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Abstract

I introduce a novel, hierarchical model of tail dependent asset returns which can be partic-

ularly useful for measuring portfolio credit risk within the structural framework. To allow

for a stronger dependence within sub-portfolios than between them, I utilise the concept of

nested Archimedean copulas, but modify the nesting procedure to ensure the compatibility

of copula generators by construction. This makes sampling straightforward. Moreover, I pro-

vide details on a particular specification based on a gamma mixture of powers. This model

allows for lower tail dependence, resulting in a more conservative credit risk assessment than

a comparable Gaussian model. I illustrate the extent of model risk when calculating VaR or

Expected Shortfall for a credit portfolio.

Keywords: Portfolio Credit Risk, Nested Archimedean Copula, Tail Dependence, Hierar-

chical Dependence Structure

JEL Classification: C46, C63, G21



Non-technical summary

There is a growing consensus among researchers, practitioners and regulators that Gaussian

models of asset returns lead to a systematic underestimation of tail risk when applied to a

credit portfolio or portfolio credit derivatives. This is due to the fact that such models cannot

properly account for the tendency of large negative asset returns to occur simultaneously –

the property of the joint distribution of asset returns called in statistical terms lower tail

dependence. Therefore, the probability of joint default events and, in turn, extreme portfolio

losses is underestimated. It follows that an extensive utilisation of Gaussian models in risk

management can be seen as one of the determinants of a massive capital shortfall in the

financial sector during the recent crisis. To address this issue, I elaborate a novel model of

tail dependent asset returns exploiting the concept of nested Archimedean copulas.

The modelling approach presented in this paper has a number of technical merits which

provide it with a beneficial flexibility. I specify two dependence levels – sub-portfolios and the

whole portfolio – although the model can be extended to incorporate more than two levels.

This hierarchial dependence structure allows for a stronger dependence within appropriately

specified sub-portfolios (e.g. comprising obligors from a particular industry sector) than

between them. This is a desirable property because companies in the same sector usually

exhibit stronger dependence. The degree of dependence between the companies operating

in different industry sectors is, however, lower but not zero because of the influence of a

common macroeconomic environment. The model is also flexible enough for differentiated

treatment of different sub-portfolios, making it possible to cope with concentration risk.

Another advantage is that I avoid by construction built-in parameter restrictions which are

otherwise common in the specification of nested Archimedean copulas.

From a computational point of view, the model benefits from a straightforward sampling

procedure involving only uniformly and gamma distributed variables. The corresponding

pseudo-random number generators are, in fact, standard in mathematical and statistical

packages.

Apart from the technical features described, the suggested model could have implications

for risk controlling and banking regulation and, on a large scale, for financial stability. Because

this model takes account of the tail dependence of asset returns, its implementation would

result in a more conservative assessment of portfolio credit risk and, consequently, higher

economic and regulatory capital requirements. Therefore, the model is able to counter the

systematic underestimation of credit risk in the banking sector – one of the basic causes of

the recent financial turmoil.



Nichttechnische Zusammenfassung

Sowohl im akademischen Bereich als auch unter den Fachleuten der Finanzbranche und

Regulierern wird vermehrt die Meinung vertreten, dass die auf Normalverteilungsannah-

men beruhenden Modelle sich nicht zur Risikomessung von Kreditportfolien oder portfo-

liobasierten Kreditderivaten eignen. Solche Modelle berücksichtigen ausschließlich lineare

Korrelationen zwischen den Firmenwerten der Schuldner. Sie sind nicht in der Lage, die

tendenziell gemeinsam auftretenden extremen Firmenwertverluste mehrerer Schuldner zu

erklären, die zur Häufung von Kreditausfällen in einem Portfolio führen (“lower tail de-

pendence”). Wenn die Wahrscheinlichkeit gemeinsamer Kreditausfälle unterschätzt wird, so

wird auch das Risiko unerwartet hoher Portfolioverluste und der korrespondierende Kapitalbe-

darf unterschätzt. Daher kann eine verbreitete Anwendung von Kreditportfoliomodellen mit

gemeinsam normalverteilten Risikofaktoren als einer der Gründe für die massive Kapitalun-

terdeckung während der jüngsten Finanzkrise identifiziert werden. Im vorliegenden Papier

wird ein stochastisches Modell für Firmenwertrenditen vorgestellt, das die Abhängigkeit der

unteren Verteilungsflanken berücksichtigt. Das Modell basiert auf dem Konzept verschachtel-

ter Archimedischer Copulas.

Der hier vorgestellte Ansatz weist eine Reihe technischer Vorteile auf, die dem Modell einer-

seits Flexibilität verleihen und andererseits seine Umsetzung erleichtern. Ich spezifiziere zwei

Abhängigkeitsebenen: die untere Subportfolio-Ebene und die obere Portfolioebene. Diese hi-

erarchische Abhängigkeitsstruktur hat den Vorteil, dass die Firmenwertrenditen von Schuld-

nern, die ein und demselben Subportfolio zugewiesen sind, stärker voneinander abhängen

als die Firmenwertrenditen von Schuldnern aus unterschiedlichen Subportfolien. Wenn die

Subportfolien zum Beispiel nach Industriesektoren gebildet werden, so ist für die im gleichen

Sektor tätigen Unternehmen die Firmenwertentwicklung hochgradig gleichgerichtet. Dagegen

ist die gegenseitige Abhängigkeit von Unternehmen aus verschiedenen Sektoren schwächer,

weil sie nur auf das gemeinsame makroökonomische Umfeld zurückzuführen ist. Das Modell

ist flexibel genug, um sektorale Unterschiede in der Stärke der Anhängigkeit abzubilden.

