually ignored. A
potential reason is the two-step-approach that is generally taken in the literature
when QE and FG, technically implemented by an anticipated temporary interest
rate peg, are considered. In a first step, a model capable of predicting real effects
of a QE programme and with a standard feedback rule for the policy rate is esti-
mated. In a second step, given the estimated parameters, scenario analyses for QE
with an anticipated interest rate peg are carried out. The uncertainty about the
parameter estimates is usually neglected going from the first to the second step.

Contribution

We use prior and posterior predictive analysis to evaluate parameter uncertainty in
the analysis of the Eurosystem’s PSPP and FG. Prior-posterior predictive analysis
provides an easy-to-implement way to evaluate parameter uncertainty in the con-
text of a policy scenario for QE which involves solving a non-linear DSGE model
while simultaneously considering a credibly announced interest rate peg.

Results

The uncertainty about the effects of the PSPP is considerable and it increases
substantially when the PSPP is accompanied by FG modelled as a temporary
interest rate peg. The Calvo parameters, i.e. the probabilities of being able to
reset prices and wages, are the most important factors driving uncertainty about
inflation. In contrast, variations in the financial friction parameter have little
impact on inflation outcomes and hence uncertainty.



Nichttechnische Zusammenfassung

Fragestellung

Wie kann bei der Evaluation von QE-Programmen, die mit forward guidance
(FG) einhergehen, Parameterunsicherheit berücksichtigt werden? Schätzungen
hinsichtlich der makroökonomischen Effekte von QE und FG werden üblicher-
weise in Form einer Punktprognose veröffentlicht, d.h. die Parameterunsicher-
heit wird ausgeblendet. Ein möglicher Grund hierfür ist, dass die Evaluation von
QE-Effekten bei gleichzeitiger FG – die mit Hilfe eines glaubhaft angekündigten
temporären Zinspegs modelliert wird – üblicherweise in zwei Schritten erfolgt: Im
ersten Schritt werden die Parameter eines Modells, das in der Lage ist, reale Ef-
fekte eines QE-Programms abzubilden und das durch eine übliche Feedback-Regel
für den geldpolitischen Zins gekennzeichnet ist, geschätzt. Im zweiten Schritt wird
auf der Grundlage der so geschätzten Parameter eine QE-Szenarienanalyse mit
Zinspeg durchgeführt. Beim Übergang vom ersten zum zweiten Schritt wird die
Parameterunsicherheit jedoch üblicherweise vernachlässigt.

Beitrag

Wir nutzen die sogenannte prior/posterior predictive analysis, um die Bedeutung
von Parameterunsicherheit am Beispiel der Analyse des Staatsanleihenkaufpro-
gramms des Eurosystems (PSPP) darzustellen. Dabei illustrieren wir die Imple-
mentierung dieses Verfahrens im Rahmen eines realistischen QE-Politikszenarios,
in dem ein nichtlineares DSGE-Modell gelöst und gleichzeitig ein von der Noten-
bank angekündigter Zinspeg von den Agenten der Ökonomie berücksichtigt wird.

Ergebnisse

Die Unsicherheit über die makroökonomischen Effekte des PSPP ist beträchtlich
und sie nimmt nochmals zu, wenn das PSPP mit FG, modelliert als glaubhaft
angekündigtem Zinspeg, kombiniert wird. Den größten Einfluss auf die Unsicher-
heit der Inflationseffekte von QE haben die Calvo-Parameter, welche die Wahrschein-
lichkeit abbilden, in einer gegebenen Periode Löhne und Preise anpassen zu kön-
nen. Im Gegensatz dazu haben Veränderungen des Parameters für die finanziellen
Friktionen wenig Einfluss auf den Inflationsverlauf und somit auf die Unsicherheit.
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1 Introduction

In recent years, many central banks have resorted to quantitative easing policies

(QE) to provide economic stimulus at the effective lower interest rate bound. Typi-

cally, QE has been accompanied by a special type of forward guidance (FG) where

central banks provide (additional) stimulus by communicating that policy rates

will be kept constant for an extended period of time. Hence, there are two policies

influencing the economy at the same time.

Most studies that evaluate the macroeconomic effects of QE programmes – such

as the Federal Reserve’s large scale asset purchase programmes (LSAPs) or the

Eurosystem’s public sector purchase programme (PSPP) – in tandem with FG

provide only point estimates of these effects (see, inter alia, Gertler and Karadi,

2013; Andrade, Breckenfelder, Fiore, Karadi and Tristani, 2016; Sahuc, 2016; Kühl,

2016; Carlstrom, Fuerst and Paustian, 2017; Hohberger, Priftis and Vogel, 2017).

One potential reason for this observation is the two-step-approach that is usually

taken in the literature. In a first step, a model capable of generating real effects of

QE and with a standard feedback rule for the policy rate is estimated (typically

via Bayesian estimation of the underlying DSGE model). In a second step, given

these estimates for the structural parameters, scenario analyses of QE in tandem

with FG – technically implemented by an anticipated interest rate peg – are carried

out.1 The uncertainty surrounding the parameter estimates is usually neglected

going from the first to the second step, as standard software tools to illustrate

parameter uncertainty in such scenario analyses are not readily available.2

1In the following, we use the terms FG and anticipated interest rate peg interchangeably.
2There are three possible sources of uncertainty in this type of analysis. First, across model

uncertainty – implying that the choice of the model for evaluating QE has an impact on the
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In this paper, we provide an easy-to-implement way to analyse parameter uncer-

tainty for scenario analyses involving QE in tandem with FG. In particular, after

estimating parameters of (a linear version of) a model with Bayesian methods,

we conduct prior and posterior predictive analysis to use the information about

the parameter estimation obtained in the first step for the subsequent policy sce-

nario analysis in the second step. We thus follow Leeper, Traum and Walker

(2015) and Suh and Walker (2016) who use prior-posterior predictive analysis to

asses specific quantitative properties of DSGE models. These authors implement

predictive analysis for linearised models, which are solved and simulated using

standard (first-order) perturbation techniques. We show that it is possible to ex-

ploit this technique in order to describe parameter uncertainty in the evaluation

of QE accompanied by FG. The scenario analysis of QE in tandem with FG in our

case is based on a non-linear DSGE model.

The model we use for our analysis is the one in Carlstrom et al. (2017) (henceforth

CFP). We estimate the model with European data and subsequently simulate

time paths for inflation in response to the launch of a QE programme for four

different policy scenarios: In the first scenario, a QE programme that mimics

the Eurosystem’s PSPP affects the economy. In the second, third, and fourth

scenario, the same QE programme again affects the economy but is additionally

accompanied by one, two, and three years of FG, respectively. Our simulated time

simulation results – which is often illustrated by a simple comparison of median estimates of a
large number of different studies (see, for instance, the meta-studies provided by International
Monetary Fund, 2013; Deutsche Bundesbank, 2016). Second, within model uncertainty (i.e.
parameter uncertainty) implying that uncertainty about estimates for the structural parameters
of the underlying model will also translate into uncertainty about the estimated macroeconomic
effects for a given purchase programme (the case we deal with in this paper). Third, data
uncertainty (i.e. uncertainty about the information content present in collected data).
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paths imply a distribution of the inflation response to a QE programme which

highlights the relevance of parameter uncertainty in the assessment of QE. The

prior-predictive analysis produces distributions for inflation based on the prior

distributions of the estimated model parameters, while the posterior-predictive

analysis is based on the distributions of the estimated parameters after having

confronted the model with the data. This allows us to assess what effect on the

distribution of the inflation response the data assign to the PSPP and FG within

our model framework. It is easily possible to conduct the same type of analysis

also with respect to other macroeconomic variables. We confine ourselves to the

analysis of the inflation effects, though, to keep the analysis focused.

In principle, there are other methods of illustrating uncertainty in the evaluation of

QE programmes. However, they are not applicable to the scenario we have in mind,

namely the evaluation of a QE programme accompanied by FG, implemented as

an anticipated interest rate peg. For example, Bayesian impulse response func-

tions principally allow for an evaluation of parameter uncertainty when analysing

QE (at least if the QE shock is part of the estimation), but they are not readily

available if there is a temporary anticipated interest rate peg. Another example

is the computation of conditional forecasts which principally allows for the illus-

tration of uncertainty in the analysis of QE in combination with an interest rate

peg. This method, however, involves implementing the peg by finding a series of

shocks that imply a pre-specified path for the interest rate (based on the state

space solution of the underlying DSGE model). These shocks are by definition

unexpected, that is, agents are not able to anticipate the temporary interest rate

peg – which contradicts the very idea of FG. If agents are supposed to anticipate
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the temporary nominal interest rate peg, this necessitates implementing the peg

via anticipated (or news) shocks as in Kühl (2016) or solving and simulating the

model by, for instance, assuming perfect foresight as in Sahuc (2016), neither of

whom considers parameter uncertainty.

In this paper, we take the perfect foresight approach to implement the anticipated

temporary interest rate peg and contribute to the literature by illustrating param-

eter uncertainty employing prior and posterior predictive analysis, and identifying

the individual contributions of the different parameters to this uncertainty. We find

that the uncertainty about the effects of the PSPP is considerable and amplified

when the PSPP is accompanied by FG. The Calvo parameters – which govern the

probability, in a given period, of being able to reset prices and wages – have, for a

given length of FG, the biggest influence in determining the uncertainty about the

inflation effects of a QE shock. The estimated financial friction parameter – which

is of crucial importance in the model for QE to have real effects (see Carlstrom

et al., 2017) – is of less importance regarding parameter uncertainty.

We organise our paper as follows. The next section presents the model. Section 3

provides details of the model’s estimation and calibration. Section 4 describes how

QE and FG are implemented. Section 5 describes the prior-posterior predictive

analysis we conduct and shows the resulting simulations of inflation for our different

policy scenarios. It also contains an analysis about which parameters are most

important for our results. Section 6 concludes.
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2 Model

In the standard New Keynesian model, asset purchases are neutral (so-called Wal-

lace neutrality), in that they do not have an effect on real economic activity and

inflation (Eggertsson and Woodford, 2003). To simulate the effects of QE and

to compute the corresponding uncertainty of these effects, we therefore rely on a

DSGE model developed by CFP which features funding constraints and market

segmentation such that the Wallace neutrality does not apply. More precisely,

in this model both households and financial intermediaries (henceforth FIs) face

financial constraints. The bond market is segmented in that only FIs can pur-

chase long-term debt instruments. These include public (i.e. government) and

private (i.e. investment) bonds. From the perspective of the FIs, these are per-

fect substitutes and, hence, yield the same returns. However, the ability of the

FIs to adjust their liability position is limited by two constraints. First, they

are leverage-constrained because the amount of deposits they can attract is con-

strained by their net worth (due to a hold-up problem). Second, FIs face net

worth adjustment costs. Households need to finance their investments by way of

issuing (long-term) investment bonds and, thus, face a funding restriction with re-

spect to their investments (a so-called loan-in-advance constraint). The purchase

of government bonds increases the FIs’ demand for investment bonds since the lia-

bility side of the FIs balance sheet cannot adjust easily due to the aforementioned

constraints. This in turn alleviates the households’ loan-in-advance-constraint.

