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Abstract

This paper assesses the impact of a certain structure of interbank exposures on the sta-

bility of a stylized financial system. Given a certain balance sheet structure of financial

institutions, a large number of valid matrices of interbank exposures is created by a random

generator. Assuming a certain loss given default, domino effects are simulated. The main

results are, first, that financial stability depends not only on the completeness and inter-

connectedness of the network but also on the distribution of interbank exposures within the

system (measured by entropy). Second, looking at random graphs, the sign of the corre-

lation between the degree of equality of the distribution of claims and financial stability

depends on the connectivity of the financial system as well as on additional parameters that

affect the vulnerability of the system to interbank contagion. Third, the more concentrated

assets are within a money center model, the less stable it is. Fourth, a money center model

with asset concentration among core banks is less stable than a random graph with banks

of homogeneous size. Results obtained in this paper extend existing theoretical literature

that exclusively focuses on completeness and interconnectedness of the network as well as

empirical literature that exclusively focuses on one particular financial network.
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Non-technical summary

Within this paper, the impact of domino effects on the stability of a stylized interbank network

is analyzed by simulation. Whereas empirical literature on this topic exclusively investigates

one particular (real-world) financial network, theoretical (analytical as well as simulation-based)

literature has its focus on the impact of completeness and interconnectedness of a network on its

stability. This paper extends existing theoretical network simulations by an additional parame-

ter: the degree of equality of the distribution of interbank exposures.

The analysis is implemented for different structures of interbank connections: first, the complete

network, where each bank is directly linked to all other banks in both directions; second, a

network where banks form their linkages randomly; and third, a money center model, where a

distinction is made between completely interconnected core banks with large balance sheet totals

and small banks in the periphery that are only connected to one core bank.

The results of this paper can be compared to previous theoretical results, that show a non-

monotonic relationship between the completeness of networks and their stability. Simulation

results that are only made dependent on the completeness and interconnectedness of the finan-

cial system confirm these findings. If, however, results are additionally made dependent on the

degree of equality of the distribution of interbank exposures, some deviant cases can be shown.

Thus, the first result of the paper is that not only the completeness and interconnectedness of

the network determines its stability but also how equally interbank exposures are distributed.

The second result is that the sign of the correlation between the degree of equality of the distri-

bution of interbank exposures and the average number of bank failures depends on the number

of interbank links within the financial system as well as on banks’ equity ratio and the loss given

default.

Third, within a money center model, an increasing concentration of assets on core banks de-

creases the stability of the system. Fourth, assuming reasonable parameter values concerning

the amount of bilateral interbank exposures, money center systems with asset concentration

among core banks are more unstable than networks with banks of homogeneous size that form

their links randomly.



Nichttechnische Zusammenfassung

Das vorliegende Papier analysiert mit Hilfe von Simulationen, welchen Einfluss Dominoeffekte auf

die Stabilität eines stilisierten Interbanken-Netzwerks haben. Während die empirische Literatur

zu diesem Thema ausschließlich ein bestimmtes (reales) Finanz-Netzwerk untersucht, konzen-

triert sich die theoretische (sowohl die analytische als auch die simulationsbasierte) Literatur auf

den Einfluss der Vollständigkeit und der Verknüpftheit eines Netzwerks. Das vorliegende Papier

erweitert die bestehenden theoretischen Netzwerksimulationen um einen zusätzlichen Parameter:

Die Gleichmäßigkeit der Verteilung von Interbanken-Verbindlichkeiten.

Diese Untersuchungen werden unter der Annahme unterschiedlicher Netzwerkstrukturen durchge-

führt: 1., ein vollständiges Netzwerk, wobei jede Bank mit jeder anderen Bank in beide Richtun-

gen direkt verknüpft ist; 2., ein Netzwerk, in dem Banken ihre Verbindungen zu anderen Banken

zufällig bilden; und 3., ein ”Money Center System”, wobei zwischen vollständig verknüpften

großen Kernbanken und kleineren Peripheriebanken, die ausschließlich mit einer Kernbank ver-

bunden sind, unterschieden wird.

Die Ergebnisse dieses Papiers können mit den bisherigen theoretischen Ergebnissen verglichen

werden, die einen nicht-monotonen Zusammenhang zwischen Vollständigkeit und Stabilität eines

Interbanken-Netzwerks aufzeigen. Simulationsergebnisse, die nur von der Vollständigkeit und

Verknüpftheit des Finanzsystems abhängen, bestätigen die bisherigen Ergebnisse. Wenn die Si-

mulationsergebnisse zusätzlich von der Gleichmäßigkeit der Verteilung der Interbanken-Verbind-

lichkeiten abhängig gemacht werden, können allerdings einige abweichende Fälle gezeigt werden.

Somit ist das erste Ergebnis dieses Papiers, dass nicht nur die Vollständigkeit und Verknüpftheit

des Interbanken-Netzwerks Einfluss auf seine Stabilität hat, sondern auch wie gleichmäßig die

Interbanken-Verbindlichkeiten verteilt sind.

Das zweite Ergebnis ist, dass das Vorzeichen der Korrelation zwischen dem Maß für die Gleich-

mäßigkeit der Verteilung der Interbanken-Verbindlichkeiten und der durchschnittlichen Anzahl

an Bankausfällen sowohl von der Verknüpftheit, als auch von der Eigenkapitalquote der Banken

und der Verlustquote abhängt.

Drittens verringert in einem “Money Center System” eine verstärkte Konzentration von Ak-

tiva auf die Kernbanken die Stabilität des Systems. Viertens sind, unter der Annahme von

angemessenen Parameterwerten bezüglich des Umfangs der Verbindlichkeiten zwischen den einzel-

nen Banken, “Money Center Systeme” mit einer Konzentration von Aktiva auf Kernbanken

instabiler als Netzwerke mit gleich großen Banken, die ihre Verbindungen zu anderen Banken

zufällig bilden.
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Completeness, interconnectedness and distribution of interbank
exposures - a parameterized analysis of the stability of financial

networks1

1 Introduction

Research on financial stability is an important topic in order to assess certain risks and dangers

within financial systems that potentially lead to huge losses for the overall economy. Especially

the investigation of various channels of interbank contagion has been in the focus of recent re-

search. In the context of this paper, interbank contagion means that the failure of one financial

institution leads to the failure of other financial institutions.

