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Abstract

This paper proposes a dynamic multi-agent model of a banking

system with central bank. Banks optimize a portfolio of risky in-

vestments and riskless excess reserves according to their risk, return,

and liquidity preferences. They are linked via interbank loans and

face stochastic deposit supply. Evidence is provided that the central

bank stabilizes interbank markets in the short-run only. Comparing

different interbank network structures, it is shown that money-center

networks are more stable than random networks. Systemic risk via

contagion is compared to common shocks and it is shown that both

forms of systemic risk require different optimal policy responses.

Keywords: systemic risk, contagion, common shocks, multi-agent

simulations

JEL-Classification: C63, E52, G01, G21



Non-technical Summary

Banks rely on liquidity in order to be able to conduct the maturity transfor-

mation between risky long-term assets and fluctuating short-term liabilities.

In tranquil times, liquidity is provided by banks with a liquidity surplus via

interbank markets. When interbank markets are impaired, banks rely on

liquidity provision by the central bank. During the recent financial crisis,

central banks had to resort to unprecedented non-standard measures in or-

der to ensure the functioning of interbank markets and stabilize the financial

system. In this paper, however, it is shown that central bank liquidity pro-

vision is more effective in the short-run than in the long-run.

Banks issue interbank loans that connect them in a complex network. In

normal times, increasing interconnectedness in this network improves ac-

cess to liquidity. During times of crisis, however, the interconnections can

amplify shocks and destabilize the financial system. This paper shows that

the structure of the interbank network has little impact in normal times,

while it is relevant for the long-run stability in times of distress. Network

structures with a few highly interconnected, and many less interconnected

banks turn out to be more resilient than random network structures where

on average all banks have equally many interconnections.

It is one of the lessons from the recent crisis that systemic risk can take

many forms. One form of systemic risk is interbank contagion where, due

to the interconnectedness of banks through interbank loans, the default of

one bank leads to losses and subsequent defaults of other banks. This is

compared with a common shock that, due to common asset holdings, affects

many banks at once. It is shown, that interbank contagion mainly affects

the availability of interbank liquidity, while common shocks increases the

vulnerability of the system to endogenous liquidity fluctuations. Thus, the

two forms of systemic risk require different optimal policy reactions: while

interbank contagion calls for liquidity provision, common shocks require a

recapitalization of the banking system.



Nichttechnische Zusammenfassung

Banken benötigen Liquidität, um die Fristentransformation zwischen riskan-

ten Aktiva mit langer Laufzeit und fluktuierenden Passiva mit kurzer Laufzeit

durchführen zu können. In ruhigen Zeiten wird Liquidität durch Banken

mit einem Liquiditätsüberschuss auf Interbankenmärkten zur Verfügung

gestellt. Sollten diese gestört sein, sind Banken von der Liquiditätsversorgung

durch die Zentralbank abhängig. Während der aktuellen Finanzkrise waren

Zentralbanken zu nie dagewesenen Sondermaßnahmen gezwungen um die

Stabilität des Finanzsystems zu sichern. In diesem Papier wird gezeigt,

dass diese Bereitstellung von Liquidität durch die Zentralbank in der lan-

gen Frist weniger effektiv ist als in der kurzen Frist.

Durch die Vergabe von Interbankenkrediten entsteht ein komplexes Netzw-

erk von Verflechtungen zwischen Banken. In normalen Zeiten erhöht sich die

Verfügbarkeit von Liquidität auf dem Interbankenmarkt mit zunehmender

Verflechtung. Während einer Krise können auftretende Schocks hierdurch

jedoch verstärkt, und das Finanzsystem insgesamt destabilisiert werden.

In diesem Papier wird gezeigt, dass die Struktur des Netzwerks der Inter-

bankenverflechtungen in normalen Zeiten wenig Einfluss auf die langfristige

Finanzstabilität hat. In Krisenzeiten jedoch ist der Einfluss der Netzwerk-

struktur nicht länger vernachlässigbar. Es zeigt sich, dass Netzwerkstruk-

turen mit wenigen stark vernetzten und vielen wenig vernetzten Banken

stabiler sind als Netzwerke in denen alle Banken im Mittel die gleiche An-

zahl an Verflechtungen haben.

Eine der Lehren der aktuellen Finanzkrise ist, dass systemische Risiken viele

Formen annehmen können. Eine Form systemischer Risiken sind Ansteck-

ungseffekte durch Interbankenkredite, bei denen die Insolvenz einer Bank

zur Insolvenz weiterer Banken führen kann. Diese werden mit systemischen

Risiken durch gemeinsamen Gefährdungen verglichen, bei denen mehrere



Banken in die gleichen Aktiva investiert haben. In diesem Papier wird

gezeigt, dass Ansteckungseffekte auf Interbankenmärkten haupsächlich auf

die Verfügbare Liquidität wirken, während gemeinsame Gefährdungen die

Anfälligkeit des Systems für endogene Liquiditätsschwankungen erhöhen.

Daher erfordern beide Formen systemischer Risiken unterschiedliche Reak-

tionen, um die Stabilität des Finanzsystems zu gewährleisten: während

Ansteckungseffekte durch Interbankenkredite am besten mit der Bereitstel-

lung von Liquidität durch die Zentralbank eingedämmt werden, erfordern

gemeinsame Gefährdungen eine Rekapitalisierung des Bankensystems.
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The Effect of the Interbank Network

Structure on Contagion and Common

Shocks1

1 Introduction

The recent financial crisis has highlighted the necessity to understand sys-

temic risk both qualitatively and quantitatively in order to safeguard fi-

nancial stability. Bandt et al. (2009) provide a categorization of systemic

risks, distinguishing between a broad and a narrow sense. In their nomen-

clature, contagion effects on interbank markets pose a systemic risk in the

narrow sense, whereas the broad sense of systemic risk is characterized as

a common shock that affects many institutions at once. The crisis has

shown that systemic risk not only can take many forms, but is also highly

dynamic: slowly building up in normal times, but rapidly emerging dur-

ing times of distress. The insolvency of the US investment bank Lehman

Brothers in September 2008 marked the tipping point between the build up

and rapid manifestation of systemic risks and lead to a freeze in interbank

markets. As a consequence, the risk premia for unsecured interbank loans

increased drastically, which resulted in a massive impairment of banks’ liq-

uidity provision. Governments and central banks were forced to undertake

1Author: Co-Pierre Georg, Universidad Carlos III de Madrid and Friedrich-Schiller-