Otherwise, the model exhibits familiar New Keynesian features. That is, it com-

prises households that consume, save in (short-term) deposits and supply labour,

a standard production sector with monopolistic competition in intermediate good
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production, price and wage rigidities (see Erceg, Henderson and Levin, 2000) as

well as price and wage indexation (see Christiano, Eichenbaum and Evans, 2005).

If the central bank abstains from forward guidance, it follows a standard Taylor

rule with some degree of interest rate smoothing. The non-linear model equations

are summarised in Table 1, and a complete derivation of the model is delegated to

Appendix A.

Table 1: Nonlinear model equations

Model equations:

HH cons. decision Λt = bt
Ct−hCt−1

− Et βhbt+1

Ct+1−hCt
Euler equation Λt = Etβ

Λt+1

Πt+1
Rdt

Wage curve (WC) wt
1+εwη = εw

εw−1
Xwnt
Xwdt

WC nominator Xwn
t = λw,tbtχw

εw(1+η)
t H1+η

t + Et

{
θwβΠ

εw(1+η)
t+1 Π

−ιwεw(1+η)
t Xwn

t+1

}
WC denominator Xwd

t = Λtw
εw
t Ht + θwβΠ

−ιw(εw−1)
t Π

(εw−1)
t+1 Et

{
Xwd
t+1

}
Wages law of motion wt

1−εw = (1− θw) (w∗t )
1−εw + θw

(
Πιwt−1wt−1

Πt

)1−εw

HH decision capital ΛtMtP
k
t = EtβΛt+1

[
Rkt+1 +Mt+1P

k
t+1 (1− δ)

]
HH decision inv. bonds ΛtMtQt = Et

βΛt+1(1+κQt+1Mt+1)
Πt+1

Welfare V ht = bt

{
ln (Ct − hCt−1)−Dw

t B
H1+η
t

1+η

}
+ βEtV

h
t+1

Price of capital Rkt = mctMPKt

Real wages wt = mctMPLt

Phillips curve (PC) Π∗t =
εp
εp−1

Xpnt
Xpdt

Πt

PC nominator Xpn
t = Ytλp,tmct(i) + Et

{
θp
βΛt+1

Λt
Π
−ιpεp
t Π

εp
t+1X

pn
t+1

}
PC denominator Xpd

t = Yt + Et

{
θp
βΛt+1

Λt
Π
ιp(1−εp)
t Π

εp−1
t+1 Xpd

t+1

}
Infl. law of motion (Πt)

1−εp = (1− θp) (Π∗t )
1−εp + θp

(
Π
ιp
t−1

)1−εp
Price dispersion Dp

t = Π
εp
t

[
(1− θp)Π∗t

−εp + θp
(
Π
ιp
t−1

)−εp
Dpt−1

]
Wage dispersion Dw

t = θw

(
Πt

Πιwt−1

)εw(
wt
wt−1

)εw
Dwt−1 + (1− θw)

(
w∗
t

wt

)−εw
Resource constraint Yt = Ct + It
Production function Yt = AtK

α
t H

1−α
t /Dp

t

Firm’s capital decision Kt = (1− δ)Kt−1 + µ

(
1− ψI

(
1
2

) (
It
It−1
− 1
)2
)
It

Investment decision P kt µt

{
1− S

(
It
It−1

)
− S′

(
It
It−1

)
It
It−1

}
=

1− βP kt+1
Λt+1

Λt
µt+1

{
−S′

(
It+1

It

)(
It+1

It

)2
}

FI’s balance sheet B̄t + F̄t = Nt + Lt
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Table 1: continued

Model equations:

Leverage Ratio Lt =
Et

Λt+1
Πt+1[

Et
Λt+1
Πt+1

+(Φt−1)Et
Λt+1
Πt+1

RL
t+1

Rdt

]
Loan in advance constraint P kt It = F̄t − κ F̄tΠt

Qt
Qt−1

FI’s net worth decision Λt [1 + f (Nt) +Ntf
′ (Nt)] = EtΛt+1βζ

Pt
Pt+1

[(
RLt+1 −Rdt

)
Lt +Rdt

]
Long-term interest rate RLt = (1+κQt)

Qt−1

Yield to maturity R10
t = Q−1

t + κ

Marginal prod. of capital MPKt = αAtKt−1(i)
α−1

Ht(i)
1−α

Marginal prod. of labour MPLt = (1− α)AtKt−1(i)
α
Ht(i)

−α

Taylor rule Rt = (Rt−1)
ρ
(
RssΠ

τΠ
t

(
Yt
Yt−1

)τy)1−ρ
εRt

Notes: bt = discount factor shock, Ct = consumption, Λt = Lagrange multiplier, Πt = inflation,
Rt = nominal interest rate, wt = real wage, Xwn

t = & Xwd
t = auxiliary variables for wage curve,

Xpn
t = & Xpd

t = auxiliary variables for Phillips curve, MPLt = marginal product of labour,
MPKt = marginal product of capital, RLt = Long-term rate, R10

t = yield to maturity, It =
Investment, P kt = price of investment, F̄t = investment bonds, B̄t = government bonds, Qt =
price of bond, Ht = labour, At = technology shock, Nt = net worth, Lt = leverage, Dp

t = price
dispersion, Dw

t = wage dispersion, Kt = capital, mct = marginal costs, µt = investment shock,
Φt = financial shock, λw,t = wage markup shock, λp,t = price markup shock, Yt = output.

3 Estimation and Calibration

As is common in the literature, we calibrate a subset of structural parameters

to ensure identification. For the calibration, we rely on CFP. Table 2 gives the

values for the calibrated parameters. β is set to 0.99, yielding a steady state

annual real interest rate of 4%. The labour income share α is set to 0.33 and the

capital depreciation rate per year to 10%, implying δ = 0.025. A 20% mark-up

in both prices and wages is assumed, leading to εp = εw = 5. A leverage ratio

of 6 leads to ζ = 0.9854. The other structural parameters are estimated using

Bayesian methods. For the estimation, we linearise the model around the steady

state. We use eight observables for the euro area: real per capita output growth,

real per capita investment growth, gross inflation, employment growth, real wage
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Table 2: Calibrated parameters

Parameters Description Value
β Household discount factor 0.99
ψI Investment adjustment cost 2
κ Coupon payment 0.975
Lss Steady state leverage 6
εp Elasticity of substitution (goods) 5
εw Elasticity of substitution (labour) 5
α Capital share 0.33
δ Depreciation rate 0.025

growth, the first difference of the short- and long-term interest rate, and real bank

net worth growth. Data on bank net worth are taken from the European Central

Bank’s MFI Balance Sheet Items Statistics. All the other variables are taken from

the Area-wide Model database.3 A description of the data is provided in Appendix

B. All variables are demeaned. Since we have only seven structural shocks in the

model, we add a measurement error to the observations equation for bank net

worth in order to avoid stochastic singularity.4 The sample period is from 1998Q1

to 2013Q4.

Table 3: Prior and posterior distributions of structural parameters

Prior distribution Posterior distribution
Param. Description Dist. Mean St. Dev. Median Mean HPD inf HPD sup
h Habit formation Beta 0.5000 0.2000 0.8642 0.8635 0.8193 0.9074
η Labor disutility Gamma 2.0000 0.5000 1.8101 1.8496 1.1055 2.5857
ιp Price indexation Beta 0.6000 0.1000 0.5261 0.5263 0.3658 0.6890
ιw Wage indexation Beta 0.6000 0.1000 0.3761 0.3786 0.2573 0.4991
θp Price rigidity Beta 0.7000 0.1000 0.8144 0.8139 0.7567 0.8676
θw Wage rigidity Beta 0.7000 0.1000 0.8211 0.8194 0.7641 0.8726
ρ Interest rate smoothing Beta 0.7500 0.1000 0.7409 0.7390 0.6850 0.7947
τpi Inflation coeff. in TR Normal 1.5000 0.1000 1.5912 1.5919 1.4333 1.7482
τy Output growth coeff. in TR Normal 0.5000 0.1000 0.5725 0.5723 0.4163 0.7270
ψN Net worth adjustm. costs Gamma 3.0000 1.0000 6.7634 6.8273 4.9522 8.7945

Notes: Results based on 4 chains with 500,000 draws each. HPD inf and HPD sup denote the lower and upper

bound, respectively, of the 90% highest posterior density interval.

3We make use of the 14th update of the Area-wide Model (AWM) database from Septem-
ber 2014); see http://www.eabcn.org/sites/default/files/fck_uploads/awm_database_

update_14.pdf.
4For the description of the shock processes see Appendix A.
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Table 4: Prior and posterior distributions of parameters in shock processes

Prior distribution Posterior distribution
Param. Description Dist. Mean St. Dev. Median Mean HPD inf HPD sup
ρA AR(1), productivity Beta 0.6000 0.2000 0.9719 0.9662 0.9342 0.9976
ρΦ AR(1), financial Beta 0.6000 0.2000 0.6628 0.6608 0.5719 0.7527
ρµ AR(1), investment Beta 0.6000 0.2000 0.8370 0.8347 0.7713 0.8980
ρλW AR(1), wage mark-up Beta 0.6000 0.2000 0.1741 0.1868 0.0420 0.3260
ρλP AR(1), price mark-up Beta 0.6000 0.2000 0.4542 0.4484 0.2351 0.6620
ρd AR(1), discount factor Beta 0.6000 0.2000 0.4945 0.4930 0.3297 0.6585
ρR AR(1), monetary Beta 0.6000 0.2000 0.5030 0.4993 0.3636 0.6366
εA SE, productivity Invgam 0.0100 1.0000 0.0056 0.0056 0.0048 0.0064
εΦ SE, financial Invgam 0.0500 1.0000 0.1882 0.1913 0.1419 0.2394
εµ SE, investment Invgam 0.5000 1.0000 0.0881 0.0887 0.0740 0.1028
ελW SE, wage mark-up Invgam 0.1000 1.0000 0.5742 0.6359 0.2132 1.0417
ελP SE, price mark-up Invgam 0.1000 1.0000 0.0528 0.0608 0.0240 0.0954
εd SE, discount factor Invgam 0.1000 1.0000 0.0300 0.0314 0.0206 0.0416
εR SE, monetary Invgam 0.0100 1.0000 0.0033 0.0033 0.0028 0.0038
εNW SE, M.E. bank net worth Invgam 0.0013 1.0000 0.0147 0.0148 0.0126 0.0171

Notes: Results based on 4 chains with 500,000 draws each. HPD inf and HPD sup denote the lower and upper

bound, respectively, of the 90% highest posterior density interval.

