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Non-technical summary

Research Question

Forecasts are often made for several consecutive periods ahead. For example, Consensus
Economics collects quarterly forecasts for up to six quarters into the future from research
institutes and other professional forecasters. Yet, especially longer-term forecasts possibly
do not provide any information beyond that contained in the long-run mean of the target
variable. Such forecasts are deemed to be uninformative. Therefore, it is desirable to be
able to determine the largest horizon for which informative forecasts can be made. Up to

now, only descriptive methods have been available for this purpose.

Contribution

We develop two statistical tests designed to identify the largest forecast horizon for which
forecasts are still informative. One of the tests compares the mean-squared prediction
error to the variance of the target variable. If the mean-squared prediction error does not
sufficiently exceed the variance, the forecast is classified as being informative. The other
test focusses on the correlation of the forecasts with the target variable. According to this
test, the forecast is classified as informative if the correlation is positive and sufficiently

different from zero.

Results

The correlation-based test tends be more reliable in small samples according to our simu-
lation results. We apply both tests to the macroeconomic forecasts provided by Consensus
Economics for the G7-countries and the euro area, namely to the mean across the indi-
vidual forecasts for the respective country. This mean forecast is commonly considered to
be very accurate. It turns out that, for instance, concerning the growth rate of the real
gross domestic product on average, across countries, the forecasts are informative for up

to two quarters ahead only.



Nichttechnische Zusammenfassung

Fragestellung

Prognosen werden oft fiir mehrere aufeinanderfolgene Perioden erstellt. So reichen bei-
spielsweise die durch Consensus Economics gesammelten Quartalsprognosen von For-
schungsinstituten und anderen professionellen Prognostikern bis zu sechs Quartale in die
Zukunft. Gerade bei langerfristigen Prognosen besteht aber die Moglichkeit, dass sie keine
Informationen enthalten, die {iber den langfristigen Mittelwert der prognostizierten Va-
riablen hinausgehen. Eine solche Prognose besitzt keine Aussagekraft mehr. Es ist daher
wiinschenswert, den grofsten Zeithorizont bestimmen zu kénnen, an dem Prognosen noch

aussagekraftig sind. Dafiir stehen bisher lediglich deskriptive Methoden zur Verfiigung.

Beitrag

Wir entwickeln zwei statistische Tests, die den groften noch aussagekriftigen Zeithorizont
einer Prognose ermitteln konnen. Einer der Tests vergleicht den mittleren quadratischen
Prognosefehler mit der Varianz der Zielgrofse. Falls der mittlere quadratische Prognosefeh-
ler nicht ausreichend grofer als die Varianz ausfillt, gilt die Prognose als aussagekraftig.
Der andere Test untersucht die Korrelation der Prognosen mit den entsprechenden Beob-
achtungen. Nach diesem Test gilt die Prognose als aussagekriftig, wenn die Korrelation

positiv und stark genug von null verschieden ist.

Ergebnisse

In Simulationen zeigt sich, dass der auf Korrelation beruhende Test in kleinen Stichpro-
ben etwas verldsslichere Ergebnisse liefert. Wir wenden beide Tests auf die von Consensus
Economics gesammelten Quartalsprognosen fiir die G7-Lénder und den Euroraum an,
und zwar auf die Durchschnittsprognose, die sich aus dem Mittelwert der Einzelprogno-
sen fiir das jeweilige Land ergibt. Diese Durchschnittsprognose gilt im Allgemeinen als
sehr treffgenau. Dabei stellt sich zum Beispiel heraus, dass die Wachstumsrate des rea-
len Bruttoinlandsprodukts im Mittel iiber alle betrachteten Lénder nur fiir bis zu zwei

Quartale im Voraus in aussagekréaftiger Weise prognostiziert werden kann.



DEUTSCHE BUNDESBANK DISCUSSION PAPER NO 07/2018

How far can we forecast?
Statistical tests of the predictive content*

Jorg Breitung Malte Kniippel
University of Cologne Deutsche Bundesbank

Abstract

Forecasts are useless whenever the forecast error variance fails to be smaller than
the unconditional variance of the target variable. This paper develops tests for the
null hypothesis that forecasts become uninformative beyond some limiting forecast
horizon h*. Following Diebold and Mariano (DM, 1995) we propose a test based on
the comparison of the mean-squared error of the forecast and the sample variance.
We show that the resulting test does not possess a limiting normal distribution and
suggest two simple modifications of the DM-type test with different limiting null
distributions. Furthermore, a forecast encompassing test is developed that tends
to better control the size of the test. In our empirical analysis, we apply our tests
to macroeconomic forecasts from the survey of Consensus Economics. Our results
suggest that forecasts of macroeconomic key variables are barely informative beyond
2—4 quarters ahead.
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1 Introduction

The choice of the largest forecast horizon appears to be an important issue for decision-
makers. For example, in recent years, several central banks, including the Federal Reserve
and the European Central Bank, decided to increase the horizon of their macroeconomic
forecasts.! Yet, it is unclear whether the additional forecasts for these larger horizons
provide valuable information, since their forecast error variance might be as large as
the unconditional variance of the target variable. While statistical tools for such an
assessment, based on the approach of Parzen (1981), have been proposed in the literature,
formal statistical tests have not been available. The purpose of this paper is to develop
such tests, thereby determining the largest informative forecast horizon.

The empirical literature reports few and differing results concerning the largest infor-
mative forecast horizon. The differences are at least partly due to different transforma-
tions, as pointed out by Galbraith and Tkacz (2007). For example, concerning quarterly
GDP, they find that forecasts of quarter-on-quarter growth are barely informative beyond
a forecast horizon of one quarter, but that for year-on-year forecasts this horizon increases
to about 4 quarters. Concerning annual GDP growth, Isiklar and Lahiri (2007) find that
forecasts are informative for horizons up to 6 quarters. Diebold and Kilian (2001) report
even larger horizons for HP-filtered or linearly detrended GDP.

The tests provided in this paper are directly related to the predictability measures used
in the studies mentioned. Diebold and Kilian (2001) develop a measure for predictability
by comparing the loss function (say mean-squared error) of the short-run and long-run
forecasts. Since our focus is on forecasting stationary time series subject to a quadratic
loss function, i.e. on conditional mean forecasts, our benchmark is the unconditional mean
of the time series, as proposed in Nelson (1976), Parzen (1981) and Clements and Hendry
(1998).2 We also discuss, however, how our approach can be applied to nonstationary
time series.

The predictability measure suggested by Nelson (1976) and others is asymptotically
equivalent to the R? from a regression of the realized values on their h-step-ahead forecasts
and a constant. Accordingly, the null hypothesis of no predictive power is equivalent to the
null hypothesis that the forecasts are not correlated with the actual values. Indeed, this is
the null hypothesis underlying the encompassing version of our predictability test. In con-
trast, our Diebold-Mariano (1995) type test statistic directly compares the loss associated
with the model-based forecast and the unconditional mean, where the unconditional mean
is estimated by the mean of the evaluation sample. Therefore, the only data required for
both tests are the forecasts and the actual values within the evaluation sample. This

setup makes the tests applicable to forecasts from unknown models like survey forecasts.

1See Kniippel (2018) for a survey.
2Diebold and Kilian (2001) attribute this predictability measure to Granger and Newbold (1986).



This feature of the tests is important because such forecasts are often considered to be
more accurate than other common forecasting approaches, as documented for inflation
survey forecasts by Ang, Bekaert, and Wei (2007).

It is important to notice that, in general, the model-based forecast function nests
a constant as a special case. Accordingly, comparing the model-based forecast and the
unconditional mean should be treated as a nested forecast comparison in the spirit of Clark
and McCracken (2001) and West (1996). It is therefore not surprising that the Diebold-
Mariano type statistic has a nonstandard limiting distribution. To sidestep this difficulty
we suggest a simple modification of the test statistic that results in an asymptotically >
distributed random variable provided the null hypothesis is true. On the other hand, our
encompassing variant of the test is equivalent to the (HAC) t-statistic from a regression of
the actual values on the forecasts and a constant. We provide conditions for the standard
limiting null distribution which provide a reasonable approximation in empirical practice.

The rest of this paper is organized as follows. In Section 2 we introduce our testing
framework and alternative concepts of predictability are discussed in Section 3. The
Diebold-Mariano-type test and the encompassing test are analyzed in Sections 4 and 5.
In Section 6 the local power of the tests is studied. Section 7 investigates the small sample
properties by means of Monte Carlo experiments and in Section 8, the proposed tests are
applied to forecasts of key macroeconomic variables as reported by Consensus Economics.
Section 9 concludes.