Universität Jena, email: pgeorg@uc3m.es. The views are those of the author and do

not necessarily reflect the opinions of the Deutsche Bundesbank or its staff. The author

wishes to thank Christoph Memmel, Markus Pasche, Tanju Yorulmazer, conference par-

ticipants at the 17th International Conference on Computing in Economics and Finance

(CEF 2011), the VI Seminar on Risk, Financial Stability and Banking of the Banco Cen-

tral do Brasil, as well as seminar participants at USMA West Point, Jena, Leipzig, Halle,

Erfurt, ETH Zürich, Pretoria, Deutsche Bundesbank and the South African Reserve Bank

for helpful discussions and comments. The author acknowledges financial support by the

Graduate School “Global Financial Markets – Stability and Change”, which is funded by

the Stiftung “Geld und Währung” and by the ERA-net on complexity through the grant

“Resilience in Networks in Economics and Ecology”.
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unprecedented non-standard measures to reduce money market spreads and

ensure liquidity provision to the banking system.2 This shows that central

banks are key actors for the functioning of interbank markets, even though

they do not directly participate in them. To motivate central bank inter-

ventions, already Goodfriend and King (1988) could show that open market

operations enhance the liquidity provision in the financial system. More re-

cently, Allen et al. (2009) and Freixas et al. (2010) show that central bank

intervention can increase the efficiency of interbank markets. It is thus clear,

that every realistic model of interbank markets has to feature the central

bank as one key actor.

Interbank markets exhibit what Haldane (2009) denotes as a knife-edge,

or robust-yet-fragile property.3 In normal times, the connections between

banks lead to an enhanced liquidity allocation and increased risk sharing

amongst financial institutions. This was shown by Allen and Gale (2000)

who extend the classical bank-run model by Diamond and Dybvig (1983)

and show that highly interconnected banking systems are less prone to bank-

runs. Dasgupta (2004) confirms this result and determines the optimal level

of interconnectedness in a banking system. In times of crisis, however, the

same interconnections can amplify shocks that spread through the system.

This was shown i.e. by Gai and Kapadia (2008), who investigate systemic

crises with a network model and show that on the one hand, the risk of

systemic crises is reduced with increasing connectivity on the interbank

market. On the other hand, however, the magnitude of systemic crises in-

creases at the same time. This knife-edge property of interbank markets

can be attributed to a counterparty risk externality. Acharya and Bisin

2For an overview of the immediate crisis reaction of governments and central banks,

see i.e. Cecchetti (2009) for the United States and Petrovic and Tutsch (2009) for the

European Union.
3In a recent paper, Gai et al. (2011) develop a network model of a banking system

and calculate the tipping point above which higher connectivity in the banking system

leads to larger vulnerability to liquidity hoarding.

2



(2010) compare over-the-counter (OTC) and centralized clearing markets

in a general equilibrium model. They show that the intransparency of OTC

markets is ex-ante inefficient and attribute this to a counterparty risk exter-

nality. This externality can best be illustrated in a short example. Assume

a simple banking network that consists of three banks (A,B, and C) where

bank A has issued uncollateralized interbank loans to banks B and C. The

interest rate on the interbank loans will include a risk premium to capture

counterparty risk. Now assume that B has issued another interbank loan to

C. This will increase the counterparty risk of bank B, as B is now vulnerable

to a default of bank C. However, bank A is not aware of this increase and

will thus underprice the counterparty risk. Thus, the structure of financial

networks and especially interbank networks is relevant for the analysis of

systemic risk. Taking this into account, the question arises, if there exist

network structures that are less prone to the counterparty risk externality

and hence more resilient to financial distress.

The counterparty risk externality makes it clear that the network structure

of financial system plays an important role when assessing systemic risk.

An overview of the existing literature on financial networks can be found

i.e. in Allen et al. (2010) and European Central Bank (2010). The network

structure of interbank markets can be best captured in an exposure matrix

where the issuance of a loan from bank i to bank j is denoted as the loan

size in row i and column j. Using such a matrix, Eisenberg and Noe (2001)

show that a unique clearing payment vector exists and analyze the spread-

ing of contagious defaults in general network topologies. The difference to

this paper is that we develop a dynamic model of cascading bank defaults,

while Eisenberg and Noe (2001) calculate the impact of a default in a static

network structure. Empirical analyses of the interbank network structure

exist for for a number of countries.4 It is shown that interbank networks

4The topology of the interbank has been analyzed i.e. in the United States (Furfine

(1999)), the Euroarea (Gabrieli (2010), Gabrieli (2011)), the United Kingdom (Wells
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often exhibit a scale-free topology, i.e. they are characterized by few money

center banks with many interconnections and many small banks with few

connections. Sachs (2010) follows the static approach of Eisenberg and

Noe, but also compares contagion effects in scale-free networks and random

networks and finds that contagion is more pressing in scale-free networks.

What is missing in the literature, however, is a dynamic analysis of the

financial stability properties of different network topologies.