Various fields of studies have been developed to capture the numerous facets of this comprehen-

sive topic (for a literature survey, see Allen and Babus (2009)). From the theoretical point of

view, Allen and Gale (2000) show that interbank connections can be useful in order to provide an

insurance against liquidity shocks. Because of these interbank linkages, however, the bankruptcy

of one bank can lead to the bankruptcy of other banks. In this context, Allen and Gale show that

a financial system with a complete network structure is less prone to contagion than a financial

system with an incomplete network structure. In addition, they state that a disconnected system

is useful to limit contagion. Freixas et al. (2000) implement, among other things, a theoretical

analysis of contagion within a “money center system”, where banks in the “periphery” are linked

to one “core bank” but not to each other. They show that there are parameter constellations

under which the failure of a periphery bank does not lead to contagion, whereas the failure of

the “core bank” does.

Another part of the literature that investigates financial stability are empirical studies that use

supervisory data to analyze the danger of domino effects within a banking system (e.g. van

Lelyveld and Liedorp (2006), Upper and Worms (2004), Wells (2004), Furfine (1999), Sheldon

and Maurer (1998)). As a lot of detailed data on interbank exposures are necessary but often

not available, assumptions such as maximum entropy are made concerning the structure of these

exposures. This means that banks are assumed to spread their interbank claims as equally as

1Angelika Sachs, Department of Economics, University of Munich, angelika.sachs@lrz.uni-muenchen.de. The

opinions expressed in this paper are those of the author and do not necessarily reflect the opinions of the Deutsche

Bundesbank. I would like to thank Frank Heid, Christoph Memmel, Thilo Pausch and the participants of the

research seminar of the Deutsche Bundesbank for helpful comments and suggestions.
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possible among their counterparties. However, it is likely that, under the maximum entropy

assumption, results are biased. In his summary of the analysis of interbank contagion, Upper

(2007) states that maximum entropy assumptions tend to underestimate the incidence but over-

estimate the severity of contagion. Mistrulli (2007) investigates interbank contagion using actual

Italian interbank data and compares his findings with an analysis using the maximum entropy

assumption. He finds that, for most parameter constellations, the maximum entropy assump-

tion tends to underestimate the extent of contagion. There are, however, also some parameter

constellations (in particular a high loss given default) where the maximum entropy assumption

overestimates the scope of contagion.

Cifuentes et al. (2005) extend a contagion model of domino effects by simulations that include

contagion due to liquidity problems. Within their simulations they use a clearing algorithm

developed by Eisenberg and Noe (2001).2 The analysis of pure domino effects is also extended

by Chan-Lau (2010) and Espinosa and Solé (2010) by additionally considering contagion due to

banks’ refinancing problems and due to risk transfers. Also, the impact of market and funding

liquidity risk on the stability of a financial network is investigated by Aikman et al. (2009).

In recent years there has been a growing literature which uses theory of complex networks to

describe real-world financial systems and simulate the effects of potentially dangerous events.

For example, Boss et al. (2004) analyze the network topology of the Austrian interbank market.

Iori et al. (2008) apply network theory to describe the Italian overnight money market. Haldane

(2009) provides a characterization of the world’s financial network. Additionally, Gai and Kapa-

dia (2010), as well as Nier et al. (2008), use random graphs to analyze the danger of contagion

dependent on certain characteristics of the financial system by simulation. Gai and Kapadia

(2010) find that for a high connectivity of the network, the probability that contagion occurs

is low but the impact if contagion occurs is high. Nier et al. (2008) find out by parameterized

simulation some non-linearities between certain parameter values and financial stability. Con-

trary to most of the empirical literature, where one special financial system is considered to test

the danger of contagion, simulation-based work instead tries to find out the main characteristics

that make a financial system especially vulnerable to contagion.

As, up to now, only few studies exist about the detailed structure of real-world financial net-

works, this paper considers several stylized structures and investigates their impact on financial

2Eisenberg and Noe showed that under mild regularity conditions (strong connectivity and at least one node

has positive equity value or all nodes have positive operating cash flows) there exists a unique fixed point that

describes the clearing payment vector of the financial system.

2



stability by simulation. This paper builds on the empirical literature that uses entropy methods

to construct and characterize interbank linkages as well as on literature that tries to simulate the

danger of contagion according to certain characteristics of the financial system, in particular the

matrix of interbank exposures. For example, it extends the work of Mistrulli (2007) in such a

way that not only one matrix is compared to the maximum entropy solution but a great variety

of randomly generated matrices with different network structures. For the first time, a large set

of valid interbank matrices is constructed by a random generator and then characterized accord-

ing to certain properties, such as entropy, relative entropy to the maximum entropy solution or

connectivity.

Additionally, this paper differs from Nier et al. (2008) in the sense that, first, balance sheets

are constructed and, as a second step, the liability matrix is generated, which is, besides row

and column sums of the matrix, independent from banks’ balance sheets. Thus, stability results

obtained in this paper can be attributed purely to changes in the liability matrix.

Furthermore, results can be interpreted as an extension to the theoretical literature about the

impact of certain network patterns on contagion. Up to now the focus has been exclusively on

the completeness and interconnectedness of interbank networks (see Allen and Gale (2000)). In

this context, banks are modelled as completely homogeneous, especially with all interbank expo-

sures being the same size. This work, however, investigates a large number of possible matrices

with various possible specifications of interbank exposures and can thus have an additional focus

on the distribution of claims within the network for given completeness and interconnectedness.