Das vorgeschlagene Verschachtelungsprozedere sieht von jeglichen Parameterrestriktionen

ab, die sonst bei der Konstruktion hierarchischer Archimedischer Copulas üblich sind. Es

gewährleistet darüber hinaus eine einfache Implementierung. So sind für den in diesem Papier

näher betrachten Spezialfall nur gamma- und gleichverteilte Zufallszahlen für die Copula-

Simulation erforderlich. Die Generatoren für solche Pseudozufallszahlen sind standardmäßig

in mathematischen und statistischen Software implementiert.

Von den technischen Vorzügen abgesehen, können aus Anwendung des vorgestellten Port-

foliomodells Lehren für die Bereiche Risikocontrolling und Bankenregulierung gezogen wer-

den. Damit einhergehende, konservative Einschätzung unerwarteter Portfolioverluste würde

in einem höheren ökonomischen und regulatorischen Kapitalbedarf resultieren, was letztlich

einen stabilisierenden Effekt auf das gesamte Finanzsystem haben könnte.
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A Hierarchical Archimedean Copula

for Portfolio Credit Risk Modelling1

1. Introduction

Interdependent default events, when defaults of different counterparties tend to occur simul-

taneously, pose major challenges for an adequate assessment of credit risk in banks’ lending

portfolios. A prerequisite for estimation of the associated extreme losses is, therefore, a

portfolio model capable of capturing dependence between rare events. Under the structural

approach for credit risk modelling, a firm’s failure results from the asset value of the firm

falling below the value of its outstanding debt. Due to this direct link between the default

and asset value of a firm, interdependent default events can be modelled based on the joint

distribution of asset values or, equivalently, asset returns. Consequently, the tail dependence

properties of the joint distribution of asset returns would determine how frequently low-

probability events, such as the simultaneous defaults of several obligors, can actually occur.

This would eventually affect the amount of portfolio unexpected loss and the capital buffer

required as protection against losses.

The above chain of reasoning demonstrates that using portfolio credit risk models with

incorporated tail dependence can be crucial for a single bank’s ability to remain solvent as

well as for the sustainability of an entire banking sector. In spite of that, Gaussian dependence

structures have been widely used by practitioners and regulators. Owing to a zero lower tail

dependence coefficient, a Gaussian model generates joint defaults far too infrequently, leading

to a systematic underestimation of portfolio credit risk and capital requirements and, in turn,

endangering banks’ solvency.

To address this issue, I put forward a novel model of asset returns which can be used for

assessing portfolio credit risk under the structural approach. This model utilises the concept

of nested Archimedean copulas.

Archimedean copulas have been actively used in the portfolio risk modelling literature

because they possess a simple explicit representation which can be easily extended to an

arbitrary number of dimensions. An important feature of various Archimedean copulas is

that they allow for tail dependence which does not have to be symmetric. A drawback,

however, is the copula’s invariance with respect to permutations of its arguments. The latter

1Natalia Puzanova, Deutsche Bundesbank, Department of Financial Stability, Wilhelm-Epstein-Str. 14,
60431 Frankfurt/Main, Germany, e-mail: natalia.puzanova@bundesbank.de.
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feature is likely to be far too restrictive in a portfolio context, but can be overcome by a

nesting procedure, as utilised in this paper.

The nested Archimedean copula described in this paper has two major advantages in terms

of portfolio credit risk modelling: the lower tail dependence and the hierarchical dependence

structure. The first feature takes account of clustering default events. The latter allows for

stronger default dependence within appropriately specified sub-portfolios (e.g. comprising

obligors from a particular industry sector) than between them.2 It is a desirable property

because companies in the same sector usually exhibit stronger dependence. The degree of

dependence between the companies operating in different industry sectors is, however, lower

but not zero because of the influence of the common macroeconomic environment. The

magnitude of dependence parameters can also vary from one sub-portfolio to another so that

the model can cope with concentration risk.

Regarding related literature, I refer to Embrechts et al. (2003), McNeil (2008) and Hofert

and Scherer (2011) for more information on Archimedean copulas, nesting procedures and

compatibility conditions as well as on using nested copulas for credit risk assessment. In

the paper at hand, I modify the nesting procedure in a way which ensures by construction

the compatibility of copula generators and removes the usual restrictions on copula parame-

ters. From a computational point of view, this redefined nesting procedure makes sampling

straightforward. The work presented in this paper was part of my doctoral thesis published

in (Puzanova, 2010). In parallel to that work Hering et al. (2010) developed a probabilistic

model for construction nested Archimedean copulas using Lévy subordinators. I refer to the

latter paper for more general theoretical results on the redefined nesting procedure.

The remainder of the paper is structured as follows: section 2 outlines the credit portfolio

setting used in the paper. Section 3 presents the hierarchical Archimedean copula model.

In section 4, I apply this model to two hypothetical test portfolios in order to judge the

model risk compared with a benchmark Gaussian specification. Finally, I summarise the

main results and draw conclusions in section 5.

2. Portfolio setting

I first define target variables which quantify credit risk at the portfolio level. In the tradition

of the default-only credit risk models, I look at the distribution of the potential portfolio

losses at a one-year risk horizon, whereby the losses can only materialise when one or more

borrowers go bankrupt. The portfolio loss, denoted PL, is a random variable which can be

defined as the sum over the individual losses Li on every single exposure in the portfolio

(one borrower - one exposure). A loss variable Li equals zero when the ith borrower survives

2I specify two dependence levels – sub-portfolios and the whole portfolio – although the model can be
extended to incorporate more than two levels.
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beyond the risk horizon. Otherwise, when the borrower defaults on its obligations, Li equals

the expected amount of loss given default LGDi, i.e., the exposure to this borrower minus

the expected recovery. For the sake of convenience, I normalise the maximum total loss to

unity so that an individual LGDi is given as a percentage of the total portfolio LGD.

