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Abstract

This paper introduces a multivariate pure-jump Lévy process which allows for skewness and

excess kurtosis of single asset returns and for asymptotic tail dependence in the multivariate

setting. It is termed Variance Compound Gamma (VCG). The novelty of my approach is that,

by applying a two-stage stochastic time change to Brownian motions, I derive a hierarchical

structure with different properties of inter- and intra-sector dependence. I investigate the

properties of the implied static copula families and come to the conclusion that they are

ordered with respect to their parameters and that the lower-tail dependence of the intra-sector

copula is increasing in the absolute values of skewness parameters. Furthermore, I show that

the joint characteristic function of the VCG asset returns can be explicitly given as a nested

Archimedean copula of their marginal characteristic functions. Applied to credit portfolio

modelling, the framework introduced results in a more conservative tail risk assessment than

a Gaussian framework with the same linear correlation structure, as I show in a simulation

study. To foster the simulation efficiency, I provide an Importance Sampling algorithm for

the VCG portfolio setting.

Keywords: Portfolio Credit Risk, Stochastic Time Change, Brownian Subordination, Jumps,

Tail Dependence, Hierarchical Dependence Structure

JEL Classification: C46, C63, G12, G21



Non-technical summary

In this paper, I introduce a novel model of tail-dependent asset returns which can be used

for the purposes of structural credit risk modelling. Similar to the copula approach proposed

recently by Puzanova (2011), the Variance Compound Gamma (VCG) model presented here

implies a hierarchical dependence structure with stronger dependence within pre-specified

sectors than between them. The magnitude of sector-specific dependence parameters govern-

ing the tail dependence property can vary from one sector to another, allowing the model to

cope with concentration risk. An advantage of the VCG framework over the aforementioned

copula approach is its more general applicability, which is not limited to a static, one-period

consideration of portfolio credit risk. In fact, the fundamental VCG model of asset returns

can be utilised for financial modelling (pricing of financial derivatives etc.) whenever using

multivariate jump-driven Lévy processes with a hierarchical dependence structure is deemed

appropriate.

Allowing jumps in the sample paths of the asset returns, the VCG model overcomes the

shortcomings of a Gaussian/Brownian framework, such as anticipated default time, symmet-

ric and mesokurtic probability distribution of the underlying and linear dependence structure.

The jumps occur simultaneously for asset returns that are evaluated at a common business

time. A business time common to all assets in an appropriately specified sector is a stochastic

process which represents the irregular flow of information that is only relevant for that partic-

ular sector. The sector-specific business times themselves are evaluated at another common

random time, which represents the flow of information that is relevant for the whole market,

such as changes in the overall macroeconomic conditions. This two-stage stochastic time

change is a novelty of my approach. It results in the hierarchical dependence structure of the

stochastic processes governing asset returns.

To assess the effect of the VCG modelling approach on the credit portfolio tail risk mea-

sures and, thus, to gauge the extent of model risk, I conduct a simulation study for credit

portfolios with identical linear correlation structure but different tail dependence properties

of underlying asset returns. I show that the Gaussian model underestimates the portfolio tail

risk considerably if the assumption of asymptotically independent extreme asset returns is

wrong. For instance, the Value at Risk and Expected Shortfall calculated at the 99.9% level

for a stylised portfolio containing 100 (1,000) obligors are about 25% (50%) higher under the

assumptions of the model introduced in this paper than under the Gaussian assumptions.

In view of these results, the proposed model could have implications for risk controlling

and banking regulation and, on a large scale, for financial stability. Its implementation would

result in a more conservative assessment of portfolio tail risk and, consequently, higher capital

requirements. Therefore, the model is able to counter the systematic underestimation of credit

risk in banking sector – one of the basic causes of the recent financial turmoil.



Nichttechnische Zusammenfassung

In diesem Beitrag stelle ich einen neuen Ansatz zur multivariaten Modellierung stochastischer

Assetrenditen vor, deren extreme Realisationen untereinander abhängig sind (Flankenabhän-

gigkeit). Dieser Ansatz eignet sich insbesondere zur Modellierung von Firmenwertrenditen der

Kreditnehmer im Rahmen eines strukturellen Kreditportfoliomodells. Ähnlich dem Copula-

Ansatz von Puzanova (2011) impliziert das hier vorgestellte Variance-Compound-Gamma-

Modell (VCG) eine hierarchische Abhängigkeitsstruktur, sodass die Abhängigkeit zwischen

den Firmenwertrenditen der Schuldner, die dem gleichen Sektor zugeordnet sind, stärker ist

als zwischen den Firmenwertrenditen der Schuldner aus verschiedenen Sektoren. Anders als

erwähnter Copula-Ansatz beschränkt sich das VCG-Modell nicht auf eine statische Darstel-

lung eines Kreditportfolios. Vielmehr kann es immer dann in der Finanzmodellierung einge-

setzt werden, wenn Anwendung multivariater Lévy-Prozesse, deren Pfade Sprünge aufweisen

und die eine hierarchische Abhängigkeitsstruktur besitzen, sinnvoll erscheint.

Die Einführung von Sprüngen in die Modellierung stochastischer Renditeprozesse beseitigt

solche Mängel eines Gaußschen bzw. Brownschen Modells wie antizipierte Ausfallzeiten, sym-

metrische und mesokurtische Wahrscheinlichkeitsverteilung der Renditen sowie ausschließ-

lich lineare Abhängigkeiten. Die Sprünge werden eingeführt, indem stochastische Zeiten

zur Evaluierung der Brownschen Renditeprozesse eingesetzt werden. Eine stochastische Zeit

repräsentiert den unregelmäßigen Informationsfluss auf dem Markt. Die Flankenabhängigkeit

der Assetrenditen im gleichen Sektor geht somit auf die gleichzeitig stattfindenden Sprünge

in den Renditeprozessen zurück. Diese Sprünge finden genau dann statt, wenn die für diesen

Sektor relevanten Informationen eintreffen. Die sektorspezifischen stochastischen Zeiten wer-

den ihrerseits auf einer einheitlichen, marktübergreifenden stochastischen Zeit evaluiert. Die

Letztere repräsentiert den unregelmäßigen Fluss solcher Informationen, die für alle Sektoren

relevant sind, wie z.B. Informationen über die gesamtwirtschaftlichen Bedingungen. Die

beschriebene zweistufige Zeitänderung, die in einer hierarchischen Abhängigkeitsstruktur der

Assetrenditen resultiert, stellt eine Innovation in der Finanzmodellierung dar.

Um das Ausmaß des Modellrisikos abzuschätzen, führe ich eine Simulationsstudie durch.

Ich betrachte stilisierte Portfolien mit einer vorgegebenen linearen Korrelationsstruktur aber

unterschiedlichen Eigenschaften in Bezug auf die Flankenabhängigkeit der Risikofaktoren. Die

Ergebnisse zeigen, dass ein Gaußsches Modell das Portfoliotailrisiko erheblich unterschätzt,

wenn die Annahme der asymptotisch unabhängigen Flanken nicht zutrifft. So ergibt das hier

vorgestellte Modell Werte des Value at Risk und Expected Shortfall (zu 99,9%), die für ein

stilisiertes Portfolio aus 100 (1.000) Exposures um ca. 25% (50%) höher liegen als im Falle

des Gaußschen Modells. Somit würde die Anwendung des hier vorgestellten Ansatzes zur

Kreditportfoliomodellierung in einer konservativen Einschätzung unerwarteter Portfoliover-

luste und, damit einhergehend, in einer höheren Kapitalunterlegung der Banken resultieren.

Dies könnte letztlich einen stabilisierenden Effekt auf das gesamte Finanzsystem haben.
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A hierarchical model

of tail dependent asset returns

for assessing portfolio credit risk1

1. Introduction

This paper introduces a multivariate stochastic model for logarithmic asset returns which

accounts for such stylised facts as skewness and excess kurtosis of the marginal probability

distributions of asset returns and tail dependence of their joint distributions. The model is

derived by evaluating initially independent Brownian motions, grouped by sectors, at the

sector-specific stochastic chronometers. This stochastic time represents the irregular infor-

mation flow relevant for doing business in the respective sector. As the companies in different

sectors may also not be entirely independent of one another, the sector-specific stochastic

chronometers are themselves evaluated at an independent common stochastic chronometer

that represents the flow of general information relevant for all firms in the market, such as

changes in the overall macroeconomic conditions.

The specific time-change procedure described is a novelty of my approach. To the best of

my knowledge, it is the first paper to utilise a two-stage stochastic time change in order to gen-

erate multidimensional Lévy processes with a hierarchical dependence structure. The model’s

hierarchical structure has the advantage of allowing for a stronger dependence within given

economic or geographic sectors or certain sub-portfolios as compared to a weaker dependence

between the sectors/sub-portfolios. Moreover, the magnitude of sector-specific parameters

governing tail dependence may vary from one sector to another.

Both distinguishing properties of the specific multivariate model introduced in this paper

– (i) the hierarchical dependence structure and (ii) the tail dependence – are highly relevant

from the perspective of credit portfolio modelling. The first property is desirable because

companies in the same sector usually exhibit stronger dependence. The degree of dependence

between the companies operating in different sectors, however, is lower but still different from

zero because of the influence of a common macroeconomic environment. The second property

is crucial because it allows for mutually dependent extremely negative asset returns. And

since the structural approach for credit risk modelling explains the failure of a company as

its asset value dropping below the value of its outstanding debt, the lower-tail dependence of

1Natalia Puzanova, Deutsche Bundesbank, Financial Stability Department, Wilhelm-Epstein-Str. 14, 60431
Frankfurt/Main, Germany, e-mail: natalia.puzanova@bundesbank.de.
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asset returns makes the clustering of default events possible. In turn, joint default events are

the main source of tail risk in a portfolio, as measured by Value at Risk or Expected Shortfall.

Summarising, the paper contributes to the existing literature on the (multivariate) stochas-

tic credit risk modelling in the following way:

• It introduces an iterative stochastic time change resulting in a Lévy process with dif-

ferent dependence properties of its multivariate parts. This processes might prove ad-

vantageous for the dynamic modelling of asset returns, especially if individual returns

are skewed and/or leptokurtic and returns from certain predefined sectors exhibit (an

asymmetric) tail dependence.