2 Model framework

Let {y14n, - - -, Yntn} denote the set of n observed actual values corresponding to the model
forecasts Yy int, t = 1,...,n, based on the relevant information set Z; associated with time
period t. We assume that y; is generated by a stationary and ergodic stochastic process
{Y;} and the model forecasts are realizations of the forecast generating process {Ytih“},
where 0 is the parameter vector of the forecasting model. As a simple example, assume
that the target variable is generated by the univariate AR(1) process Y; = aY, 1 + u;

with |o| < 1. In this exainple Yﬁrh‘t

= oMY, with # = . The actual forecast realization
is denoted by Yipny = yf_’;hu = aly;, where @ = @, denotes some consistent estimate
of 6 based on the observations up to period ¢. Following West (1996) we distinguish
two different estimation schemes. The recursive scheme fixes the starting point of the
estimation sample at t = —T + 1 and adapts an increasing end point such that Sr; =
{-T+1,-T+2,...,t} and, hence, 91 indicates an estimate based on ¢ + 1" observations.
The rolling-window estimation scheme fixes the size of the estimation samples to T" time
periods, that is, Syp = {t =T+ 1,t =T +2,...,t}. It is important to note that we do not
assume that the parameter estimates of the model and the sample size T" are known. For

our analysis we only need to observe the actual values {y114,...,Ynsn} and their h-step
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ahead forecasts {Yi4n, .- Ynin}-

The assumptions that characterize the process {Y;} are summarized in

Assumption 1 Let Y; = p + vy with uy = ¢(L)e;, ¢(L) =1+ ¢1 L+ ¢o L + -+ is a lag
polynomial with all roots outside the unit circle, Y oo, |¢i] < 00 and & is an i.i.d. white
noise process with E(g;) = 0 and E(e?) = o2. Furthermore E|e;|**? < oo for some 6 > 0.

Note that our null hypothesis of an uninformative forecast implies restrictions on the

polynomial ¢(L). For a univariate forecast, where Y2,  is a function of Y;,Y; 1,..., the

t-+hlt
null hypothesis requires ¢s = 0 for s > h. o

In the next section it is argued that if Y; is integrated of order one (that is AY; is
stationary) the tests are applied to the differenced series AY; = Y;—Y; ;. The assumptions
of a linear process and constant variances are not essential and may be relaxed at the
cost of a more demanding asymptotic framework. We are interested in testing the null

hypothesis that the forecast function Y% , . is not informative for Y, ;, in the sense that

t+hlt
Hy : E(€§+h|t) > E(Yin — N)Qa (1)

where e, p)p = Yign — Ytih‘t is the “theoretical” forecast error where 6 is assumed to be
known. We define the mazimum forecast horizon h* as h* = hy;, — 1, where hy, is the
smallest value of h for which condition (1) is fulfilled.

Let us consider a simple dynamic regression model of the form

Yi=a+ X1 +e, (2)

where X; and e; are independent white noise processes with expectation zero and 5 # 0.
If the forecast is correctly specified Y;i”t =a+ X, and Y;tihlt =aforh>1 Forh=1
the condition (1) is violated but for h = 2,3,... the forecast becomes uninformative.
Accordingly the maximum forecast horizon is h* = 1.

More insight can be gained by rewriting the mean-squared prediction error (MSPE)

as

E(e?+h\t) =E(Yiyn — M)2 — 2E(Yin — M)(Y%Jrhlt — ) + E<Y¥+h|t - M)Z- (3)

Obviously, a sufficient condition for the forecast being uninformative is Y4 = p. An-
other sufficient condition is that E(Yiyn — p)(Yigap — 1) = 0 as E(Yune — p)* > 0.

Furthermore for a rational forecast with E(et+h|tY9 ) = 0 it follows that

t+h|t
E(Yiyn — M)(Yt(ih\t — ) = E(eryn + }/tz-hhf - M)(Yﬁ-hh& — 1) (4)
= E(Y e — 1) (5)



Combining (3) and (5) yields

E(G?Jrh\t) = E(Yitn — M)Q - E()/tihﬁ - N)2~ (6)

Thus, for rational forecasts the conditions (i) Y;?H” . = pand (ii) cov(Yyin, Yt(ih| ) =0 are
equivalent to the null hypothesis (1).

It is important to note that the maximum forecast horizon h* can be identified by
sequentially applying a consistent test for (1). The null hypothesis (1) is tested for h =
1,2, ... until it is not rejected for the first time. Then, h* is identified as the penultimate
horizon tested. Provided that the tests are consistent, this identification is correct with
probability approaching 1 —« as n — oo with a denoting the significance level of the test.
Therefore o must tend to zero to achieve a consistent selection rule for h* (see Remark
5 below). It should be noted that the forecast error variances of rational forecasts are
monotonously increasing with respect to the forecast horizon. Thus, if some forecast is
informative at some horizon h it must also be uninformative for any higher horizon and
we therefore can stop the testing sequence whenever the test does not reject for the first

time.

3 Measuring predictability

For assessing the predictive content, Theil (1958) proposed (among other measures) the

following inequality coefficient:

(Y — )//\;S+h|t)2

M=

U2h) = |°

1= I

(Yern = Y5,)?

&~
Il

1

where Yt?rh denotes some “naive forecast” (typically the no-change forecast). The model
based forecast is uninformative whenever U2(h) is close to unity. For a stationary variable
the unconditional mean is a natural “naive” (resp. uninformative) forecast, whereas the
no-change forecast is better suited for nonstationary (integrated) target variables; see e.g.
Isiklar and Lahiri (2007) for an application to the Survey of Professional Forecasters.

If the unconditional mean is employed as the benchmark, the inequality coefficient
U2(h) is related to the R?(h) measure proposed by Nelson (1976) and Diebold and Kilian

(2001) given by
_ var(€pn)t)

R*h) =1 ,
(k) var (Vo)

where € pp = Yign — 2%” denotes the model-based forecast error. In practice the
variance is estimated by the sample variance such that R*(h) =1 — U2(h)* with Y, =



Y, =n"1t31 Yy, yielding the sample analog

- ;é\i‘rhﬁ
R(h) = 1- o (7)
> (Yien —Yh)

Note however that this measure may become negative. An alternative measure with the
usual properties is obtained as the R? from a (Mincer-Zarnowitz type) regression of Yy,
on the forecast 1//\;+h|t yielding the square of the sample correlation between the actual
values and the forecasts (see Section 5).

Diebold and Kilian (2001) proposed a generalized measure of predictability

E[£(€t+h|t)]

QL h, k) = 1— E[£(€t+k|t)]

for k > h,

where £(-) indicates the loss function and e, 4, denotes the long-run prediction error.
If (i) Y; is stationary, (ii) the loss function is quadratic and (iii) & — oo, the Diebold-
Kilian measure and the Nelson measure coincide. In what follows we focus on the Nelson
measure and propose a test for the hypothesis R?(h) = 0.

As argued by Diebold and Kilian (2001) their predictability measure is also valid for
nonstationary variables, whereas in this case the Nelson measure tends to unity as n — oo,
no matter of the predictive content.? The latter approach remains valid, however, if it is
applied to the differenced series. Since

Cttnlt = Yien — Y;ihu
= Yin — Y1) — (Y;ihh —Y)

h h
= (Z Ai/t-‘rs) - <Z Ayﬁ-shf)
s=1 s=1
h
= Z A€t+s\t )
s=1

with Aeyp = AYips — AYt(is‘t and AY;?H“ = Yt‘is‘t — Yt(is_l‘t is the forecast of the
differenced series, it follows that Y, is not predictable whenever {AY; 1, -+, AY; .} are

jointly unpredictable. Hence, for nonstationary (integrated) time series the predictability
tests are applied to the differenced series for s € {1,...,h}.

3More precisely, if Y; is I(1) and the forecast error eitn|¢ is 1(0) for fixed h, then the sample analog
of the ratio var(ey ) /var(Yin) is Op(T 1) such that R2 tends to unity.



4 Diebold-Mariano type test statistics

A natural test statistic for the hypothesis (1) is the statistic proposed by Diebold and
Mariano (1995), which compares the sample MSPE of two competitive forecasts. In our
case we are interested in analyzing the loss differential of the model-based forecast }A/Hh“
and the uninformative forecast Y; — j1, where i denotes some suitable estimator of the
unconditional mean. It is important to notice that for any reasonable model forecast
that allows for a constant mean as a special case, the forecasts are nested in the sense
of West (1996). Therefore, under the null hypothesis the loss differential is driven by
the estimation errors § — 6 and it — p. It is well known that in such cases the limiting
distribution of the Diebold-Mariano statistic is nonstandard and depends on unknown
nuisance parameters (cf. West (1996) and Clark and McCracken (2001)).

In what follows we sidestep this problem by using estimators of # and p from differ-
ent samples. The model parameters 6 are estimated recursively* using the observations
Sy ={-T+1,-T+2,...,t} whereas the evaluation sample is F!' = {1 + h,2 +
h,...,n+h}. Notice that these two samples overlap for all t > 1+h. If the estimation sam-
ple S_r. is large relative to the evaluation sample, this overlap will be asymptotically neg-
ligible. Specifically, we decompose the recursive estimator as (/9; = @\0 + Op(nl/ 2/T), where
0y (the estimator up to ¢t = 0, that is, without overlapping observations) is such that the
distribution of é\t is asymptotically independent of fiy, = n™ (Yiyn, Yosn +---+Ynin) = Y
under the null hypothesis. This escapes the problem of a nested forecast comparison.®
Since our test focuses on information of the evaluation sample we use Y, = n~*! Z?I: Yy

as an estimator for p = E(Y;). For the forecast functions Y?  and ?Hh‘t = Yﬁﬁhu we

t-+hlt
make the following assumption:

Assumption 2 (i) Under the null hypothesis there exists some h* such that Yﬁ-hlt =/
for all h > h*. (i) Under the null hypothesis, uip, = Yiin — p is independent of the
estimation error: E(ugypn|0y,60;-1,...) = 0. (i11) The parameters are estimated consistently
with

a) Oy—0 = O,(T~?)
~ n
by s |[G—dl = O, (ﬁ)

te{l,...,n} T

(iv) Let Dy, (0) = OY;(ih‘t/89 and Dy(0) = n 13" Dyin(0). For all 6% € [0 —€,0 + €]

4Qur analysis carries over to a rolling window estimation scheme if we assume that the window size
T gets large relative to the size of the evaluation period.