The choice of the prior distributions of the structural parameters to be estimated

correspond largely to those in CFP and Christiano, Motto and Rostagno (2010).

In general, we use the Beta distribution for parameters between zero and one. For

the Taylor rule parameters we use the normal distribution, which is typically used

for unbounded parameters. For the financial sector parameter ψN , which governs

the importance of net worth adjustment costs, we use a gamma distribution with

mean 3 and standard deviation 1. The left parts of Tables 3 and 4 display the

prior distributions of the estimated parameters.

Given the prior distributions of the parameters, we draw posterior distributions

using the Metropolis-Hastings algorithm. We run four chains, each with 500,000

draws.5 The right parts of Tables 3 and 4 report the posterior median, the poste-

rior mean, and the lower and upper bounds of the 90% highest posterior density

5We use Dynare 4.5.4 for the estimation of the model, see Adjemian, Bastani, Juillard,
Karamé, Mihoubi, Perendia, Pfeifer, Ratto and Villemot (2011).
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Figure 1: Prior and posterior distribution of structural parameters
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interval of the estimated parameters obtained by the Metropolis-Hastings algo-

rithm. Convergence statistics proposed by Brooks and Gelman (1998) as well as

trace plots for the estimated structural parameters are presented in Appendix D.

The posterior means of the habit formation parameter (0.86), the price rigidity

parameter (0.81), and the price indexation parameter (0.53) are estimated to be

somewhat higher than in CFP. The posterior means of the wage rigidity (0.82),

wage indexation (0.38), and labour disutility (1.85) parameter are estimated to be

somewhat lower than in CFP. The posterior means of the Taylor rule parameters
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are in line with commonly observed values in the literature. The most noticeable

difference between our estimation result and CFP’s is the posterior distribution

for the net worth adjustment cost parameter ψN . Our posterior mean for this

parameter (6.82) is vastly higher than the one in CFP (0.79). This could have

several reasons: First, net worth elasticity could be different in Europe compared

to the USA. Second, our sample ends in 2013Q4 and thus includes data of the

financial crisis. Third, we use data on bank net worth to better identify the net

worth adjustment cost parameter. On average, financial frictions could thus be

more severe in our sample than in CFP’s sample which ends in 2008Q4. Figure 1

shows the prior and posterior distributions of the structural parameters as well as

their posterior modes.

4 Implementation of QE and FG

We implement the PSPP of the Eurosystem using an AR(2) process for the real

market value of long-term bonds on the balance sheets of the FIs:

B̄t = B̄(1−ρ̄1+ρ̄2)
ss

(
B̄t−1

)ρ̄1
(
B̄t−2

)−ρ̄2 εB̄t . (1)

Once triggered, the entire path of the PSPP is taken into account (and, thus,

known) by every agent of the model. The shock, εB̄t , is calibrated to mimic monthly

purchases of e60 billion euro from March 2015 until September 2016, as announced

by the Governing Council in January 2015.6 This approximately implies an about

6This corresponds to the APP with monthly purchase volumes as announced in January 2015
(ignoring the increase to e80 bn in March 2016 and the extension until end 2017).
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8% decrease in the real market value of long-term bonds (which is the same shock

size that was implemented in Sahuc, 2016), as shown in Figure 2.7

Figure 2: Total value of long-term bonds held by the public
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Note: The solid line represents the evolution of B̄ (i.e. the market value for long-term bonds)
as percent deviation from steady-state over 25 quarters.

We implement the anticipated interest rate peg by a sequence of anticipated shocks,

εTRt , which consists of binary dummy variables:

Rt = εTRt (Rss) +
(
1− εTRt

)
(Rt−1)ρ

(
RssΠ

τΠ
t

(
Yt
Yt−1

)τy)1−ρ

. (2)

Thus, to implement one year of FG, εTRt is set to one for four consecutive periods.

5 Prior-posterior predictive analysis

Based on our estimation, we use prior and posterior predictive analysis to gener-

ate the respective distributions of inflation responses for different policy scenarios.

In the first scenario we do not constrain the interest rate path and describe the

7The AR(2) coefficients ρ̄1 and ρ̄2 are equal to 1.8 and 0.81, respectively.
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model’s range of predictions in response to QE. The unconstrained nature of the

interest rate in this scenario implies that it increases in response to the inflation-

ary stimulus of the QE programme according to the Taylor rule. In the second,

third and fourth scenario, we analyse the model’s range of predictions if the QE

programme is accompanied by a one, two, and three year lasting anticipated inter-

est rate peg, respectively. After the peg, the interest rate varies according to the

estimated Taylor rule.

We implement prior predictive analysis in the following way. Given the DSGE

model outlined in section 2, we posit prior densities for the model’s structural

parameters, where we restrict our analysis to the parameter subspace that implies

a unique rational expectations equilibrium. We then simulate 100.000 sets of draws

for the structural parameters based on the prior distributions specified in Table

3.8 Then, based on these draws, we calculate perfect foresight simulations for each

policy scenario. In this way, the prior predictive analysis produces a distribution

of inflation effects for each policy scenario and, thus, a range of possible model-

implied responses to the policy impact before confronting the model with actual

data.

We use posterior predictive analysis to analyse the model-implied responses after

having confronted the model with our data set. The posterior means/medians

shown in Table 3 are based on the posterior distributions, which have been gener-

ated using the Metropolis-Hastings algorithm during the estimation of the model.

We simulate 500.000 sets of draws for the posterior distributions. Based on these

8To generate these draws we make use of the Global Sensitivity Analysis toolbox developed
by Ratto (2008).
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draws we calculate 100.000 perfect foresight simulations for each policy scenario.9

In this way, we produce a range of possible inflation responses for the four policy

scenarios after the information content in the actual data has been exploited.10

5.1 Baseline results

Our first set of results, shown in Figure 3, refers to the policy scenario in which the

central bank implements a QE programme without an interest rate peg. Conse-

quently, in response to inflationary pressures the central bank increases its policy

rate (not shown) according to the Taylor rule specified in (2), with εTRt = 0 ∀t.

The left-hand panel (red fan charts) shows the distribution of the inflation path for

the prior predictive analysis. The black line represents the median inflation path.

The simulations result in a median peak response of inflation of 0.34 percentage

points (pp) five quarters after the implementation of the QE programme. The

uncertainty of the macroeconomic effects is highlighted by the 66 percent interval

of the overall distribution of the simulations. The different shadings represent 5.5̄%

percentiles. At the peak response, the interval exhibits a range of 0.20 pp for the

effect of the PSPP on inflation. Thus, a priori, the model is able to generate notable

effects of the PSPP, but the parameter uncertainty of the effects is pronounced.

The right-hand panel (green fan charts) in Figure 3 shows the distribution of

9To be precise, we take the last 100.000 out of the 500.000 sets to make sure that we only use
posterior draws from the MCMC simulations that have converged.

10Note that when we analyse the inflation effects of QE in combination with FG, some draws
(which still deliver unique rational expectations equilibria) imply sign switches in the simulations
of the endogenous variables. This phenomenon has become known as the reversal puzzle (see
Carlstrom, Fuerst and Paustian, 2015; Gerke, Giesen, Kienzler and Tenhofen, 2017). Here, we
follow Lindé, Smets and Wouters (2016) and constrain our analysis to those cases in which the
reversal puzzle does not arise (for both the prior and the posterior predictive analysis).
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Figure 3: Inflation effects in response to a QE shock, prior-posterior predictive
analysis

(a) Prior predictive, no FG
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Note: The figure shows the 66 percent interval around the median response to the QE shock.
The separated areas (from weak to strongly shaded) reflect 5.5̄% percentiles. The simulations
are carried out under the assumption of perfect foresight.

inflation paths for the posterior predictive analysis. The median peak response

of inflation is 0.42 pp, and at the peak response, the interval exhibits a range of

0.15 pp. Hence, after confronting the model with the data, it suggests a higher

median effect of the PSPP on inflation. Furthermore, as the distributional mass is

more centred around the median, the posterior distributions imply a lower degree

of parameter uncertainty about these effects. This may, however, not come as a

surprise as the prior distributions were chosen to be fairly broad and accordingly

the posterior distributions tend to be narrower (see Figure 1), leading to a sizeable

share of the distributional mass to be close to the median response.

Figure 4 shows the simulation results for the scenarios in which QE is accompanied

by FG. Rows one, two, and three correspond to one, two, and three years of FG,

respectively. The left-hand panels (red fan charts) show the results of the prior

predictive analyses, while the right-hand panels (green fan charts) show the results
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for the posterior predictive analyses. Looking at the prior predictive analysis for

a QE programme accompanied by one year of FG (upper left graph), the median

response increases strongly compared to the scenario without FG. The median

peak effect is 2.62 pp, approximately seven times larger than the median peak

effect without FG. In addition, a large share of the distributional mass now implies

responses which are multitudes larger than in the scenario without FG. At the

peak, the interval exhibits a range of 6.52 pp.

The observation that even rather short periods of FG produce such large effects

of inflation in New-Keynesian-type models such as those seen in Figure 4 seems

unrealistic and has become known as the FG puzzle in the literature (see Del Negro,

Giannoni and Patterson, 2015). Hence, here we replicate the expected result that

the median peak inflation response increases strongly with FG and accordingly the

distribution of the inflation paths widens.11

The upper right graph in Figure 4 shows the posterior predictive analysis for a

QE programme accompanied by one year of FG. It shows that the median peak

response of inflation increases (to 0.81 pp) and the range of the distribution at the

peak widens (to 0.48 pp) compared to the posterior predictive analysis without

FG, as expected. However, this increase in inflation responses going from zero to

one year of FG is not nearly as sharp as in the prior predictive analysis. It thus

seems that the FG puzzle is less evident for the posterior predictive analysis. The

difference between prior and posterior predictive analysis, however, loses impor-

tance for longer durations of FG, although the prior predictive analysis continues

to deliver higher median peak responses of inflation as well as wider distributions

11Several approaches have been developed in the literature to cope with the FG puzzle, such as
those in McKay, Nakamura and Steinsson (2016), Angeletos and Lian (2017), or Gabaix (2016).
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Figure 4: Inflation effects in response to a QE shock and different durations of FG,
prior-posterior predictive analysis

(a) Prior predictive, 1 year FG
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(c) Prior predictive, 2 years FG
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(e) Prior predictive, 3 years FG
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Note: The figure shows the 66 percent interval around the median response to the QE shock
accompanied by one year of FG. The separated areas (from weak to strongly shaded) reflect
5.5̄% percentiles. The simulations are carried out under the assumption of perfect foresight.