• The paper investigates the dependence properties of the underlying static marginal

copulas. At the lower level of hierarchy, the marginal copulas firstly join single asset

returns within given sectors or sub-portfolios, allowing for tail dependence. At the

higher level of hierarchy, asset returns from different sectors/sub-portfolios are linked

together such that inter-sector dependence is weaker than intra-sector dependence.

• The paper also provides a practical link between the concept of nested Archimedean

copulas for joint characteristic functions and the multivariate distributions arising from

an iterative stochastic time change, a link which merits further investigation.

• Considering an application to portfolio credit risk modelling in a static setup, the pa-

per illustrates the extent of model risk for the portfolio tail risk measures primarily

compared to a Gaussian framework with the same asset correlation.

• For the purposes of credit portfolio modelling, the paper provides an Importance Sam-

pling algorithm for the proposed framework, which may considerably improve simulation

efficiency.

Regarding the related literature, I refer to the seminal paper by Madan et al. (1998), in

which the authors introduce the Variance Gamma process into the option price literature.

I also refer to the papers on using Gamma-time-changed Brownian motion in the portfolio

context by Luciano and Schoutens (2006) and Moosbrucker (2006), among others. It is

worth stressing, however, that those papers which focus on the portfolio settings impose

strict restrictions on the choice of dependence parameters. That is, even if certain sub-

portfolios can be defined within the portfolio under consideration, the parameters associated

with the underlying stochastic time have to be identical across the sub-portfolios. In this

paper, however, I use a specific model construction to avoid any such parameter restrictions,

allowing the sub-portfolio-specific parameters to be set individually.

In general, Lévy processes provide a convenient framework to model the empirical phenom-

ena from finance: since the sample paths can have jumps, the generating distributions can

be fat-tailed and skewed. I refer to Schoutens (2005) and Cont and Tankov (2003) for more

2



useful information on the application of Lévy processes in finance. The particular interest in

time-changed Lévy processes for multivariate modelling arises from the hypothesis of common

jump arrivals across different assets, which can induce a strong dependence in the tail. This

hypothesis was investigated by Bollerslev et al. (2011), who found strong evidence for asymp-

totic tail dependence in stock returns, with most of it directly attributable to the systematic

jump tails and strong dependencies between the sizes of the simultaneously occurring jumps.

Although my model does not account for dependencies between the jumps’ sizes, this feature

can be incorporated by using (positively) correlated Brownian motions at the first modelling

stage. I leave this model extension, however, to future research.

The remainder of the paper is structured as follows. Section 2 provides details on the

derivation of the dynamic hierarchical model for tail-dependent asset returns, its static copula

and on a Monte Carlo sampling algorithm. Section 3 gives an application example and

illustrates the model risk in terms of the portfolio tail losses for dependence structures with

and without tail dependence. In order to increase efficiency of portfolio tail risk simulation,

section 4 elaborates an Importance Sampling algorithm for the VCG setting. Section 5

concludes and summarises the main results of the paper.

2. The Variance Compound Gamma model

I begin this section by deriving a novel multivariate model for logarithmic asset returns

which I term Variance Compound Gamma (VCG). The underlying stochastic process is a

four-parameter Lévy process designed as a time-changed multivariate uncorrelated Brownian

motion with drift. The random time at which the Brownian motion is evaluated is given

by an increasing Lévy process (subordinator) termed Compound Gamma (CG). The CG

process itself is a time-changed Gamma process evaluated at a random time given by another

Gamma process. This specific two-stage time change procedure has a major advantage in

that it creates hierarchical dependence between asset return processes.

This section is structured as follows. I introduce the VCG process for dependent asset

returns in subsection 2.1. I consider its implications for the static dependence structure

in subsection 2.2 and provide a sampling algorithm for the VCG random variables in sub-

section 2.3. In subsection 2.4 I further investigate the properties of the implicit marginal

copulas.

2.1. Multivariate process for logarithmic asset returns

The departing point in the construction of the VCG model are Brownian logarithmic asset

returns {Ri}t≥0 for n companies under consideration:

Ri(t) = μi t+ σi Wi(t), i = 1, . . . , n. (2.1)

3



In this equation μ �= 0 and σ > 0 are the drift and volatility parameters of the Brownian

motion respectively, and {W (t)}t≥0 denotes a Wiener process.

Using Brownian definition (2.1) would have several disadvantages, which have been pointed

out by Luciano and Schoutens (2006), among others: a symmetric and mesokurtic distribution

of the asset return Ri(t) for all t > 0; the almost surely continuous sample paths of the return

process {Ri(t)} and, hence, anticipated default times; a dependence structure which only

allows for linear correlation. To overcome those drawbacks, the authors suggest applying a

stochastic time change, i.e. evaluating the Brownian process at a random time. The random

time is a stochastic process introduced instead of the deterministic variable t. It can be

interpreted as business time, i.e, an information arrival process. When the random time used

is a subordinator, its main distinguishing properties are non-decreasing sample paths and

stationary and independent increments (see Sato, 1999, p. 137). Therefore, as Luciano and

Schoutens put it, three following properties of information flow arise:

• the amount of available information cannot decrease;

• the amount of information released within one period of time only depends on the length

of that period;

• the amount of new information is not affected by the information already released.

The authors work out the details in the case of a Gamma-time change, which results in

a (pure jump) Variance Gamma process of asset returns. They evaluate all n individual

Brownian motions on a common Gamma process introducing a stochastic business time in

which the general market operates. That way, dependence properties are identical for all

firms in focus, irrespective the different sectors in which they may operate.

I extend the approach described by constructing stochastic business times which are specific

to certain groups of firms and are subordinated with respect to the common business time of

the general macroeconomic environment. Let {Yj(t)}t≥0, j = 1, . . . ,m, where m denotes the

number of sectors in the market, be a set of independent subordinators. A process {Yj(t)}
represents the information flow only relevant for the firms operating in the sector j. I time-

change each of those processes by evaluating them on a common stochastic time denoted

by
{
Zmrkt(t)

}
t≥0

. This common subordinator
{
Zmrkt(t)

}
represents the general information

flow relevant for every firm in the market, irrespective of which industry sector it belongs to.

It may be thought of as information about changes in the overall macroeconomic conditions.

According to Sato (1999, p. 201), the resulting interdependent Lévy processes {Zj(t)}t≥0

with

Zj(t) := Yj

(
Zmrkt(t)

)
, j = 1, . . . ,m, (2.2)

are again subordinators and thus can act as business times. A business time {Zj(t)} in-

corporates both the information specific for the sector j and the general macroeconomic

information.

4



Now, let {Rji}t≥0 denote the asset return process of the ith firm in sector j. Than, the

model for asset returns can be written as follows:

Rji(t) = μji Zj(t) + σji Wji

(
Zj(t)

)
, (2.3)

Zj(t) = Yj

(
Zmrkt(t)

)
,

i = 1, . . . , nj, j = 1, . . . ,m,
∑m

j=1
nj = n,

the processes {Wji(t)}, {Yj(t)} and
{
Zmrkt(t)

}
being mutually independent. The represen-

tation (2.3) can be generalised by adding a drift term αji t with αji �= 0.

Thus far, the model specification has been kept very general. It holds for all subordinator

settings
{
Zmrkt(t)

}
and {Yj(t)}. In the following, though, I provide details on a specific

hierarchical model which results from using Gamma subordinators for the business times{
Zmrkt(t)

}
and {Yj(t)}. The business time {Zj(t)} then arises as a Gamma subordinator

evaluated at a Gamma random time and is therefore termed Compound Gamma (CG).

In order to complete the model specification, I need to define parameters of the Gamma

processes involved. A Gamma process has independently Gamma-distributed increments

characterised by two parameters: the shape parameter β > 0 and the rate or inverse scale

parameter λ > 0. Thus, for each t > 0,

Zmkrt(t) ∼ Γ
(
t βZmkrt , λZmkrt

)
, (2.4)

Yj(t) ∼ Γ
(
t βYj

, λYj

)
. (2.5)

Taking into account the scaling property of a Gamma process {X(t)}:

b X(t; β, λ)
d
= X(t; β, λ/b), b > 0 ∀ t > 0,

a scaling constant b may always be chosen such that λZmkrt/b = βZmkrt holds in (2.4). Further-

more, because any scaling constant of the subordinator
{
Zmkrt(t)

}
can be absorbed by the

shape parameter of the subordinand {Yj(t)} (to see it, put bZmkrt(t) instead of t into (2.5)),

I define βZmkrt = λZmkrt without loss of generality. Because of

βZmkrt =
1

t

E
[
Zmrkt(t)

]2
var

(
Zmrkt(t)

) and λZmkrt =
E
[
Zmrkt(t)

]
var

(
Zmrkt(t)

) ,
βZmkrt = λZmkrt implies E

[
Zmrkt(t)

]
= t. Thus, the only free parameter we can decide on for

the process parametrisation is the variance of the Gamma process
{
Zmkrt(t)

}
at t = 1, which

I denote by κZmkrt :

Zmrkt(t) ∼ Γ(t/κZmrkt , 1/κZmrkt) ∀t > 0. (2.6)

Based on a similar scaling property of the CG process, and due to the fact that each scaling

5



constant of the CG subordinator can be absorbed by the parameters of the Brownian motion

because of

b W (t)
d
= W (b2 t), b > 0 ∀ t > 0,

I choose βYj
= λYj

= 1/κYj
with κYj

:= var
(
Yj(1)

)
, i.e.

Yj(t) ∼ Γ(t/κYj
, 1/κYj

) ∀t > 0. (2.7)

This way, the CG process {Zj(t)} will be characterised by two distribution parameters: κZmrkt

and κYj
. One implication of (2.7) is E

[
Zj(t)

]
= t, j = 1, . . . ,m, i.e. the stochastic business

time equals the physical time in expectation.

For a fixed t the random variable Zj(t) follows the CG distribution. The CG distribution,

denoted here by f(·), can be specified as a mixture of a Gamma density function, denoted by

g(·), with a stochastic, Gamma-distributed shape parameter:

f
(
x;κZmrkt , κYj

)
=

∫ ∞

0

g

(
x;

τ

κYj

,
1

κYj

)
g

(
τ ;

t

κZmrkt

,
1

κZmrkt

)
dτ. (2.8)

Thus, in this paper I use the term “Compound Gamma” in the sense of Giese (2004) and not

in the sense of a mixture over the stochastic scale parameter as introduced by Dubey (1970).