®A related but fundamentally different approach is suggested by Calhoun (2016), where a fixed-length
rolling window and a recursive estimation scheme are used to compute the forecast errors of the two
competing forecasting methods.



with some € > 0
1 - * D) * 72 . 2
- Z[Dt+h(0 )= D)) & D with0 <D < oo
B| Dy (0% ue | < 00 for some § >0 and all t.

Part (i) is the null hypothesis of the test. Part (i) is an implication of the null hypothesis
which claims that the time series is not predictable given the information set Z;, which
includes the estimation error 6, — 6. Part (111) a) supposes the usual convergence rate
of the estimation error in the estimated parameter vector 50 based on the pre-evaluation
sample {—T'+1,...,0}, whereas (4) b) limits the variation of estimators in the recursive
estimation scheme within the evaluation sample.

To illustrate this assumption, consider the forecast based on the regression model
with i}tJrh\t = a; + Bﬂt, where B\t is the least squares estimator based on the T+ t time
periods {—T+1,...,t}. If z; is stationary and, without loss of generality, E(x;) = 0, then
E(By — 8)% = 02/(To?2), where 02 = E(22). Obviously, Assumption 2 (iii) a) is fulfilled.
To analyze Bt — Bo we write

0 0 t 2
~ _ Zs:—T-I—l TsUg Zs*—T—l—l LsUs Zs:l ‘/ES — O ( t )
2 p ’

Bo = (1+Kry) where kp; = T

0 2 2 0
Zs:7T+1 L s_7T+1 Ly ZSZfTH T

It follows for ¢t < n that

PPN Zf;l Tl t
b= &0, (s
ZZ:—TH 3 SAVAL

t t 1 t
=0, \/_ + 0, = 0, i .
T T JT T
Hence, also part (iii) b) is satisfied. In our simple example D= o2 and, thus, part (iv)
is fulfilled as well.

Let us first consider a test statistic constructed in the spirit of Diebold and Mariano
(1995):

h w(;\/_zéf’ (8)

where 6" = t+h|t — (Yipn — Y)? is the loss differential, Y, = n™! >, Yiip denotes the
evaluation sample mean, and @} denotes a consistent long-run variance estimator applied
to 6. The following theorem presents the asymptotic distribution for the case that the
number of observations T for estimating the parameters is large relative to the number of

forecasts n:



Theorem 1 Assume that Assumptions 1-2 hold. If T'— oo, n — oo, n/T — 0 we have

u n z
-l ) 4 5

where z is a standard normally distributed random variable and &2 denotes the analogous

2
n
~ : 2 _ 1 -1 _
estimator for the long-run variance w;, = nh_)rgloE (n > ut+h) of ugrn = Yiin — 1.
t=1

This finding gives rise to two variants of an adjusted Diebold-Mariano statistic:

Corollary 2 Under Assumptions 1-2, h > h*, T'— oo, n — oo, n/T — 0 it follows that
2d;, % |N(0,1)]

~ 1 < d
thﬁZ@h = X

uot=1

where W2 is a consistent estimator for the long-run variance of uy = Y; — pu.

Both tests reject for small values of the test statistics. For example, for a significance
level of 0.05, the critical value for Elvh is 0.0039 and the corresponding value for 2d,, is
0.0627. It might be interesting to note that, for this reason, a test based on (2d,)? and
the test based on gh are not asymptotically equivalent although the limiting distribution
under the null hypothesis is the same. To be more precise, under the alternative, the test
statistics 2d;, and Jh tend to be negative, such that squaring 2d, can yield large positive

values.

REMARK 1: Under the alternative with E(Y, 1, — Yiin)? < E(u2,,) it follows that dj, =
0,(v/n), whereas d;, = O,(n). This is due to the fact that @2 = 4u2&2 + O,(T~Y/2) +
O,(n™?). Since under a fixed alternative u; = O,(1) (instead of O,(n™') under the null
hypothesis) the denominator of 2d; changes the order of magnitude while the order of
magnitude of the denominator of Jh remains the same. This does not imply, however,
that 2d;, is more powerful against alternatives in the vicinity of the null hypothesis. In

fact under local alternatives both test statistics possess the same asymptotic power.

REMARK 2: The term O,(n/T) is driven by the estimation error 0 — 6. Following West
(1996) it is possible to work out the limiting distribution for the case that n/T" converges
to some constant. We do not think however that such limiting results are useful in practice
as the asymptotic distribution involves the derivative Dy, () and the covariance matrix
of & — 0. Such information is typically not available or difficult to obtain (for example if
the forecasts are based on a factor model).

In order to compare the small sample properties of the two test statistics of Corollary

2 we perform a Monte Carlo experiment, where the data are generated as Y11 = p+usiq.
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Table 1: Actual sizes for various n/T" combinations

n =25 n = 50 n = 100 n = 200
T 2d, d, 24, dy 2dy dy 2d; d
50  0.087 0.092 0.070 0.073 0.044 0.047 0.024 0.027
100 0.100 0.105 0.088 0.093 0.066 0.069 0.041 0.043
200 0.113 0.119 0.109 0.115 0.083 0.088 0.062 0.065
500 0.114 0.120 0.110 0.118 0.110 0.116 0.096 0.102
1,000 0.111 0.119 0.110 0.119 0.120 0.127 0.118 0.126
10,000 0.081 0.088 0.090 0.098 0.102 0.109 0.108 0.115
50,000 0.059 0.062 0.063 0.066 0.073 0.077 0.077 0.082

500,000 0.050 0.050 0.054 0.056 0.056 0.059 0.064 0.068

00 0.049 0.049 0.049 0.049 0.050 0.050 0.050 0.050

Note: The nominal size of the tests is 0.05. The limiting distributions of the DM-type test

statistics 2d; and d; are presented in Corollary 2. For T' = oo the test statistics are computed
using the true parameter values. Results are based on 10,000 simulations. Tests statistics are
based on OLS standard errors without degrees-of-freedom correction.

Since the test statistic is not affected by the value of ;1 and the variance o2, we set u = 0

and o2 = 1. The forecast is based on the model }A/;H\t = ay —i—tht, where @ = (ay, Bt)’
denotes the vector of OLS estimates from a simple regression of Y; 1 on a constant and X,
based on the sample {—T +1,...,t}. X, is standard normally distributed. The nominal
size of all tests is 0.05, and 10,000 replications are used to compute the rejection rates.
From the empirical sizes for various combinations of n and T presented in Table 1,
it is evident that for realistic sample sizes such as n = 50 and T" = 200, say, the tests
suffer from a substantial size bias. This is not surprising as the critical value for the 3
distribution is very close to zero, and, thus, a large amount of probability mass is located
in the vicinity of the critical value. Accordingly, even small, asymptotically negligible
terms may have large effects on the actual size in finite samples. Very large estimation
samples are needed in order to obtain actual sizes being close to their nominal counterpart.

REMARK 3: It is interesting to analyze the properties of the test for situations where
part (ii) of Assumption 2 is violated. Assume that the model forecast is uninformative
and biased with E(Y;n) = m # p. It follows from the proof of Theorem 1 that

n-+h

1 _ _
- Z of =1; + (m— p)*+0,(T7) .
t=1+h
Therefore if the forecast is biased, the test tends to be conservative in the sense that the
rejection probability converges to zero as n — oo.

Next, assume that the uninformative forecast Y2 . is unbiased but different from a

t+hlt



= p + v, where var(vl) = 72 > 0. For example, consider the unbiased

itd

. v
constant: Y;+h|t

forecast function Y;?

Sone = BXe with and Xy ~ N(01,0;) and 8 = p/61. If X and Yy, are
uncorrelated we have Y

trhlt = ,u—l—vth, where v = B(X; —01). It is not difficult to see that

. . _ h — _ . . . .
in this case n=2 Y1), 61 =3 + 77 4+ O,(T!) resulting again in a conservative test.

5 Encompassing tests

To overcome the small sample problems of the DM-type test statistic we consider a variant
of the test based on the encompassing principle. As shown in Section 2, a test of the null
hypothesis (1) is equivalent to the null hypothesis

Hy: E(Yn — M)(Yﬁ-hlt —p) =0

0
+hlt

hypothesis can be rejected if the correlation between Y;,) and Y, ) is positive. Another

whenever the forecast is rational with E(Y;, — Ytih‘t|Yt ) = 0. Accordingly, the null
view on the relationship between this approach and the DM-type statistic emerges from

the decomposition

n

n o . . 2 o
S0 =3 Vin = o T =T = (Vo = V)’
t=1

t=1

= Vine = Yn)* =2 Yen = Yi) Vi — V).
t=1 t=1
Since the first term on the right hand side is non-negative, it does not improve the power
of the test and can be neglected. Thus, the DM-type test statistic is mainly driven by
the covariance between Y., and }//\;+h|t.
This gives rise to a one-sided t-test of 81, = 0 vs. (15 > 0 in the Mincer-Zarnowitz

regression
Yien = Bop + BrnYigny + €qn (9)

where the error is typically autocorrelated up to lag h — 1 due to the overlapping forecast
horizon. Note that the Mincer-Zarnowitz test for rational (or efficient) forecasts focusses
on the restrictions fy, = 0 and f;, = 1. Indeed, if the forecast is informative and
rational, the forecast error Y, — }A/tht should be uncorrelated with ?thta which implies
the restrictions considered by Mincer and Zarnowitz (1969). Our null hypothesis is that
the forecast is uninformative which results in testing the null hypothesis 3, ;, = 0 against
the alternative ;) > 0, whereas the constant 3, = p is unrestricted.