17



of the inflation path than the posterior predictive analysis. This is evident in the

second and third row of Figure 4 where prior and posterior predictive analyses for

the inflation response for two and three years, respectively, of FG are shown. In

these cases, both the median peak responses (3.73 pp and 3.98 pp for two and

three years, respectively, of FG) and the ranges of the distribution at the peak

(12.93 pp and 13.19 pp for two and three years, respectively, of FG) for the prior

predictive analysis are higher than the median peak responses (3.16 pp and 3.20

pp for two and three years, respectively, of FG) and the ranges of the distribution

at the peak (8.47 pp and 10.03 pp for two and three years, respectively, of FG) for

the posterior predictive analysis but the difference in both cases is less pronounced

than in the case of one year of FG. That is, for longer durations of FG, the FG

puzzle is clearly evident also in the posterior predictive analysis. In any case, the

uncertainty surrounding the effects of the QE programme accompanied by FG on

inflation, in general, is substantial.

Comparing Figure 3(a) with Figures 4(a), 4(c) and 4(e), and Figure 3(b) with

Figures 4(b), 4(d) and 4(f), it is obvious that the parametrisation of the model

cannot explain the upward shift in the median path of inflation and the much

wider distribution of the inflation path – it is the same within the left and right

columns of Figures 3 and 4 – but can only be explained by the peg. That said, it is

nevertheless useful to examine the role of the parameters for two reasons: (i) Since

in the presented figures all parameters vary across draws, it is not clear what role

each single parameter plays for the distribution, and thus parameter uncertainty,

of the inflation response within each figure, that is, given a duration of FG and

given the type of predictive analysis (prior or posterior). (ii) Figures 4(a) and 4(b)
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show that there is a pronounced difference in the median inflation response as well

as the width of the distribution across the type of predictive analysis. Since this

difference cannot be explained by the duration of FG – it is the same across the

two figures – it must be the case that the parametrisation drives this result but

it is not clear which parameters contribute most to this observation. Both issues

(i) and (ii) can be examined within the framework of predictive analysis. We deal

with issue (i) in Subsection 5.2 and with issue (ii) in Subsection 5.3.

5.2 The role of individual parameters for uncertainty

Following Leeper, Traum and Walker (2017), we derive a measure indicating which

parameters are most important for our results. In particular, we ask to which

extent each estimated parameter contributes to uncertainty for a given interest rate

peg, within each predictive analysis. To this end, we proceed as follows. For each

draw j ∈ [1, J ] of the parameters, ϑj =
[
ϑj1 . . . ϑ

j
i . . . ϑ

j
n

]′
, we simulate the model

and extract the peak response of inflation to the QE shock from these simulations.

In this way, we obtain a distribution of peak effects. Then, for each draw we

simulate the model again using a new parameter vector ϑi,j =
[
ϑj1 . . . ϑ̃i . . . ϑ

j
n

]′
,

where ϑ̃i denotes the ith parameter that is now fixed at the median for each draw

j. The only difference between ϑj and ϑi,j is thus the change from ϑji to ϑ̃i.

We again extract the peak response of inflation to the QE shock from these new

simulations and obtain a new distribution of peak effects. We do this for all

estimated structural parameters of the model i = 1, ..., n. We then calculate the

root mean squared error RMSEi =

√∑J
j=1(peakj−peakji )2

J
for each of the parameters,

where peakji denotes the peak effect of inflation for draw j when the ith parameter
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is fixed. The parameter with the highest RMSE has the biggest impact on the

variation of the peak response of inflation to a QE shock. We calculate the RMSEs

both for the prior and the posterior predictive analyses for zero, one, two, and three

years of FG.

Table 5: RMSEs for peak response of inflation for the prior predictive analyses
when a given parameter is fixed at its prior median and different durations of FG

(a) 0 years FG

η 1.188
h 0.308
ρ 0.306
τπ 0.292
θw 0.279
θp 0.205
ψN 0.138
ιw 0.080
τy 0.069
ιp 0.030

(b) 1 year FG

θp 9.248
θw 8.408
τπ 7.289
τy 5.902
h 5.666
ρ 5.620
ιp 2.525
ψN 2.334
ιw 2.316
η 1.587

(c) 2 years FG

θw 14.743
θp 12.188
τy 8.199
ιw 6.919
ιp 6.050
ρ 5.591
h 5.066
τπ 5.050
η 3.378
ψN 0.554

(d) 3 years FG

θw 66.273
τy 16.768
ρ 14.671
ιp 13.186
ιw 8.437
τπ 7.027
θp 6.559
h 4.194
η 3.280
ψN 0.922

Table 6: RMSEs for peak response of inflation for the posterior predictive analyses
when a given parameter is fixed at its posterior median and different durations of
FG

(a) 0 years FG

θw 0.065
θp 0.042
ρ 0.042
τπ 0.028
h 0.028
τy 0.018
ιw 0.013
η 0.011
ιp 0.008
ψN 0.002

(b) 1 year FG

θw 0.214
θp 0.169
τy 0.100
τπ 0.092
h 0.068
ρ 0.052
ιw 0.041
ιp 0.017
η 0.016
ψN 0.004

(c) 2 years FG

θw 8.242
θp 7.052
h 6.371
τy 6.013
ιp 4.487
ιw 4.307
η 2.275
ρ 2.006
τπ 1.736
ψN 0.055

(d) 3 years FG

θw 8.665
h 6.324
θp 6.012
τy 5.518
ιw 4.983
ιp 4.557
τπ 3.404
η 2.944
ρ 1.960
ψN 0.160

Table 5 shows the RMSEs for the peak effect of inflation for the prior predictive

analyses when a given parameter is fixed at its prior median and different durations
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of FG. The parameters are sorted in descending order according to their RMSEs.

Although there is variation in the ranking for different durations of FG, the broad

picture is that the Calvo parameters θp and θw which govern the probability of re-

setting prices and wages, respectively, play the most important role in determining

the uncertainty about the peak response of inflation to a QE shock. In contrast,

ψN , the parameter governing net worth adjustment costs, has comparably little

influence on the uncertainty about the peak inflation response to a QE shock. The

latter observation is noteworthy since ψN greater than zero is a prerequisite for

QE to have real effects in the model. A similar picture emerges for the peak effect

of inflation for the posterior predictive analyses when one parameter is fixed at

its posterior median, shown in Table 6. Across all durations of FG, the Calvo

parameters have a strong influence on the peak effect of inflation and hence on the

uncertainty about the effect, while, again, ψN has comparably little impact.

The result that the financial friction parameter is of minor importance for the

outcomes of the policy scenarios is in line with other studies analysing the role of

financial frictions for the dynamics of macroeconomic variables. For example, Suh

and Walker (2016) find that the New Keynesian model with financial frictions is

not capable of reproducing the empirically observed dynamics between financial

and non-financial variables. That said, it is not obvious what the reason is for

this observation. For example, it could be due to the model structure per se or

to estimating the linear version of the model.12 However, our approach to analyse

parameter uncertainty is in no way dependent on the specific model structure or

the estimation of a linear version of the model.

12Although we estimate the linear version of the model, our simulations are based on the fully
non-linear version of the model with different durations of interest rate pegs.
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5.3 Evaluating differences between prior and posterior pre-

dictive analysis

Figures 4(a) and 4(b) show that there is a marked difference in the median infla-

tion response as well as the width of the distribution between the prior and the

posterior predictive analysis of the inflation response for one year of FG.13 Since

this difference cannot be explained by the duration of FG this suggests that the

strength of the FG puzzle depends on the parametrisation. Put differently, the

estimation carries the model into parameter regions where the FG puzzle is not as

apparent as in those parameter regions implied by prior distributions for one year

of FG. To evaluate the relative influence of each single parameter on this result,

we again apply the procedure described in subsection 5.2 but vary the experiment

in one important aspect: Instead of fixing a given parameter to the median of the

posterior distribution when conducting the posterior predictive analysis, we now

fix a given parameter to the median of the prior distribution when conducting the

posterior predictive analysis. We then again compare, draw by draw, the peak of

the inflation response thus obtained with the peak of the inflation response ob-

tained when all parameters are varied by computing the RMSEs for the different

parameters. In this way, we are able to determine the relative influence of the

parameters on the difference between the results of the prior and the posterior

predictive analysis for one year of FG, that is, on producing the FG puzzle.

Table 7 shows the RMSEs for the posterior predictive analysis in the case of one

year FG when a given parameter is fixed at its prior median, sorted in descending

13As described in section 5.1, this difference is also apparent for two and three years of FG,
albeit to a less pronounced degree.
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Table 7: RMSEs for peak response of inflation for the posterior predictive analysis
when a given parameter is fixed at its prior median and one year of FG

θw 1.114
h 0.643
θp 0.638
τpi 0.154
ιw 0.141
τy 0.119
ρ 0.060
ψN 0.028
ιp 0.019
η 0.017

order according to their RMSEs. We observe that θw has the highest RMSE

and thus the strongest influence on the different results across the prior and the

posterior predictive analysis for one year of FG, whereas η has the lowest influence.