The crisis revealed that there also exist other externalities besides the coun-

terparty risk externality. One of them being a correlation externality be-

tween banks’ portfolios. Securitization was designed to distribute risks from

within the banking system to investors outside the banking system. A thor-

ough analysis, however, shows that a significant part of the securitized risk

was still residing within the banking system at the peak of the crisis (see

i.e. Krishnamurthy (2008)). As a consequence, a strong correlation between

banks’ assets arised. As banks are unaware of the portfolio of competing

banks, they cannot assess this correlation and thus choose non-optimal lev-

els of correlation for their portfolios. This externality could thus be best

described as a correlation externality. A large extend of the literature on

systemic risk in interbank markets has focused on the analysis of contagion

effects (i.e. studying the counterparty risk externality). Recently, more

attention has been given to the correlation externality and the analysis of

common shocks as sources of systemic risk. Acharya and Yorulmazer (2008)

point out how banks are incentivized to increase the correlation between

their investments and thus the risk of an endogenous common shock in order

to prevent costs arising from potential information spillovers. The increas-

(2004), Becher et al. (2008)), Brazil (Cajueiro and Tabak (2007), Chang et al. (2008)),

Italy (Mistrulli (2007), Iori et al. (2008), Manna and Iazzetta (2009)), Switzerland (Shel-

don and Maurer (1998)), Sweden (Bl̊avarg and Nimander (2002)), Belgium (Degryse and

Nguyen (2007)), the Netherlands (van Lelyveld and Liedorp (2004)), Germany (Upper

and Worms (2004)), Austria (Boss et al. (2004)) and South Africa (Brink and Georg

(2011)).
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ing correlation in the financial sector is also verified empirically. De Nicolo

and Kwast (2002) analyze the increase in the correlation between large and

complex financial organizations during the 1990s, a development that was

further fuelled by securitization. The new insights on common shocks give

rise to the question which form of systemic risk poses the greater threat to

financial stability: interbank contagion caused by the counterparty exter-

nality, or common shocks caused by the correlation externality. Thus far,

no comparison of the different systemic risk manifestations in a single model

has been conducted in the literature. This paper aims to close this gap by

explicitely comparing the impact of different shocks resulting from the two

externalities.

One particularly useful class of models to analyze the above mentioned ques-

tions are multi-agent simulations. Iori et al. (2006) develop a network model

of a banking system, where agents (banks) can interact with each other via

interbank loans. The balance sheet of banks consists of risk-free investments

and interbank loans as assets, and deposits, equity and interbank borrow-

ings as liabilities. Banks channel funds from depositors towards productive

investment. They receive liquidity shocks via deposit fluctuations and pay

dividends if possible. Nier et al. (2007) describe the banking system as a

random graph where the network structure is determined by the number of

nodes (banks) and the probability that two nodes are connected. The banks’

balance sheet consists of external assets (investments) and interbank assets

on the asset side and net worth, deposits, and interbank loans as liabilities.

Net worth is assumed to be a fixed fraction of a bank’s total assets and de-

posits are a residual, designed to complete the bank’s liabilities side. Shocks

that hit a bank and lead to its default are distributed equally amongst the

interbank market. The authors find, that (i) the banking system is more re-

silient to contagious defaults if its banks are better capitalized and this effect

is non-linear; (ii) the effect of the degree of connectivity is non-monotonic;

(iii) the size of interbank liabilities tend to increase the risk of a knock-on
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default; and (iv) more concentrated banking systems are shown to be prone

to larger systemic risk. More recently, Ladley (2011) analyzes the impact of

the interbank network heterogeneity on systemic risk in a multi-agent set-

ting. The balance sheet of banks consists of equity, deposits, cash reserves,

loans to the non-bank sector and interbank loans. Ladley considers risky

investment opportunities and explicitely models how banks attract deposits

by choosing their offered deposit interest rates. Banks determine the opti-

mal structure of their portfolio via a genetic algorithm. He finds that for

small shocks, high interconnectivity helps stabilizing the system, while for

large shocks high interconnectivity amplifies the initial impact.

This paper wants to answer the aforementioned questions about the impact

of the network structure on financial stability by developing a dynamic

model of a banking system. Banks optimize a portfolio of risky investments

and riskless excess reserves. Risky investments are long-term investment

projects that fund an unmodelled firm sector while riskless excess reserves

are short-term and held at the deposit facility of the central bank. Banks

face a stochastic supply of household deposits and stochastic returns from

risky investments. This gives rise to liquidity fluctuations and initiates the

dynamic formation of an interbank loan network. Banks have furthermore

access to central bank liquidity if they can provide sufficient collateral. This

model is used to first analyze the impact that the provision of central bank

liquidity has on financial stability. It is shown that the central bank can

stabilize the financial system in the short-run. In the long-run, however,

the system always converges to the equilibrium state. Possible network

structures will be given at the beginning of each simulation. They reflect

contractual agreements amongst banks and determine the set of possible

interbank loans. The realized network structure at each point in time is

a subset of the possible network structure (i.e. the set of existing edges

at any point in time is a subset of the set of possible edges). This closely

resembles the situation in reality, where the day-to-day topology of inter-
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bank networks also varies from the monthly or quaterly aggregated network

structures that are analyzed in the literature. Different possible network

structures are compared, and it is shown that in random graphs, the rela-

tionship between the degree of interconnectivity and financial instability is

non-monotonic. Scale-free networks are seen to be more stable than small-

world networks, which in turn tend to be more stable than random networks.

Thus, the effect of contagion is exagerrated in the literature, as most pa-

pers assume random networks and most real-world interbank networks are

scale-free. The model captures key effects of the dynamics of interbank net-

works and can thus be used to analyze the impact of different externalities

on financial stability. The counterparty risk externality is compared to the

correlation externality and it is shown that, contrary to their importance in

the literature, common shocks are not subordinate to interbank contagion.

Finally, a number of conclusions for the optimal reaction to financial crises

are drawn from the model.

The remainder of this paper is organized as follows. After this introduction,

section two describes the dynamic model that has been used to analyze the

aforementioned questions. Section three will present the main results, while

section four derives some policy implications and concludes.