Results of this paper show that the distribution of interbank claims within the network is an

important parameter affecting the stability of the network.

Within this paper, pure domino effects between banks are examined. To be more precise, it is

investigated what happens if one bank fails and therefore a part of other banks’ claims to that

bank also fail. It is then possible that creditor banks lose all their capital and therefore fail as

well. In the worst case, there are subsequent rounds of failures until the whole system defaults.

Of course, this is just one channel through which interbank contagion can occur. Further chan-

nels can be contagion due to liquidity problems because of correlated asset portfolios among

banks, or contagion due to refinancing problems affecting banks. As a starting point, however,

to be able to exclusively focus on the effect of the structure of the liability matrix on the stability

of the financial network, only domino effects are considered.

The paper is organized as follows. In Section 2 the basic structure of the financial system is

defined. Section 3 explains in more detail how interbank liability matrices are created and char-
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acterized. Simulations of domino effects are run and results are presented in Section 4 which is

divided into the investigation of complete networks (Section 4.1), random graphs (Section 4.2)

and money center models (Section 4.3). Section 5 summarizes the main findings.

2 Structure of the financial system

The financial system is modelled as a network of N nodes where nodes 1 to N − 1 are financial

institutions (referred to as banks in the following) and node N constitutes the external (non-

banking) sector (such as households or non-financial companies). These nodes are linked by

directed edges that depict direct claims/obligations between the financial institutions and the

external sector. For some of the subsequent financial networks modelled, it is assumed that there

are two different types of banks, core banks and periphery banks, that are equal within their

groups but differ across groups with regard to their connectivity and size, respectively. The

distribution of assets among the two types of banks is given by a concentration ratio CR, that

denotes the share of total bank assets that core banks hold.

Bank i’s balance sheet has the following structure:

AIB
i + AE

i = LIB
i + LE

i + Ei (1)

∀ i ε {1, ..., N − 1}.
Interbank assets AIB

i (liabilities LIB
i ) are claims (obligations) between banks. External assets

AE
i are interpreted as credit to the external sector. External liabilities LE

i denote obligations

of banks to the external sector such as customer deposits. The balance sheet is completed by

equity Ei that is given by the difference of bank i’s total assets Ai (= AIB
i + AE

i ) and liabilities

Li (= LIB
i + LE

i ).

The (risk-unweighted) equity ratio, which is presumed to be equal across banks, is given by:3

r =
Ei

AIB
i + AE

i

(2)

∀ i ε {1, ..., N − 1}.
The financial system is characterized by the total amount of banks’ assets Abanks, as well as

the total amount of banks’ interbank assets AIB . The ratio of interbank to total assets in the

3More general models including banks with heterogeneous equity ratios can be implemented in a straightforward

way.
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financial system is defined as:

φ =
AIB

Abanks
(3)

Banks’ total assets, total liabilities and equity of this stylized financial system can be perfectly

described by the total amount of banks’ assets Abanks, the total number of banks N − 1, the

number of core banks ncore, the concentration ratio CR and banks’ equity ratio r.

The direct connections between the nodes can be illustrated by a liability matrix:

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 A2 . . . AN−1 AN

L1 0 L1,2 . . . L1,N−1 L1,N

L2 L2,1 0 . . . L2,N−1 L2,N
...

...
...

...
...

...

LN−1 LN−1,1 LN−1,2 . . . 0 LN−1,N

LN LN,1 LN,2 . . . LN,N−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with Li,j being the obligation of bank i to bank j (i, j ε {1, ..., N − 1}). Because banks and

the external sector do not lend to themselves, Li,i = 0 ∀ i ε {1, .., N}. Additionally, as banks

are linked on both sides of their balance sheets, it is easy to interpret row sums (= total lia-

bilities) and column sums (= total assets) of the matrix. The elements of the last row, LN,i

(∀ i ε {1, .., N − 1}), are equal to banks’ external assets AE
i . Thus, the sum of the elements

in the last row of the matrix is equivalent to banks’ total external assets, which are given by

(1− φ) ·Abanks. The elements of the last column, Li,N (∀ i ε {1, .., N − 1}), are equal to banks’

external liabilities LE
i . Hence, the sum of the elements in the last column of the matrix (AN ) is

equivalent to the total amount of external liabilities of banks. Furthermore, it is assumed that

the system is closed, i.e. there is no lending / borrowing to somewhere outside the network.

Technically, this means that the sum of row sums of the liability matrix has to be equal to the

sum of column sums. Thus, total external liabilities of banks (or total assets of the external sec-

tor AN ) can be calculated by the difference between total liabilities in the system (the external

sector included) and total assets of banks.4

4In the aggregate AN , it is not considered that the external sector might be the owner of the banks. Thus,

AN only comprises the amount of banks’ liabilities that is provided by the external sector.
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3 Creation and characterization of liability matrices

Regulators often face the problem of limited data. Sometimes only the row sums and column

sums of the liability matrix are observable. At least it is quite common for some elements of the

liability matrix to be missing. As already mentioned, this problem is often surrounded by using

the assumption that banks spread their exposures as evenly as possible, which is equivalent to

maximizing the entropy of the (normalized) liability matrix.5 However, using matrices under the

maximum entropy assumption tends to bias the results.

The approach of this paper is to abstract from generating only one matrix using the maximum

entropy assumption but to create, for given row and column sums, a large number of valid liability

matrices by a random generator. This is done in two steps: first, a random number Lrand
ij , that

does not exceed the number of total liabilities in the system Ltotal (or total assets in the system

Atotal, respectively), is assigned to each off-diagonal element. This random number is drawn

from a uniform distribution with Lrand
ij ε

[
0, Ltotal

]
, ∀ i �= j, where RSgoal(i) is the aspired

row sum and CSgoal(j) is the aspired column sum associated to this element. The interval the

random number is drawn from seems at first more restrictive than it is. A reduction/expansion

of the interval of the uniform distribution to some smaller/higher upper bound does not change

the simulation results. To make the matrix fit exactly, the RAS algorithm is applied:6 In a first

step, each element of the matrix is multiplied by the ratio of the aspired row sum (RSgoal(i))

and the actual row sum (rs(i)).