ψN , the parameter governing net worth adjustment costs, has, once again, only

little influence. We visualise this result with Figure 5 that shows the distribution

of the inflation response to a QE shock produced by a posterior predictive analysis

when θw (Figure 5(a)) and η (Figure 5(b)) are fixed at their prior median. The

change of η in the posterior predictive analysis to its prior median in each draw of

parameters essentially produces the same picture as in Figure 4(b), that is, the FG

puzzle is apparent only very moderately. To be precise, the median peak of the

inflation response changes minimally from 0.8083 pp in Figure 4(b) to 0.8079 pp in

Figure 5(b), and the range of the distribution at the peak changes only to a small

degree, from 0.4792 pp in Figure 4(b) to 0.4817 pp in Figure 5(b). In contrast, the

change of θw in the posterior predictive analysis to its prior median in each draw

of parameters produces a much higher median peak response of inflation of 1.5396

pp (an increase of around 90%) and a much wider range of the distribution at the
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Figure 5: Inflation response to QE shock for one year FG, posterior predictive
analysis with θw (left) and η (right) fixed at prior median.
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Note: The figure shows the 66 percent interval around the median response to the QE shock
accompanied by one year of FG. The separated areas (from weak to strongly shaded) reflect
5.5̄% percentiles. The simulations are carried out under the assumption of perfect foresight.

peak, namely 1.0074 pp. That is, the FG puzzle is much more pronounced and

the result bears closer resemblance to the result of the prior predictive analysis for

one year of FG in Figure 4(a).

Note that the ranking of the RMSEs in Table 7 is different from the ranking of

RMSEs in Table 6(b) which shows the RMSEs for the posterior predictive analysis

when a given parameter is fixed at its posterior mean in the case of one year of

FG. This holds in general for all durations of FG. That is, it matters where a given

parameter is fixed in the framework of this type of predictive analysis, and the

decision of where to fix a given parameter depends on the question the researcher

seeks to answer.
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6 Conclusion

We use prior and posterior predictive analysis to examine the extent of parameter

uncertainty when analysing the macroeconomic effects of the Eurosystem’s PSPP

and FG. Prior and posterior predictive analysis provides a way of carrying over

the information about parameter uncertainty gained in the estimation of a model

to a policy scenario analysis involving the solution of a non-linear model (in our

case under the assumption of perfect foresight) with an anticipated interest rate

peg, and allows for identifying the driving parameters behind this uncertainty.

We find that the uncertainty about the effects of the PSPP is considerable and

increases when it is accompanied by FG. The Calvo parameters – which govern

the probability, in a given period, of being able to reset prices and wages – have

the biggest influence in determining the uncertainty about the inflation effects of

a QE shock while the financial friction in the form of net worth adjustment costs

is much less important.

In general, the method of using predictive analysis for illustrating parameter un-

certainty in policy scenarios is very flexible. In particular, its use does not depend

on a specific model structure, on estimating a linear or non-linear version of a

model, or on solving and simulating the model in a linear or non-linear setup.
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Appendix A Model derivation

In our analysis we employ the model of Carlstrom et al. (2017).

A.1 Households and bond market structure

A.1.1 households’ intertemporal consumption decision

Households maximise their intertemporal utility:

Et

∞∑
s=0

βsbt+s

{
ln (Ct+s − hCt+s−1)−B

H1+η
t+s (j)

1 + η

}
,

where Ct is consumption, h is habit formation, Ht(j) is the individual labour input
from household j, and bt is a shock to the discount factor. Lifetime utility would
evaluate to:

V h
t = bt

{
ln (Ct − hCt−1)−Dw

t B
H1+η
t

1 + η

}
+ βEtV

h
t+1

The law of motion for capital is:

Kt ≤ (1− δ)Kt−1 + It

Based on the households’ nominal liability,

Ft−1 = CIt−1 + κCIt−2 + κ2CIt−3 + ...,

one can show that CIt = (Ft − κFt−1), where CIt is the number of bonds newly
issued, and Ft is the households’ nominal liability on new issues. New investments
must be financed by issuing sufficient long term investment bonds which are pur-
chased by the FI. Perpetual bonds are used with cash flows of 1, κ, κ2, etc.

The loan in advance constraint can be written as:
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P k
t It ≤

Qt (Ft − κFt−1)

Pt

(
=
QtCIt
Pt

)
,

where Qt is the time-t price of a new issue, Pt is the price level and P k
t is the real

price of capital. Moreover, the usual budget constraint is given by:

Expenditure Side︷ ︸︸ ︷
Ct +

Dt

Pt︸︷︷︸
HH real
deposits

+P k
t It +

Ft−1

Pt︸︷︷︸
HH real liability
on past issues

≤ WtHt+R
k
tKt−Tt+

Dt−1

Pt
Rd
t−1+

Qt (Ft − κFt−1)

Pt︸ ︷︷ ︸
HH newly issued real

investment bonds

+divt

A.1.2 Households’ Lagrangian

The corresponding Lagrangian maximising household utility is:

L = Et

∞∑
s=0

βs



bt+s

{
ln (Ct+s − hCt+s−1)−BH1+η

t+s (j)

1+η

}
−Λt+s

 Ct+s + Dt+s
Pt+s

+ P kt+sIt+s + Ft+s−1

Pt+s
−Wt+sHt+s −Rkt+sKt+s + Tt+s

−Dt+s−1

Pt+s
Rdt+s−1 −

Qt+s(Ft+s−κFt+s−1)
Pt+s

− divt+s


−ΛKt+s (Kt+s − (1− δ)Kt+s−1 − It+s)

−ϑt+s
(
P kt+sIt+s −

Qt+s (Ft+s − κFt+s−1)

Pt+s

)
︸ ︷︷ ︸

Loan in advance constraint



The first-order conditions evaluate to:

∂L
∂Ct

: Λt =
bt

Ct − hCt−1

− Et
βhbt+1

Ct+1 − hCt
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∂L
∂Dt

: Λt = Etβ
Λt+1

Πt+1

Rd
t with Πt+1 =

Pt+1

Pt

∂L
∂It

: ΛK
t = ϑtP

k
t + ΛtP

k
t = (ϑt + Λt)P

k
t = MtΛtP

k
t

∂L
∂Ft

: ΛtMtQt = Et
βΛt+1 (1 + κQt+1Mt+1)

Πt+1

,

with Mt = 1 + ϑt
Λt

or ΛtMt = Λt + ϑt.

∂L
∂Kt

: ΛtMtP
k
t = EtβΛt+1

[
Rk
t+1 +Mt+1P

k
t+1 (1− δ)

]
,

A.1.3 Financial intermediaries

The FI choose dividends divt and their net worth Nt to maximise the value func-
tion:

Vt = Et

∞∑
s=0

(βζ)sΛt+sdivt+s

where ζ is a parameter for additional impatience using the basic household kernel
for discounting.

This maximisation is subject to the budget constraint which represents the law of
motion for net worth, with

RL
t+1 ≡


Coupon︷︸︸︷

1 +

t + 1 Principal/face
value of issues from t︷ ︸︸ ︷

κQt+1

Qt︸︷︷︸
Market Price


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divt +Nt [1 + f (Nt)]︸ ︷︷ ︸
Diminishing net worth

by adjustment costs

≤ Pt−1

Pt



(
RLt −Rdt−1

)
Lt−1︸ ︷︷ ︸

Earnings from leveraged net

worth: lending - deposits

+ Rdt−1︸ ︷︷ ︸
For own net worth

no interest on deposit

has to be paid



Nt−1

︸ ︷︷ ︸
Profit FI(Change in net worth)

The net worth adjustment costs which limit the ability of the FI to adjust their
portfolio deviating from its steady state are:

f (Nt) ≡
ψn
2

(
Nt −Nss

Nss

)2

The according Lagrangian becomes:

L = Et

∞∑
s=0

(βζ)s
[
Λt+sdivt+s − ΛN

t+s

{
divt+s +Nt+s [1 + f (Nt+s)]−
Pt+s−1

Pt+s

[(
RL
t+s −Rd

t+s−1

)
Lt+s−1 +Rd

t+s−1

]
Nt+s−1

}]

This yields the following first-order conditions:

∂L
∂divt

: Λt+s = ΛN
t+s

∂L
∂Nt

: Λt [1 + f (Nt) +Ntf
′ (Nt)] = EtΛt+1βζ

Pt
Pt+1

[(
RL
t+1 −Rd

t

)
Lt +Rd

t

]
The FIs are subject to a simple hold-up problem which limits their ability to
attract deposits. When they choose to default they can seize a fraction µt from
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the household deposits. The incentive constraint for the FI not to default, because
their income is greater than the assets they can keep in default, is:

EtVt+1︸ ︷︷ ︸
Expected
future income

≥ µtLtNt︸ ︷︷ ︸
Fraction of their
balance sheet

EtΛt+1
Pt
Pt+1

RL
t+1︸ ︷︷ ︸

Times next periods consumption
value plus earnings from lending

The model can be calibrated for it to be binding. By choosing the fraction of assets
the FI can keep in case of default to be

µt = Φt

[
1 +

1

Nt

Et

(
gt+1

Xt+1

)]
,

with Φt an exogenous stochastic process that represents exogenous changes in the
financial friction. It follows an AR(1) process:

Φt = (1− ρΦ) Φss + ρΦΦt−1 + εΦ,t.

Choosing this fraction ensures that leverage is a function independent of net worth.
Hence, the FIs take leverage as given and we can aggregate the firms as they are
just scaled equivalents. gt is a function of current and forecasted market spreads
zt independent of Nt−1. Confirming the leverage equation, it follows:

Et
Pt
Pt+1

Λt+1

[(
RL
t+1

Rd
t

− 1

)
Lt + 1

]
= ΦtLtEtΛt+1

Pt
Pt+1

RL
t+1

Rd
t

⇔ Lt =
Et

Λt+1

Πt+1[
Et

Λt+1

Πt+1
+ (Φt − 1)Et

Λt+1

Πt+1

RLt+1

Rdt

]

Using the derivation

∂Lt
∂RL

t+1

=
− (Φt−1)

Rdt[
1 + (Φt − 1)

RLt+1

Rdt

]2 ≥ 0 for Φt < 1,
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this can be simplified to

Lt =
1[

1 + (Φt − 1)Et
RLt+1

Rdt

] .
Regarding the balance sheet of the FI and its composition, leveraged net worth is
divided into holdings of long term government bonds and investment bonds:

NtLt = Bt + F t,

with Bt ≡ Qt
Bt
Pt

and F t ≡ QI
t
Ft
Pt
.

The time-t asset value of current and past issues of investment is:

QtFt = QtCIt + κQt

[
CIt−1 + κCIt−2 + κ2CIt−3

]
,

where the time-t price of the perpetuity issued in t-1 is κQt.