2 The Model

This section wants to outline some key features that all models of systemic

risk should incorporate. It develops a dynamic model of a banking system

that can be used to analyze the impact of the interbank network structure

on financial stability. Firstly, deposit fluctuations have to be included for

two reasons: (i) Because of the maturity transformation that banks perform

and since deposits usually have a short maturity, deposit fluctuations can

lead to illiquidity. Banks that become illiquid will have to liquidate their

long-term investments at steep discounts (for a model that describes this

7



mechanism, see i.e. Uhlig (2010)). Due to marked-to-market accounting,

these steep discounts will lead to losses in banks’ trading books and have

to be compensated by banking capital. Thus, illiquidity can lead to insol-

vency. (ii) As deposit fluctuations are generally considered to be one of the

reasons why banks engage in interbank lending (see i.e. Allen and Gale

(2000)), they have to be included into all models of systemic risk. With-

out deposit flucutations as a driving force for the formation of interbank

networks, it is impossible to describe the counterparty risk externality in

a dynamic setting. Secondly, as fluctuations in investment returns have to

be compensated by banking capital, risky investments are a major cause of

bank insolvencies. Without risky investments, it is impossible to model the

correlation externality as it arises precisely in a situation when the returns

of risky assets of a number of banks have negative realizations at the same

time. In order to model common shocks, risky investments have thus to be

taken into account.

Iori et al. (2006) and Nier et al. (2008) develop multi-agent models of a

banking system, but assume a risk-free investment opportunity. Nier et al.

(2008) further assume deposits to be residual. I follow both papers in some

aspects and develop a network model of interbank markets. However, I ex-

plicitely allow the possibility of risky investments and deposit fluctuations.

I furthermore include a central bank in the model, since it is evident from

the literature that monetary policy has a large influence on the stability of

interbank markets. This model allows the investigation of direct contagion

effects as well as common shocks. This is another difference to the existing

literature, which exclusively focuses on individual forms of systemic risk.

2.1 Balance Sheets

The balance sheet of a bank k holds risky investments Ik and riskless ex-

cess reserves Ek as assets at every point in (simulation-) time t = 1 . . . τ .

8



The investments of bank k have a random maturity5 τ kI > 0 and I as-

sume that each bank finds enough investment opportunities according to

its preferences. The bank refinances this portfolio by deposits Dk (which

are stochastic and have a maturity of zero), from which it has to hold a

certain fraction rDk of required reserves at the central bank, fixed banking

capital BCk (which is assumed to be held in a highly liquid form), inter-

bank loans Lk and central bank loans LCk. Interbank loans and central

bank loans are assumed to have a maturity of τ kL = τ kLC = 0. The matu-

rity mismatch between investments and deposits is the standard maturity

transformation of commercial banks. Interbank loans can be positive (bank

has excess liquidity) or negative (bank has demand for liquidity), depending

on the liquidity situation of the bank at time t. The same holds for central

bank loans, where the bank can use either the main refinancing operations

to obtain loans, or the deposit facility to loan liquidity to the central bank.

The balance sheet of the commercial bank therefore reads as:

Ikt + Ek
t = (1− r)Dk

t +BCk
t + Lk

t + LCk
t (1)

The interest rate for deposits at a bank is rd and the interest rate for cen-

tral bank loans is rb. Note that there is no distinction between an interest

rate for the lending and deposit facility and therefore the interest rate on

the interbank market will be equal to the interest rate for central bank loans.

The banks decide about their portfolio structure and portfolio volume. A

constant relative risk aversion (CRRA) utility function is assumed to model

the bank’s preferences:

uk =
1

1− θk

(
V k(1 + λkμk − 1

2
θk(λk)2(σk)2)

)(1−θk)

(2)

where λk is the fraction of the risky part of the portfolio, μk is the expected

return of the portfolio and θk is the banks risk aversion parameter.6 V k
t =

5Maturity τ implies that the asset matures in τ + 1 update steps.
6This utility function can be scaled by a normalization parameter ξ which was taken

to be one for simplicity, as it does not change any of the obtained results.
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Ikt +Ek
t denotes the bank’s portfolio volume. The risky part of the portfolio

follows from utility maximisation and reads as:

(λk)∗ = min

{
μk

θk(σ2)k
, 1

}
∈ [0, 1] (3)

The portfolio volume can be obtained by similar measures as:

(V k)∗ =

[
1

rb

((
1 + λkμk − 1

2
θk(λk)2(σ2)k

)(1−θk)
)]1/θk

(4)

where rb denotes the refinancing cost of the portfolio. Since banks obtain

financing on the interbank market and from the central bank at the same

interest rate, this refinancing cost is equal to the main refinancing rate. It is

possible to introduce a spread between the lending and deposit facility and

therefore allowing the interest rate on the interbank market to stochastically

vary around the main refinancing rate. If a bank now plans its optimal port-

folio volume, it calculates with a planned refinancing rate. This refinancing

rate follows from the banks plan about how much interbank loans it wants

to obtain on the interbank market at a planned refinancing rate and how

much central bank loans it plans to obtain at the main refinancing rate. If

this plan cannot be realized (e.g. if a bank’s liquidity demand is unsatisfied

on the interbank market), banks make a non-optimal portfolio choice. This

possibility is excluded for the sake of simplicity. Note, that a market for

central bank money is not explicitely modelled. The central bank rather

accomodates all liquidity demands of commercial banks, as long as they

can provide the neccessary securities. This assumption is not unrealistic

in times of crises, as for example the full allotment policy of the European

Central Bank at the peak of the crisis shows.

2.2 Update Algorithm

In the simulation I have implemented an update algorithm that determines

how the system evolves from one state to another. The algorithm is divided

up into three phases that are briefly described here. Every update step is

10



Figure 1: Interaction dynamics of the model. The private sector (house-

hold/firms), the banking sector (commercial banks) and the central bank

interact via the exchange of deposits, investments, loans, excess- and re-

quired reserves and central bank loans. Arrows indicate the direction of

fund flows.

done for all banks for a given number of sweeps. At the beginning of phase 1

the bank holds assets and has liabilities from the end of the previous period:

Ikt−1 + Ek
t−1 + rDk

t−1 = Dk
t−1 +BCk

t−1 + Lk
t−1 + LCk

t−1 (5)

where an underline denotes realized quantities. In period 0 all banks are

endowed with initial values. The update step starts with banks getting

the required reserves rDk
t−1 and excess reserves Ek

t−1 plus interest payment

from the central bank (it is assumed that for both required and excess re-

serves an interest of rb is paid). The banks obtain a stochastic return for all

investments Ikt−1 which might be either positive or negative. The firms fur-

thermore pay back all investments Ikf that were made in a previous period

and have a maturity of τ kI = 0. The banks then pay interest for all deposits

that were deposited in the previous period. After that, the banks can either

receive further deposits from the households, or suffer deposit withdrawings

11



ΔDk
t . At the end of the first period, all interbank and central bank loans

plus interests are paid either to, or by bank k.