Lij = Lij · RSgoal(i)
rs(i)

(4)

In a second step, each element of the matrix is multiplied by the ratio of the aspired column sum

(CSgoal(j)) and the actual column sum (cs(j)).

Lij = Lij · CSgoal(j)
cs(j)

(5)

By repeating these two steps sufficiently often, a matrix with elements that fit to the aspired

row and column sums will be generated.

The RAS algorithm shows some interesting features. First, restrictions to connectivity can be

imposed by setting certain elements equal to zero. These elements will remain zero after run-

ning the algorithm. Second, given certain random starting values within the matrix, the RAS

5For the calculation of the maximum entropy solution of a matrix with given row and column sums, see

Appendix 1.

6For a detailed description of the RAS algorithm, see Blien and Graef (1991).
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algorithm yields a unique solution, independent of the “position” of a certain bank within the

matrix. The algorithm is also robust to a transposition of the matrix. Third, the randomly

generated starting values determine a certain correlation structure within the matrix. The RAS

algorithm determines a unique solution that matches the given correlation structure as well as

possible and that fulfills row and column sum restrictions. However, there are cases where the

RAS algorithm does not provide a valid solution. This happens especially when too many zero

restrictions are imposed. Within the simulations, randomly generated matrices that do not fit

are dropped.

After liability matrices are generated, they have to be characterized. As the aim of this pa-

per is to investigate the stability of the financial system dependent on the matrix of interbank

exposures, the focus is, for the following characterizations, on the (N − 1 × N − 1) matrix that

covers the interbank market. It is created by deleting the last row and the last column of the

(N × N) liability matrix L. As a next step, there has to be some normalization of matrices

because entropy measures have to be applied on probability fields. This is done by dividing

all elements by the total amount of interbank liabilities. As a result, elements of normalized

matrices add up to 1 and thus can be treated as probabilities. In the following, all normalized

elements are marked with a superscript p and written in lower case letters.

After normalization, the next step is to characterize matrices according to the following measures:

• Entropy: In information theory, entropy is a measure for information and can, for example,

be explained in the context of search problems. To be more precise, entropy is a lower bound

of the average path length from the root to the leaves of a binary search tree. Thus, entropy

is a lower bound to the average number of yes/no questions that is needed to obtain full

information. The more equal the probability distribution of the elements in the search

space, the more questions are on average needed to obtain the desired element and, hence,

the higher entropy is. The more unequal the probability distribution, the lower entropy is.

The lowest entropy (equal to zero) can be obtained when one element in the search space

occurs with probability 1 and the other elements with probability 0, i.e. the most unequal

distribution of elements occurs.

This entropy measure can be reinterpreted to quantify the inequality of the distribution

of claims of a liability matrix. Using the normalization mentioned above, the elements

of the matrix can be seen as realizations of a probability distribution of elements within

a search space that need not be defined more specifically. Entropy measures the amount

7



of information inherent in these realizations and is maximal if banks spread their claims

/ obligations as equally as possible. The higher the entropy, the more equally interbank

claims are distributed for given row and column sums. The entropy is calculated by:7

ENT = −
N−1∑
i=1

N−1∑
j=1

lpij · ln
(
lpij

)
(6)

with 0 · ln(0) := 0.

• Relative entropy (Kullback-Leibler divergence) to maximum entropy solution: The

relative entropy is a measure for the difference between two probability distributions. Given

two normalized liability matrices Xp (in this case the maximum entropy solution X∗, see

Appendix 1, with last row and last column deleted and normalized by the total amount of

interbank liabilities) and Lp (in this case a valid normalized liability matrix generated by

random generator), the relative entropy is given by:

RE =
N−1∑
i=1

N−1∑
j=1

lpij ln

(
lpij
xp

ij

)
(7)

with 0 · ln(0) := 0 and 0 · ln( 0
0 ) := 0.

A higher value of RE denotes a greater difference between the two distributions. In the

financial system modelled here, a higher relative entropy means a greater distance to the

probability distribution of the maximum entropy solution and thus a more unequal distri-

bution of claims among banks. As long as the relative entropy to the maximum entropy

solution is considered and banks are assumed to be of equal size, there is a negative linear

relationship between the entropy of a matrix and its relative entropy to the maximum

entropy solution.8

• Connectivity: The connectivity of the financial system can be described by the probability

that a directed link between two banks exists. While constructing the liability matrix of

a random graph, each off-diagonal interbank element is (independently) given a certain

positive real number with probability p and 0 with probability 1− p. This probability p is

called Erdös-Rényi probability. However, during implementation one has to be careful that,

7When applying the entropy measure in the context of binary search trees, log2 is used. However, in economics

literature it is more common to use the natural logarithm. This is equivalent to multiplying a constant factor.

8The general derivation of this linear relationship is provided in Appendix 2. Simulation results confirm this

theoretical finding.
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for given starting values (including zeros with a certain probability), the RAS algorithm

is able to find a valid solution of matrix entries. This problem increases with decreasing

connectivity. The algorithm used in this paper simply drops matrices that are not valid.