A.1.4 Term premium and price of capital mark-up

Rewriting the log-linearised version of the households’ first-order condition with
respect to Kt yields:

λt + pkt +mt = Et
{
λt+1 + [1− β (1− δ)] rkt+1 + β (1− δ)

(
pkt+1 +mt+1

)}
From the log-linearised version of the households first-order condition with respect
to Dt, we know that Etλt+1 − λt = Etπt+1 − rt, and hence

pkt +mt = Et
{

[1− β (1− δ)] rkt+1 − (rt − πt+1) + β (1− δ)
(
pkt+1 +mt+1

)}
.
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Iterative substitution then yields the mark-up character of mt on the price of
capital pkt :

pkt +mt = Et

∞∑
j=0

[β (1− δ)]j
{

[1− β (1− δ)] rkt+j+1 − (rt+j − πt+j+1)
}

Similarly, one can show that iterative substitution can also be applied to the log-
linearised form of the households first-order condition with respect to Ft, which
then can be written as:

mt = Et

∞∑
j=0

[βκ]j {βκqt+j+1 − qt+j − rt+j}.

And since rLt+1 = κqt+1

RL
− qt = βζ

Π
κqt+1 − qt ≈ βκqt+1 − qt, this can be written as

the discounted sum of future loan to deposit spreads:

mt ≈ Et

∞∑
j=0

[βκ]j
{
rLt+j+1 − rt+j

}
= Et

∞∑
j=0

[βκ]jΞt+j

Ξt+j ≡ βκqit+j+1 − qit+j − rt+j ≈ rLt+j+1 − rt+j

A.2 Labour agencies

Perfectly competitive labour agencies combine differentiated labour inputs into a
homogenous labour composite Ht according to the technology:

Ht =

 1∫
0

Ht(j)
εw−1
εw dj


εw
εw−1

where εw ≥ 1 is the elasticity of substitution between different varieties of labour.
The labour agencies purchase labour Ht(j) at a nominal wage Wt(j). Profit max-
imisation (i.e. cost minimisation) leads to the following problem:
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min
Ht(j)

∫ 1

0

Wt(j)Ht(j)dj

subject to (at least obtaining a bundle Ht):

 1∫
0

Ht(j)
εw−1
εw dj


εw
εw−1

≥ Ht

The corresponding Lagrangian is:

L=

∫ 1

0

Wt(j)Ht(j)dj − ψt


 1∫

0

Ht(j)
εw−1
εw dj


εw
εw−1

−Ht


∂L

∂Ht(j)
: Wt(j) = ψt

 1∫
0

Ht(j)
εw−1
εw dj


1

εw−1

Ht(j)
− 1
εw

⇔ Ht(j) =

(
Wt(j)

ψt

)−εw
Ht

Using the definition of Ht leads to:

Ht =

 1∫
0

((
Wt(j)

ψt

)−εw
Ht

) εw−1
εw

dj


εw
εw−1
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⇔ 1 =

(
1

ψt

)−εw 1∫
0

Wt(j)
1−εwdj


εw
εw−1

⇔ ψt =

 1∫
0

Wt(j)
1−εwdj


1

1−εw

≡ Wt

Plugging this into the demand function results in:

Ht(j) =

(
Wt(j)

Wt

)−εw
Ht

A.2.1 Optimal wage

Households are monopolistic suppliers of differentiated labour inputs Ht(j) and
set wages on a staggered basis (à la Calvo). In each period, the probability of
resetting the wage is (1− θw), while with the complementary probability (θw) the
wage is automatically increased following the indexing rule:

Wt(j) = Πιw
t−1Wt−1 (j)

The problem for a household j who can reset its wage at time t is:

max
Wt(j)

Et

∞∑
s=0

θswβ
s


−BHt+s(j)

1+ψ

1 + ψ︸ ︷︷ ︸
Disutiliy of labour at t + s

bt+s︸︷︷︸
discount
factor shock

λw,t+s︸ ︷︷ ︸
markup
factor

+Λt+s
Wt(j)

Pt+s
Ht+s(j)︸ ︷︷ ︸

real wage income at t + s︸ ︷︷ ︸
Utility consequence of this income


The maximisation problem follows as:
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max
Wt(j)

Ωt = Et

∞∑
s=0

θswβ
s


−λw,t+sbt+s B

1+ψ

Wt(j)

(
s∏

k=1
Πιwt+k−1

)
Wt+s

−εwHt+s

1+ψ

+Λt+s

Wt(j)

(
s∏

k=1
Πιwt+k−1

)
Pt+s

Wt(j)

(
s∏

k=1
Πιwt+k−1

)
Wt+s

−εwHt+s


This can be rewritten in the following way:


−λw,t+sbt+s B

1+ψ

Wt(j)

(
s∏

k=1
Πιwt+k−1

)
Wt+s

−εwHt+s

1+ψ

+Λt+s

Wt(j)

(
s∏

k=1
Πιwt+k−1

)
Pt+s

Wt(j)

(
s∏

k=1
Πιwt+k−1

)
Wt+s

−εwHt+s


= Et

∞∑
s=0

θswβ
s


−λw,t+sbt+s B

1+ψ
Wt(j)

−εw(1+ψ)

(
s∏

k=1
Πιwt+k−1

)
Wt+s

−εwHt+s

1+ψ

+Λt+sWt(j)
1−εw

(
s∏

k=1
Πιwt+k−1

)1−εw

Pt+s
W εw
t+sHt+s



∂Ωt

∂Wt(j)
: Et

∞∑
s=0

θswβ
s

Λt+s (1− εw)Wt(j)
−εw 1

Pt+s

(
s∏

k=1

Πιw
t+k−1

)1−εw

W εw
t+sHt+s



= Et

∞∑
s=0

θswβ
s

λw,t+sbt+sB (−εw)Wt(j)
−εw(1+ψ)−1

(
s∏

k=1

Πιw
t+k−1

)−εw(1+ψ)

W
εw(1+ψ)
t+s H1+ψ

t+s


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⇔ Wt(j)
1+εwψEt

∞∑
s=0

θswβ
s

Λt+s
1

Pt+s

(
s∏

k=1

Πιw
t+k−1

)1−εw

W εw
t+sHt+s



=
εw

εw − 1
Et

∞∑
s=0

θswβ
s

λw,t+sbt+sB
(

s∏
k=1

Πιw
t+k−1

)−εw(1+ψ)

W
εw(1+ψ)
t+s H1+ψ

t+s



⇔ Wt(j)
1+εwψ =

εw
εw − 1

Et
∞∑
s=0

θswβ
s

λw,t+sbt+sB
[(

s∏
k=1

Πιw
t+k−1

)−εw
W εw
t+sHt+s

]1+ψ


Et
∞∑
s=0

θswβ
s

{
Λt+s

1
Pt+s

(
s∏

k=1

Πιw
t+k−1

)1−εw
W εw
t+sHt+s

}

Rewritten in terms of real wages
(
wt = Wt

Pt

)
:

Wt(j)
1+εwψ 1

P 1+εwψ
t

=
εw

εw − 1

1

P 1+εwψ
t︸ ︷︷ ︸

= 1

P
1−εw+εw(1+ψ)
t

Et
∞∑
s=0

θswβ
s

λw,t+sbt+sB
[(

s∏
k=1

Πιw
t+k−1

)−εw
W εw
t+sHt+s

]1+ψ


Et
∞∑
s=0

θswβ
s

{
Λt+s

1
Pt+s

(
s∏

k=1

Πιw
t+k−1

)1−εw
W εw
t+sHt+s

}

39



⇔ wt(j)
1+εwψ =

εw
εw − 1

Et
∞∑
s=0

θswβ
s

λw,t+sbt+sB
 s∏

k=1
Πιwt+k−1

s∏
k=1

Πt+k

−εwwεwt+sHt+s

1+ψ


Et
∞∑
s=0

θswβ
s

Λt+s

 s∏
k=1

Πιwt+k−1

s∏
k=1

Πt+k

1−εw

wεwt+sHt+s


= wt

1+εwψ

All agents choose the same wt(j) as derived in the labour agencies first-order con-
dition with respect to Ht(j). Letting the numerator be Xwn

t and the denominator
Xwd
t , then this equation can be rewritten as:

wt
1+εwψ =

εw
εw − 1

Xwn
t

Xwd
t

,

where the numerator is:

Xwn
t =

λw,tbtBw
εw(1+ψ)
t H1+ψ

t +Et


θwβ Et+1


∞∑
s=1

θs−1
w βs−1λw,t+sbt+sB(

s∏
k=1

Πt+k

)εw(1+ψ)( s∏
k=1

Πιw
t+k−1

)−εw(1+ψ)

w
εw(1+ψ)
t+s H1+ψ

t+s


︸ ︷︷ ︸

=Xwn
t+1Π

εw(1+ψ)
t+1 Π

−ιwεw(1+ψ)
t



and the denominator:
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Xwd
t = Λtw

εw
t Ht+Et


θwβ Et+1


∞∑
s=1

θs−1
w βs−1Λt+s


s∏

k=1

Πιw
t+k−1

s∏
k=1

Πt+k


1−εw

wεwt+sHt+s


︸ ︷︷ ︸

=Xwd
t+1Π

−ιw(εw−1)
t Π

(εw−1)
t



The equation for wt(i) = w∗t can be written in the following way:

(w∗t )
1+εwψ =

εw
εw − 1

Xwn
t

Xwd
t

The law of motion for wages then is:

Wt
1−εw = (1− θw) (W ∗

t )1−εw + θw
(
Πιw
t−1Wt−1

)1−εw

⇔ wt
1−εw = (1− θw) (w∗t )

1−εw + θw

(
Πιw
t−1wt−1

Πt

)1−εw

A.2.2 Wage dispersion

From the demand for differentiated labour, we have differentiated labour supply
from household j:

Ht(j) =

(
Wt(j)

Wt

)−εw
Ht

Taking the integral over households on both sides, we have:
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∫ 1
0 Ht(j)dj︸ ︷︷ ︸

Hht

= Ht ∫ 1
0

(
Wt(j)

Wt

)−εw
dj︸ ︷︷ ︸

Dwt

= HtDwt

Now regarding the evolution of Dwt, the period-t wage dispersion is:

Dwt = W εw
t

[
θw
(
Πιw
t−1

)−εwDwt−1

W εw
t−1

+ (1− θw)(Wt
∗)−εw

]

⇔ Dwt = θw
(
Πιw
t−1

)−εw( Wt

Wt−1

)εw
Dwt−1 + (1− θw)

(
Wt
∗

Wt

)−εw

⇔ Dwt = θw

(
Πt

Πιw
t−1

)εw( wt
wt−1

)εw
Dwt−1 + (1− θw)

(
wt
∗

wt

)−εw

From the evolution of the aggregate wage index, we have:

Wt
1−εw = (1− θw) (W ∗t )1−εw+θw

(
Πιw
t−1Wt−1

)1−εw ⇔ (
W ∗t
Wt

)−εw
=

1− θw
(

Πιw
t−1

Wt−1

Wt

)1−εw

1− θw


−εw
1−εw

Substituting this into the evolution of wage dispersion yields:

Dwt = θw
(
Πιw
t−1

)−εw( Wt

Wt−1

)εw
Dwt−1+(1− θw)

1
1−εw

[
1− θw

(
Πιw
t−1

Wt−1

Wt

)1−εw
] εw
εw−1
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Finally, rewriting this in terms of real wages:

Dwt = θw
(
Πιw
t−1

)−εw( wt
wt−1

Πt

)εw
Dwt−1+(1− θw)

1
1−εw

[
1− θw

(
Πιw
t−1

wt−1

wtΠt

)1−εw
] εw
εw−1

A.3 Goods market

A.3.1 Final goods producers

Perfectly competitive final goods producers combine differentiated intermediate
goods Yt(i) into a homogeneous good Yt according to the technology:

Yt =

[
∫ 1

0 Yt(i)
εp−1

εp di

] εp
εp−1

The final goods producers buy the intermediate goods on the market, package Yt,
and resell it to consumers. These firms maximise profits in a perfectly competitive
environment. Their optimisation problem (cost minimisation) is:

min
Yt(i)
∫ 1

0 Pt(i)Yt(i)di

subject to (at least obtaining a bundle Yt):

[
∫ 1

0 Yt(i)
εp−1

εp di

] εp
εp−1

≥ Yt

Thus, the Lagrangian is:

L = ∫ 1
0 Pt(i)Yt(i)di−Ψt

([
∫ 1

0 Yt(i)
εp−1

εp di

] εp
εp−1

− Yt

)

The first order condition w.r.t. Yt(i) is:
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∂L
∂Yt(i)

= Pt(i)−Ψt

(
εp
εp−1

[
∫ 1

0 Yt(i)
εp−1

εp di

] εp
εp−1

−1
εp−1

εp
Yt(i)

εp−1

εp
−1

)
= 0

⇔ Pt(i)−Ψt


[
∫ 1

0 Yt(i)
εp−1

εp di

] 1
εp−1

︸ ︷︷ ︸
Y

1
εp
t

Yt(i)
− 1
εp

 = 0

⇔ Yt(i) =
(
Pt(i)
Ψt

)−εp
Yt,

which is the demand function.

Using the definition of Yt leads to:

Yt =

∫ 1
0

((
Pt(i)

Ψt

)−εp
Yt

) εp−1

εp

di


εp
εp−1

⇔ Ψt =
[
∫ 1

0 Pt(i)
1−εpdi

] 1
1−εp ≡ Pt

Plugging this into the demand function results in:

Yt(i) =

(
Pt(i)

Pt

)−εp
Yt

A.3.2 Intermediate goods producers

A continuum of monopolistically competitive firms combines capital Kt−1 and
labour Ht to produce intermediate goods according to a standard Cobb-Douglas
technology.

The production function is given by:

Yt(i) = AtKt−1(i)αHt(i)
1−α
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The firms minimise their cost

min

{
Wt

Pt
Ht(i) +Rk

tKt−1(i)

}
subject to their production function, such that the corresponding Lagrangian reads:

L =
Wt

Pt
Ht(i) +Rk

tKt−1(i) + νt(i)
[
Yt(i)− AtKt−1(i)αHt(i)

1−α]
Thus, the firms choose labour and capital as follows:

∂ Lt
∂ Ht (i)

=
Wt

Pt
− νt (i) (1− α)AtKt−1(i)αHt(i)

−α︸ ︷︷ ︸
MPL(i)t

= 0

∂ Lt
∂ Kt−1 (i)

= Rk
t − νt (i)αAtKt−1(i)α−1Ht(i)

1−α︸ ︷︷ ︸
MPK(i)t

= 0

As intermediate result we get the marginal product of labour (MPL) and capital
(MPK), respectively. Solving the derivative w.r.t. Kt−1 for νt(i) and putting the
corresponding equation into the derivative w.r.t. Lt yields:

Kt−1(i)

Ht(i)
=

α

(1− α)

Wt

PtRk
t

Real marginal costs are derived as the shadow price of production νt(i). From the
derivative w.r.t. Ht we have:

νt(i) =
1

(1− α)At

(
Kt−1(i)

Ht(i)

)−α
Wt

Pt

Then plugging in the optimal capital-labour ratio from above, we get:
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νt(i) = α−α (1− α)−(1−α)

(
Wt

Pt

)1−α (
Rk
t

)α
At

= mct(i) =
MCt(i)

Pt

A.3.3 Optimal price setting

The intermediate goods producers set prices based on Calvo contracts. In each pe-
riod firms adjust their prices with probability (1− θp) independently form previous
adjustments. However, we depart from Calvo in the following way: For those firms
that cannot adjust their prices in a given period, prices will be reset according to
the following indexation rule:

Pt(i) = Π
ιp
t−1Pt−1(i),

where Πt = Pt
Pt−1

is gross inflation.

The firms that adjust their prices face the following problem:

max
Pt(i)

Ωt = Et

∞∑
s=0

θsp
βsΛt+s

Λt

Pt(i)
(

s∏
k=1

Π
ιp
t+k−1

)
Pt+s

Yt+s(i)−
Wt+s

Pt+s
Ht+s(i)−Rk

t+sKt−1+s(i)

 ,

with demand given by:

Yt+s(i) =

Pt(i)
(

s∏
k=1

Π
ιp
t+k−1

)
Pt+s


−εp

Yt+s.

The optimisation problem is:
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max
Pt(i)

Ωt = Et

∞∑
s=0

θsp
βsΛt+s

Λt

Pt(i)
(

s∏
k=1

Π
ιp
t+k−1

)
Pt+s

− λp,t+smct+s(i)

 Yt+s(i)

Plugged in aggregate demand:

Et
∞∑
s=0

θsp
βsΛt+s

Λt

Pt(i)( s∏
k=1

Π
ιp
t+k−1

)
Pt+s

− λp,t+smct+s(i)

 Pt(i)

(
s∏

k=1
Π
ιp
t+k−1

)
Pt+s

−εpYt+s
= Et

∞∑
s=0

θsp
βsΛt+s

Λt

Pt(i)1−εp

(
s∏

k=1
Π
ιp
t+k−1

)
Pt+s

1−εp

− λp,t+smct+s(i)Pt(i)−εp
(

s∏
k=1

Π
ιp
t+k−1

)
Pt+s

−εp Yt+s

and taking the derivative w.r.t. Pt(i) - this leads to:

Et

∞∑
s=0

θsp
βsΛt+s

Λt


(

s∏
k=1

Π
ιp
t+k−1

)
Pt+s


−εp

Yt+s

(1− εp)


(

s∏
k=1

Π
ιp
t+k−1

)
Pt+s




= Et

∞∑
s=0

θsp
βsΛt+s

Λt


(

s∏
k=1

Π
ιp
t+k−1

)
Pt+s


−εp

Yt+s
[
λp,t+smct+s(i) (−εp)Pt(i)−1]
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⇔ Pt(i) =

(
εp

εp − 1

) Et
∞∑
s=0

θsp
βsΛt+s

Λt

(
s∏

k=1
Π
ιp
t+k−1

)
Pt+s

−εpYt+sλp,t+smct+s(i)
Et

∞∑
s=0

θsp
βsΛt+s

Λt

(
s∏

k=1
Π
ιp
t+k−1

)
Pt+s

−εpYt+s
(

s∏
k=1

Π
ιp
t+k−1

)
Pt+s

And since Pt+s = Pt
s∏

k=1

Πt+k:

Pt(i) = Pt

(
εp

εp − 1

)(
Pt
Pt

)−εpEt ∞∑s=0

θsp
βsΛt+s

Λt

(
s∏

k=1
Π
ιp
t+k−1

)
s∏

k=1
Πt+k

−εpYt+sλp,t+smct+s(i)
Et

∞∑
s=0

θsp
βsΛt+s

Λt

(
s∏

k=1
Π
ιp
t+k−1

)
s∏

k=1
Πt+k

−εpYt+s
(

s∏
k=1

Π
ιp
t+k−1

)
s∏

k=1
Πt+k

⇔ Pt(i)

Pt−1︸ ︷︷ ︸
=Π∗

t

Pt−1

Pt︸︷︷︸
=Π−1

t

=

(
εp

εp − 1

) Et
∞∑
s=0

θsp
βsΛt+s

Λt

(
s∏

k=1
Π
ιp
t+k−1

)
s∏

k=1
Πt+k

−εpYt+sλp,t+smct+s(i)
Et

∞∑
s=0

θsp
βsΛt+s

Λt

(
s∏

k=1
Π
ιp
t+k−1

)
s∏

k=1
Πt+k

−εpYt+s
(

s∏
k=1

Π
ιp
t+k−1

)
s∏

k=1
Πt+k

⇔ Π∗t =

(
εp

εp − 1

) Et
∞∑
s=0

θsp
βsΛt+s

Λt

(
s∏

k=1
Π
ιp
t+k−1

)
s∏

k=1
Πt+k

−εpYt+sλp,t+smct+s(i)
Et

∞∑
s=0

θsp
βsΛt+s

Λt

(
s∏

k=1
Π
ιp
t+k−1

)
s∏

k=1
Πt+k

1−εp

Yt+s

Πt
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Each of the parts of this equation can be defined as follows:

Xpd
t = Et

∞∑
s=0

θsp
βsΛt+s

Λt


(

s∏
k=1

Π
ιp
t+k−1

)
s∏

k=1

Πt+k


1−εp

Yt+s,

Xpn
t = Et

∞∑
s=0

θsp
βsΛt+s

Λt


(

s∏
k=1

Π
ιp
t+k−1

)
s∏

k=1

Πt+k


−εp

Yt+sλp,t+smct+s(i),

where, regarding Xpd
t :

Xpd
t = Et

∞∑
s=0

θsp
βsΛt+s

Λt


(

s∏
k=1

Π
ιp
t+k−1

)
s∏

k=1

Πt+k


1−εp

Yt+s

⇔ Xpd
t = Yt+Et

θp
βΛt+1

Λt

(
Π
ιp
t

Πt+1

)1−εp

Yt+1 +
∞∑
s=2

θsp
βsΛt+s

Λt


(

s∏
k=1

Π
ιp
t+k−1

)
s∏

k=1

Πt+k


1−εp

Yt+s


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⇔ Xpd
t = Yt +Et


θp
βΛt+1

Λt

Et+1


∞∑
s=1

θs−1
p

βs−1Λt+s

Λt+1


(

s∏
k=1

Π
ιp
t+k−1

)
s∏

k=1

Πt+k


1−εp

Yt+s


︸ ︷︷ ︸

=Π
ιp(1−εp)
t Π

εp−1
t+1 Xpd

t+1



⇔ Xpd
t = Yt + Et

{
θp
βΛt+1

Λt

Π
ιp(1−εp)
t Π

εp−1
t+1 X

pd
t+1

}

and, considering Xpn
t :