At the beginning of phase 2, the bank’s liquidity Q̂k is therefore given as:

Q̂k
t = (1 + rb)

[
rDk

t−1 + Ek
t−1

]
+ μkIkt−1 + Ikf − rdDk

t−1 ±ΔDk
t (6)

−(1 + rb)
[
Lk
t−1 + LCk

t−1

]
All banks with Q̂k

t < 0 are marked as illiquid and removed from the system.

Banks that pass the liquidity check now have to pay required reserves rDk
t

to the central bank.

In phase 3 the bank k determines its planned level of investment Ikt =

(λk)∗(V k)∗ and excess reserves Ek
t = (1−(λk)∗)(V k)∗ according to equations

(3) and (4). From this planned level and the current level of investments (all

investments that were done in earlier periods and have a maturity τ kI > 0),

as well as the current liquidity (6) the bank determines its liquidity demand

(or supply). If a bank has a liquidity demand, it will go first to the interbank

market, where it asks all banks i that are connected to k (denoted as i : k) in

a random order, if they have a liquidity surplus. In this case the two banks

will interchange liquidity via an interbank loan. The convention is adopted

that a negative value of L denotes a demand for liquidity and therefore the

interbank loan demand of bank k is given by:

Lk
t = Q̂k

t − Ikt (7)

From this, one can obtain the realized interbank loan level, via the simple

rationing mechanism:

Lk
t = min

⎧⎪⎨⎪⎩
Lk
t , −∑

i:k L
i
t | Li

t · Lk
t < 0 ; if Lk

t > 0

−Lk
t ,

∑
i:k L

i
t | Li

t · Lk
t < 0 ; if Lk

t < 0

⎫⎪⎬⎪⎭ (8)

Now there are three cases, depending on the bank’s liquidity situation. If a

bank has neither a liquidity demand nor excess liquidity, it will not interact
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with the central bank and this step is skipped. However, if the bank still

has a liquidity demand, it will ask for a central bank loan:

LCk
t = Lk

t − Lk
t (9)

The central bank then checks if the bank has the neccessary securities and

if so, it will provide the loan:

LCk
t = max

(
LCk

t ,−αkIkt−1

)
(10)

where αk ∈ [0, 1] denotes the fraction of investments of bank k that are ac-

cepted as securities by the central bank. If a bank has insufficient securities,

the central bank will not provide the full liquidity demand and the bank has

to reduce the planned investment and excess reserve level. If the bank has

no securities (no investments Ikt−1), it cannot borrow from the central bank.

This rationing mechanism maps planned investment levels to realized ones.

The second case is that a bank has a large liquidity surplus even if all

planned investments can be realized. In this case, the bank is able to pay

dividends Ak
t and the dividend payment is determined by:

Ak
t = min

{
LCk

t , β
kIkt

}
(11)

where βk ∈ [0, 1] is the dividend level of bank k. The dividend level will

typically be very close to 1 as shareholders will push the bank to rather

pay dividends than use the money to deposit it at the central bank at low

interest rates. The remaining:

LCk
t = LCk

t − Ak
t (12)

is transferred to the central bank’s deposit facility. Finally the realized in-

vestments are transferred to the firm sector and the realized excess reserves

are transferred to the central bank.

These steps are done for all k = 1 . . . N banks in the system for t = 1 . . . τ

time steps. As there are two stochastic elements in the simulation (the

13



return of investments and the deposit level), two channels for a banks in-

solvency are modelled. The first channel is via large deposit withdrawals.

As deposits are very liquid and investments are illiquid for a fixed, but ran-

dom investment time, this maturity transformation might lead to illiquidity

and therefore to insolvency. The second channel for insolvency is via losses

on investments. If the banks banking capital is insufficient to cover losses

from a failing investment, this bank will be insolvent. If a bank fails, all

the banks that have borrowed to this bank will suffer losses, which they

have to compensate by their own banking capital. This is a possible conta-

gion mechanism, where the insolvency of one bank leads to the insolvency

of other banks who would have survived if it was not for the first bank’s

insolvency. The impact of the contagion effect will depend on the precise

network structure of the interbank market at the time of the insolvency.

2.3 Network theory

A financial network consists of a set of banks (nodes) and a set of rela-

tionships (edges) between the banks. Even though many relationships exist

between banks, this paper focuses on relationships that stem from interbank

lending. For the originating (lending) bank the loan will be on the asset

side of its balance sheet, while the receiving (borrowing) bank will hold the

loan as a liability. To describe the toplogy of a network, some notions from

graph theory are helpful. The starting point is the definition of a graph.

Definition 1 A (un)directed graph G(V,E) consists of a nonempty set V

of vertices and a set of (un)ordered pairs of vertices E called edges. If i and

j are vertices of G, then the pair ij is said to join i and j.

One sometimes speaks of graphs as networks and the two terms are used

interchangeably. Since the focus of this paper is on interbank markets, the

nodes of a network are (commercial) banks and the edges are interbank

loans between two banks. For every graph, a matrix of bilateral exposures

which describes the exposure of bank i to bank j can be constructed.
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Definition 2 The matrix of bilateral exposures W (G) = [wij] of an inter-

bank market G with n banks is the n × n matrix whose entries wij denote

bank i’s exposure to bank j. The assets ai and liabilities li of bank i are

given by ai =
∑n

j=1 wij and lj =
∑n

j=1 wji.

Closely related to the matrix of bilateral exposures is the adjacency matrix

that describes the structure of the network without referring to the details

of the exposures.