The event of a borrower i’s default is determined in the tradition of structural credit risk

models by the standardised returns on the borrower’s market value of asset Ri dropping below

the default threshold defined by the borrower’s one-year probability of default PDi. The

default threshold equals F−1
Ri

(PDi), F
−1
Ri

being the quantile function of the random variable

Ri. The portfolio setting can be summarised as follows:

PL :=
n∑

i=1

Li =
n∑

i=1

LGDi · 11(−∞,F−1
Ri

(PDi)
](Ri), (2.1)

where 11A(X) denotes an indicator function:

11A(X) =

⎧⎨⎩1 for X ∈ A,

0 otherwise.

With regard to the distribution of the portfolio loss variable PL, I am looking for the

Value at Risk at a pre-specified confidence level q (V aRq) and for the Expected Shortfall

(ESq). VaR is commonly used in risk management and controlling as a measure of portfolio

credit risk, although it is incoherent (not sub-additive in general). It quantifies the minimum

portfolio loss in the worst (1− q)× 100 per cent of cases. V aRq(PL) equals the value of the

quantile function of the random variable PL:

V aRq(PL) := F−1
PL(q) (2.2)

ES is a coherent risk measure which quantifies the expected portfolio loss in the worst (1−q)×
100 per cent of cases. ESq(PL) equals the conditional tail expectation beyond the q-quantile

of the portfolio loss distribution augmented by a discontinuity adjustment:

ESq(PL) := E
[
PL | PL ≥ V aRq(PL)

]
+V aRq(PL) · 1− q − Pr {PL ≥ V aRq(PL)}

1− q
. (2.3)

3. The hierarchical Archimedean copula model

In this section, I derive a probabilistic model for asset returns utilising nested Archimedean

copulas. I also give details on a particular specification based on a two-fold Gamma mixture

of powers. I specify the hierarchical dependence structure in subsection 3.1 and investigate

its properties in subsection 3.2. Subsequently, I provide an appropriate sampling algorithm

in subsection 3.3.

3



3.1. Derivation of the copula

The portfolio dependence structure should be flexible enough to cope with sub-portfolios

which exhibit different dependence properties. Within the scope of Archimedean copulas,

this aim can be achieved by utilising a nesting procedure so that the resulting hierarchcal

Archimedean copula (HAC) would have the following general form

Cp

(
Csp1

(
u11, . . . , u1n1

)
, . . . , Cspm

(
um1, . . . , umnm

))
.

This is a copula model with two hierarchy levels. The copulas Cspj with j = 1, . . . ,m at

the lower level of the hierarchy represent dependence functions of distinct groups of obligors.

There are m such groups or sub-portfolios each containing nj obligors with
∑m

j=1 nj = n.

Those copulas specify the within-group dependence properties. At the top, portfolio level

of the hierarchy, the copula Cp joins the sub-portfolios. This copula determines dependence

properties between distinct groups of obligors. The copula argument uji is defined in terms

of the probability-integral transform uji := FRji
(Rji = xji) for the asset return of the obligor

i in the sub-portfolio j.

The model should meet the following general requirements. For the purpose of portfolio

risk modeling, it is crucial that the copula allows for lower tail dependence. Moreover, the

between-group dependence should logically be less strong than the within-group dependence.

For the sake of flexibility, the nesting procedure should not pose any technical restrictions on

the parameters of the copulas Cspj .

According to Joe (1997, p. 86 ff.), an Archimedean copula arises from a mixture of powers.

The corresponding representation for the joint cumulative distribution function (cdf) of the

asset return vector R is given by:

FR(x) =

∫ ∞

0

∫ ∞

0

G
zsp1
11 (x11) · · ·Gzsp1

1n1
(x1n1) dMZsp1 |Zp(zsp1 | zp)× . . . (3.1)

×
∫ ∞

0

G
zspm
m1 (xm1) · · ·Gzspm

mnm
(xmnm) dMZspm |Zp(zspm | zp) dMZp(zp).

Zp is the positive mixing variable at the portfolio level. Its cdf is denoted by MZp . Zspj

represents a sub-portfolio-specific positive mixing variable, which depends by construction on

Zp. The cdf of Zspj conditional on Zp is denoted by MZspm |Zp .

If, for instance, the sub-portfolios represent the different industry sectors that the borrowing

companies are operating in, the economic interpretation of the mixing variables could be

as follows: Zspj represents all the market and macroeconomic information relevant for the

companies operating in sector j. This information is partly sector-specific3 and not relevant

for other sectors. However, in part, it is common for all sectors, such as information about

3This part of the information flow will be represented by the random variable Yspj later in this text.
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the general economic environment. This part of the information is represented by the random

variable Zp.

The two-fold mixture given in (3.1) determines the dependence structure of the asset return

vector. The asset returns are mixtures of powers with mixing variables Zspj . Thus, conditional

on a realisation of Zspj , j = 1, . . . ,m, the returns are mutually independent. The sector-

specific random variables Zspj are themselves mixtures with the common mixing variable Zp.

Thus, conditional on a realisation of Zp, the asset returns of the obligors in the different

sub-portfolios are independent, but those in the same sub-portfolio are not.

Because in the credit portfolio context only the dependence structure (i.e. copula) of the

asset return vector is of interest, we do not have to specify the cdfs Gji exactly. Suffice it

to say that, according to Marshall and Olkin (1988), cdfs Gji as implicitly defined by (3.1)

always exist.4

The HAC corresponding to the mixture representation (3.1) has the form:

Cp

(
Csp1

(
u11, . . . , u1n1

)
, . . . , Cspm

(
um1, . . . , umnm

))
= ϕp

[
ϕ−1
p ◦ ϕsp1

(
ϕ−1
sp1

(u11) + · · ·+ ϕ−1
sp1

(u1n1)

)
+ . . . (3.2)

+ϕ−1
p ◦ ϕspm

(
ϕ−1
spm(um1) + · · ·+ ϕ−1

spm(umnm)

)]
.