Even though the CG distribution does not posses a closed-form expression, it is sufficient

to know the Laplace transform (LT) of the CG variable Zj(t). This LT can be derived by

means of the identity for the subordinated Lévy processes given in Sato (1999, p. 201):2

ϕZj(t)(ν) = ϕZmrkt(t)

[−t−1 ln
{
ϕYj(t)(ν)

}]
. (2.9)

Since the LT of the Gamma variable Zmrkt(t) is defined as

ϕZmrkt(t)(ν) =
(
1 + νκZmrkt

)−t/κ
Zmrkt , (2.10)

I can write for (2.9):

ϕZj(t)(ν) =

[
1 +

κZmrkt

κYj

ln
(
1 + ν κYj

)]−t/κ
Zmrkt

. (2.11)

Based on (2.11), the characteristic function (cf) of the asset return process defined in (2.3)

can be derived according to the formula in Sato (1999, S. 197 f.) for the general case of a

Lévy subordination. Because {Rji(t)}t≥0 arises from the Brownian subordination with a CG

process, I term this process Variance Compound Gamma (VCG), similarly to the Variance

Gamma process introduced into the option pricing literature by Madan et al. (1998). The

2ϕX(·) denotes the LT of the positive random variable X with ϕX(ν) = E
[
exp{νX}].

6



VCG process is a pure-jump Lévy process whose cf is given by:3

φRji(t)(θ) = ϕZj(t)

[−ψXji
(θ)
]

(2.12)

=

[
1 +

κZmrkt

κYj

ln

{
1− κYj

(
iθμji − 1

2
θ2σ2

ji

)}]−t/κ
Zmrkt

, (2.13)

where iμjiθ − 1
2
θ2σ2

ji =: ψXji
(θ) is the characteristic exponent of the normal distribution.

The increments of the asset return process {Rji(t)} are independently VCG distributed.

The VCG distribution arises from a normal mean-variance mixture with a CG mixing prob-

ability density (see also equation (2.15) below) and is not known in closed form. Therefore,

I only derive an integral expression for the VCG probability distribution function (pdf) in

appendix A. Due to its four parameters μji ∈ R, σji, κYj
, κZmrkt ∈ R+, the VCG distribution

possesses a flexible functional form, which is illustrated in Figure 1 for t = 1. The plots were

obtained by means of inverting the cf (2.13) using a fast Fourier transform algorithm.

The moments of a VCG process can be calculated as polynomials in cumulants. Because the

cf is given by a simple closed formula (2.13), cumulants of a VCG process can be obtained as

derivatives of the cumulant-generating function defined as the logarithm of the cf. But for the

cumulants of higher orders it is easier to use the mixture representation of the random variable

Rji(t) and to apply the law of total cumulance introduced by Brillinger (1969). I give the first

four moments – mean, variance, skewness and excess kurtosis – in appendix A. Referring to

those moments, I describe μji as a skewness parameter, σji as a variance parameter and κYj

and κZmrkt as kurtosis parameters.

Figure 2 shows a simulated sample path of a Gamma process (a), a realisation of the

CG process based thereupon (b) and a realisation of the corresponding VCG process (c).

Additionally, I plot in Figure 3 some simulated sample paths of two correlated VCG processes.

Since the processes arise as the uncorrelated Brownian motions evaluated on the same CG

random time, the jumps occur at identical times, but the direction and the size of the jumps

are conditionally independent.

In the next subsection I take a closer look at the static multivariate dependence structure

implied by the VCG model.

2.2. Dependence structure

In this subsection, I investigate in detail the dependence structure resulting from the two-

stage time change described previously. For this purpose, I focus on the static case of the

3φX(·) and ψX(·) denote the cf and characteristic exponent of the random variable X with φX(θ) =
E
[
exp{iθX}] = exp

{
ψX(θ)

}
.
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Figure 1: The shape of the Variance Compound Gamma probability distribution function for
selected parameters.

model (2.3) with t = 1 and, thus, drop the time index t:

Rji = μji Zj + σji

√
ZjWji. (2.14)

This stochastic model has the following mixture representation:

FRji
(x) =

∫ ∞

0

Φ

(
x− μji zj
σji

√
zj

)
dHZj

(zj) (2.15)

≡
∫ ∞

0

∫ ∞

0

Φ

(
x− μji zj
σji

√
zj

)
dMZj |Zmrkt(zj | zmrkt) dMZmrkt(zmrkt).

This is the mixture representation of the univariate VCG cumulative distribution function

(cdf) F (·) of an asset-return variable. Here I denote a Gamma cdf by M(·), a CG cdf by H(·)
and the standard Gaussian cdf by Φ(·). Notation in form Y | X refers to the distribution of

a random variable Y conditional on X.
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(a) Gamma process
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(b) CG process
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(c) VCG process

Figure 2: Simulated sample paths of Gamma, Compound Gamma (CG) and Variance Com-
pound Gamma (VCG) processes with parameters μ = −0.02, σ = 0.2, κY = 0.01
and κZmrkt = 0.01. The sample path of the Gamma process was used as a realisa-
tion of the stochastic time for the simulation of the CG process. Subsequently, the
sample path of the CG process was used for the simulation of the VCG process.
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(a) μ1 = −0.02, μ2 = −0.03, σ1 = 0.2,
σ2 = 0.25
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(b) μ1 = −0.02, μ2 = 0.03, σ1 = 0.2,
σ2 = 0.25

Figure 3: Simulated sample paths of two correlated Variance Compound Gamma (VCG) pro-
cesses. Each pair of processes was evaluated based on a realisation of the Compound
Gamma stochastic time with parameters κY = 0.01 and κZmrkt = 0.01.

The hierarchical framework introduced in subsection 2.1 implies that, firstly, conditional

on a realisation of the market business time, asset returns of the companies in one sector

are independent from those in other sectors. Additionally, when realisations of the sector-

specific business times are also known, the asset returns of all companies become mutually

independent. Keeping this in mind and taking into account (2.15), I can write the mixture

9



representation of the multivariate asset return distribution as follows:

FR(x) =

∫ ∞

0

∫ ∞

0

n1∏
i=1

Φ

(
x1i − μ1iz1
σ1i

√
z1

)
dMZ1|Zmrkt(z1 | zmrkt)× . . . (2.16)

×
∫ ∞

0

nm∏
i=1

Φ

(
xmi − μmizm
σmi

√
zm

)
dMZm|Zmrkt(zm | zmrkt) dMZmrkt(zmrkt).

Although the corresponding pdf can only be given in its integral representation (see ap-

pendix A), the joint cf of asset returns has a relatively simple form (cf. (2.9) to (2.13)):

φR11,...,Rmnm
(θ11, . . . , θmnm) = EZmrkt

[
m∏
j=1

EZj |Zmrkt

[
nj∏
i=1

φRji|Zj
(θji)

]]
(2.17)

= ϕZmrkt

[
−

m∑
j=1

ln

{
ϕYj

(
−

nj∑
i=1

ψXji
(θji)

)}]

=

[
1 + κZmrkt

m∑
j=1

1

κYj

ln

{
1− κYj

nj∑
i=1

(
iθjiμji − 1

2
θ2jiσ

2
ji

)}]−1/κ
Zmrkt

(2.18)

The linear dependence between VCG-distributed asset returns can be described by means

of the Pearson’s correlation coefficient. Correlation between the asset returns of any two

firms arises from the common business time they are evaluated at. Within a sector j both

the general market and the sector-specific stochastic times take part in the covariation of

asset returns. The corresponding correlation coefficient is given by:

corr(Rji, Rjk) =
μji μjk (κZmrkt + κYj

)√
σ2
ji + μ2

ji(κZmrkt + κYj
)
√
σ2
jk + μ2

jk(κZmrkt + κYj
)
. (2.19)

For any two firms which belong to distinct sectors j and l, the covariation is only due to the

market business time, and the correlation coefficient is given by:

corr(Rji, Rlk) =
μji μlk κZmrkt√

σ2
ji + μ2

ji(κZmrkt + κYj
)
√
σ2
lk + μ2

lk(κZmrkt + κYl
)
. (2.20)

When both skewness parameters have the same sign, the asset returns are positively corre-

lated. Otherwise they are negatively correlated. If at least one of the firms in a pair under

consideration has a zero skewness parameter, the asset returns are uncorrelated. Neverthe-

less, they are still associated, since they are driven by a common factor. Apart from the

skewness parameters, the magnitude of the linear correlation coefficient also depends on the

variance parameters of the Gamma variables: the smaller a parameter κ(·), i.e. the closer the

corresponding business time is to the physical time, the smaller the correlation between two

10



asset returns.

As for the non-linear dependence structure, the overall, intra-sector and inter-sector copulas

implied by the VCG model of asset returns can only be specified implicitly. The overall

implicit copula, which joins n marginal VCG distributions to the multivariate distribution

given in (2.16), has the general form:

C(u11, . . . , umnm) = FR

(
F−1
R11

(u11), . . . , F
−1
Rmnm

(umnm)
)
. (2.21)

The arguments uji are probability-integral transforms of Rji: uji = FRji

(
Rji = xji

)
. I term

the function in (2.21) the hierarchical VCG copula.

Two special cases of marginal copulas of (2.21) are of interest. Firstly, the nj-dimensional

marginal copula of the asset returns Rj, all of which belong to the same sector j:

C(uj1, . . . , ujnj
) = FRj

(
F−1
Rj1

(uj1), . . . , F
−1
Rjnj

(ujnj
)
)
. (2.22)

This copula links marginal VCG distributions which share the same sector-specific business

time Zj, to the multivariate VCG distribution of vector Rj, with a joint cdf given by

FRj
(xj) =

∫ ∞

0

nj∏
i=1

FRji|Zj
(xji) dHZj

(zj)

=

∫ ∞

0

nj∏
i=1

Φ

(
xji − μjizj
σji

√
zj

)
dHZj

(zj). (2.23)

I term the implicit intra-sector copula (2.22) the VCG copula.