4 Simulation of domino effects

Within this paper, pure domino effects are modelled dependent on characteristics of the inter-

bank liability structure.9 As a trigger event, one bank fails.10 Assuming a certain loss given

default (LGD), creditor banks lose a share of their claims to the defaulting bank.11 If this lost

share is larger than the creditor bank’s equity, the creditor bank also fails. If one or more banks

fail due to the first failure, the next round starts with banks losing additional shares of their

claims to failing banks. Thus, a bank fails if:

∑
Interbank exposures to failed banks ∗ LGD > Equity

For a large number of randomly generated matrices, it is investigated how many banks fail

on average, after the failure of one bank, dependent on the characteristics of the liability matrix

mentioned in Section 3. To be more precise, it is calculated which percentage of total assets of

the banking system belongs to failing banks, i.e. which percentage of total bank assets is affected

by bank failure.12 Note, however, that this does not mean that all assets affected by bank failure

actually default. This depends on the value of the loss given default.

To depict the results graphically, value intervals of characteristics have to be defined. One pos-

sibility to do this is to adjust interval size according to the number of observations. After the

random generation of matrices, they are sorted according to their characterization values, and

then intervals are defined with each interval having the same number of observations.

The network simulations are run several times and for different banks failing initially to check

9For advantages and disadvantages of modelling domino effects, see Upper (2007).

10This is a rather simple way to model a shock on the financial system. A more sophisticated approach is, for

example, used by Elsinger et al. (2006), who apply aggregate macroeconomic shocks to test for the resilience of

the Austrian interbank market.

11In this paper, a constant, exogenously given LGD is assumed. An obvious extension is to endogenize the

LGD as, for example, in Degryse and Nguyen (2007).

12An alternative target value to measure the harm of interbank contagion is the loss of the external sector,

which can be computed easily within this model.
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how robust these results are with respect to sample changes and to changes in the trigger event.

4.1 Complete networks

To begin with, simulations are run for complete networks, i.e. it is assumed that there exists

a directed link from each node to all other nodes. The parameter values used for subsequent

simulations are Abanks = 1.000, N = 11, ncore = 10, CR = 1 (i.e. all banks are the same size),

φ = 0.3, r = 0.06 and LGD = 0.5. The following figures show, for 50, 000 randomly generated

matrices of interbank exposures, the average percentage of total assets of the banking system af-

fected by bank failures in a network with 11 nodes (10 banks and the external sector) dependent

on entropy (Figure 1) and relative entropy to the maximum entropy solution (Figure 2), each

color representing a randomly generated sample.

From Figure 1 it can be seen that an increase in entropy leads to a lower average percentage
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Figure 1: % of total assets of banking system affected on average dependent on entropy

of banks’ assets affected. Under the assumption that all banks are of equal size, the average

number of bank defaults dependent on entropy can be derived easily by multiplying the average

percentage of banks’ assets affected by failure by the total number of banks (in this case, 10).

Hence, the more equally banks spread their claims, the fewer institutions default on average.

These results suggest that, within a complete network and for the parameter values given above,

shocks are absorbed best if banks diversify their (credit) risk exposures well. The results, as well

as all subsequent simulation results, are robust to changes in the sample and to changes in the

bank that fails first.
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Figure 2, which shows the relation between relative entropy to the maximum entropy solution
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Figure 2: % of total assets of banking system affected on average dependent on relative entropy

and average percentage of banks’ assets affected, yields an inverse result compared to Figure 1:

The higher the relative entropy, the higher the percentage of banks’ assets affected and therefore

the higher the average number of bank failures. Thus, because of the negative linear relationship

between entropy and relative entropy shown in Appendix 2, Figure 2 also confirms that a more

equal distribution of claims leads to a more stable system.

Up to now, the impact of the distribution of claims on financial stability can be summed up

as follows:

Result 1: In a complete network, for the parameter values given above,13 a liability matrix

with an equal distribution of interbank exposures (a high entropy or a low relative entropy to

the maximum entropy solution, respectively) leads to a more stable system than a liability matrix

with an unequal distribution of interbank exposures.

4.2 Random graphs

A connectivity of 100% is rather unrealistic. Thus, some network has to be designed that omits

some directed links within the financial system. One option in this context is to model random

graphs.

13In the sections below, it is specified in more detail for which parameter values these results hold.
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Concerning completeness and interconnectedness of the network only and assuming that banks

are completely homogeneous, especially with a completely homogeneous asset / liability struc-

ture, subsequent results should be expected according to the theoretical findings of Allen and

Gale (2000). They examine three types of networks that are displayed in Figure 3. The complete

and perfectly interconnected network (Figure 1 in Allen and Gale) is equivalent to a random

graph with an Erdös-Rényi probability of 100%. In this case, the possibility that contagion

occurs is rather low because the more complete a financial system, the greater is the potential

for risk diversification. With decreasing connectivity, the network structure moves towards sys-

tems that are still highly interconnected but also incomplete (equivalent to Figure 2 in Allen

and Gale). Allen and Gale show that these systems are more vulnerable to contagion. With

connectivity decreasing further, the network structure becomes equivalent to the disconnected

system in Figure 3 in Allen and Gale. This disconnection can limit the extent of contagion.

Hence there is a non-monotonic relationship between completeness of the network and financial

stability.

In the following simulations, the degree of disconnection is measured by the average number of

strongly connected components across all matrices in a sample. Within a strongly connected

component, every bank can be reached by every other bank. This does not mean that there

are direct links between all banks as in a complete network. It is sufficient that there exists a

directed path between all nodes. If the graph contains only one strongly connected component,

the failure of one bank can (potentially after several rounds of contagion) cause the failure of

all other banks. If there is more than one strongly connected component, however, it is possible

that the failure of one bank cannot cause the failure of all other banks because not all banks

can be reached by the failing bank. Hence, the higher the average number of strongly connected

components for a given Erdös-Rényi probability, the more disconnected is the system.