This test admits an interpretation as a forecast encompassing test (cf. Chong and
Hendry, 1986, and Clements and Hendry, 1993) that is based on a convex combination of

10



the model-based forecast }Aft+h|t and the unconditional mean Y,:

Yign = /\h?t+h|t + (1= NY s+ €n
Yieh = Y = MY — Yi) + €14

and, therefore, a test of 81, = 0 is equivalent to a test of A, = 0.
In our asymptotic analysis we focus on the LM-type test statistic:

= (10)

where B
5? = (Y;erh - ?h)(Y;f—o—h\t - Yh)

with }A/h =ntY ", 2+h\t and @g denoting the long-run variance
k
~ ~ ke~
g =" +2) w7
j=1

e 1
D A

t=j+1

In practice any other asymptotically equivalent test such as the usual ¢-test of 81, = 0 in
the regression (9) with appropriate HAC standard errors can be used.

A technical problem with a regression like (9) is that under the null hypothesis the
regressor }A/tht and the constant are asymptotically collinear. To sidestep this problem
we show in the proof of Theorem 3 that if n/T — 0

Yiene = Yn & (00— 0)(Desn(9) — Di(6))

and, thus, the test of f;, = 0 in regression (9) is asymptotically equivalent to the test of
81, = 0 in the regressions

Yien = By + B pDesn(0) + 1t

~

or Yy = 5S,h + BithJrh(e) + Netn

where 37 ), = (é\o — 0)B1,n. The details are provided in the proof of

Theorem 3 Under Assumptions 1-2, a recursive forecasting scheme with h > h*, T —
00, n — oo and n/T — 0 we have oy, A N(0,1), where gy, is defined in (10).

REMARK 4: It is interesting to note that the DM-type test statistic can be interpreted
as the likelihood ratio test of the null hypothesis 3, = 0 against the joint alternative

11



Table 2: Actual sizes for various n/T" combinations

n =25 n = 50 n = 100 n = 200

T b1 01 B 01 Bi1 01 B 01
50 0.025 0.022 0.017 0.018 0.014 0.016 0.012 0.012
100 0.027 0.024 0.022 0.021 0.014 0.014 0.015 0.015
200 0.029 0.028 0.024 0.024 0.017 0.018 0.015 0.016
500 0.040 0.033 0.028 0.026 0.021 0.021 0.019 0.020
1,000 0.041 0.037 0.033 0.032 0.025 0.025 0.023 0.023
10,000 0.050 0.044 0.041 0.039 0.037 0.035 0.032 0.032
50,000 0.062 0.052 0.052 0.049 0.048 0.046 0.040 0.038
500,000 0.056 0.048 0.052 0.046 0.048 0.045 0.047 0.045

Note: The nominal size of the tests is 0.05. 31,1 denotes the regression-based encompass-
ing test using (9), 01 denotes the LM-type encompassing test based on (10). Results are
based on 10,000 replications. Tests statistics are based on OLS standard errors without
degrees-of-freedom correction.

Bor = 0 and 1, = 1 in the regression model (9), where the alternative is equivalent to
the null hypothesis of the Mincer-Zarnovitz test for an informative and rational (efficient)
forecast. Under the null hypothesis the log-likelihood function is a function of s2 =
S (Yien — Y,)?, whereas under the alternative the log-likelihood depends on s? =

Yo (Yign — }/;;H_hlh)z. Thus, the logarithm of the likelihood ratio is a function of

n
2 2_2
30_81— 5t
t=1

used in the numerator of the DM-type statistics 2d;, and givh.

REMARK 5: In contrast to the DM-type test, the encompassing test turns out to be
slightly conservative for most combinations of n and 7" presented in Table 2. For empiri-
cally relevant sample sizes, i.e. for 7' < 10,000, the tests are always conservative. While
the empirical sizes for a given value of n vary depending on 7', these variations are smaller
than those of the DM-type tests.

REMARK 6: As mentioned above, a consistent selection rule for the maximum forecast
horizon h* requires that the size of the test tends to zero as n — oo. One possibility is to
apply the critical value xlog(n) with some x > 0. It is not difficult to see that under the
alternative p;, = O,(n'/?) such that for h < h* we obtain lim,, ,., P(pn < —rlog(n)) = 1,
whereas for h > h* we have lim,, . P(pr, < —rlog(n)) = 0. Thus the decision rule that
selects the last rejection in the sequence of tests with h = 1,2,... is weakly consistent.
Note that for n = 27 the critical value —log(27)/2 = —1.65 is similar to the one-sided
0.05 critical value of a standard normal distribution. This suggests to set x = 1/2 in order

12



to generate selection rules roughly equivalent to usual hypothesis testing.

6 Local power

In order to gain some insight into the relative power of the two different types of tests, i.e.
the power of the DM-type tests versus the power of the encompassing tests, we analyse
local power against a suitable sequence of local alternatives. Consider the alternative of
an informative forecast with

Yipi = p+ BX +u

where X; is an i.i.d. regressor with E(X;) = 0 and E(X?) = 02 > 0, u; is white noise
with E(u;) = 0, E(u?) = o2 and uy; is independent of {X;, X; 1,...}. As T — oo
we have 0, 5 0, 0 = (u,8), and (Y1 — Ytiw)2 = o2, where Yﬁmt =+ BX, and
E(Y,11 — p)? = 02 + 202, 1f B # 0 the forecast is informative and d; and gy are O,(/n).
Accordingly, both tests are consistent against fixed alternatives § # 0. The asymptotic
power of the tests can be studied by considering a local alternative of the form 8 = ¢/+/n.
The asymptotic distributions of the DM-type test 071 and the encompassing test 9; are

presented in

Theorem 4 Under the sequence of alternatives 8 = c/~v/n, X; ~ iid(0,02), Assumptions
1 -2 and n/NT — 0 it follows that

dy 27 — 2 zg — A (11)
01 4 sign(c)za + A, (12)

where \*> = ¢?c2/0? denotes the signal-to-noise ratio and z; and zy represent two inde-

pendent standard normally distributed random variables.

Accordingly, the DM-type test and the encompassing test are not asymptotically equiva-
lent. Figure 1 compares the resulting local power curves using the significance level 0.05.
The DM-type test is more powerful in the vicinity of the null hypothesis, whereas the
relative power of the encompassing test increases when ¢ or the variance ratio o2 /o2 gets

large. The ratio A% can also be represented as

R(1)’
1—R(1)*

A =n

using Nelsons predictability measure presented in (7). If, for instance, n R (1)2 > 10, then
A2 > 10, and both tests have a local power of at least 93% for a significance level of 0.05.
It should also be noted that the power curves are symmetric with respect to the parameter

¢ as the distribution remains the same if z, is replaced by —z5 in (11) and (12).
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Figure 1: Local power curves

7 Monte Carlo experiments

In order to gain insight into the small sample behaviour of the tests, we conduct Monte
Carlo experiments based on the cases displayed in Table 3. In the first four cases, uni-
variate models are considered, whereas the last case refers to a simple multivariate model.
The first three forecast models refer to moving-average models considered in Stock and
Watson (2007) for the first difference of quarterly US inflation. The first process is based
on their MA(1)-model estimated for the post-1984 period, whereas the second process
refers to their pre-1984 estimation results. The third process is based on the quarterly
version of Nelson and Schwert’s (1997) model reported in Stock and Watson (2007). For
all three cases, the forecast models are misspecified, because the data-generating processes
(DGP) are MA(1) and MA(2) processes, but the forecast models assume an AR(1) pro-
cess. Moreover, a constant is estimated. Note that the respective null hypotheses h* = 1
and h* = 2 are nevertheless correct. The fourth process uses the estimation result for
an AR(1)-process of US GDP growth from 1996¢q3 to 2016q1 which corresponds to the
sample used in the empirical application below. In this case, h* does not exist. The last
process mimics a forecasting equation for financial returns and implies an R(1)? of about
0.04 for h = 1. This would be considered a “large” value in forecasting stock price returns
given the usual empirical results as reported, for example, in Fama and French (1988). In

this case, the maximum forecast horizon is h* = 1, since R (h)* = 0 for h > 1.
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Table 3: Cases considered for Monte Carlo simulations

cases DGP h* forecast model R* (h*)
MA()-AR(1)  Yi=¢, —0.285, 4 1 Y, =040y, 0.07
MA(1)y-AR(1) Y, =¢, —0.665,4 1 Yo =040, 0.21
MA2)-AR(1)  Yi=e,— 049, 1 —0.16e,5 2 Yo, =00 +00Y, 0.02
AR(D-AR(1) Y, =033+ 0.42Y;  + =, — Y =0+ 0y =
multivar. Y, = 02X, 1 + ¢ 1 Y, =0"+0bx, 0.04

Note: ; and X are iid N(0,1). h* is the maximum forecast horizon. R? (h*) is the asymptotic R? of the forecast
model at horizon h*.

Forecasts are made in a direct manner, i.e. for each forecast horizon the target variable
Yi1n is regressed on the explanatory variables known at time ¢. We calculate the standard
errors according to Newey and West (1987) using the automatic lag length selection
procedure proposed by Andrews (1991) and a significance level of 0.05.