Xpn
t = Et

∞∑
s=0

θsp
βsΛt+s

Λt


(

s∏
k=1

Π
ιp
t+k−1

)
s∏

k=1

Πt+k


−εp

Yt+sλp,t+smct+s(i)

⇔ Xpn
t = Ytλp,tmct(i)+Et


θp

βΛt+1

Λt

(
Π
ιp
t

Πt+1

)−εp
Yt+1λp,t+1mct+1(i)

+
∞∑
s=2

θsp
βsΛt+s

Λt

(
s∏

k=1
Π
ιp
t+k−1

)
s∏

k=1
Πt+k

−εpYt+sλp,t+smct+s(i)


⇔ Xpn
t = Ytλp,tmct(i) + Et

{
θp
βΛt+1

Λt

Π
−ιpεp
t Π

εp
t+1X

pn
t+1

}
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Thus, we can write the equation for Π∗t in the following way:

Π∗t =
εp

εp − 1

Xpn
t

Xpd
t

Πt

The law of motion for prices then is:

P
1−εp
t = (1− θp) (P ∗t )1−εp + θp

(
Π
ιp
t−1Pt−1

)1−εp

⇔ (Πt)
1−εp = (1− θp) (Π∗t )

1−εp + θp
(
Π
ιp
t−1

)1−εp

A.3.4 Price dispersion

From the demand for differentiated goods, we have:

Yt(i) =

(
Pt(i)

Pt

)−εp
Yt

Taking the integral on both sides, it follows:

∫ 1
0 Yt(i)di︸ ︷︷ ︸

Yht

= Yt ∫ 1
0

(
Pt(i)

Pt

)−εp
di︸ ︷︷ ︸

Dpt

Regarding the evolution of Dpt, the period-t price dispersion is:

Dpt = P
εp
t

[
θp
(
Π
ιp
t−1

)−εpDpt−1

P
εp
t−1

+ (1− θp)(Pt∗)−εp
]

⇔ Dpt = Π
εp
t

[
(1− θp)Πt

∗−εp + θp
(
Π
ιp
t−1

)−εp
Dpt−1

)
From the evolution of the aggregate price index, we have:

Pt
1−εp = (1− θp) (P ∗t )1−εp + θp

(
Π
ιp
t−1Pt−1

)1−εp
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⇔
(
P ∗t
Pt

)−εp
=

1− θp
(

Π
ιp
t−1

Πt

)1−εp

1− θp


εp
εp−1

Substituting this into the evolution of price dispersion yields:

Dpt = θp
(
Π
ιp
t−1

)−εp
Π
εp
t Dpt−1 + (1− θp)

1
1−εp

[
1− θp

(
Π
ιp
t−1

Πt

)1−εp
] εp
εp−1

A.3.5 Capital producers

The profits of the capital producers can be defined as follows:

P k
t µt

[
1− S

(
It
It−1

)]
It︸ ︷︷ ︸

Income

− It︸︷︷︸
Costs

The profit maximisation of the capital producers without constraint is described
by:

L = Et

∞∑
s=0

βsΛt+s

[
P k
t+sµt+s

[
1− S

(
It+s
It+s−1

)]
It+s)− It+s

]

∂L
∂It

: P k
t µt

{
1− S

(
It
It−1

)
− S ′

(
It
It−1

)
It
It−1

}
= 1−βP k

t+1

Λt+1

Λt

µt+1

{
−S ′

(
It+1

It

)(
It+1

It

)2
}

A.4 Government policies

When the central bank does not peg the interest rate, it follows a standard Taylor
rule:
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ln (Rt) = (1− ρ) ln (R) + ρ ln (Rt−1) + (1− ρ) (τπ (πt − π) + τy(yt − yt−1)) + εrt

QE policies are implemented via the AR(2) process:

B̄ = (B̄ss)
(1−ρB1

+ρB2
) ∗ (B̄t−1)(ρB1

) ∗ (B̄t−2)(−ρB2
) ∗ εB

A.5 Resource constraints and exogenous shock processes

The resource constraint evaluates to:

Yt = Ct + It.

In addition to the equilibrium conditions, the model comprises seven exogenous
processes.

1. Technology shock: At = (1− ρa) ∗ log(Ass) + ρa ∗ At−1 + εA,t.

2. Financial shock: Φt = (1− ρφ) ∗ log(Φss) + ρphi ∗ (Φt−1) + εΦ,t.

3. Investment shock: µt = (1− ρµ) ∗ log(µss) + ρµ ∗ (µt−1) + εµ,t.

4. Wage markup shock: λw,t = (1− ρλw) ∗ log(λw,ss) + ρλw ∗ (λw,t−1) + ελw,t .

5. Price markup shock: λp,t = (1− ρλp) ∗ log(λp,ss) + ρλp ∗ (λp,t−1) + ελp,t .

6. Discount factor shock: bt = (1− ρb) ∗ log(bss) + ρb ∗ (bt−1) + εb,t.

7. Monetary policy residual: Rε
t = (1− ρm) ∗ log(Rε

ss) + ρm ∗Rε
t−1 + εR,t;
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Appendix B Data

Definition of observables

Real per capita output growth: (Y ER/LFN)−(Y ER(−1)/LFN(−1))
(Y ER(−1)/LFN(−1))

Real per capita investment growth: (ITR/LFN)−(ITR(−1)/LFN(−1))
(ITR(−1)/LFN(−1))

Gross inflation: 1 + HICPSA−HICPSA(−1)
HICPSA(−1)

Employment growth: LNN−LNN(−1)
LNN(−1)

Real wage growth: (WRN/HICPSA)−(WRN(−1)/HICPSA(−1))
(WRN(−1)/HICPSA(−1))

First difference of short-term interset rate: STN − STN(−1)

First difference of long-term interest rate: LTN − LTN(−1)

Real bank net worth growth: (NWB/HICPSA)−(NWB(−1)/HICPSA(−1))
(NWB(−1)/HICPSA(−1))

Data description

All seasonal data are seasonally adjusted.

YER: Real GDP. Millions of ECU/euro corrected with reference year 1995. Source:
Area-wide Model (AWM) database.

LFN: Labor force (persons). Source: AWM database.

ITR: Gross investment. Source: AWM database.

HICPSA: Overall Harmonised Index of Consumer Prices. Base year 1996=100.
Source: AWM database.

LNN: Total employment (persons). Source: AWM database.

WRN: Nominal wage rate per head. Source: AWM database.

STN: Nominal net short-term interest rate in percent. Source: AWM database.

LTN: Nominal net long-term interest rate in percent. Source: AWM database.

NWB: Nominal capital and reserves of euro area monetary financial Institutions
(excluding eurosystem) in millions of euro. Source: European Central Bank, MFI
Balance Sheet Items Statistics.
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Appendix C Predictive analysis

In this section, we describe how we implement the prior/posterior predictive anal-
ysis. The same approach is also taken in Suh and Walker (2016) and Leeper et al.
(2015).

The prior predictive analysis we carry out entails the following steps:

1. Given the model, M outlined in Appendix A, and its corresponding struc-
tural parameters, θ, we posit a prior density, p(θ|M), specifying the range of
values for the parameters and the associated probabilities. The parameters
are drawn independently and p̃ (θ|M) denotes the product of the marginal
parameter distributions. We define an indicator function, I {θ ∈ ΘD}, that is
assumed to take on the value one if θ generates a determinate solution of the
model M and zero if it is not part of the subspace of parameters ΘD that de-
livers a unique rational expectations equilibrium. The joint prior distribution
is defined as p (θ|M) = c−1p̃ (θ|M) I {θ ∈ ΘD}, where c =

∫
θ∈Θ

p̃ (θ|M) dθ
describes a scaling factor that ensures that the prior density integrates to
one.

2. The model generates predictive distributions for its variables, yT , using
p (yT |M) =

∫
θ∈Θ

p (yT |θ,M) p (θ|M) dθ, where p (yT |θ,M) = L (yT |θ,M) de-
notes the likelihood of the data.

3. For any vector of interest, ω, the predictive distribution can be used to
produce p (ω|yT , θ,M). Our statistics of interest are the response of inflation
after a QE shock in periods zero to 25 after the shock, as well as the peak
response of inflation.

Implementation in Dynare: First, we sample draws for the structural parameters
from the prespecified corresponding prior distributions. This is done using the
global sensitivity analysis (GSA) toolbox, which is part of Dynare. Then, we solve
the model under perfect foresight for each draw, simulate the path for inflation in
response to a QE shock and extract the peak of the inflation response. Having
these statistics at hand for every draw, we can calculate their median as well as
their dispersion.

We implement the posterior predictive analysis in the same way, except that we
sample draws for the structural parameters from the posterior distributions ob-
tained by the Metropolis Hastings algorithm.
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Appendix D Estimation

D.1 MCMC diagnostics

Figure 6 shows the univariate convergence statistics for all estimated parameters h,
ιw, ιp, η, ρ, θw, θp, ψN , τπ and τy. The statistics include three different measures:
the measure presented in the column ’intervall’ is based on an interval statistic
constructed around the parameter mean (i.e. the 80% HPD intervall). The mea-
sures shown in the columns variance and skewness are based on a statistic that
depicts squared and cubed deviations from the parameter mean. The blue line
depicts theses measures based on all draws (i.e. draws from all Markov chains
together - between chain measure) and the red line is based on the draws from the
individual chains (within a chain measure). Each row in Figure 6 corresponds to
one parameter.
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Figure 6: MCMC univariate convergence diagnostics for all estimated structural
parameters
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D.2 Trace plots

To show that the draws for the estimated structural parameters which we use
for the posterior predictive analysis are not trending or display otherwise strange
behavior, we also present trace plots for all structural parameters in Figure 7. Since
we rely on the last 100,000 draws from the first Markov chain, we correspondingly
present the trace plots for each of the parameters base on the first Markov chain
which contains 500,000 draws in total.
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Figure 7: Trace plots for estimated parameters based on first Markov chain
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