Definition 3 The entries aij of the adjacency matrix A(G) are one if there

is an exposure between i and j and zero otherwise.

One can define the interconnectedness of a node as the in- and out-degree

of the node.

Definition 4 The in-degree din(i) and out-degree dout(i) of a node i are

defined as:

din(i) =
n∑

j=1

aji , dout(i) =
n∑

j=1

aij (13)

and give a measure for the interconnectedness of the node i in a directed

graph G(V,E). The two degrees are equal for directed graphs.

One can define the size of a node i analogously to its interconnectedness in

terms of the value in- and out-degree.

Definition 5 The value in- and out-degree of a node are defined as:

vdcin(i) =

∑n
j=1 wji∑n

k=1

∑n
j=1 wkj

∈ [0, 1] (14)

vdcout(i) =

∑n
j=1 wij∑n

k=1

∑n
j=1 wjk

∈ [0, 1] (15)

and give a measure for the size of the node. The value in-degree is a measure

for the liabilities of a node while the value out-degree is a measure for its

assets.

A quantity that can be used to characterise a network is its average path

length. The average path length of a network is defined as the average length
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of shortest paths for all pairs of nodes i, j ∈ V . Another commonly used

quantity to describe the topology of a network is the clustering coefficient,

introduced by Watts and Strogatz (1998) in their seminal work on small-

world networks. Given three nodes i, j and k, with i lending to j and

j lending to k, then the clustering coefficient can be interpreted as the

probability that i lends to k as well. For i ∈ V , one define the number of

opposite edges of i as:

m(i) := |{j, k} ∈ E : {i, j} ∈ E and {i, k} ∈ E| (16)

and the number of potential opposite edges of i as:

t(i) := d(i)(d(i)− 1) (17)

where d(i) = din(i) + dout(i) is the degree of the vertex i. The clustering

coefficient of a node i is then defined as:

c(i) :=
m(i)

t(i)
(18)

and the clustering coefficient of the whole network G = (V,E) is defined as:

C(G) :=
1

|V ′|
∑
i∈V ′

c(i) (19)

where V ′ is the set of nodes i with d(i) ≥ 2. The average path length of

the whole network can be defined for individual nodes. The single source

shortest path length of a given node i is defined as the average distance of

this node to every other node in the network.

It is possible to distinguish between a number of networks by looking at

their average path length and clustering coefficient. One extreme type are

regular networks which exhibit a large clustering coefficient and a large av-

erage path length. The other extreme are random networks which exhibit

a small clustering coefficient and a small average path length. Watts and

Strogatz (1998) define an algorithm that generates a network which is be-

tween these two extremes. They could show that the so-called “small-world
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networks” exhibit both, a large clustering coefficient and small average path

length. A large number of real networks like the neural network of the worm

Caenorhabditis elegans, the power grid of the western United States, and

the collaboration graph of film actors are small-world networks. From a

systemic risk perspective, small-world networks are interesting, as it is rea-

sonable to assume that the short average path length and high clustering of

small-world networks make them more vulnerable to contagion effects than

random or regular networks. Small-world networks can be created by using

the algorithm defined in Watts and Strogatz (1998). Starting point is a reg-

ular networks of N nodes where each node is connected to its m neighbours.

The algorithm now loops over all links in the network and rewires each link

with a probability β. For small values of β (about 0.01 to 0.2) the average

path length drops much faster than the clustering coefficient so one can have

a situation of short average path length and high clustering. A small-world

network is shown on the left side of Figure (2) with N = 50, k = 4, β = 0.05.

Another interesting class of networks are scale-free networks. They are

characterized by a logarithmically growing average path length and approx-

imately algebraically decaying distribution of node-degree (in the case of

an undirected network). They were originally introduced by Barabási and

Albert (1999) to describe a large number of real-life networks as e.g. social

networks, computer networks and the world wide web. To generate a scale-

free network one starts with an initial node and continues to add further

nodes to the network until the total number of nodes is reached. Each new

node is connected to k other nodes in the network with a probability that

is proportional to the degree of the existing node. When thinking about fi-

nancial networks, this preferential attachment resembles the fact that larger

and more interconnected banks are generally more trusted by other market

participants and therefore form central hubs in the network. On the right

side of Figure (2) a scale-free network with N = 50 and k = 2 is shown.
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Figure 2: On the left: a small-world network that was created using the

algorithm of Watts and Strogatz (1998) with N = 50, k = 4 and β = 0.05.

On the right: a scale-free network that was created using the methodology

introduced in Barabási and Albert (1999) with N = 50 and m = 2. The

colour is an indication for the single source shortest path length of the node

and ranges from white (large) to red (short).

A typical feature of scale-free networks is their degree-distribution, as it

typically follows a power-law. The exponent of the power-law can be mea-

sured and characterises the network topology for different networks. Boss

et al. (2004) show that the degree distribution of the Austrian interbank

market follows a power law with an exponent of γ = −1.87. Cajueiro and

Tabak (2007) analyze the topology of the Brazilian interbank market. They

show that the Brazilian interbank market employs a scale-free toplogy and

is characterized by money-center banks. Iori et al. (2008) and Manna and

Iazzetta (2009) report that the Italian interbank market shows a similiar

scale-free behaviour. Cont and Moussa (2009) show that a scale-free inter-

bank network will behave like a small-world network when Credit Default

Swaps (CDS) are introduced. In this sense a CDS acts as a “short-cut” from

one part of the network to another. This paper therefore focuses on these

three classes of networks (random, scale-free and small-world) to analyze

their effect on systemic risk through contagion effects.
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2.4 Model Parameters

There are eighteen model parameters that control the numerical simula-

tion. If not stated otherwise, numerical simulations were performed with

the parameters given in this section. The simulations were performed with

N = 100 banks and τ = 1000 update steps each. Note that the simulation

results do not change if the number of banks is increased. It has to be

ensured, however, that the number is large enough so that differences in

the network topologies become significant enough to be visible in the sim-

ulation results. The number of update steps has to be large enough for the

system to reach a steady state from where on the results only change little.