Table 4 displays the results for AR(1) forecasts, when the data is generated by the
MA,(1) model, hence h* = 1. The evaluation sample includes n = 50 or n = 100
forecasts, the initial estimation samples are based on 7" = 100 observations, and a recursive
estimation scheme is employed. The tests are conducted sequentially for the forecast
horizons h = 1,2,3,4. The last forecast horizon where the test rejects is identified as
horizon h*. If the test does not reject for any horizon, h* > 4. In addition to the
tests presented above, the classical DM test is considered by using a standard normal
distribution for the test statistic specified in equation (8). Given the values of R? (h*)
and n considered, the local power results of Section 6, and the fact that 7" is not very
large, one can expect the tests to encounter certain difficulties in correctly detecting h*,
except for the case MA(1),-AR(1).

With n = 50, the DM-type and encompassing tests have a power of at least 0.44 at h =
1, whereas the classical DM test attains 0.12 only. With n = 100, the power of the DM-
type and encompassing tests reaches about 0.8. The classical DM test achieves 0.20 and its
size is close to zero. Both DM-type tests are over-sized, whereas both encompassing tests
are conservative. In terms of power, the two DM-type tests are similar and outperform the
encompassing tests. This is likely to be partly due to their too large size, but also partly
to their higher local power in the vicinity of the null hypothesis. Among the encompassing
tests, the regression-based test using (9) clearly is more powerful than the LM-type test
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based on (10).

For n = 50 the DM-type tests and the regression-based encompassing test identify the
maximum forecast horizon correctly in about 60% of the replications, and this number
rises to roughly 80% with n = 100. The LM-type encompassing test is slightly less
successful. h* based on the classical DM test has a strong downward bias due to its lack
of power. With a rolling estimation window instead of a recursive estimation scheme, the
results turn out to be very similar (see Table 9 in Appendix C).

For the remaining Monte Carlo experiments, we do not report results for the DM-
type test based on 2d;, because it performs almost identically to glvh. Moreover, we focus
on the regression-based encompassing test, because it has good size properties and more
power than the LM-type encompassing test. Results for all cases except MA,(1)-AR(1)
are reported in Table 5. We do not consider the classical DM test, because of its problems
in detecting h* documented above.

Concerning the case MA,(1)-AR(1), the absolute value of the MA-coefficient is much
larger than in the case MA,(1)-AR(1), making it considerably easier for the tests to detect
h* = 1. With n = 50 as well as with n = 100, both tests reject in almost all replications
at h = 1. The DM-type test rejects far too often for h > 2, whereas the encompassing
test has almost the correct size.® Mainly due to the size distortion, the DM-type test
detects the correct h* in 80% to 85% of the replications only, whereas the encompassing
test attains about 95%. Moreover, h* has an upward bias which is more pronounced for
the DM-type test because of its size distortion.

In the case MA(2)-AR(1), the second MA-coefficient is very close to zero, making it
difficult to identify h* = 2. Note that the ratio of the mean-squared prediction error
(MSPE) to the evaluation-sample variance is virtually equal to 1.” While for » = 1, both
tests reject in about 85% of the replications with n = 50 and in 97% of the replications
with n = 100, these numbers are considerably lower for h = 2. The DM-type test yields
a rejection probability of 40% to 45%, whereas the encompassing tests attains about
20%. The higher numbers of the former test are again at least partly related to its size
distortion. The maximum forecast horizon h* is detected correctly in about 10% to 20%
of the replications by the encompassing test and in about 25% to 35% by the DM-type
test. The most frequent value of h* equals 1 in all cases considered. Thus, with the
MA(2)-specification chosen here, larger evaluation samples are needed in order to reliably
determine A*.

The rejection probabilities for A = 1 and h = 2 in the AR(1)-AR(1) case are not too
different from the MA(2)-AR(1) case. Accordingly, the most frequent value of h* equals

6Tn simulations not reported here, it turns out that the size distortions of the DM-type test are far
less pronounced if the MA-coefficient is positive. With a value of 0.66 instead of —0.66, the size equals
about 0.10.

"The variance of the evaluation sample is calculated dividing by n, so that it equals the MSPE of the
evaluation-sample mean.
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Table 4: Results for case ‘M A (1), -AR (1)’

forecast horizon h 0 1 2 3 4 0 1 2 3 4
T =100,n = 50 T =100,n = 100
MSPE / Variance 0.96 1.03 1.03 1.03 0.95 1.02 1.02 1.02
rejections
DM-type tests
dp, 0.71 0.13 0.12 0.12 0.83 0.09 0.09 0.09
2dy, 0.72 0.13 0.13 0.13 0.84 0.10 0.10 0.10
encompassing tests
Bi.h 0.61 0.04 0.04 0.03 0.81 0.03 0.02 0.02
On 0.44 0.02 0.02 0.02 0.75 0.02 0.02 0.02
classical DM test 0.12 0.01 0.01 0.01 0.20 0.00 0.00 0.00
iL*
DM-type tests
dp, 0.29 0.62 0.07 0.02 0.01 0.17 0.76 0.06 0.01 0.00
2dp, 0.28 0.63 0.07 0.02 0.01 0.16 0.76 0.06 0.02 0.00
encompassing tests
B, 0.39 0.59 0.02 0.00 0.00 0.19 0.79 0.02 0.00 0.00
On 0.56 044 0.01 0.00 0.00 0.25 0.74 0.01 0.00 0.00
classical DM test 0.88 0.11 0.00 0.00 0.00 0.80 0.20 0.00 0.00 0.00

Note: The values displayed in the category ‘rejections’ denote the percentage of rejections for each horizon h. The values
displayed in the category ‘h*’ denote the percentage of cases in which A is identified as the maximum forecast horizon. The
estimation is carried out recursively, and T' denotes the number of observations used for the first parameter estimation. n is
the number of observations for evaluation. The significance level is set to 0.05. ‘classical DM test’ refers to the test statistic
proposed by Diebold and Mariano (1995). ‘MSPE’ is the mean-squared prediction error. The in-sample variance in the

MSPE-variance-ratio is calculated dividing by n. Bold entries refer to the true h*. If a test rejects for all horizons, h* is set
equal to the largest horizon h = 4. 2d;, denotes the test statistic distributed as |[N'(0,1)|, dj, the test statistic distributed
as X% under the null. 3, j; denotes the regression-based test using (9), 05 denotes the LM-type test based on (10). Results

are based on 10,000 simulations.
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Table 5: Results of the remaining cases

forecast horizon h 0 1 2 3 4 0 1 2 3 4
T =100,n =50 T =100,n = 100
MA(1),-AR (1)
MSPE / Variance 0.80 1.02 1.02 1.02 0.80 1.02 1.02 1.01
rejections
DM-type test 0.97 0.19 0.18 0.19 1.00 0.14 0.15 0.14
encompassing test 0.99 0.05 0.05 0.04 1.00 0.04 0.03 0.03
iL*
DM-type test 0.03 0.80 0.11 0.05 0.02 0.00 0.85 0.09 0.04 0.01
encompassing test 0.01 0.94 0.04 0.01 0.00 0.00 0.96 0.03 0.01 0.00
MA(2)-AR (1)
MSPE / Variance 0.91 1.00 1.02 1.02 0.91 1.00 1.02 1.01
rejections
DM-type test 0.88 0.40 0.17 0.16 097 045 0.13 0.13
encompassing test 0.84 0.19 0.04 0.04 0.97 0.23 0.03 0.03
;L*
DM-type test 0.12 0.57 0.25 0.05 0.01 0.03 0.55 0.36 0.05 0.01
encompassing test 0.16 0.71 0.11 0.01 0.00 0.03 0.76 0.21 0.01 0.00
AR (1)-AR(1)
MSPE / Variance 0.88 1.03 1.06 1.07 0.86 1.01 1.03 1.04
rejections
DM-type test 0.84 0.28 0.10 0.08 0.96 040 0.12 0.07
encompassing test 0.88 0.20 0.06 0.05 0.99 0.33 0.06 0.04
iL*
DM-type test 0.16 0.57 0.20 0.05 0.02 0.04 0.56 0.30 0.07 0.03
encompassing test 0.12 0.68 0.16 0.02 0.01 0.01 0.66 0.28 0.04 0.01
multivar.
MSPE / Variance 1.00 1.04 1.04 1.04 0.99 1.02 1.02 1.02
rejections
DM-type test 0.50 0.08 0.08 0.09 0.62 0.06 0.06 0.07
encompassing test 0.33 0.03 0.03 0.03 0.51 0.02 0.02 0.02
fAL*
DM-type test 0.50 0.45 0.04 0.00 0.00 0.38 0.58 0.04 0.00 0.00
encompassing test 0.67 0.33 0.01 0.00 0.00 0.49 0.50 0.01 0.00 0.00

Note: The DM-type test uses gh, the encompassing test employs 3y 5. For further information, see Tables 3 and 4.
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1 for both tests and both values of n considered. The correct identification of h* > 4 only
happens in 1% to 3% of the replications.

Finally, in the multivariate case, the DM-type test rejects at h = 1 in 50% to about
60% of the replications, whereas the encompassing test does so in about 35% to 50%.
However, the latter test is conservative, whereas the former rejects a little too often under
the null, i.e. for h > 1. With n = 50, both tests tend to reject predictability, i.e. they
yield h* = 0 in at least 50% of the replications. With n = 100, h* = 1 in about 60% of
the replications with the DM-type test, whereas the encompassing test reaches 50%.