As mentioned above, the analysis of Allen and Gale is based on a banking system with completely

homogeneous banks with a completely equal asset / liability structure. Within this simulation, in

addition to completeness and interconnectedness, a third aspect is introduced into the analysis:

the distribution of claims within the system.
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FIG 1: Complete market structure FIG 2: Incomplete market structure FIG 3: Disconnected incomplete
market structure

Figure 3: Types of networks investigated by Allen and Gale (2000)

4.2.1 Varying connectivity

In the following, the default algorithm is run for different values of the Erdös-Rényi probabil-

ity, all other parameter values kept equal to those of Section 4.1. Each off-diagonal element of

the liability matrix that denotes an interbank claim / obligation is set equal to zero with this

probability.14 As for certain zero constellations, the RAS algorithm is not able to find a valid

solution; matrices that do not fit are dropped. Furthermore, matrices where the actual share

of existing links to total possible links deviates more than 0.02 from the desired connectivity

are also dropped. Thus, only matrices that fit exactly to desired row and column sums and to

desired connectivity are used for the analysis.

To capture the degree of disconnection of the randomly generated network, the number of strongly

connected components is computed for each graph using an algorithm developed by Tarjan

(1972). After generating a large number of matrices, the average number of strongly connected

components for a given Erdös-Rényi probability is calculated. It turns out that the system starts

to become disconnected for p = 0.5 with an average number of strongly connected components

of around 1.03. For p = 0.3, more randomly generated graphs are not perfectly interconnected

any more, which yields an average number of strongly connected components of about 1.80. The

degree of disconnection jumps up for p = 0.1, where the average number of strongly connected

components is around 9.07.

All the following simulations are implemented by generating 40, 000 to 50, 000 matrices for

14Alternatively, the whole graph (including the node that denotes the external sector) can be modelled as a

random graph. The aim of this paper is, however, to investigate the impact of the network topology of the

interbank market on financial stability. Furthermore, it is certainly more realistic to assume that all banks have

connections to the external sector.
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characteristic p ENT RE

p 1 0.94 -0.94

ENT 1 -1

RE 1

Table 1: Correlation coefficients between characteristics in a random graph (generation of 25, 000

matrices for each 10%-step from p = 10% to p = 100%); p = Erdös-Rényi probability, RE =

relative entropy, ENT = entropy

p = 100%, 90%, 70%, 50%, 30% and 10%, respectively. Table 1 shows overall correlations

for an Erdös-Rényi probability of 10% to 100% (with 10%-steps) using the same parameter val-

ues as in the previous section.

As a first step, to capture the effect of completeness and interconnectedness on financial sta-

bility, the average percentage of bank assets affected by failures dependent on the connectivity

of the financial system is calculated. Figure 4 shows the average percentage of banks’ assets

affected by failures dependent on the median entropy for a given Erdös-Rényi probability. It

can be seen that a complete network (i.e. with p = 100%) leads on average to matrices that are

characterized by high entropy. With decreasing connectivity, entropy also decreases, meaning

that claims are distributed more unequally (according to Table 1, there is a high correlation of

0.94 between entropy and the Erdös-Rényi probability). Furthermore, Figure 4 shows that with

decreasing completeness (i.e. a decreasing Erdös-Rényi probability) the average percentage of

assets affected by bank failure rises. This is in line with the finding of Allen and Gale that an

incomplete but perfectly interconnected network leads to a less stable financial system than a

complete network. The effect appearing in Allen and Gale’s disconnected network can be ob-

served for p = 10%. For p = 10%, the average percentage of assets affected (and therefore the

average number of bank failures) is much lower than for p = 30% which can be explained by the

large rise in the average number of strongly connected components from around 1.80 to around

9.07.

These results shown in Figure 4 can be obtained on average if networks are exclusively charac-

terized by their completeness and interconnectedness. However, the effect of the structure of the

financial system on financial stability can be analyzed in more detail by additionally considering

the effect of the distribution of claims for a given connectivity. Intervals of characteristics are, as

in Section 4.1, defined in a way that the number of observations is the same within all intervals.
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Figure 4: % of total assets of banking system affected on average dependent on entropy and

connectivity

Simulations show that results are still not dependent on which bank failed first and the sample

generated.

In Figure 5 it can be seen that for p = 100% the same result is obtained as in Figure 1. A
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Figure 5: % of total assets of banking system affected on average dependent on entropy and

connectivity

liability matrix with a higher entropy leads to a lower average percentage of assets affected by

bank failure and therefore a lower average number of bank failures. However, with the 100%

connectivity assumption, only rather high values for entropy can be generated. Inserting zero
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off-diagonal “interbank” elements into the matrix with 10% probability, which is equivalent to

p = 90%, generates matrices with a lower entropy. The negative correlation between bank failures

and entropy still holds for p = 90%. With decreasing connectivity, matrices with an even lower

entropy can be created. The negative correlation between entropy and average bank failures,

however, becomes weaker and turns into a positive correlation. This means that for a given low

Erdös-Rényi probability (e.g. p = 50%, p = 30% or p = 10%), a comparatively high entropy

leads on average to more banks defaulting than a comparatively low entropy.

An interpretation for this observation is that, for a high connectivity, an equal distribution of

interbank claims is the best shock absorber due to credit risk diversification, whereas an unequal

distribution of claims increases the probability that there is a second-round effect after the failure

of one bank. On the contrary, when connectivity is low, the failure of one bank is very likely

to cause second-round effects because the average amount of interbank exposures to the few

connected banks is very high. Hence, the more equal the distribution to the few other banks, the

higher the probability that all these banks fail because there are not enough counterparties to

diversify the losses induced by the shock. On the other hand, the more unequal the distribution

to the few other banks, the higher the probability that not all of these banks fail and therefore

the average number of failures is smaller in this case.

Thus, a change in the average percentage of assets in the banking sector affected by failure (i.e.

a change in the average number of bank failures) is not just due to a change in connectivity

but can also be due to a change in the distribution of interbank claims. For example, though

the overall average number of banks failing is higher for a connectivity of 30% compared to a

connectivity of 50% (see Figure 4), a system with a very unequal distribution of interbank claims

(low entropy) and 30% connectivity is more stable than a system with a rather equal distribution

of interbank claims (high entropy) and 50% connectivity (see Figure 5). Also, a system with a

very equal distribution of interbank claims (high entropy) and 90% connectivity is more stable

than a network with 100% connectivity and a very unequal distribution of interbank claims (low

entropy).