Here, ϕ−1
p serves as the generator of the outer copula Cp and ϕ−1

spj
serves as the generator of

an inner copula Cspj .

Appendix A provides details on the HAC derivation from the general mixture of powers.

In this section, I derive a particular HAC model by defining all M(·) in (3.1) as gamma cdfs.

This leads to a relatively simple copula function with lower tail dependence. However, it

might be an interesting topic for further research to use other positive mixing variables and

to compare the dependence properties of the resulting models. Another possible extension is

to define more than two hierarchy levels.

Because I specify all mixing distributions in (3.1) as gamma cdfs, I only need to know the

Laplace transform (LT) of a gamma random variable in order to derive an explicit formula

for the HAC in (3.2). First, I identify the inverse outer generater ϕp as the LT of the gamma

variable Zp with mean 1 and variance κp:

ϕp(ν) =
(
1 + νκp

)−1/κp
. (3.3)

Second, I identify the inverse inner generator ϕspj as the LT of the random variable Zspj .

4These cdfs are given by Gji(xji) = exp
{
−ϕ−1

spj

[
FRji

(xji)
]}

, where ϕspj
denotes the Laplace transform of

Zspj
. In general, the Laplace transform of a positive random variable X is given by ϕ = E

[
exp{−νX}] =

exp
[−Ψ

]
with Ψ denoting the corresponding Laplace exponent.
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Since the conditional distribution of this random variable is the gamma cdf MZspm |Zp and

the unconditional distribution is a mixture over MZspm |Zp with the mixing variable also being

gamma-distributed, I refer to the unconditional distribution of Zspj as Compound Gamma

(CG). It is the distribution of a gamma subordinator, say Yspj , evaluated at a random, gamma-

distributed time given by Zp. The gamma random variable Yspj has mean 1, variance κspj

and LT

ϕYspj
=
(
1 + νκspj

)−1/κspj . (3.4)

According to Sato (1999, p. 201), I can derive the LT of Zspj as follows:

ϕspj(ν) = ϕp

[− ln
(
ϕYspj

)]
=

[
1 +

κp

κspj

ln
(
1 + ν κspj

)]−1/κp

. (3.5)

Finally, I check that function (3.2) with ϕp and ϕspj defined in (3.3) and (3.5) is a proper

copula. This is only the case when the compound function

w(ν) := ϕ−1
p ◦ ϕspj(ν) (3.6)

satisfies the nesting condition of being in the class L∗
n. This class of functions is specified by

Joe (1997, p. 88 f.) as:

L∗
n =

{
f : [0,∞) → [0,∞) | f(0) = 0, f(∞) = ∞, (−1)k−1f (k) ≥ 0, k = 1, . . . , n

}
.

Because a Lévy subordinator evaluated at a random time given by another Lévy subordinator

is also a Lévy subordinator, the copula generators involved are compatible with each other

by construction. The compound function w(ν) is just the Laplace exponent of a Lévy sub-

ordinator and, thus, belongs to class L∗
n (see Hering et al., 2010, Theorem 2.3). This result

can also be verified by looking at the derivatives of w ≡ − ln
(
ϕYspj

)
which are given by

w(k)(ν) = (−1)k−1(k − 1)!κk−1
spj

(
1 + νκspj

)−k
for k ∈ N.

The equation above implies that (−1)k−1w(k) > 0 ∀ ∈ N holds.

The explicit representation of the HAC, obtained from (3.2) by putting in (3.3) and (3.5),

is given by:

Cp

(
Csp1

(
u11, . . . , u1n1

)
, . . . , Cspm

(
um1, . . . , umnm

))

=

(
1 + κp

m∑
j=1

1

κspj

ln

[
1− nj +

nj∑
i=1

exp

{
κspj

κp

(
u
−κp

ji − 1
)}])−1/κp

. (3.7)

This nested portfolio copula produces two interesting special cases of marginal copulas.

6



The first special case is the nj-variate Archimedean copula of asset returns assigned to a

sub-portfolio j

Cspj(uj1, . . . , ujnj
) = ϕspj

[
ϕ−1
spj

(uj1) + · · ·+ ϕ−1
spj

(ujnj
)
]

=

(
1+

κp

κspj

ln

[
1−nj+

nj∑
i=1

exp

{
κspj

κp

(
u
−κp

ji −1
)}])−1/κp

. (3.8)

I term this Archimedean copula compound gamma due to the fact that the inverse generator

of the copula is the LT of a CG random variable. The second special case is the copula of

asset returns assigned to different sub-portfolios:

Cp(u1i, . . . , umi) = ϕp

[
ϕ−1
p (u1i) + · · ·+ ϕ−1

p (umi)
]

=

(
1−m+

m∑
j=1

u
−κp

ji

)−1/κp

, (3.9)

which turns out to be a Cook-Johnson copula (or Clayton copula in a two-dimensional case).