As the multivariate case is conformable with the local power analysis of Section 6, it
is especially interesting to compare the results with the theoretical findings presented in
Theorem 4. For the corresponding value ¢ = 0.2y/n and A = ¢ - 1, one gets A\ = /2 for
n = 50 and A = 2 for n = 100. The corresponding power for the DM-type test is 0.64
with n = 50 and 0.77 with n = 100, and for the encompassing test 0.41 with n = 50
and 0.64 with n = 100. These values are moderately larger than the respective rejection
probabilities for the multivariate case at h = 1 reported in Table 5. These differences are
driven by the parameter estimation error. If one sets, for example, T' = 1, 000 instead of
T = 100, the rejection probabilities obtained via simulations become very similar to those

following from Theorem 4.

8 Empirical results

For the empirical application of the tests, we employ quarterly survey forecasts collected
by Consensus Economics. The mean of the forecasts across all panelists is known to be
a very accurate forecast, as documented, for example, by Ang, Bekaert, and Wei (2007)
for inflation forecasts. We consider survey forecasts as being generated by some empirical
model. One may argue, however, that survey forecasts do not involve any parameters to
be estimated. This would be a comfortable situation for our analysis as in this case the
O,(n/T') terms due to estimated parameters drop out and the asymptotic results should
be more reliable.

Another view on survey forecasts is the notion that survey forecasters derive their pre-
dictions of Yy, as some function of the past, say f(Y;, Y;_1,...) for a univariate forecast.
Such a function is similar to a model-based forecast where we first specify some (linear)
function on past values and plug in some estimated parameter values that are again a
function of past values. For a univariate zero-mean AR(1) forecast this approach result

in the forecast function

t
Zs:thJrh Y;Y;*h
Zts:t—T—i-h Yion
Y;f = f(YtaY;f—la s 7}/15—T)'

Yignt =
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Note that this forecast function is a (nonlinear) filter of the past values that does not de-
pend on parameters anymore. In our theoretical framework we assume that the (infeasible)
forecast is based on the optimal filter represented by Yt‘ih‘t (typically a conditional mean
function), whereas the feasible forecast is given by )A/Hh“ = Yt‘ih‘t =fYs, Y1, ..., Yior).
No matter how the filter f(Y;,Y; 1,...,Y;_r) is derived (maybe some “guess” based on
past observations, maybe using some statistical plug-in estimators for the parameters)
the relevant issue is whether the difference ?Hh‘t — Y;ihl , is sufficiently small such that
it does not affect the test decision. In other words, we only assume that survey fore-
casts are just another way to estimate the conditional mean function (i.e. by combining
expert knowledge and human intelligence). For our analysis it is sufficient to assume
that the order of magnitude of f(Y;, Yi_1,...,Yi 1) — Ytihlt
similar to Ytih“ -Y,

existing empirical literature, we have no reason to suppose that survey forecasts perform

from the survey forecasts is

ihlt resulting from the parametric model framework. Based on the

systematically worse than forecasts derived from some statistical model.

In our empirical analysis we consider forecasts of real GDP growth and real private
consumption growth, because these are the only quarter-on-quarter (q-o-q) growth rates
in the survey. For the indices of consumer prices (CPI), only forecasts for quarterly
year-on-year (y-o-y) rates are available. Given the importance of inflation forecasts, we
also include these forecasts in our analysis. However, given the y-o-y definition, and
denoting the forecast horizon for the current quarter, i.e. for the nowcast by h = 0, we
can expect to find h* > 2. This is because knowledge about past values of the price index
enables the forecasters to mechanically produce forecasts which have lower mean-squared
prediction errors than the unconditional mean up to h = 2.% In addition to these variables,
we also investigate the forecasts of the end-quarter values of the 3-month interest rate.
Since interest rates show signs of non-stationarity in the sample under study, we use the
first differences of this variable. The countries under study are the United States, the
euro area (labeled ‘Eurozone’ by Consensus Economics), Japan, Germany, the United
Kingdom, Italy, Canada, and France.

Since, in each quarter, Consensus Economics also provides data for recent quarters,
we can employ this real-time data for the evaluation of the forecasts. We use the second
vintage of all variables mentioned.

Considering forecasts for up to h = 6 quarters ahead, the balanced sample of forecasts
and realizations starts in the third quarter of 1996 and ends in the first quarter of 2016,

yielding a sample size of n = 79. However, the sample sizes for individual variables can

8The year-on-year rate for h = 2 equals the sum of the quarter-on-quarter rates for h = —1,0,1,2.
Using the observed quarter-on-quarter rate for h = —1 and the unconditional mean as the forecast of the
quarter-on-quarter rates for the latter three horizons yields an MSPE for the year-on-year rate forecast
for h = 2 which is lower than the variance of the year-on-year rates by construction. If information on
the current quarter is available, the maximum forecast horizon must be equal to or larger than 3.
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be smaller, mainly due to changes in the survey. For example, in the beginning of the
sample, the survey switched from asking for West German variables to variables for the
reunified Germany, and we only consider the latter forecasts. The 3-month interest rate
to be forecasted for Germany, Italy and France changed in the first quarter of 1999 from
country-specific rates to the Euribor. Only the Euribor forecasts enter our analysis. While
they can be expected to be similar across the three countries, differences might emerge,
for instance, due to the smaller number of forecasters for Italy. For Japan, the target
variable of the interest rate forecasts changed from the 3-month Yen certificate of deposit
to the TIBOR in the second quarter of 2010, and we only use the former forecasts.

In some countries, several large changes of the value-added tax rate (VAT) occurred.
Since these changes are commonly announced well in advance, their occurrence can have
a major impact on the predictability of inflation. In addition, the growth rate of real
private consumption tends to be strongly negatively correlated with the VAT rate change
contemporaneously, and in addition, there is a strong positive correlation in the quarter
prior to the VAT rate change. We use the following rule in order to limit the impact of
these changes on our analysis: For countries with at least two VAT rate changes of at
least 2 percentage points, we shorten the sample such that the effects of these changes are
excluded. This rule leads to sample modifications for Japan and the UK. We are going
to report results obtained without this modification in the text, but not in the following
figures and tables. More details on the variables and samples entering our analysis are
given in Appendix B.

The quarterly forecasts are usually gathered in the first half of the last month of a
quarter. Therefore, the forecasters can be expected to have information about the variable
of interest in the current quarter, i.e. for the forecast (resp. nowcast) horizon h = 0.
Concerning inflation, at least the inflation rate for the first month of the current quarter
should be known when the forecast is made. This implies that one can expect h* > 3 for
the y-o-y inflation rates.

As an example forecast consider the inflation forecasts for the United States provided
in 2016 as presented in Figure 2. What is striking about the forecasts for longer horizons
is that they tend to settle at a value of about 2.3 which is almost identical to the mean
of inflation in the evaluation period, being equal to 2.27 percent.

The empirical maximum forecast horizons h* determined by the tests are shown in
Table 6. The sequential p-values of the tests giving rise to these values of h* are displayed
in Figures 3 to 6. Notably, h* is virtually always smaller than the largest forecast horizon
of h = 6. The encompassing test implies larger values of h* than the DM-type test in
several cases. This may be due to potential biases of the forecasts. The larger the bias
is at h* 4+ 1, where h* is determined by the DM-type test, the more likely it is that the

9However, for the q-o-q growth rate of consumption in Japan and in the UK, the nowcast will turn
out to be uninformative and hence h* = —1.
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Figure 2: Forecasts for year-on-year US CPI inflation rates. The number on the x-axis
denotes the forecast horizon in quarters with 0 being the nowcast.

encompassing test still rejects at this horizon.

For the g-o-q growth rates of real GDP growth, h* tends to range from 1 to 3 quarters.
Only for Italy and France, the encompassing test leads to larger values. The median of h*
across countries is 1.5 quarters according to the DM-type test, and 2 quarters according
to the encompassing test.

Concerning the y-o-y growth rates of the CPI, h* is mostly equal to 3 quarters, which
is also the median across countries according to both tests. Only for Canada, both tests
indicate a higher value of h* = 4. For the Euro area and J apan, at least one test indicates
a larger value. Given the considerations with respect to y-o-y rates and nowcasts made
at the end of h = 0, these results indicate substantial difficulties in making informative
inflation forecasts. Using the full sample for Japan and the UK leaves the results for the
UK unchanged, but leads to h* > 6 for Japan according to both tests. Thus, as to be
expected, strong changes in the VAT rate which are announced well in advance can render
inflation forecasts informative even at larger horizons.