Every simulation was repeated numSimulations=100 times to average out

stochastic effects. The interest rate deposits was chosen to be rd = 0.02

and the main refinancing rate as rb = 0.04, which resembles the situation

in the Eurozone prior to the crisis. The required reserve rate is r = 0.02

which is in line with legal requirements. The interbank connection level for

random graphs is denoted as connLevel∈ [0, 1]. At a connLevel=0 there is

no interbank market and at connLevel=1 every bank is connected to every

other bank. For scale-free networks the parameters m = 1, 2, 4, 10 and for

small-world networks the parameters β ∈ [0.001, 0.1] were used.

Two sets of parameters are used to describe the influence of the real econ-

omy on the model. The first set is the probability that a credit is returned

successful, pf = 0.97 (3% of the credits will default). The return for a suc-

cessful returned credit is taken to be ρ+f = 0.09 and in case a credit defaults,

the negative return on the investment is ρ−f = −0.05. The choice of param-

eters again resembles the situation in the Eurozone and will sometimes be

referred to as “normal” parameters. As “crisis” parameters ρ+f = 0.97 and

ρ−f = −0.08 were used. This implies that banks have larger losses on their

risky assets in times of crises. To plan their optimal portfolio, the banks

have an expected credit success probability pb and expected credit return ρ+b .

It is assumed that these expected values correspond to the true values from
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the real economy. The optimal portfolio structure and volume of a bank

depend also on its risk aversion parameter θ. For each bank, θ ∈ [1.67, 2.0]

was chosen randomly to allow for heterogeneity in the banking sector. For

θ < 1.67, and given all other chosen parameters, portfolio theory would im-

ply that banks hold no risk-free assets. The value of the factor of constant

relative risk aversion is subject to an ongoing debate, even though a value

greater than one is well established (see i.e. the discussion in Ait-Sahalia

and Lo (2000)).

Deposit fluctuations ΔDk
t were modelled as:

ΔDk
t = (1− γk + 2γkx)Dk

t−1 (20)

with γk = 0.02 (in “normal” times) and γk = 0.1 (during a “crisis” period)

can be interpreted as a scaling parameter for the level of deposit fluctua-

tions and x being a random variable with x ∈ [0, 1]. The fraction of a banks

investments that the central bank accepts as securities is set to αk = 0.8, as-

suming that banks invest only in assets which have a good rating. The level

of dividends βk determines the fraction of a banks excess liquidity (that is

free funds that are available if a bank has reached its optimal investment

volume) that the bank will pay out as dividends to shareholders. It is as-

sumed that shareholders can find more profitable investment opportunities

than the deposit facility of the central bank and will thus push for banks to

pay out as much of the excess liquidity as possible. In order to accomodate

the fact that banks in reality nonetheless make use of the deposit facility,

a dividend level of βk = 0.99 was chosen for the simulations. Note that a

change in the dividend level does not qualitatively change the results.

3 Results

To answer the question which impact central bank activity has on financial

stability, I first varied the level of collateral αk that is accepted by the cen-

tral bank in order to provide liquidity to banks. For αk = 1 the central bank
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Figure 3: The effect of central bank activity for different scenarios. Top:

crisis scenario. Bottom: normal scenario. Left: number of active banks over

simulation time. Right: interbank loan volume over simulation time. The

central bank activity αk varied between αk ∈ [0.0, 1.0].

will accept all assets of commercial banks as collateral, while for αk = 0, no

assets will be accepted. Thus, αk is used as a parameter to determine the

fraction of assets that are of high enough quality to be accepted as collat-

eral. Banks will obtain liquidity for the amount of collateral that they can

deposit at the central bank. In Figure (3) it can be seen that a significant

stabilizing effect from the liquidity provision by the central bank is obtained

from αk ∼ 0.45. However, this effect is non-linear in αk which implies that,

on the one hand, even slight changes in the collateral requirements can have

significant stabilizing effects if performed around the critical value. On the

other hand, even large changes can have very little effect, if performed away

from the critical value. The effect on the number of active banks is sim-

ilar for both, the normal and the crisis scenario. On the right hand side

of Figure (3) the impact of the collateral requirements on the volume of
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Figure 4: The effect of different network topologies on financial stabil-

ity. Left top: crisis scenario and random topology. Right top: nor-

mal scenario and random topology. Connection levels of connLevel=

0.0, 0.2, 0.4, 0.6, 0.8, 1.0 were used. Bottom left: crisis scenario and small-

world network with β = 0.001, 0.005, 0.01, 0.05, 0.1. Bottom right: crisis

scenario and scale-free network with m = 1, 2, 4, 10.

interbank loans is displayed. It can be seen, that in both scenarios an abun-

dant provision of central bank liquidity will lead to a crowding-out effect on

interbank liquidity. It can further be seen, that a high amount of interbank

liquidity is correlated with high financial instability. This is precisely the

knife-edge property of interbank markets: if the exposures amongst banks

are too large, an initial knock-on effect will be amplified in the system.

In Figure (4) the impact of different network topologies on financial stability

in times of crisis and normal times is shown. When comparing the results

for random networks, it can be seen that the difference in network topology
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is not significant during normal times.7 In times of crisis, however, the dif-

ferent levels of interconnectedness come into play. Figure (4) also confirms

the result of Nier et al. (2008), who show that the relationship between the

level of interconnectedness on interbank markets and financial contagion is

non-monotonic. It can furthermore be seen, that contagion effects tend to

be larger in in random networks than in small-world networks, where in

turn contagion effects tend to be larger than in scale-free networks. This

implies that analyses that are conducted with static random networks can

overestimate contagion effects when a dynamic model of systemic risk is

used.