Thus, by additionally considering the distribution of claims within the system, it can be seen

that a complete network can be more unstable than an incomplete but perfectly interconnected

network. This finding extends the work of Allen and Gale in a way that results could change if

interbank claims are allowed to be heterogeneous.

Figure 6 and 7 show the average number of bank failures dependent on the relative entropy to the

maximum entropy solution. As entropy and relative entropy are exactly negatively correlated
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(see Appendix 2 and Table 1), these two figures can be regarded as the mirror image of Figures

4 and 5.
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Figure 6: % of total assets of banking system affected on average dependent on relative entropy

and connectivity
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Figure 7: % of total assets of banking system affected on average dependent on relative entropy

and connectivity
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The results of this paragraph can be summarized as follows:

Result 2: Financial stability does not only depend on the completeness and interconnected-

ness of the network but also on the distribution of claims within the system.

Result 3: For the parameter values given above,15 the sign of the correlation between the

equality of the distribution of claims (measured by entropy and relative entropy) and financial

stability changes with decreasing completeness of the network. For high completeness (and high

interconnectedness) an equal distribution of claims leads to the most stable system. For lower

completeness (but still high interconnectedness) the positive correlation between entropy and

number of banks failing weakens. For very low completeness (and low interconnectedness) a

more unequal distribution of interbank claims leads to a more stable system.

As long as banks are assumed to be of equal size, the characterization of matrices by entropy and

relative entropy yields exactly the same results. Thus, all the following investigations are only

made dependent on entropy. As a next step, some sensitivity analysis is done by varying one

parameter (LGD, equity ratio or ratio of interbank assets to total assets in the banking system),

as well as connectivity, and fixing all other parameters at their benchmark value set in Section

4.1.

4.2.2 Varying loss given default and connectivity

Figure 8 shows the not very surprising result that, for a given connectivity, the average percentage

of assets affected by bank failure (and thus also the average number of bank failures) increases

with an increasing loss given default. An interesting observation is that for a high LGD (= 100%)

the effect of a disconnected system (equivalent to Figure 3 in Allen and Gale) is already visible

between p = 50% and p = 30%. Starting from p = 50% the average number of bank defaults

decreases with decreasing connectivity. Hence, the impact of the disconnection of the financial

system becomes more important for high rates of LGD where the average number of bank defaults

tends to be very high.

Figure 9 shows that a LGD of 100% leads to a positive correlation between assets affected by

bank failure and entropy, even for a high connectivity of the network. A LGD of 30% leads

15In the sections below, it is specified in more detail for which parameter values these results hold.
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Figure 8: % of total assets of banking system affected on average dependent on entropy and

connectivity

to a negative correlation between assets affected by bank failure and entropy, even for a low

connectivity (up to p = 30%) of the network. An explanation for this observation is that a high

LGD makes a system vulnerable to interbank contagion as a high share of claims to the failing

banks defaults. Thus, it can be assumed that contagion occurs with certainty. In this case, it

is better to have a relatively unequal distribution of interbank exposures so that only few banks

are hit by a second-round effect of contagion. For a low LGD, the system is rather resilient to

interbank contagion. In this case, second-round effects only occur if interbank exposures are

distributed very unequally, i.e. interbank claims are not well diversified among counterparties.

4.2.3 Varying equity ratio and connectivity

Figure 10 shows, not surprisingly, that a lower equity ratio leads, for a given Erdös-Rényi prob-

ability, to a higher average number of bank assets affected by failure. Again, the impact of

the disconnection of the financial system becomes more important for parameter constellations

where the average number of bank defaults tends to be very high, i.e. for low equity ratios.

Looking at the effect of the distribution of claims for given connectivity in Figure 11, it can be

seen that for an equity ratio of 9% the correlation of entropy and percentage of assets affected

by bank failure is negative for all values of p (except p = 10%). For an equity ratio of 3% the

correlation is always positive. Similar to the variation of LGD, systems with high equity ratios

are more stable with an equal distribution of claims because second-round effects only occur
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Figure 9: % of total assets of banking system affected on average dependent on entropy and

connectivity
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Figure 10: % of total assets of banking system affected on average dependent on entropy and

connectivity
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when interbank claims are not well diversified. Systems with low equity ratios are, for a given

Erdös-Rényi probability, more stable with an unequal distribution of claims so that second-round

effects (that occur almost with certainty) only hit few counterparties in the financial system.
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Figure 11: % of total assets of banking system affected on average dependent on entropy and

connectivity

4.2.4 Varying ratio of interbank to total assets and connectivity

Additionally, the ratio of interbank assets to total assets φ can be varied. Figure 12 shows that

a higher ratio of interbank assets to total assets leads, for a given Erdös-Rényi probability, to a

higher average percentage of assets affected by bank failure. This is not surprising because, for

a given equity ratio and LGD, banks become more vulnerable to the default of a neighboring

bank. The reason is that, on average, the bilateral exposure per counterparty increases with an

increasing ratio of interbank to total assets. Furthermore, for high numbers of bank failures (i.e.

high numbers of φ) the effect of a disconnected system is again already visible for an Erdös-Rényi

probability below 50%.

Figure 13 shows that the correlation between entropy and average percentage of assets affected

by failure changes from positive to negative at an Erdös-Rényi probability of around 70%, inde-

pendent of the value of φ. Thus, contrary to the variation of LGD and r, there is no influence

of φ on the correlation between entropy and average number of banks defaults.16 However, one

16In additional simulations the loss given default and the equity ratio were varied for different values of φ. The

result is that high values of LGD or low values of r lead to a positive correlation between entropy and the average
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Figure 12: % of total assets of banking system affected on average dependent on entropy and

connectivity

has to be careful when comparing samples of matrices with different φ. Looking at the range

of entropy values created for a given Erdös-Rényi probability in Figure 13 it can be seen that,

for higher values of φ, the random generator on average creates matrices with a higher entropy.