The results for the g-o-q growth rates of real private consumption growth vary strongly
across tests and countries. The encompassing test often implies pronouncedly larger values
of h* than the DM-type test. Moreover, h* according to the encompassing test is mostly
larger than in the case of real GDP growth. These results might be due to the facts
that even small announced changes in the VAT rate are relatively important for private
consumption, and that consumption forecasts often tend to biased. Indeed, using the full

sample for Japan and the UK leads to h* > 6 for both countries according to both tests.
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Table 6: Maximum forecast horizons in quarters determined by DM-type and encompass-
ing tests

US EA Jp DE UK IT CA FR median

GDP g-o-q
DM-type test 2 2 1 1 3 1 1 2 1.5
encompassing test 2 2 1 2 3 ) 1 4 2
CPI y-o-y
DM-type test 3 5 3 2 2 3 4 3 3
encompassing test 3 3 4 3 3 3 4 3 3
PrivCons g-o-q
DM-type test 3 1 -1 0 -1 1 0 2 0.5
encompassing test 3 3 0 3 3 3 1 5) 3
d(3m rate)
DM-type test 1 0 3 2 2 1 2 2
encompassing test 2 0 2 6 3 1 2 2

Note: The DM-type test uses dj, the encompassing test employs 81 ;. ‘GDP g-o-q’ denotes quarter-on-quarter
growth rates of real GDP, ‘CPI y-o-y’ year-on-year growth rates of consumer prices, ‘PrivCons q-o-q’ quarter-on-
quarter growth rates of real private consumption, and ‘d(3m rate)’ quarter-on-quarter changes of the end-quarter
3-month interest rate. The abbreviations used for the countries are ‘US’ for the United States, ‘EA’ for the euro
area, ‘JP’ for Japan, ‘DE’ for Germany, ‘UK’ for the United Kingdom, ‘IT’ for Italy, ‘CA’ for Canada, and ‘FR’ for
France. For further information on the variables, see the text and Appendix B.
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USA GDP g-o-q Eurozone GDP g-0-q

Canada GDP g-0-q France GDP g-0-q

— MSPE-variance ratio + p-val. encompassing test O p-val. DM-type test

Figure 3: Test results for quarter-on-quarter growth rates of real GDP. The number on
the x-axis denotes the forecast horizon in quarters with 0 being the nowcast. The dotted
line is at 0.05, corresponding to the significance level of the tests. The dashed line is
at 1. The solid line indicates the MSPE-variance ratio. The DM-type test uses dj,, the
encompassing test employs ;5. The maximum forecast horizon h* identified by a test
equals the horizon before the smallest horizon for which the p-value of the test exceeds
0.05. 24



USA CPl y-0-y Eurozone CPIl y-0-y

Japan CPI y-0-y Germany CPI y-0-y

— MSPE-variance ratio + p-val. encompassing test O p-val. DM-type test

Figure 4: Test results for year-on-year growth rates of the CPI (the RPI in the case of the UK).
For further explanations, see Figure 3.
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Figure 5: Test results for quarter-on-quarter growth rates of real private consumption. For
further explanations, see Figure 3.
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— MSPE-variance ratio + p-val. encompassing test O p-val. DM-type test

Figure 6: Test results for the change in the end-quarter 3-month interest rate. For further
explanations, see Figure 3.
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With the restricted sample, for the UK, the DM-type test indicates that not even the
nowcast is informative.

The maximum forecast horizon for the change in the 3-month interest rate mostly
varies between 1 quarter and 3 quarters. For the UK, the encompassing test finds infor-
mative forecasts at least up to h = 6. Except for the latter case, the two h* found by
the tests for a given country do not differ by more than 1 quarter. For Japan, only the

nowcasts turn out to be informative.

9 Concluding remarks

This paper develops a forecast evaluation framework for testing the null hypothesis that
the forecast at some pre-specified horizon h is uninformative. The tests are constructed
such that they can be used even if the forecasts and the corresponding realizations are
the only data available to the evaluator. The proposed tests can be applied sequentially
to identify the maximum forecast horizon of the predictions. We show that due to the
nested nature of the forecast comparison, the standard Diebold-Mariano (DM) type test
statistic has a nonstandard limiting distribution and suffers from a severe loss of power.
To overcome this problem, we adjust the test statistic and derive alternative tests from the
encompassing principle that result in a coefficient test for a Mincer-Zarnowitz regression.
Our analysis of the local power reveals that the DM-type test statistic is more powerful
in the vicinity of the null hypothesis, whereas it performs similar to the encompassing
test if the forecasts are more informative. In our Monte Carlo simulations we find that
the DM-type test suffers from considerable size distortions in reasonable sample sizes,
whereas the regression variant of the encompassing test exhibits reliable sizes.

In the empirical analysis, we apply our tests to macroeconomic forecasts from the
survey of Consensus Economics. Our results suggest that forecasts of macroeconomic key
variables are hardly informative beyond 2-4 quarters ahead. Our results confirm earlier
(anecdotal) findings from macroeconomic forecasting. The main contribution of our work
is to provide statistical tests that allow the forecaster to assess the maximum forecast
horizon of the forecast of interest.

It is worth mentioning that our testing approach (as any other empirical methodology)
has two major limitations. First, the estimated maximum forecast horizon may be biased
downwards if the predictive power is weak but not negligible. A similar caveat applies if
the number of forecasts in the evaluation sample is small. Second, the estimated maximum
forecast horizon depends on the approach that generates the forecasts. If the approach fails
to exploit important information it may produce uninformative forecasts, while a richer
forecasting procedure may result in informative forecasts. Accordingly, any qualification
of the informative content is conditional on the forecasting approach.
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Appendix A: Proofs

Proof of Theorem 1:

Let h > h*. Applying a mean-value expansion of the form Y;jh‘t = t+h\t+Dt+h (9t)(9t—9)

where 6, denotes a value between @ and 0 yields

6 = [wren = Desn(00) (0 = O) = (upsn — Wy)?
8 = Ut2+h — (wern — Tn)* = 2y Dy (0,) (0 — 6) + Dyyn(6,)° (et 0)?
= Uy, (2uern — ) — 2w n Din(0:) (6 — 0) + Dyyin(6;)? (9t —6)*
where w, = n~! Z?ﬂih uy and
0, — 0= (8, — ) + (6o — 0)

—0, (5 1) o, = 0w

due to Assumption 2 (73). Furthermore, (%) and (iv) imply

1 n
E;@h ap — 2- ZuHhDHh(et )(6; — ZDM (0.)*(6; — )
=1u; + O ( D)

and

LS

t=j+1
1 n
= ﬁﬂi Z (2upin — Tn) (2ursn—j —Tn) + Op(T7")
t=j+1
1
= ﬁuh [( Z 4Ut+hut+h j) —3nu + Op(T_1>
t=7+1

= ( Z Ay U p ]> +0,(n7%) + O0,(T71).

t=j+1
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Hence
h—1
f3 =35(0) + 2 A5())
j=1

h—1
= 4w, <%(0) +2) %(j)) +O0,(T™H) + O0y(n7?)
j=1
= 4upo; + Op(T_l) + Op(n_Q)-
Thus,

h
1

dy = — o

h w(;\/ﬁ;t

(A4 Oyn/T)
VaAn w2 4+ 0,(n/T) + O,(n1)

:\/ﬁlﬂh\+0p<n) FAEl

20, T 2

where z is a standard normally distributed random variable.

Proof of Corollary 2:

The distribution of 2d), follows directly from Theorem 1. As shown in Theorem 1 we have
S or = (Vna)® +0,(n/T) .
t=1

If n/T — 0 and &2 is a consistent estimator of the long-run variance of u;,j, = Yiip — p
then d), possesses a x? limiting distribution with one degree of freedom.

Proof of Theorem 3:

Consider some h > h*. We first analyze

n

D Ve =Y Yien = Vi) = > Vi (uan — ).

t=1 t=1
An important problem with analysing this expression is that the estimation error in
Yigne = Ytith' , is correlated with %j,. To sidestep this difficulty we decompose the forecast

into one component Yt?ﬁhlt that is independent of {ujyp,...,unyn} and show that the

remaining component is asymptotically negligible. Applying a mean value expansion
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yields

Yoy = Yt = Yo + Dixn(0:)(6: — 0o)

where D, (0) = 8Y;ih|t /06 and 6, denotes some value between 6, and é\t Note that by

Assumption 2 Y%

bl is uncorrelated with all uy s, usyp, ..., Upsn. Accordingly,

n

S ¥+ Dean(8) @, — 0| (s — ) = Apy + B, + B2,

t=1

where
Arp = Zn: Yﬁ?hhﬁ(uﬂrh — Up)
t=1
B}, = Z Dyn(6:) (6 — Bo )y
t=1
B:an = Up i Dt+h(§t)<‘/9\t - é\0)-
t=1

Another mean value expansion around the true value 6 with Y, . = u yields

t+hlt

App = (60— 0)D_ Discn(Bo)ursn — (6o — ) Y Diya(fo)
t=1

t=1
_ 7l 2
- AT,n + ATJL

where 6, is some value between é\o and 6. Since é\o and Dt+h(0_0) are uncorrelated with
Uy it follows that AL, = O,(T7Y2)0,(n'/?), whereas A% | = O,(T~/2)0,(n"/2)0,(n).
Thus, Ar,, is Op(\/n/_T ). Under the null hypothesis @ — 50 and D, 1,(6,) are uncorrelated
with wuzyp,. Furthermore Assumption 2 (iii) and (iv) imply

n

~ o~ _ n n a n2
Z<6t N 90)2Dt+h(9t)2ut2+h =0 <ITQ> Z Dt+h(9t)2u?+h = 0 <ﬁ) :
t=1

t=1
and, therefore,

n
n

Bp, = Z@ — 00) Dy (0)uesn = O, (f) :

t=1
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Since

n n

> G~ Dalf) = 0y () 3o Dl

t=1

it follows that BZ.,, = O,(n""2)0,(n*?/T) = O,(n/T). As n/T — 0 It follows that
T o Eva Eva T 1 2
- > Vene = Yn)Yeyn = V) = —(Arn + Br, + Br,)
=1