It is worth to mention that the nesting procedure put forward in this subsection is different

from the commonly used one. For instance, Embrechts et al. (2003) and McNeil (2008)

among others suggest, first, to take some known generator functions, nest them as in (3.2)

and, second, to proof, whether the inner generators are compatible with the outer generater

and, if so, under which parameter restrictions. Apart from the initial uncertainty as to

whether the resulting function will be a proper copula or not and the parameter restrictions

that must be satisfied, this common procedure makes implementation difficult. In fact, we

either do not know the conditional distribution of Zspj at all or this distribution is difficult

to sample from. By contrast, I use a nesting procedure which, on the one hand, ensures that

the compound function (3.6) is actually in L∗
n without any parameter restrictions. On the

other hand, I am free to choose a distribution for the conditional random variable Zspj | Zp

which is easy to sample from. This feature is especially favorable with regard to the model’s

implementation. In the particular example elaborated in this subsection the random variable

Zspj conditional on a realisation Zp = zp is gamma-distributed with mean zp, variance zpκspj

and the following LT:

exp
{−zpϕ−1

p ◦ ϕspj(ν)
}
= ϕzp

Yspj
(ν) =

(
1 + νκspj

)−zp/κspj . (3.10)

3.2. Properties of the copula

Concerning its algebraic properties, the hierarchical Archimedean copula (3.7) is only par-

tially exchangeable in its arguments whereby the marginal copulas (3.8) and (3.9) are fully

permutation-symmetric in their arguments.
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Regarding their dependence properties, all Archimedean copulas (ordinary or nested) are

larger than the independence copula in the sense of concordance ordering.5 It means that the

random variables involved are positively dependent.

Moreover, it is ensured by construction that dependence within sub-portfolios is stronger

that dependence between them. According to corollary 4.4.4 in Nelsen (1999, p. 110), the

inner copulas are then larger than the outer copula (in the sense of concordance ordering) if

the compound function w defined in (3.6) is concave. w is given by w = − ln
(
ϕYspj

)
which is

the Laplace exponent of the random variable Yspj and, thus, a concave function so that the

required condition holds.

It follows from the above result that Kendall’s tau and other measures of concordance,

defined in Nelsen (1999, p. 136f.), are greater for the inner copulas than for the outer copula.

It holds:

τϕp < min
{
τϕspj

}
j=1,...,m

.

The outer Cook-Johnson copula is positively ordered, that is it exhibits stronger dependence

for larger parameter values κp, as shown in Nelsen (1999, p. 111) for the two-dimensional

case. For a fixed value of the parameter κp, the inner CG copula is also positively ordered

with respect to κsp. To show that for the two-dimensional case, I use the corollary 4.4.6 in

Nelsen (1999, p. 111). According to that corollary, if
(
ϕ−1
sp1

)′
/
(
ϕ−1
sp2

)′
is nondecreasing on

(0, 1) for a fixed κp, then Csp1 ≺ Csp2 . The derivative of the inverse function of the CG LT

is given by (
ϕ−1
spj

)′
(ν) = −ν−κp−1 exp

{
κspj

κp

(
ν−κp − 1

)}
.

It follows that (
ϕ−1
sp1

)′
(ν)(

ϕ−1
sp2

)′
(ν)

= exp

{
1

κp

(
ν−κp − 1

)}κsp1−κsp2

.

This function is nondecreasing for a negative power, that is for κsp1 < κsp2 . It follows, that

for a fixed value of κp the CG family is positively ordered with respect to the parameter κsp.

To illustrate dependence properties implied by the HAC model and to attain some feeling

for the parameter sensitivity, I use information provided by contour and scatter plots for the

two-dimensional inner (CG) and outer (Clayton) copulas.

Because of the positive dependence, the contour lines of the copulas under consideration lie

between those of the independence copula and those of the maximum copula (the copula of

comonotone random variables): cf. Figure 1. Figure 2 illustrates that the magnitude of the

positive dependence is the greater, the larger the variance of the mixing variables: the contour

lines converge to those of the maximum copula. For a particular value of κp, dependence is

stronger in the case of the CG copula (i.e. within a sub-portfolio) than for the Clayton

5That is, an Archimedean copula is always greater that the independence copula evaluated for the same set
of arguments: CArchimedean 
 C⊥.
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copula (i.e. between sub-portfolios) due to the amplifying effect of the sub-portfolio-specific

parameter κsp.

��������������� ��������	
��
�


Figure 1: Contour plots of the independence and maximum copulas.

(a) κp = 1 (b) κsp = 0.5, κp = 1

(c) κp = 1.5 (d) κsp = 1, κp = 1.5

Figure 2: Contour plots of Clayton (left-hand side) and CG (right-hand side) copulas for
different parameter values.
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With regard to the lower tail dependence, we can clearly see clusters of low-probability

realisations in the lower left-hand corners of a unit square in Figure 3. These scatter plots were

obtained by simulation using the algorithm provided in the next subsection. The magnitude

of lower tail dependence increases with rising values of variance parameters. Again, the sub-

portfolio-specific parameter κsp has an amplifying effect so that the tail dependence within a

sub-portfolio is stronger then the tail dependence between asset returns of obligors belonging

to different sub-portfolios. A stronger within-sector dependence of the large negative asset

returns can also be inferred from the pairwise scatter plots in Figure 4. The figure shows

realisations from a four-dimensional Archimedean copula with two hierarchy levels and two

sub-portfolios.

The property of lower (upper) tail dependence of two random variables describes the prob-

ability that extremely small (large) realisation of both variables occur simultaneously. The

general and Archimedean-copula-specific lower and upper tail dependence coefficients are

given as (cf. Joe, 1997, p. 103):

λL = lim
u↓0

C(u, u)

u
≡ lim

ν↑∞
ϕ(2ν)

ϕ(ν)
,

λU = lim
u↑1

1− 2u+ C(u, u)

1− u
≡ 2− 2lim

ν↓0
ϕ′(2ν)
ϕ′(ν)

.

The lower tail dependence coefficient for the two-dimensional outer (Clayton) copula is

given by λL = 2−1/κp so that lower tail dependence is increasing in the parameter. For the

two-dimensional inner (CG) copula, no explicit expression can be obtained λL. But, because

of the result Cp ≺ Csp, it holds that λL is greater for the inner copula that for the outer

copula (cf. Hering et al., 2010). Moreover, because for a given value of κp the CG family

is positively ordered with respect to κsp, the lower tail dependence within a sub-portfolio is

stronger for rising values of κsp.