For increasing levels of interconnectedness in random networks, it can be

seen from Figure (4) that there exists a “tipping” point, where the networks

become endogenously instable. To better understand this, the interbank

loan volume is depicted in Figure (5). As Ladley (2011) argues, the knife-

edge property of interbank markets requires shocks to be small, in order

to exihibt a stabilizing effect. Figure (5) shows an increase in interbank

market volume until a tipping point, where the amount of interbank loans

becomes large and contagion effects dominate. This in turn leads to an in-

creasing number of insolvencies that spread easier in the system if the level

of interconnectedness increases. It can also be seen from Figure (5) that

the volume of interbank markets in normal times is significantly smaller

than the volume in times of distress. This is easily understood in the model

setup, as times of distress imply larger liquidity fluctuations and therefore

larger amounts of interbank loans issued between agents. However, this

implies that interbank markets will be more prone to contagion effects in

times of high deposit and asset return volatility. It also implies that inter-

bank markets are more susceptible to systemic risk when the volume of the

interbank market is larger.

7And similarly for small-world and scale-free networks.
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Figure 5: The effect of different network topologies on interbank loan vol-

ume. Left top: crisis scenario and random topology. Right top: nor-

mal scenario and random topology. Connection levels of connLevel=

0.0, 0.2, 0.4, 0.6, 0.8, 1.0 were used. Bottom left: crisis scenario and small-

world network with β = 0.001, 0.005, 0.01, 0.05, 0.1. Bottom right: crisis

scenario and scale-free network with m = 1, 2, 4, 10.

To understand the impact of different forms of systemic risk on financial

stability, Figure (6) compares two different types of shocks. In the case of

pure interbank contagion, the largest bank in the system is selected and

exogenously sent into default. The impact of this default on the remaining

number of active banks in the system is depicted in Figure (6) at the top.

Again, it can be seen that the impact is larger in times of distress than in

normal times. To analyze the impact such a default has on the liquidity

provision in interbank markets, Figure (6) shows the interbank market vol-

ume at the bottom. When a common shock hits the system, banks with

insufficient equity will go into insolvency. While this might only be a small

number of banks, a larger number of banks become more vulnerable to de-

posit and asset return fluctuations. As was seen in Figure (5), shocks that
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Figure 6: The impact of different forms of systemic risk on financial stability

and interbank loan volume. Left: normal scenario. Right: crisis scenario.

Top: number of active banks over time. Bottom: interbank loan volume

voer time. Interbank contagion: the largest bank in the system at time

t = 400 was sent into insolvency. Common shock A: all banks suffer a

common shock of 10% on all their assets. Common shock B: all banks

suffer a common shock of 20% on all their assets.

exceed a certain threshold will lead to an increased number of insolven-

cies in the system. When banks become more vulnerable, this threshold is

reached easier and the whole system remains unstable as long as the volume

on the interbank market (and hence the magnitude of possible shocks) will

lead to increased insolvencies. When the crisis hits, the volume of inter-

bank transactions drops until it has reached a level where the endogenous

deposit and asset return fluctuations will not lead to an increased number

of insolvencies. Comparing the case of common shocks to the case of inter-

bank contagion, it can be seen that, while the impact of a common shock

on the number of active banks is more severe than in the contagion case,

the opposite holds true for interbank market liquidity. The pure contagion
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case has a substantial impact on interbank market liquidity, which on the

other hand implies a smaller size of shocks due to endogenous fluctuations.

4 Conclusion

This paper provides further evidence that central bank intervention can

indeed alleviate financial distress and liquidity shortages on interbank mar-

kets, at least in the short run. Even small changes in the collateral require-

ments of central banks can lead to a significant enhancement of liquidity

provision on interbank markets. There is, however, a large range of required

collateral quality, where even a significant change in the collateral require-

ments will not lead to a significant enhancement of liquidity provision. The

simulation results also show that an abundant provision of central bank

liquidity can lead to a crowding-out of interbank liquidity. The desired im-

pact of central bank activity on liquidity provision will thus be smaller in

the long run. This is confirmed by the fact that, while the central bank has

a stabilizing effect on the financial system in the short-run, the long run

equilibrium will always be the equilibrium that would have been reached

without central bank activity.

The model developed in this paper allows for a deeper understanding of the

knife-edge property of interbank markets. The results indicate that there

is an upper limit of interbank loan volume for different network topologies,

where endogenous deposit and asset return fluctuations will lead to an in-

creased number of bank insolvencies. The limit itself depends on the topol-

ogy of the interbank markets and will be larger for higher interconnected

banking systems. This implies that the knife-edge property of interbank

markets depends on the precise market structure and level of interconnect-

edness. For higher connectivity on the interbank market, larger amounts

of interbank liquidity can be tolerated by the system without a substan-

tial increase in financial fragility. However, even for complete networks,
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where every bank is connected to every other bank, such an upper limit

exists. In fact, for higher interconnected networks, shocks will spread more

rapid, which implies a higher fragility of the system once the tipping point

is reached.

Already the correlation of higher interconnectedness and increasing system

fragility makes it clear, that the topology of the interbank network is rele-

vant for the assessment of financial stability. This paper also shows that the

topology of the interbank network impacts the assessment of the long-run

stability of the banking system. This “topology effect” is more accentuated

in times of crisis, while in normal times, the topology has little impact. This

result is of particular relevance for the question which interbank network

structure is most resilient to financial distress. It turns out that networks

with large average path length are more resilient to financial distress and

that it is precisely during a crisis when the network topology matters.

Even though contagion effects are far better studied in the literature, it

turns out that common shocks pose a greater threat to financial stability.

This is also due to the knife-edge property of interbank markets. When

a common shock strikes the entire banking system, banks become more

vulnerable to endogenous fluctuations and occasional idiosyncractic insol-

vencies. This leads to a drastic vulnerability of the entire system and a

large number of bank insolvencies. However, contagion affects interbank

market liquidity more severely than common shocks. Again, the impact of

the shocks is larger during times of distress, which holds especially true for

the impact of contagious defaults on interbank liquidity provision.

From the perspective of monitoring systemic risk, this paper provides ev-

idence that the topology of the interbank network has to be taken into

account. The interbank network topology, however, is highly dynamic and

varies from day to day. This implies that further analyses of this dynamic
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behaviour are necessary in order to understand the full impact of the net-

work topology on the propagation of shocks.
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