The second special case is the marginal copula of asset returns Ri, each of which belongs

to a different sector:

C(u1i, . . . , umi) = FRi

(
F−1
R1i

(u1i), . . . , F
−1
Rmi

(umi)
)
. (2.24)

This copula joins marginal VCG distributions associated with different sector-specific business

times Zj to a multivariate grouped VCG distribution given by4

FRi
(xi) =

∫ ∞

0

m∏
j=1

FRji|Zmrkt(xji) dMZmrkt(zmrkt) (2.25)

=

∫ ∞

0

m∏
j=1

∫ ∞

0

Φ

(
xji − μjizj
σji

√
zj

)
g

(
zj;

zmrkt

κYj

,
1

κYj

)
dzj · g

(
zmrkt;

1

κZmrkt

,
1

κZmrkt

)
dzmrkt.

I term the implicit inter-sector copula (2.24) the grouped VCG copula.

4Note that I do not use the term “grouped” copula in the sense of Daul et al. (2003), who introduced a meta
t-distribution based on comonotone common factors.
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Whereas there is no closed solution for the copulas implied by the multivariate VCG setting,

it is easy to define explicit copulas for the corresponding joint cfs. In fact, they can be specified

in terms of the Hierarchical Archimedean Copulas (HAC), as shown in appendix B. Inter-

estingly, already Wang (1999) pointed out that copula formulas cab be applied to marginal

cfs in order to obtain some new multivariate distributions. This would also allow applica-

tion of efficient numerical fast Fourier transform techniques for calculating the aggregate loss

distribution of correlated risks.

I adapt the copula concept to the marginal cfs of asset returns. Defining the arguments

of the copulas as νji := φRji
(θji) (see (2.13)) instead of uji, I obtain the following HAC

representation of the overall cf (2.18):

CZmrkt

(
CZ1

(
v11, . . . , v1n1

)
, . . . , CZm

(
vm1, . . . , vmnm

))

= ϕZmrkt

[
m∑
j=1

ϕ−1
Zmrkt ◦ ϕZj

(
nj∑
i=1

ϕ−1
Zj
(vji)

)]
. (2.26)

The corresponding nj-dimensional marginal Archimedean copula for the companies belonging

to the same sector j is then given by:

CZj

(
vj1, . . . , vjnj

)
= ϕZj

[
nj∑
i=1

ϕ−1
Zj
(vji)

]
(2.27)

and the copula for the companies belonging to different sectors is given by:

CZmrkt
(
v1i, . . . , vm i

)
= ϕZmrkt

[
m∑
j=1

ϕ−1
Zmrkt(vji)

]
. (2.28)

The functions (2.26) to (2.28) turn out to be exactly the same as the conventional (nested)

Archimedean copulas which arise from a Gamma-mixture of powers introduced by Puzanova

(2011).

Before I proceed to the properties of the copulas introduced, I first provide a sampling

algorithm for the hierarchial VCG model, which I will use for simulation purposes.

2.3. Sampling

In order to generate realisations from the hierarchical VCG model with the joint distribution

function defined in (2.16), only algorithms for the simulation of Gamma and normal random

variables are needed. Such algorithms belong to the standard configuration of statistical and

mathematical software.
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Sampling algorithm 1: Monte Carlo for VCG asset returns

• Sample Zmrkt ∼ Γ(1/κZmrkt , 1/κZmrkt).

• Sample Zj | Zmrkt, j = 1, . . . ,m from the independent Gamma distributions

with parameters
(
Zmrkt/κYj

, 1/κYj

)
.

• Sample Wji
iid∼ N(0, 1), j = 1, . . . ,m, i = 1, . . . , nj.

• The VCG realisations are given by

Rji = μji · (Zj | Zmrkt
)
+ σji

√
Zj | ZmrktWji.

2.4. Copula properties

To investigate the dependence properties of the copulas implied by the VCG model and

to attain some feeling for their sensitivity with respect to the parameters, I first use the

information provided by contour and scatter plots for the two-dimensional marginal copulas.

Since a copula function is invariant under any strictly increasing transformation of the

marginal distributions, I begin with the standardisation of asset returns. Using the expecta-

tion and variance given in (A.1) and (A.2) respectively, I can write the following stochastic

representation for standardised asset returns R̃ji:

R̃ji = −μji + μjiZj +
√
Zj

[
1− μ2

ji(κZmrkt + κYj
)
]
Wji. (2.29)

Now the location parameter is different from zero: it equals −μji. The scale parameter of

the Gaussian part σji has no effect on the dependence structure: it disappears in the course

of the standardisation procedure.

To produce a contour plot of a two-dimensional VCG copula according to representa-

tion (2.22), I make use of the cf of VCG returns, which can be inverted numerically by means

of fast Fourier transform. The results for various parameter settings are plotted in Figure 4.

For the usual case of negatively skewed asset returns, the plotted level curves lie between

those of the maximum copula and independence copula (i.e. the copula of comonotone ran-

dom variables): cf. Figure 5. Moreover, the positive dependence is stronger for larger values

of the shape parameters.

In addition to this information, the scatter plots in Figure 6, generated by simulation,

provide insight into how strongly the underlying random variables are associated. On the one

hand, we observe more points on the increasing diagonal for the larger parameter values, which

is evidence for a stronger positive association. On the other hand, the pairwise realisations

cluster in the lower left-hand corner of a unit square, indicating lower-tail dependence which

is stronger for larger values of the skewness parameters μ.
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(d) μ1 = μ2 = −0.9, κY = 0.9, κZmrkt = 0.3

Figure 4: Contour plots of a Variance Compound Gamma copula for different parameter
values. Obtained using numerical techniques.
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Figure 5: Contour plots of the maximum, independence and minimum copulas.

It is worth noting that the (tail) dependence properties of the jointly VCG distributed vari-

ables change depending on the sign of the skewness parameters. If both skewness parameters
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are positive, the underlying random variables are still positively dependent and the contour

plots do not change, but the points in the scatter plots cluster in the upper right-hand cor-

ner of a unit square (a 180◦ rotation), indicating upper tail dependence. If only one of the

skewness parameters is positive, the contour lines lie between those of the independence and

minimum copula (i.e. the copula of countermonotone random variables; see Figure 5) since

the underlying random variables are negatively dependent. As for the scatter plots, they

undergo a reflection across either the horizontal (if μ1 < 0 and μ2 > 0) or vertical (if μ1 > 0

and μ2 < 0) line which passes through the point 0.5.
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(a) μ1 = μ2 = −0.5, κY = 0.3, κZmrkt = 0.2
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(b) μ1 = μ2 = −0.8, κY = 0.5, κZmrkt = 0.5
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(c) μ1 = μ2 = −0.9, κY = 0.7, κZmrkt = 0.3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

u1

u 2

(d) μ1 = μ2 = −0.9, κY = 0.9, κZmrkt = 0.3

Figure 6: Scatter plots of 1,000 realisations from the Variance Compound Gamma copula for
different parameter values.

The lower-tail dependence property of the VCG asset return model can be interpreted as

the tendency of extreme, negative asset returns to occur simultaneously, e.g. during market

crashes and economic downturns. In statistical terms, the coefficient of lower-tail dependence,

λL (upper-tail dependence, λU) expresses the limiting conditional probability of the joint
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exceedance of a lower (upper) quantile. For continues cdfs, those coefficients are given as

λL = lim
u↓0

C(u, u)

u
, (2.30)

λU = lim
u↑1

1− 2u+ C(u, u)

1− u
, (2.31)

provided the limits exist. If the corresponding limit lies in the interval (0, 1] than the copula

exhibits tail dependence.

Since the tail dependence coefficients for the VCG copula cannot be computed analytically, I

use the sample versions of λL and λU in order to gauge the magnitude of the tail dependence.

The sample estimates based on formulae (2.30) and (2.31) are discussed, for example, in

Schmidt and Stadtmüller (2006). Let {(x1, y1), (x2, y2), . . . , (xs, ys)} denote a random sample

of s observations from a vector (X, Y ). Let k ∈ (0, 1) be the threshold parameter to be

chosen by the statistician. Then the sample version of the tail dependence parameters can

be represented as:5

λ̂L =
1

k · s
s∑

i=1

11
(
Rank(xi) ≤ k · s and Rank(yi) ≤ k · s), (2.32)

λ̂U =
1

k · s
s∑

i=1

11
(
Rank(xi) > s− k · s and Rank(yi) > s− k · s).

In Figure 7 I illustrate the sample tail dependence coefficients for two parameter settings.

In both cases the estimate of λL shown for u < 0.5 converges to a value greater than zero,

indicating positive lower-tail dependence. For u > 0.5 the estimate of λU converges to zero,

indicating no upper-tail dependence.

In addition to the graphical illustrations, I report in Table 1 the sample version of the

concordance measure known as Kendall’s tau and the estimates of the lower-tail dependence

coefficient for the two-dimensional VCG copula for a wider range of parameters. Both esti-

mates are calculated on the basis of a simulated sample of jointly VCG distributed returns.

Let us first consider the concordance. Again, let {(x1, y1), (x2, y2), . . . , (xs, ys)} denote a

random sample of s observations from a vector (X, Y ). Then pairs (xi, yi) and (xj, yj) are

concordant if either xi < xj and yi < yj, or xi > xj and yi > yj. They are discordant if either

xi < xj and yi > yj, or xi > xj and yi < yj. Nelsen (1999, pp. 125-126) explains that a pair

of random variables is concordant if “large” values of one tend to be associated with “large”

values of the other and gives the sample version of Kendall’s tau as

τ̂ =
c− d

c+ d
,

511(A) is an indicator function which equals one if the condition A is true and zero otherwise.
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Figure 7: A graphical representation of the tail dependence parameters for a two-dimensional
Variance Compound Gamma (VCG) copula for two different parameter sets. Lower
and upper tail dependence coefficients are given for u < 0.5 and u > 0.5 respectively,
based on 106 simulated realisations from the VCG copula.

where c denotes the number of concordant pairs in the random sample, and d denotes the

number of discordant pairs. The consistent monotonically increasing pattern in the estimates

of τ listed in the left-hand panel of Table 1 indicates that the VCG copula family is ordered

with respect to each of the parameters μ, κY and κZmrkt in the sense of concordance ordering.