Regarding the upper tail dependence, it is pointed out by Hering et al. (2010) that if both

mixing variables used in the mixture of powers have finite mean, then there is no upper tail

dependence between and within sub-portfolios.

I illustrate the parameter sensitivity of the tail dependence by means of a graphic represen-

tation in Figure 5. For u → 0 the coefficients converge to values greater than zero indicating

positive lower tail dependence. It is greater for the CG copula. For u → 1 the upper tail

dependence coefficients converge to zero for both Clayton and CG copulas regardless of the

magnitude of the variance parameters.
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Figure 3: Scatter plots of 1,000 realisations of Clayton (left-hand side) and CG (right-hand
side) copulas for different parameter values.
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(c) u11 and u22

Figure 4: Pairwise scatter plots of 1,000 realisations of a four-dimensional HAC with two
sub-portfolios. Parameter values used are: κsp1 = 0.25, κsp2 = 0.5 and κp = 0.8.

11



��� ��� ��� ��� ��� ���

��
�

��
�

��
�

��
�

��
�

��
�

κ	
 = �, κ
 = ���

�


������

�


(�, �)
�

� − � ⋅ � + 
(�, �)
� − �

��� ��� ��� ��� ��� ���

��
�

��
�

��
�

��
�

��
�

��
�

κ	
 = ���, κ
 = �

�

Figure 5: A graphical representation of the tail dependence coefficients for Clayton and Com-
pound Gamma (CG) copulas for different parameterisations.

3.3. Sampling algorithm

I will conclude this section by providing a sampling algorithm for the hierarchical Archimedean

copula defined in (3.7). It goes as follows:

• Generate Zp from the gamma distribution with mean 1 and variance κp.

• Generate Zspj | Zp, j = 1, . . . ,m from the independent gamma distributions with mean

Zp and variance Zp · κspj .

• Generate variables Xji, j = 1, . . . ,m, i = 1, . . . , nj from the uniform distribution on the

interval [0, 1].

• The realisations from the HAC are given by

Uji = ϕp

⎧⎨⎩−
ln
[
ϕ
Zp

Yspj

{
− ln
(
Xji

)
/(Zspj | Zp)

}]
Zp

⎫⎬⎭ .

The sampling is particularly easy because we know by construction the distribution of the

conditional random variable Zspj | Zp : see (3.10). It was not the case in other papers on

nested Archimedean copulas, which I have mentioned in the introductory section.

Having elaborated the theoretical background, I move to an application example in the

next section.
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4. Application to test portfolios

In order to judge the model risk which arises from neglecting tail dependence in a credit

portfolio context, I apply the HAC model introduced in the previous section to two test

portfolios and compare the results with the outcomes of a Gaussian model. I describe two

test portfolios in subsection 4.1. In subsection 4.2, I calibrate the parameters of the HAC

and the benchmark Gaussian model. The final results are discussed in subsection 4.3.

4.1. Test portfolios

The stylised portfolios used in this section are adopt from Puzanova et al. (2009). The smaller

portfolio is comprised of 100 credit exposures as summarised in Table 1. 65% of the portfolio

LGD is attributed to investment garde (IG) borrowers and 35% to speculative grade (SG)

borrowers according to Moody’s rating grades/categories. In each rating category, 80% of

the total LGD is evenly distributed among 20% of the largest debtors. The remaining 20%

of the LGD in each rating category is evenly distributed among the remaining debtors. The

second, larger portfolio comprised of 1,000 credit exposures has exactly the same PD-LGD

structure as in Table 1 and is obtained from the small portfolio by subdividing each credit

exposure into 10 parts.

Table 1: Structure of the small test portfolio

Rating category PD(%) Share in the total Total # of
portfolio LGD(%) debtors

IG: Aa 0.064 35 10
IG: A 0.077 15 10
IG: Baa 0.301 15 25
SG: Ba 1.394 15 25
SG: B 4.477 15 25
SG: C 14.692 5 5

Note: Rating categories and corresponding probabilities of default (PD) were obtained from
Moody’s (2006, p. 33). IG indicates investment grade ratings and SG indicates speculative
grade ratings.

4.2. Parameter calibration

In order to assess the model risk evoked by different tail properties of different asset re-

turn distributions, I consider a model with a Gaussian correlation structure and calibrate

dependence parameters of the HAC model in a way that ensures the same linear correlation.

The obligors in the portfolio are grouped into two sub-portfolios according to their rating

grade: sub-portfolio 1 – investment garde (IG), sub-portfolio 2 – speculative grade (SG). I

13



Table 2: Model parameters used in the simulation

Model Parameters Estimates

Gauss ρsp1 0.0321
ρsp2 0.1212
ρp 0.0144

HAC κsp1 0.0214
κsp2 0.1309
κp 0.0175

Note: The correlation parameters used in the simulation for the Gaussian model are set follow-
ing Puzanova and Siddiqui (2005). The model parameters for the hierarchical Archimedean
copula (HAC) are calibrated accordingly in order to maintain the same linear correlation
structure.

denote the within-group linear correlation by ρspj , j = 1, 2 and the between-group linear

correlation by ρp. For the purposes of an illustrative example, I take the estimates of the

within-group correlation from Puzanova and Siddiqui (2005) and set the between-group cor-

relation to an arbitrarily chosen value which is smaller than the minimum of the within-group

correlation coefficients. Numerical values of the correlation coefficients are given in the upper

panel of Table 2.

The overall Gaussian copula of asset returns has the correlation matrix given by:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · ρsp1 ρp · · · ρp
...

...
...

...

ρsp1 · · · 1 ρp · · · ρp

ρp · · · ρp 1 · · · ρsp2
...

...
...

...

ρp · · · ρp ρsp2 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.1)

In order to calibrate the dependence parameters of the HAC model, I use the following

representation of the Pearson’s correlation coefficient:

ρX,Y =

∫ 1

0

∫ 1

0

[
CX,Y (u, v)− uv

]
dF−1

X (u)dF−1
Y (v) (4.2)

for two random variables X and Y .