T n

Next we analyze

n n

Z(ﬁ%\t - ?h)2<}/t+h -Y,)? = Z(?Hhu — ?h)2(ut+h — ).

t=1 t=1

Using the above mean value expansions we obtain

2+h|t = Yffh“ + Dt+h(9_t)(§t - 50)
= 11+ Dysn(00) (00 — 0) + Dun(01)(6: — o)
}//\;H-hlt ~Y, = ﬁt+h(§o)(§o —0)+ \Tjt+h<é\tv 50)
where

Dyn(fo) = Dyin(fo) —n™* Z Dy yn(0o)

s=1

- o~ U 1 <& o
Wen(6r,00) = Desn(0o)(0r — ) — > Doin(00)(0s — ).
s=1
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It follows that

n

> Veene — T3 (Vien = Y0)? = (B — Z Dy (00)* (e, — Tn)*

t=1

+ Z \T’Hh(é\m é\0)2(Ut+h - ﬂh)2

t=1

2(00 = 0) > Dyan(00) W11 (6, 00) (s — n)?
t=1
=Cr,+Cr, + Cryy -

For the leading term we obtain

C% :OP(T_I)OP(n) = Op(n/T)

,n

For the second term we note that

n

> (0r = 00)? Dien(00)* (e — n)? = Op(n?/T?).

t=1

Since the mean adjustment does not affect the order of magnitude we conclude that
O = Op(n?/T7)

For the last term we obtain

n

> (6 = 60) D1 n(00) Dy (6;) = Op(n*//T)

t=1

and, since the mean-adjustment does not affect the order of magnitude,
O = Op(n*?2[T%2).

Combining these results yields

T <~ = — n
— ;(YM —Y3)* (Yien = V)2 = T(6o — Z D (00)*(we —T)* + O, (, /7
In the same manner it can be shown that for y =1,2,... A
T "o = -~ = _ _
— Z Yine = Yi)Yernjie — Yr) Yern = Yi) (Yegn—y — Yi)
t=1+j
~ 1 e~ ~ ~ |~ - _ _ n
= T(@o — 0)25 ; Dt+h(90)Dt+h—j (00)(ut+h — uh)(uHh_j — uh) + Op ( T) .
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~ ~ o1
Define V,, p =To 1 + 2 ijl L'; ., where

n

~ 1 ~ = ~ = — —
Cinr = = > Vine = Y) Vipngie = Vo) Yern = Vi) (Yeanoy = V).
e
It follows that

2
T ~
—Var = T(eﬂ - (Z Dy, (0)(wesn — Uh)) + 0,(1).

n

Applying a suitable version of the central limit theorem it follows that

S & Do) o, — )
Z Yt+h\t Yh) Urn — = + 0p(1)

¢Wﬁt1 - 2
;@Muww—mﬁl

l
n

5 N(0,1)

Proof of Theorem 4:

Under the local alternative, we have for h = 1
Visr = Y1 =1 — U + (¢/vn) (X — X)

and the model prediction error is given by €. p)y = U1 + O,(T~/?). Following the proof
of Theorem 1 we obtain for n/T — 0

251 Vg )? — %Z(Xt I —Z X — X)*+ 0,(n/T)

= (vnw)? — 2c0,0,R, — o2 + 0,(1)

P 21 20,0,C29 — 0205 ,

where

Oy

Rn = O_uo_x\/_z Ut+1 —>22 = N(O 1)
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Accordingly, for the modified DM statistic we obtain

1 — o o2

s d x

di = — E 6 = 22— 2 "2y — *E
02 o2

U =1 Tu u

where 82 = n=' S, (uer — T + (/i) X0)? = 02+ Oy(n~2).
Using

~ C _
Yipie = %Xt + O,(T 1/2)

we have for n/vT — 0

;gt = ; |iUt+1 —uy + %(Xt —X)} Y;—Hlt
= % ;Ut+1(Xt ~X)+ & > (X = X)?+ 0y(n/VT)

n
t=1

d
— COu,0x29 + 0202 .

Furthermore
n 2 n
~ c _ _
W02 = 3O =S Y (- mP (X~ KP4 o,(1)
t=1 t=1
LN colo?
and, thus,
TN
0= = Ssign(o)zn + [l
@g Ou

with sign(a) =1 if @ > 0 and sign(a) = —1 for a < 0.

Appendix B - Data Descriptions

Concerning the quarter-on-quarter growth rates of real GDP, the only change that oc-
curred in the sample is from West German GDP to the GDP of the reunified Germany in
the fourth quarter of 1995. Forecasts for the euro area started being collected in the last
quarter of 2002 for all variables except the 3-month interest rate.

The inflation measure used is the year-on-year growth rate of the index of consumer
prices (CPI) for all countries except for the UK, where the retail price index (RPI) is used,
because the sample of forecasts for the CPI does not start until 2004. Inflation forecasts
for the reunified Germany started in the fourth quarter of 1996.
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Private consumption is measured by the personal consumption expenditures in the
US and Canada, by private consumption in Japan, Germany, and the Euro area, and by
household consumption in France, the UK, and Italy. Private consumption forecasts for
the reunified Germany started in the fourth quarter of 1995.

The 3-month interest rate is measured at the last day of the quarter. The interest rate
used in the analysis is the 3-month treasury bill rate for the US and Canada, the 3-month
Yen certificate of deposit rate for Japan, with the sample ending in the first quarter in
2010, the 3-month Euribor in Germany, Italy, and France, with the sample starting in the
first quarter of 1999, and the 3-month interbank rate for the UK.

The changes in the VAT rates are listed in Table 7. Since Japan and the UK expe-
rienced two VAT rate changes of at least 2 percentage points, we adapt their samples of
inflation and private consumption. For Japan, both samples start in the second quar-
ter of 1997 and end in the fourth quarter of 2013, because in the first quarter of 2014,
real private consumption already increased substantially due to the following VAT rate
increase. For the UK, the samples continue to start in the first quarter of 1995, but end
in the second quarter of 2008.

All resulting sample sizes can be found in Table 8.

Table 7: Changes in the value-added tax rates in percentage points

VAT rate in pp

Country  Date from to change
Japan Apr 97 3 5 2
Japan Apr 14 5 8 3
Germany Apr 98 15 16 1
Germany Jan 07 16 19 3
France Apr 00 20.6 19.6 -1
Italy Oct 97 19 20 1
Italy Sep 11 20 21 1
Italy Oct 13 21 22 1
UK Dec 08 17.5 15 -2.5
UK Jan 10 15 175 2.5
UK Jan 11 175 20 2.5
Canada Jul 06 7 6 -1
Canada  Jan 08 6 5 -1
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Table 8: Numbers of observations n

US EA Jp DE UK IT CA FR

GDP g-o-q 79 48 79 76 79 79 79 79
CPI y-o-y 79 48 63 72 48 79 79 79
PrivCons g-o-q 79 48 63 76 48 79 79 79
d(3m rate) 79 53 63 79 63 79 63

Note: ‘GDP g-o-q’ denotes quarter-on-quarter growth rates of real GDP, ‘CPI y-o-
y’ year-on-year growth rates of consumer prices, ‘PrivCons q-o-q’ quarter-on-quarter
growth rates of real private consumption, and ‘d(3m rate)’ quarter-on-quarter changes
of the end-quarter 3-month interest rate. The abbreviations used for the countries are
‘US’ for the United States, ‘EA’ for the euro area, ‘JP’ for Japan, ‘DE’ for Germany,
‘UK’ for the United Kingdom, ‘IT’ for Italy, ‘CA’ for Canada, and ‘FR’ for France.

Appendix C
Table 9: Results for case ‘M A (1),-AR (1)’

forecast horizon h 0 1 2 3 4 0 1 2 3 4
T =100,n =50 T =100,n = 100
MSPE / Variance 096 1.03 1.03 1.03 096 1.03 1.02 1.02
rejections
DM-type tests
dp, 0.68 0.12 0.12 0.12 0.80 0.07 0.07 0.08
dp, 0.69 0.12 0.12 0.12 0.81 0.08 0.08 0.08
encompassing tests
Bin 0.57 0.04 0.03 0.03 0.75 0.02 0.03 0.03
Oh 0.42 0.02 0.02 0.02 0.68 0.02 0.02 0.02
classical DM test 0.10 0.00 0.00 0.00 0.15 0.00 0.00 0.00
]fb*
DM-type tests
dp, 0.32 0.60 0.06 0.02 0.01 0.20 0.74 0.04 0.01 0.00
dp, 0.31 0.61 0.06 0.02 0.01 0.19 0.75 0.05 0.01 0.00
encompassing tests
Bin 0.43 0.56 0.02 0.00 0.00 0.25 0.73 0.02 0.00 0.00
On 0.58 0.41 0.00 0.00 0.00 0.32 0.67 0.01 0.00 0.00

classical DM test 0.90 0.10 0.00 0.00 0.00 0.85 0.15 0.00 0.00 0.00

Note: For explanations, see Tables 3 and 4. In contrast to Table 4, the estimation is carried out using a rolling window of
length T'.

39



	Non-technical summary
	Nicht-technische Zusammenfassung
	1 Introduction
	2 Model framework
	3 Measuring predictability
	4 Diebold-Mariano type test statistics
	5 Encompassing tests
	6 Local power
	7 Monte Carlo experiments
	8 Empirical results
	9 Concluding remarks
	Leere Seite
	Leere Seite
	Leere Seite
	Leere Seite