Secondly, we will turn to the lower-tail dependence property. I use expression (2.32) for

the estimation of the lower-tail dependence coefficient and set the threshold value k to 1%.

That is, for the estimation I only use 1% of the smallest realisations. The right-hand panel

of Table 1 shows that the magnitude of lower-tail dependence for the two-dimensional VCG

copula is increasing in the copula parameters.

Overall, let me conclude that the degree of positive dependence and the dependence of

extremely negative realisations of jointly VCG distributed random variables both increase

along with increasing values of skewness and kurtosis parameters. An evident increase in

positive dependence which goes along with rising variance of the common CG mixing variable

given by var(Zj) = κZmrkt + κYj
is due to the growing impact of the stochastic business time

on the otherwise independent random variables. An increase in the absolute values of the

negative skewness parameters goes along with a pronounced rise in lower-tail dependence since

negative realisations of both associated random variables are more likely to occur together.

As for the two-dimensional grouped VCG copula, which is the copula of asset returns of

companies operating in two different sectors, I abstain from a graphical representation of its

dependence properties. The copula’s properties do not depend on the sector-specific param-

eter κY . Moreover, in simulation studies for this copula I could not identify any evidence of

lower-tail dependence. Apart from that, the inter-sector, grouped VCG copula is smaller (in
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Table 1: Kendall’s tau and lower-tail dependence for the VCG copula

τ̂ λ̂L

κZmrkt μ κY = 0.2 κY = 0.5 κY = 0.9 κY = 0.2 κY = 0.5 κY = 0.9

0.1 −0.5 0.0450 0.0793 0.1210 0.0624 0.0970 0.1457
−0.7 0.0841 0.1610 0.2687 0.0766 0.1521 0.2491
−0.9 0.1420 0.2926 0.5581 0.1076 0.2327 0.4994

0.2 −0.5 0.0543 0.0887 0.1328 0.0706 0.1098 0.1610
−0.7 0.1151 0.1892 0.3017 0.1010 0.1710 0.2743
−0.9 0.1935 0.3502 0.6690 0.1465 0.2700 0.6013

0.3 −0.5 0.0671 0.1001 0.1445 0.0797 0.1170 0.1703
−0.7 0.1408 0.2181 0.3324 0.1191 0.1913 0.3004
−0.9 0.2420 0.4160 0.8351 0.1809 0.3209 0.7896

Note: The sample versions of Kendall’s tau (τ) and of the lower-tail dependence coefficient
(λL) are given for the two-dimensional Variance Compound Gamma (VCG) copula for various
parameter settings. Parameter μ is always identical for a pair of random variables. Each
estimate is computed based on 106 realisations of the jointly VCG distributed standardised
variables specified in (2.29). I use 1% of the smallest realisations in order to estimate λL.

the sense of concordance ordering) than the intra-sector VCG copula for two VCG random

variables, as can be seen by comparing the results in Table 2 with those in Table 1. Because of

the consistent monotonically increasing pattern in the estimates of τ listed in Table 2, I con-

clude that the grouped VCG copula family is ordered with respect to each of the parameters

μ and κZmrkt .

Finally, addressing the issue of model risk, I show by means of a graphical representation

in Figure 8 that the tail behaviour of two models with exactly the same correlation of asset

returns may be quite different. I compare realisations of two jointly normally distributed

random variables with those of the VCG-distributed variables. I calibrate the parameters of

the bivariate VCG distribution so as to achieve the level of linear correlation specified for

the Gaussian model. In the two upper scatter plots of uncorrelated asset returns we observe

that, under the VCG distribution assumptions, large negative and positive realisations are

more likely due to positive excess kurtosis driven by variance parameters of Gamma random

times. For the positive correlation (the two lower scatter plots), negative skewness of VCG

random variables leads to lower-tail dependence not observed in the Gaussian case. Applied

for the purposes of credit risk modelling, this implies more joint default events and larger

credit portfolio losses, as will be seen in the next section.
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Table 2: Kendall’s tau for the grouped VCG copula

τ̂

κZmrkt μ = −0.5 μ = −0.7 μ = −0.9

0.1 0.0132 0.0291 0.0524
0.2 0.0291 0.0556 0.1056
0.3 0.0413 0.0851 0.1606

Note: The sample version of Kendall’s tau (τ) is given for the two-dimensional grouped Vari-
ance Compound Gamma (VCG) copula. Each estimate is computed based on 106 realisations
of the jointly grouped VCG distributed standardised variables specified in (2.29). The esti-
mates reported here are those for κY = 0.5 and various values of parameters κZmrkt and μ.
Parameters κY and μ are always identical for a pair of random variables.
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Figure 8: Comparison of scatter plots of 1,000 realisations of standardised, normally (left-
hand column) and Variance Compound Gamma, VCG (right-hand column) dis-
tributed random variables R1 and R2 for different parameter values. The VCG
parameters are calibrated so as to ensure the same linear correlation in a respective
row.
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3. An application example

In this section I carry out a simulation study for two credit portfolios in order to show the

extent of model risk in terms of significant differences in the tail risk measures obtained for

different models of asset returns with identical linear correlation structure but different tail

dependence properties.

The section is organised as follows. In subsection 3.1 the variables of interest are defined:

portfolio loss rate, Value at Risk (VaR) and Expected Shortfall (ES). Then the test portfolios

and the model parameters used for the simulation exercise are specified in subsections 3.2

and 3.3 respectively. Finally, simulation results for different model settings are discussed in

subsection 3.4.

3.1. Portfolio setup

In the tradition of the default-only credit risk models, I look at the probability distribution

of the portfolio losses at the one-year risk horizon, whereas the losses can only materialise if

one or more borrowers default on their obligations. Let n denote the number of borrowers in

the portfolio. For each borrower i there is one, and only one, (aggregate) credit exposure i.

The borrower’s loss given default in monetary units equals its potential exposure at default

less the expected recovery. This loss given default of the borrower i divided by the loss

given default of all borrowers in portfolio results in the loss given default rate denoted by

LGDi. The portfolio loss rate denoted PL is a random variable defined as the sum over the

individual loss rates Li, with Li being equal to zero when the ith borrower survives beyond

the risk horizon and equal to LGDi when the borrower defaults on its obligations.

The event of a borrower i’s default is determined in the tradition of structural credit risk

models by the standardised returns on the borrower’s market value of assets R̃i falling below

the default threshold. The default threshold is defined by the borrower’s one-year probability

of default PDi and equals F−1

R̃i
(PDi), F

−1

R̃i
being the quantile function of R̃i. The portfolio

setting can be summarised as follows6:

PL :=
n∑

i=1

Li =
n∑

i=1

LGDi · 11
(
R̃i ≤ F−1

R̃i
(PDi)

)
(3.1)

With regard to the distribution of the portfolio loss rate PL, I am looking for the Value

at Risk at a pre-specified confidence level q (V aRq) and for the Expected Shortfall (ESq).

VaR is commonly used in risk management and controlling as a measure of portfolio credit

risk, although it is incoherent (not sub-additive in general; see Acerbi and Tasche, 2001). It

quantifies the minimum portfolio loss in the worst (1− q)× 100 per cent of cases. V aRq(PL)

6In this subsection, I drop the sector subscript j for simplicity.
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equals the value of the quantile function of the random variable PL:

V aRq(PL) := F−1
PL(q) (3.2)

ES is a coherent risk measure which quantifies the expected portfolio loss in the worst (1 −
q) × 100 per cent of cases. ESq(PL) equals the conditional tail expectation beyond the q-

quantile of the portfolio loss distribution augmented by a discontinuity adjustment (Acerbi

and Tasche, 2001):

ESq(PL) := E
[
PL | PL ≥ V aRq(PL)

]
+V aRq(PL) · 1− q − Pr {PL ≥ V aRq(PL)}

1− q
. (3.3)

Portfolio loss rate distribution can be estimated by means of simulation. First, I sample

standardised asset returns R̃ji according to sampling algorithm 1. On that basis, I calculate

default indicators as

Di := 11
(
R̃i ≤ F−1

R̃i
(PDi)

)
. (3.4)

For computation of the default barrier F−1

R̃i
(PDi) within VCG settings, I use a fast Fourier

transform algorithm implemented in R and invert the univariate VCG cf numerically.

After s simulation runs I compute Monte Carlo estimators for the portfolio loss distribution,

VaR and ES given by:

F̂PL(xq) ≡ q̂ =
1

s

s∑
k=1

11(0,xq ](PLk),

V̂ aRq(PL) = inf
{
x ∈ [0, 1] : F̂PL(x) ≥ q

}
= PLs

�s·q�,

ÊSq(PL) =

∑s
k=1 PLk 11(

V̂ aRq(PL),1
](PLk)∑s

k=1 11
(
V̂ aRq(PL),1

](PLk)

+ V̂ aRq(PL)
1− q̂ − 1

s

∑s
k=1 11

(
V̂ aRq(PL),1

](PLk)

1− q̂

respectively. Here PLs
�s·q� represents the order statistic of the sample {PL1, . . . , PLs} which

is either of order s · q or a larger order next to it.

3.2. Test portfolios

For the sake of comparability, I use the same two stylised portfolios as in Puzanova (2011)

so that I can collate results on the portfolio tail loss based on VCG settings with those for

the Hierarchical Archimedean Copula (HAC) model.7 Each portfolio consists of only two

7Currently, the HAC model is only available in a static form, i.e. in contrast to the VCG model there is
no HAC representation in terms of stochastic processes governing asset returns. The HAC has the same
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Table 3: Structure of the small test portfolio

Rating category PD(%) Share in the total Total # of
portfolio LGD(%) debtors

IG: Aa 0.064 35 10
IG: A 0.077 15 10
IG: Baa 0.301 15 25
SG: Ba 1.394 15 25
SG: B 4.477 15 25
SG: C 14.692 5 5

Note: Rating categories and corresponding probabilities of default (PD) were obtained from
Moody’s (2006, p. 33). IG indicates investment-grade ratings and SG indicates speculative-
grade ratings. Composition of the portfolio is the same as in Puzanova et al. (2009).

sub-portfolios corresponding to two sectors j = 1, 2.