I put the two-dimensional portfolio-level copula in form (3.9) in combination with Gaussian

marginal cdfs onto the right-hand side and the between-group correlation coefficient ρp onto

the left-hand side of the equation (4.2). Then I solve the equation numerically for the copula

parameter κp. Subsequently, I substitute the copula on the right-hand side of (4.2) with the
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bivariate copula in form (3.8) for the sub-portfolio j and the correlation coefficient on the

left-hand side with ρspj and solve for κspj . The results are given in the lower panel of Table 2.

4.3. Results of the simulation study

This subsection reports the results of a simulation study for the test portfolios and model

settings described previously. In each setting, I run a Monte Carlo simulation for portfolio loss

distribution, repeating the simulation loop s = 1.5×107 times in order to achieve more precise

results. I first generate the probability-integral transforms for both models in question.6 I do

this by sampling asset returns from a multivariate normal distribution with the correlation

matrix (4.1) and computing Ui = FRi
(Ri) for the Gaussian model. For the HAC model I

sample Ui directly according to the algorithm in section 3.3. Then I calculate the default

indicators as

Di := 11(
0,PDi

](Ui). (4.3)

For each of the s simulation loops, I calculate portfolio loss as:

PLk =
n∑

i=1

LGDi ·Dk
i , k = 1, . . . , s.

After s simulation runs have been completed, I compute Monte Carlo estimators for the

portfolio loss distribution, VaR and ES for each model setting. The estimators are given by:

F̂PL(xq) ≡ q̂ =
1

s

s∑
k=1

11(0,xq ](PLk),

V̂ aRq(PL) = inf
{
x ∈ [0, 1] : F̂PL(x) ≥ q

}
= PLs

�s·q�,

ÊSq(PL) =

∑s
k=1 PLk 11(

V̂ aRq(PL),1
](PLk)∑s

k=1 11
(
V̂ aRq(PL),1

](PLk)

+ V̂ aRq(PL)
1− q̂ − 1

s

∑s
k=1 11

(
V̂ aRq(PL),1

](PLk)

1− q̂
.

Here, PLs
�s·q� represents the order statistic of the sample (PL1, . . . , PLs) which is either of

order s · q or of a larger order next to it.

Figure 4.3 demonstrates that the loss distribution based on the HAC setting has a much

more heavier tail than the distribution based on the Gaussian setting, which is in line with the

presence of lower tail dependence although the linear correlation is the same. The difference

is more pronounced in the case of the larger portfolio because the more debtors are in the

6In this representation, the sub-portfolio subscripts are omitted for convenience.
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(b) Larger portfolio

Figure 6: Log-lin graphs of the simulated portfolio loss tail function for two different model
settings: Gaussian and hierarchical Archimedean copula (HAC).

portfolio, the more combinations of joint defaults are possible and the dependence of rare/tail

events has a greater effect.

As to the measures of portfolio tail risk, the simulation results on VaR and ES at different

confidence levels are presented in Table 3. In all cases, the tail risk figures within the Gaussian

setting are considerably lower than those within the HAC setting. The difference becomes

more distinct, the further into the tail we go. Again, the risk of VaR/ES underestimation if

the assumption of zero lower tail dependence coefficient is wrong is considerably higher for the

larger portfolio, as illustrated in Figure 7. For the same linear correlation of asset returns, the

model risk might be very pronounced when true joint distribution of underlying risk factors

exhibits lower tail dependence. According to the values at risk marked in the figure for the

larger test portfolio, the 99.99%-VaR within the Gaussian setting lies next to the 99%-VaR

within the HAC framework for the portfolio. That is, according to the Gaussian model, losses

of about 10% of the total portfolio LGD and greater are supposed to occur once every 10,000

years. However, they would occur as often as once a century according to the HAC setting.

The results presented above demonstrate that the tail dependence properties of the under-

lying joint distribution of asset returns influence to a great extent the tail behaviour of the

portfolio loss distribution. Dependence parameters of the HAC model affect the probability

of joint borrower defaults and therefore the portfolio tail risk. Table 4 clarifies this issue with

an example. Thereby, a simplified model setting is considered with the same sub-portfolio-

specific parameters for both IG and SG rating grades (κspj = κsp). The simulation results for

the VaR of the smaller portfolio at different confidence levels demonstrate the impact of the

increasing parameter values on the VaR.
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Figure 7: Comparison of the Value at Risk (VaR) of the larger portfolio at two different confi-
dence levels for the Gaussian and hierarchical Archimedean copula (HAC) settings.
The probability distributions for both models under consideration are shown and
the corresponding VaR values are marked by vertical lines.

5. Conclusions

This paper introduces a novel model for asset returns based on the concept of nested Ar-

chimedean copulas. The model takes account of tail dependence and, therefore, can be

very useful for the purposes of portfolio credit risk assessment. It exhibits a hierarchical

dependence structure which means that it allows for a stronger dependence within specified

sub-portfolios or sectors than between them.

The hierarchical Archimedean copula (HAC) framework presented has a number of techni-

cal merits which provide it with a beneficial simplicity and flexibility. Because it is ensured

by construction that the resulting function is a proper copula, there is no need any more to

check compatibility conditions or parameter restrictions for the nested copula. The sampling

from the HAC becomes straightforward.