The smaller portfolio is comprised of 100 credit exposures as summarised in Table 3. The

portfolio LGD is attributed to 65% to investment-grade borrowers (IG, sector j = 1) and

to 35% to speculative-grade borrowers (SG, sector j = 2) according to Moody’s rating

grades/categories. The broad rating grades IG and SG serve in our example as two sec-

tors with different sector-specific dependence parameters. In each rating category 80% of the

total LGD is evenly distributed among 20% of the largest debtors. The remaining 20% of the

LGD in each rating category is evenly distributed among the remaining debtors. The second,

larger portfolio comprised of 1,000 credit exposures has the identical PD-LGD structure to

that represented in Table 3 and is obtained from the small portfolio by subdividing each

credit exposure into 10 parts.

3.3. Parameter setup

As mentioned before, I will compare two hierarchical modelling frameworks with lower-tail

dependence (VCG and HAC) with a Gaussian model. In order to lay down a benchmark

Gaussian specification, I modify the one-factor Gaussian model of the Vasicek type (Vasicek,

1987) accordingly. At the top, market (or portfolio) level of the hierarchy, all obligors in

portfolio are related to each other through the systematic factor Zmrkt, which specifies the

inter-group co-variation. At the lower level of the hierarchy, the sector-specific (or sub-

portfolio-specific) systematic factors Yj specify the additional intra-group co-variation. The

remaining variation of asset returns is attributed to an idiosyncratic component Wji. To put

form as on the right-hand side of (2.17), when applied to probability-integral transforms of asset returns.
In the present paper, the nested copula (2.17), however, links single cfs to the joint cf, which results in a
joint distribution of asset returns whose hierarchical VCG copula can only be given implicitly.
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Table 4: Model parameters used in the simulation

Model Parameters Estimates

Gauss ρ1 0.0321
ρ2 0.1212
ρmrkt 0.0144

VCG/HAC κY1 0.0214
κY2 0.1309
κZmrkt 0.0175
μ1 −0.9084
μ2 −0.9036

Note: The correlation parameters used in the simulation for the Gaussian model are set fol-
lowing Puzanova and Siddiqui (2005). The model parameters for the Variance Compound
Gamma model (VCG) and Hierarchical Archimedean Copula (HAC) are calibrated accord-
ingly in order to maintain the same linear correlation structure.

it formally, the Gaussian model for standardised asset returns turns out to be:

R̃G
ji =

√
ρj − ρmrktYj +

√
ρmrktZ

mrkt +
√
1− ρjWji, j = 1, 2. (3.5)

According to (3.5) the intra-sector correlation in the Gaussian setting equals ρj, whereas the

inter-sector correlation is given by ρmrkt. These linear correlation coefficients are also binding

for other two portfolio models under consideration.

For the sake of comparability, I set the estimates of the kurtosis parameters κZmrkt and κYj

as given in Puzanova (2011). Furthermore, I simplify the issue of parameter calibration for

the VCG model by using identical skewness parameters for obligors belonging to the same

sector j, i.e. μji ≡ μj. I set μj =
√

ρj/
(
κZmrkt + κYj

)
(cf. (2.19)) to meet the required

intra-group asset correlation. The inter-group asset correlation equals ρmrkt.
8 Table 4 lists

all parameter values used in the simulation exercise.

3.4. Simulation results

In this subsection I report results on a Monte Carlo simulation study for two test portfolios

under the VCG framework and compare them with the outcomes of the HAC and Gaussian

models given in Puzanova (2011). In all simulations I generate s = 1.5 × 107 realisations of

the portfolio loss variable in order to achieve more precise results.9

8I leave the issue of parameter estimation and further empirical investigations for future work.
9s = 1.5× 107 corresponds to the Monte Carlo estimation of the small probability 1− q = 0.0001 (which is
equivalent to the estimation of V aR0.9999 in terms of simulation efficiency) with an estimation error of at
most 5% at the 95% confidence level.
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Figure 9 demonstrates that the loss distribution based on the VCG has a heavier tail

that the loss distribtion arising from non-tail-dependent Gaussian risk factors. For the same

dependence parameters κ(·), the HAC model leads to even more probability mass in the tail

of the portfolio loss distribution due to the stronger lower-tail dependence of the underlying

asset returns. The difference between three models is more pronounced in the case of the

larger portfolio because the more debtors are in the portfolio, the more combinations of joint

defaults are possible and the greater effect takes the tail dependence.
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(a) Smaller portfolio
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Figure 9: Log-lin graphs of the simulated portfolio loss tail function for different model
settings: Gaussian, Variance Compound Gamma (VCG) and Hierarchical
Archimedean Copula (HAC). Results are given for two test portfolios containing
100 and 1,000 credit exposures.

As for the measures of the tail portfolio risk, the simulation results on VaR and ES at

different levels q are presented in Table 5. In all cases the tail risk figures within the Gaussian

setting are the lowest and those within the HAC setting are the highest, with the VCG

figures lying inbetween. The difference becomes more distinct the further we go in the tail.

Again, the risk of VaR/ES underestimation, if the assumption of the exponentially light-

tailed distribution of asset returns and the linear dependence structure is wrong, is higher for

the larger portfolio. For instance, under the VCG setting the maximum value of the smaller

credit portfolio being at risk with a probability of 99.9% and portfolio loss expected if this

VaR threshold is breached are around 25% higher than under the Gaussian setting. This

figure rises to around 50% for the larger portfolio.

The results presented above demonstrate that, for the same linear correlation of asset

returns, the model risk can be very considerable if the true distributions are skewed, heavy-

tailed or/and exhibit lower-tail dependence.

The tail dependence properties of the underlying joint distribution of asset returns influence

24



Table 5: Comparison of VaR and ES for different settings

V̂ aRq ÊSq

q Gauss VCG HAC Gauss VCG HAC

Smaller portfolio

0.9900 0.0955 0.1180 0.1210 0.1221 0.1433 0.1514
0.9950 0.1055 0.1355 0.1415 0.1335 0.1593 0.1712
0.9990 0.1455 0.1785 0.1875 0.1634 0.2030 0.2129
0.9995 0.1665 0.1930 0.2080 0.1921 0.2155 0.2330
0.9999 0.1985 0.2330 0.2485 0.2176 0.2582 0.2725

Larger portfolio

0.9900 0.0615 0.0905 0.0950 0.0734 0.1102 0.1214
0.9950 0.0695 0.1045 0.1125 0.0814 0.1248 0.1386
0.9990 0.0880 0.1340 0.1530 0.1010 0.1506 0.1781
0.9995 0.0960 0.1465 0.1695 0.1105 0.1650 0.1930
0.9999 0.1135 0.1725 0.2065 0.1256 0.1897 0.2269

Note: VaR and ES at different levels q estimated by simulation for various parameter settings
and three different models: Gaussian, Variance Compound Gamma (VCG) and Hierarchical
Archimedean Copula (HAC). Results are given for two test portfolios containing 100 and
1,000 credit exposures.

to a great degree the tail behavior of the portfolio loss distribution. To illustrate the sensitivity

of portfolio tail risk to the skewness and kurtosis parameters of the hierarchial VCG model,

I report in Table 6 the VaR for the smaller portfolio for different parameter values. Here, a

simplified model setting is considered with κYj
= κY and μj = μ for j = 1, 2. The simulation

results demonstrate the impact of the increasing (absolute) parameter values on the portfolio

VaR.

Finally, I would like to touch on the issue of simulation efficiency for large portfolio losses.

For the Monte Carlo simulation carried out in accordance with the sampling algorithm in

subsections 2.3, the CPU time needed for 1.5×107 simulation runs on the reference computer

amounted to 21 min. (1.85 hours) for the VCG model in the case of the smaller (larger)

portfolio. The long run times could be unacceptable for those practitioners who have to carry

out many computations for large portfolios. Reducing the number of simulation runs would

only shorten the computation time at the expense of precision. To avoid such an unfavorable

trade-off, I recommend always bearing in mind that Importance Sampling (IS) or another

variance reducing technique can be implemented. In the next section I derive a promising IS

algorithm for the VCG portfolio model.
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Table 6: Parameter sensitivity of the portfolio tail loss

V̂ aR0.99 V̂ aR0.999

κZmrkt μ κY = 0.2 κY = 0.5 κY = 0.9 κY = 0.2 κY = 0.5 κY = 0.9

VCG model

0.01 −0.5 0.1055 0.1315 0.1575 0.1670 0.1975 0.2380
−0.7 0.1180 0.1540 0.1950 0.1775 0.2355 0.2985
−0.9 0.1300 0.1825 0.2590 0.2010 0.2825 0.3485

0.05 −0.5 0.1090 0.1325 0.1600 0.1730 0.2040 0.2465
−0.7 0.1245 0.1575 0.1960 0.1915 0.2475 0.3035
−0.9 0.1350 0.1860 0.2555 0.2110 0.2840 0.3500

0.10 −0.5 0.1165 0.1380 0.1605 0.1765 0.2120 0.2520
−0.7 0.1300 0.1615 0.2000 0.2070 0.2515 0.3080
−0.9 0.1455 0.1960 0.2660 0.2245 0.2980 0.3500

Note: Parameter sensitivity of the VaR at different levels q with respect to the parameters
of the Variance Compound Gamma model (VCG). Only the small portfolio containing 100
credit exposures is considered.

4. Importance Sampling algorithm

For the portfolio loss function within a Gaussian framework, a two-stage IS algorithm was

introduced by Glasserman and Li (2005). Inspired by that paper, and using results from

Kang and Shahabuddin (2005) and Merino and Nyfeler (2004), I work out a three-stage IS

algorithm for the hierarchical VCG model based on the exponential tilting of the systematic

factors and conditional portfolio loss distribution.

I begin with the transformation of the conditional portfolio loss distribution. The basic

idea of the IS in this case is to shift the mean of the conditional loss distribution into the

tail so that large losses would not be rare any more and VaR/ES could be estimated more

efficiently. To do so the number of default events should be increased in a meaningful way by

scaling up conditional PDs.

The simulation approach I used in the previous section was to sample the VCG asset

returns and to compute the default indicators (3.4). Alternatively, it is possible to calculate

individual PDs conditional on the specific realisation of the systematic factors (denoted by p)

pji = Φ

⎛⎝ F−1

R̃ji
(PDji) + μji − μji · (Zj | Zmrkt)√

(Zj | Zmrkt) · [1− μ2
ji(κZmrkt + κYj

)
]
⎞⎠ (4.1)

and to sample default indicators Dji from mutually independent Bernoulli distributions with

parameters pji.
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As described in great detail in the literature mentioned at the beginning of this section,

the exponential twisting of the conditional PDs will lead to the desirable transformation of

the conditional loss distribution. The exponentially twisted conditional PDs are given as:

p∗ji(θ) :=
eLjiθpji

1− pji + eLjiθpji
, (4.2)

where θ is a common twisting parameter which can be uniquely identified, as will be described

later.

Sampling default indicators Dji ∼ Be
(
p∗ji(θ)

)
biases the simulated portfolio loss distribu-

tion. The bias can be corrected, however, by means of the likelihood ratio, which is the ratio

of the original and the transformed conditional loss distributions. This likelihood ratio for

the portfolio loss function conditional on the systematic factors Z = (Z1, · · · , Zm) can be

given as follows:

L(PL | Z) = exp

(
−θPL+

m∑
j=1

nj∑
i=1

ln
(
1− pji + eLjiθpji

))
. (4.3)

The second term in brackets represents the cumulant generating function of the conditional

loss distribution which I denote by CPL|Z(θ) in the following. The first derivative of this term

equals the mean of the distribution. Thus, to shift the mean into the tail, I have to choose

the twisting parameter θ such that the mean equals the desirable quantile xq:

θxq :=
{
θ :

[
CPL|Z(θ)

]′
= xq

}
. (4.4)

It is important to point out that, for practical purposes, there is no need to solve (4.4)

repeatedly for different values of xq. It is sufficient to choose one single value of xq far in the

tail but less than V aRq. xq can be chosen, for instance, based on a quick preliminary Monte

Carlo simulation. Its exact value does not considerably affect the simulation efficiency.

Let us now go on with the exponential twisting of the Gamma distributed systematic

factors. Consider a Gamma variable with the shape parameter β and rate parameter λ. The

corresponding exponentially twisted pdf at point x arises as a ratio of the original Gamma

pdf and its moment generating function for a ϑ < λ multiplied by eϑx:

f∗(x;ϑ) =
eϑx

(1− ϑ/λ)−β
· e−λx

Γ(β)λ−β
· xβ−1 =

e−λ∗(ϑ)x

Γ(β)
(
λ∗(ϑ)

)−β
· xβ−1,

which turns out to be a Gamma pdf with the parameters β and λ∗(ϑ) := λ− ϑ.

According to the above result, I use the Gamma distribution with the parameters (1/κZmrkt ,

1/κZmrkt − ϑ) to sample the market-level factor Zmkrt. As for the sector-specific systematic

factors, these factors are independently Gamma-distributed conditional on a realisation of the
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market-level factor Zmkrt = zmkrt. Thus, I sample the sector-specific factors from mutually

independent Gamma distributions with parameters
(
zmkrt/κYj

, 1/κYj
− ϑj

)
. I will show in

the following how to choose the twisting parameters ϑ and ϑj. But first, let us consider the

likelihood ratios needed to correct the bias of sampling from the transformed distributions.

The likelihood ratio is always the ratio of the original distribution to the sampling distri-

bution. For the twisted pdf of Zmrkt it can be written as:

L(Zmrkt) = exp

(
−ϑZmrkt − 1

κZmrkt

ln(1− κZmrktϑ)

)
, (4.5)

where the second term in brackets is the cumulant generating function of Zmrkt, which I

denote by CZmrkt(ϑ). For the twisted conditional variables Zj | Zmrkt, the likelihood ratio

reads:

L(Z | Zmrkt) = exp

(
−

m∑
j=1

ϑjZj | Zmrkt −
m∑
j=1

Zmrkt

κYj

ln(1− κYj
ϑj)

)
. (4.6)

I denote the sum of the cumulant generating functions (the second term in brackets) by∑m
j=1 CZj |Zmrkt(ϑj). The overall likelihood ratio is just the product of (4.3), (4.5) and (4.6):

L(PL) = exp

(
− θPL− ϑZmrkt −

m∑
j=1

ϑjZj | Zmrkt

+CPL|Z(θ) + CZmrkt(ϑ) +
m∑
j=1

CZj |Zmrkt(ϑj)

)
. (4.7)

In order to choose appropriate values for the twisting parameters ϑ and ϑj, I adopt theorem

1 in Bassamboo and Jain (2006, p. 743) for an asymptotically optimal IS algorithm. Accord-

ing to this theorem, and keeping in mind that conditional PDs are stochastically increasing

in the systematic factors, I can set optimal twisting parameters ϑ∗ and ϑ∗
j by solving the

following optimisation problem:

sup
zmrkt;z1,...,zm∈R+

[
inf

ϑ∈(0,1/κ
Zmrkt )

(
CZmrkt(ϑ)− ϑzmrkt

)
(4.8)

+
m∑
j=1

inf
ϑj∈(0,1/κYj

)

(
CZj |Zmrkt(ϑj)− ϑjzj

)
+ inf

θ∈R+

(
CPL|Z(θ)− θxq

)]
.

In words, I maximise simultaneously (i) the probability that realisations of the systematic

factors Zmrkt and Zj | Zmrkt are greater than certain values and (ii) the probability that

portfolio loss is greater that a desirable quantile.

Summarising, I propose the following IS algorithm for the simulation of the portfolio loss

distribution within the VCG setting:
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Simulation algorithm 2: Importance Sampling for the VCG frame-

work

• Solve (4.8) to define parameters ϑ∗ and ϑ∗
j , j = 1, . . . ,m.

• Repeat the following simulation steps s times:

– Sample Zmrkt ∼ Γ
(
1/κZmrkt , 1/κZmrkt − ϑ∗).

– Sample Zj | Zmrkt, j = 1, . . . ,m from independent Gamma distributions

with parameters
(
Zmrkt/κYj

, 1/κYj
− ϑj

)
.

– Compute conditional PDs pji, i = 1, . . . , nj, j = 1, . . . ,m as in (4.1).

– If xq ≤ E[PL | Z] = ∑m
j=1

∑nj

i=1 Lji · pji, set θxq = 0. Otherwise define

θxq by solving (4.4).

– Compute twisted conditional PDs p∗ji(θxq) according to (4.2).

– Sample Dji from independent Bernoulli distributions with parameters

p∗ji(θxq).

– Compute portfolio loss rate PLk =
∑m

j=1

∑nj

i=1 Lji · Dji for the kth si-

mulation run.

– Compute the corresponding likelihood ratio L(PLk) according to (4.7),

thereby set θ := θxq , ϑji := ϑ∗
ji and ϑ := ϑ∗.

• Compute IS estimators for the portfolio loss rate distribution, VaR and ES

as follows:

F̂ IS
PL(xq) ≡ 1− q̂IS = 1− 1

s

s∑
k=1

L(PLk)11(xq ,1](PLk),

V̂ aR
IS

q (PL) = inf
{
x ∈ [0, 1] : F̂ IS

PL(x) ≥ q
}
,

ÊS
IS

q (PL) =

∑s
k=1 PLk · L(PLk) 11(

V̂ aR
IS

q (PL),1
](PLk)∑s

k=1 L(PLk) 11(
V̂ aR

IS

q (PL),1
](PLk)

+ V̂ aR
IS

q (PL)
1− q̂IS − 1

s

∑s
k=1 L(PLk) 11(

V̂ aR
IS

q (PL),1
](PLk)

1− q̂IS
.

For the sake of completeness, I should mention that the complete IS procedure would

be the following: (i) solving (4.8) for the beginning of the simulation; (ii) sampling Zmrkt

accordingly; (iii) solving

sup
z1,...,zm∈R+

[
m∑
j=1

inf
ϑj∈(0,1/κYj

)

(
CZj |Zmrkt(ϑj)− ϑjzj

)
+ inf

θ∈R+

(
CPL|Z(θ)− θxq

)]
(4.9)
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to set ϑ∗
j conditionally on Zmrkt; (iv) sampling Zj | Zmrkt accordingly; (v) solving (4.4) to set

θxq conditional on Zj | Zmrkt; (vi) computing conditional PDs and sampling default indicators

accordingly. However, solving (4.9) for a particular realisation of Zmrkt can be skipped in

order to speed up the simulation without any material loss of efficiency. Thus, it is only

necessary to solve (4.8) for ϑ∗ and ϑ∗
j just once before beginning the simulation.

The simulation algorithm 2 leads to a considerable variance reduction of the estimated

portfolio quantiles, ensuring stable results for VaR and ES. Table 7 clarifies this statement

by an example. For both portfolios, I repeat the IS and Monte Carlo simulation scenarios

100 times in order to compute the respective sample variances of the VaR estimates. The

results show that, even for as few as 103 simulation runs per scenario, the variation of the IS

estimates for VaR at different levels q is 1 to 3 orders of magnitude smaller than the variation

of Monte Carlo estimates based on 104 simulation runs, the CPU time elapsed being fairly

comparable. It is noteworthy that IS delivers stable results for portfolio losses far in the

tail where Monte Carlo simply fails to generate any sufficient number of realisations because,

on average, it only generates (1 − q) × s outcomes lying beyond the q-quantile of the loss

distribution: see Figure 10 for illustration. Overall, I judge the gain in simulation efficiency

when using the IS algorithm as well worth the time needed to implement it into a suitable

programming language.

Table 7: The variance reduction factor for VaR obtained via IS

Variance reduction factor

q smaller portfolio larger portfolio

0.995 1.16 4.17
0.997 2.23 7.62
0.999 10.49 12.96
0.9995 25.87 15.60
0.9997 37.45 24.03
0.9999 140.66 54.54
0.99995 262.43 111.94
0.99997 375.51 129.60

CPU time: MC 1.62 min. 9.13 min.
CPU time: IS 1.73 min. 9.79 min.