Apart from the technical features described, the suggested model might have far-reaching

implications for risk controlling and banking regulation and, on a large scale, for financial

stability. Its implementation would result in a far more conservative assessment of portfolio

credit risk and, consequently, higher economic and regulatory capital requirements. Therefore,

the model is able to counter the systematic underestimation of credit risk in the banking sector

– one of the basic causes of the recent financial turmoil.
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Table 3: Comparison of VaR and ES for different settings

V̂ aRq ÊSq

q Gauss HAC Gauss HAC

Smaller portfolio

0.9900 0.0955 0.1210 0.1221 0.1514
0.9950 0.1055 0.1415 0.1335 0.1712
0.9990 0.1455 0.1875 0.1634 0.2129
0.9995 0.1665 0.2080 0.1921 0.2330
0.9999 0.1985 0.2485 0.2176 0.2725

Larger portfolio

0.9900 0.0615 0.0950 0.0734 0.1214
0.9950 0.0695 0.1125 0.0814 0.1386
0.9990 0.0880 0.1530 0.1010 0.1781
0.9995 0.0960 0.1695 0.1105 0.1930
0.9999 0.1135 0.2065 0.1256 0.2269

Note: VaR and expected shortfall (ES) at different confidence levels q estimated by sim-
ulation for various parameter settings and two different models: Gaussian and hierarchical
Archimedean copula (HAC). Results are given for two test portfolios containing 100 and 1,000
credit exposures respectively.

Table 4: Parameter sensitivity

V̂ aR0.99 V̂ aR0.999

κp κsp = 0.2 κsp = 0.5 κsp = 0.9 κsp = 0.2 κsp = 0.5 κsp = 0.9

0.01 0.1350 0.1990 0.2540 0.2215 0.3185 0.3490
0.05 0.1535 0.2175 0.2630 0.2735 0.3470 0.3500
0.10 0.1725 0.2345 0.2855 0.3170 0.3500 0.3505

Note: Parameter sensitivity of Value at Risk at different confidence levels (V aRq) with respect
to the dependence parameters of the hierarchical Archimedean copula model. Only the smaller
portfolio containing 100 credit exposures is considered.

18



References

P. Embrechts, F. Lindskog, and A. McNeil. Modelling Dependence with Copulas and Applica-
tions to Risk Management. In S.T. Rachev, editor, Handbook of Heavy Tailed Distributions
in Finance, pages 329–384. North-Holland: Amsterdam, 2003.

C. Hering, M. Hofert, J.-F. Mai, and M. Scherer. Constructing Nested Archimedean Copulas
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A. Derivation of the HAC from the mixture representation

In this appendix I explain in detail the derivation of the HAC given in (3.2) starting from
the mixture representation given in (3.1). Beginning with the inner integrals in (3.1), we can
write: ∫ ∞

0

G
zspj
j1 (xj1) · · ·Gzspj

jnj
(xjnj

) dMZspj |Zp(zspj | zp)

=

∫ ∞

0

exp
{
zspj
[
ln
(
Gj1(xj1)

)
+ · · ·+ ln

(
Gjnj

(xjnj
)
)]}

dMZspj |Zp(zspj | zp)

= ϕZspj |Zp

[
ln
(−Gj1(xj1)

)− · · · − ln
(
Gjnj

(xjnj
)
)]

(A.1)

= ϕZspj |Zp

[
ϕ−1
spj

(
FRj1

(xj1)
)
+ · · ·+ ϕ−1

spj

(
FRjnj

(xjnj
)
)]
, (A.2)

whereby I use the definition of a Laplace transform (LT) in row (A.1) and the definition of
Gji in row (A.2): cf. footnote 4.
ϕspj |p denotes the LT of the random variable Zspj conditional on Zp. It is linked to the LT

of the unconditional random variable Zspj as follows:

ϕspj(ν) = E
[
e−νZspj

]
= E

[
E
[
e−νZspj | Zp

]]
=

∫ ∞

0

∫ ∞

0

e−νzspj dMZspj |Zp(zspj | zp) dMZp(zp)

=

∫ ∞

0

ϕspj |p(ν | zp) dMZp(zp). (A.3)

When Zspj | Zp is an infinitely divisible random variable implying

ϕspj |p(ν | zp) = ϕ
zp
spj |p=1(ν) ≡ ϕ

zp
Yspj

(ν), (A.4)

the expression in row (A.3) can be given as follows:

ϕspj(ν) =

∫ ∞

0

ϕ
zp
Yspj

(ν) dMZp(zp)

=

∫ ∞

0

exp
{
zp ln

[
ϕYspj

(ν)
]}

dMZp(zp)

= ϕp

[− ln
(
ϕYspj

)]
; (A.5)

cf. (3.5). Solving (A.5) for ϕYspj
results in

ϕYspj
= exp

{−ϕ−1
p ◦ ϕspj(ν)

}
; (A.6)

cf. (3.10). Combining (A.2), (A.4) and (A.6), the initial mixture of powers representation (3.1)
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can be rewritten as:

FR(x) =

∫ ∞

0

exp

{
−zp

(
ϕ−1
p ◦ ϕsp1

[
ϕ−1
sp1

(
FR11(x11)

)
+ · · ·+ ϕ−1

sp1

(
FR1n1

(xjn1)
)]

+ · · ·

+ϕ−1
p ◦ ϕspm

[
ϕ−1
spm

(
FRm1(xm1)

)
+ · · ·+ ϕ−1

spm

(
FRmnm

(xmnm)
)])}

dMZp(zp)

= ϕp

(
ϕ−1
p ◦ ϕsp1

[
ϕ−1
sp1

(
FR11(x11)

)
+ · · ·+ ϕ−1

sp1

(
FR1n1

(xjn1)
)]

+ · · ·

+ϕ−1
p ◦ ϕspm

[
ϕ−1
spm

(
FRm1(xm1)

)
+ · · ·+ ϕ−1

spm

(
FRmnm

(xmnm)
)])

. (A.7)

The representation (A.7) for the joint cdf of asset returns Rji implies the copula (3.2)
representation for the corresponding probability-integral transforms Uji := FRji

(Rji).
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