Note: For Variance Compound Gamma settings the variance reduction factor for VaR esti-
mation at different levels q is given. It is a ratio of the sample variance of VaR estimated
via Monte Carlo (MC) to the sample variance of VaR estimated via Importance Sampling
(IS). The sample variances were computed on the basis of 100 independent scenarios each
containing 104 simulation runs for MC and 103 simulation runs for IS. Also given is the CPU
time elapsed. The results are presented for two test portfolios containing 100 and 1,000 credit
exposures.
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Figure 10: Comparison of Monte Carlo and Importance Sampling simulation results with 104

and 103 replications respectively. In the log-lin graphs of the tail function of the
portfolio loss rate the pointwise means and 95% confidence intervals calculated
from 100 independent scenarios are given.

5. Conclusions

The Variance Compound Gamma (VCG) model introduced in this paper can be useful for

modelling asset returns both in univariate and multivariate settings. The underlying VCG

process is a pure-jump Lévy process that arises from a two-stage Gamma-time change of a

Brownian motion.

The univariate VCG process can be useful for the univariate modelling of stock returns, for

the purposes of option or credit derivative pricing. This stochastic pure-jump process satisfies

such important stylised facts of stock returns as asymmetry and excess kurtosis. Moreover,

it overcomes the major shortcoming of Black-Scholes-type Gaussian models with continuous

sample paths of asset returns and allows for unanticipated default events triggered by sudden

shocks in the asset price. This last feature is crucial to the modelling of credit risk.

The multivariate VCG framework has several advantages in terms of modelling credit port-

folios. The specific time-change procedure proposed in this paper generates a hierarchical

dependence structure that allows for a stronger dependence within specified sectors or sub-

portfolios and for a weaker dependence between them. The model is flexible enough for a

differentiated treatment of sub-portfolios with respect to their tail dependence properties. It

is worth noting that, although the copula function underlying the one-period, static VCG

model cannot be given explicitly, a closed, copula-like representation of the joint characteris-

tic function of asset returns exists. It is, in fact, the nested Archimedean copula, introduced
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in Puzanova (2011) and applied to marginal characteristic functions.

This paper shows that the VCG copula family, which joins asset returns of firms operating

in one particular sector (or attributed to one particular sub-portfolio), is ordered with respect

to each of its parameters. This result implies that higher absolute values of the skewness pa-

rameters of asset returns and/or of the variance parameters of the underlying stochastic times

lead to the stronger dependence as given by the concordance measure known as Kendall’s tau.

The magnitude of tail dependence is also increasing in skewness parameters. By contrast,

the grouped VCG copula, which joints asset returns of firms operating in different sectors (or

attributed to different sub-portfolios), does not exhibit tail dependence. This copula family

is also ordered but has lower Kendall’s tau for comparable parameter values.

From a computational point of view the advantage of the VCG model is that simulation

can be easily accomplished using pseudo-random number generators for normal and Gamma

distributions which are standard components of mathematical and statistical packages. The

variance-reducing Importance Sampling algorithm provided in this paper increases simulation

efficiency considerably.

From the perspective of the portfolio credit risk assessment, the main advantage of the

multivariate VCG model over a Gaussian framework is that the stochastic time change ap-

plied gives rise to tail dependence of asset returns and, in turn, to clustering default events.

Therefore, implementation of the suggested model could have far-reaching implications for

risk controlling and banking regulation and, on a large scale, for financial stability. It would

result in a more conservative assessment of portfolio credit risk and, consequently, higher

capital requirements. Therefore, the model is able to counter the systematic underestimation

of credit risk in banking sector – one of the underlying causes of the recent financial turmoil.
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A. The VCG probability distribution function

The pdf of VCG-distributed asset returns can only be given in its integral representation.

Bearing in mind that

• conditionally on a realisation zj of the sector-specific business time, the asset return of

each single firm in sector j is normally distributed and

• conditionally on a realisation zmrkt of the market business time, the sector-specific

subordinators are Gamma-distributed,

the VCG pdf can be given as:

fRji(t)(x) =

∫ ∞

0

∫ ∞

0

1

σji

√
2πzj

exp

(
−(x− μjizj)

2

2σ2
ji zj

)

× e−zj/κYj

Γ(zmrkt/κYj
)κ

zmrkt/κYj

Yj

z
zmrkt/κYj

−1

j dzj

× e−zmrkt/κ
Zmrkt

Γ(t/κZmrkt)κ
t/κ

Zmrkt

Zmrkt

(zmrkt)t/κZmrkt−1 dzmrkt

=
2

σji

√
2π Γ(t/κZmrkt)κ

t/κ
Zmrkt

Zmrkt

exp

(
xμji

σ2
ji

)

×
∫ ∞

0

e−zmrkt/κ
Zmrkt · (zmrkt)t/κZmrkt−1

Γ(zmrkt/κYj
)κ

zmrkt/κYj

Yj

⎛⎝ |x|/σji√
μ2
ji/σ

2
ji + 2/κYj

⎞⎠zmrkt/κYj
−1/2

×K(zmrkt/κYj
−1/2)

(
|x|
σji

√
μ2
ji

σ2
ji

+
2

κYj

)
dzmrkt.

Γ(·) is the gamma function and K(λ)(·) denotes the modified Bessel function of the third kind

with the index λ:

K(λ)(x) =
1

2

∫ ∞

0

yλ−1 exp
[
−x

2
(y + y−1)

]
dy, x > 0.

Mean, variance, skewness and excess kurtosis of the VCG-distributed asset returns are as

follows:

E
[
Rji(t)

]
= μjit, (A.1)

var
(
Rji(t)

)
=
[
σ2
ji + μ2

ji

(
κZmrkt + κYj

)]
t, (A.2)
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γ1
(
Rji(t)

)
= μji

(
κZmrkt + κYj

) 3σ2
ji + 2μ2

ji

(
κZmrkt + κYj

)
√
t
[
σ2
ji + μ2

ji

(
κZmrkt + κYj

)]3/2
− 2μ3

jiκZmrktκYj

√
t
[
σ2
ji + μ2

ji

(
κZmrkt + κYj

)]3/2 ,
γ2
(
Rji(t)

)
=

3
(
κZmrkt + κYj

)
t

(
2− σ4

ji[
σ2
ji + μ2

ji

(
κZmrkt + κYj

)]2
)

−
μ2
ji κZmrktκYj

[
6 σ2

ji + μ2
ji

(
6κZmrkt + 7κYj

)]
t
[
σ2
ji + μ2

ji

(
κZmrkt + κYj

)]2 .

The integral representation of the multivariate pdf of VCG-distributed asset returns can

be given as follows (for t = 1, so the subscript t has been dropped):

fR(t)(x) =
2m

(2π)n/2 |Σ|1/2 Γ(t/κZmrkt)κ
t/κ

Zmrkt

Zmrkt

exp
(
x′Σ−1μμμ

)

×
∫ ∞

0

m∏
j=1

e−zmrkt/κ
Zmrkt · (zmrkt)t/κZmrkt−1

Γ(zmrkt/κYj
)κ

zmrkt/κYj

Yj

⎛⎝ Qj√
μμμ′
jΣ

−1
j μμμj + 2/κYj

⎞⎠zmrkt/κYj
−nj/2

×K(zmrkt/κYj
−nj/2)

(
Qj ·

√
μμμ′
jΣ

−1
j μμμj +

2

κYj

)
dzmrkt.

In the expression above I use x, μμμ and Σ to denote the vector of arguments of the distri-

bution function, the vector of skewness parameters and the variance matrix of the Gaussian

part respectively (all ordered with respect to sectors). The sub-vectors xj and μμμj and the

submatrix Σj represent the corresponding parameters for sector j. Qj =
√
x′
jΣ

−1
j xj is the

Mahalanobis distance between the elements of xj.

B. HAC representation for the VCG framework

Starting from expression (2.17), which is based on the marginal conditional cfs, I derive in

this appendix a copula representation of the joint cf of VCG-distributed asset returns, which
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is a function of unconditional marginal cfs:

EZmrkt

[
m∏
j=1

EZj |Zmrkt

[
nj∏
i=1

φRji|Zj
(θji)

]]
(B.1)

= EZmrkt

[
m∏
j=1

EZj |Zmrkt

[
exp

(
−Zj | Zmrkt

nj∑
i=1

ϕ−1
Zj

◦ φRji
(θji)

)]]

= EZmrkt

[
m∏
j=1

ϕZmrkt

Yj

( nj∑
i=1

ϕ−1
Zj

◦ φRji
(θji)

)]

= EZmrkt

[
exp

{
−Zmrkt

m∑
j=1

ϕ−1
Zmrkt ◦ ϕZj

( nj∑
i=1

ϕ−1
Zj

◦ φRji
(θji)

)}]

= ϕZmrkt

[
m∑
j=1

ϕ−1
Zmrkt ◦ ϕZj

( nj∑
i=1

ϕ−1
Zj

◦ φRji
(θji)

)]
.

The aim of the transformation, accomplished after the first equality sign is to proceed to

a representation which incorporates unconditional marginal cfs of Rji. To do so, I use the

expression (2.12) that implies ψXji
(θ) = −ϕ−1

Zj(t)
◦ φRji

(θ) by inversion. Conditionally on

Zj | Zmrkt, the normally distributed idiosyncratic part of asset returns in (2.14) is the only

random part. Taken together, these statements imply the following chain of transformations:

φRji|Zj
(θ) = E

[
exp

(
iθμji Zj | Zmrkt + iθσji

√
Zj | ZmrktWji

)]
= exp

(
iθμji Zj | Zmrkt − 1

2
θ2σ2

jiZj | Zmrkt
)

= exp
(
Zj | Zmrkt · ψXji

(θ)
)

= exp
(−Zj | Zmrkt · ϕ−1

Zj
◦ φRji

(θ)
)

Now, expression in form EZj |Zmrkt

[
exp

(−Zj | Zmrktθji
)]

represents the LT of the conditional

random variable Zj | Zmrkt, which is Gamma distributed. This LT equals the LT of the

Gamma random variable Yj to the power of Zmrkt, which leads to the expression given after

the second equality sign in (B.1).

Solving equation (2.9) for ϕYj
and substituting ϕZmrkt

Yj
by the resulting expression gives the

representation after the fourth equality sign in (B.1).

Replacing the remaining expectation operator with the LT of Zmrkt delivers the final line

in (B.1). From this last expression the HAC representation (2.26) follows.
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