Thus, not the same entropy intervals can be compared when investigating the average percentage

of bank assets affected by failure for different values of φ.

Paragraphs 4.2.2 to 4.2.4 can be summarized by the following result:

Result 4: For a given total amount of interbank assets, the sign of the correlation between

the equality of the distribution of claims (entropy) and average percentage of bank assets af-

fected by failure (or average number of banks defaulting, respectively) tends to be positive for

parameters that make a system vulnerable to interbank contagion (i.e. a high LGD and low

equity ratios). On the other hand, the sign of the correlation tends to be negative for parameters

that make the system resilient to interbank contagion (i.e. a low LGD and high equity ratios).

For intermediate parameter values, the sign of the correlation between equality of the distribu-

tion of claims and average number of banks defaulting changes from negative to positive with

percentage of assets affected, and low values of LGD or high values of r lead to a negative correlation, independent

of φ. Thus, a variation of LGD and r changes the correlation between entropy and average percentage of assets

affected by failure; a variation of φ, however, does not.
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Figure 13: % of total assets of banking system affected on average dependent on entropy and

connectivity

decreasing connectivity (see results in Section 4.1 and 4.2.1).

In further simulations, additional parameters are varied. At first, the total number of assets

was changed. This, however, does not alter the results as relative numbers (e.g. equity ratio

or ratio of interbank assets to total assets) do not change. Increasing the number of banks in

the system makes it (all other variables kept equal) less vulnerable to the failure of one bank as

the average amount of bilateral exposures per counterparty decreases with an increasing number

of counterparties. Furthermore, these simulations were run for “extreme” parameter values, i.e.

parameters that all make a financial system very unstable (high LGD, low equity ratio and high

share of interbank assets to total assets) or stable, respectively. The results confirmed the main

findings summarized in result 4.
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4.3 Money center models

The analysis of the impact of the distribution of claims on financial stability in random graphs

leads to some interesting results. It is, however, questionable, whether a random graph is a good

description of real world financial networks. In the literature, it is sometimes stated that a more

adequate model of a financial system is a scale-free network (see, for example, Boss et al. (2004)

and Soramäki et al. (2006)). Furthermore, some recent studies prefer to model financial systems

as (multiple) money center systems (see e.g. Craig and von Peter (2010)), where few large core

banks are strongly interconnected (i.e. they form a complete network) and a larger number of

small banks in the periphery are only connected to one core bank but not to other banks in the

periphery. Figure 14 shows an example of a money center model (without the external sector).
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Figure 14: Example of a money center model with 15 banks (3 core banks and 12 banks in the

periphery)

The financial network of Figure 14, including the external sector, can be described by an adja-
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cency matrix:

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1,core A2,core A3,core A4,per A5,per . . . A15,per AN

L1,core 0 1 1 | 1 1 . . . 0 1

L2,core 1 0 1 | 0 0 . . . 0 1

L3,core 1 1 0 | 0 0 . . . 1 1

− − − − − − − −
L4,per 1 0 0 | 0 0 . . . 0 1

L5,per 1 0 0 | 0 0 . . . 0 1
...

...
...

... | ...
...

...
...

...

L15,per 0 0 1 | 0 0 . . . 0 1

LN 1 1 1 1 1 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The interbank part of this adjacency matrix, i.e. the (N − 1) × (N − 1) matrix that is ob-

tained when deleting the last row and the last column of L, can be written in block matrix

form:17

LIB =

⎛
⎜⎜⎜⎝

Λ1 | Λ2

− − −
Λ3 | Λ4

⎞
⎟⎟⎟⎠

By assumption, the money center model has to follow certain patterns. First, all core banks

are strongly connected to each other. Thus, all off-diagonal elements of the top left corner of the

adjacency matrix LIB (Λ1) have to be equal to one. Second, each bank in the periphery is linked

to exactly one money center bank in both directions. Thus, the top right corner (Λ2) has exactly

one non-zero element per column and the bottom left corner of the adjacency matrix (Λ3) is the

exactly transposed version of the top right corner. Third, banks in the periphery are not linked

to each other. Hence, the bottom right corner (Λ4) contains only zeros. By construction, the

strongly connected component always includes all nodes in the system.

17The way this money center system is constructed is very similar to the “block-model approach” of Craig and

von Peter (2010). The conditions a money center system has to fulfill are, however, stronger in this paper.
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After constructing the adjacency matrix, the edges of the graph obtain weights that are, similar

to the case of the random graph, created by a random generator. For given row and column

sums, elements are again adjusted by using the RAS algorithm.

4.3.1 Varying the number of core banks and concentration ratio

At first, the stability of a money center model is investigated by varying two main parameters

that characterize its pattern: the number of core banks ncore and the concentration ratio CR.

To create a more reasonable ratio of core banks to periphery banks, the number of banks in

the financial system is increased to 15, i.e. N = 16. Remaining parameters are set at their

benchmark values, i.e. LGD = 0.5, r = 0.06 and φ = 0.3. Total assets in the banking system

are again set at Abanks = 1, 000 and each simulation is run for a sample of 50, 000 randomly

generated matrices. While for the random graph it does not matter which bank fails first, for

the money center model it is assumed that a core bank fails.18 Figures 15 to 18 show the average

percentage of total assets that are affected by bank failure for ncore = 5 to ncore = 2. For

each number of core banks the concentration ratio is varied from CR = 0.99 (core banks hold

almost all assets in the banking system) to CR = 0.4 (core banks hold 40% of total assets in the

banking system). The lower bound of the concentration ratio is set in such a way that, for all

values of ncore investigated, it cannot happen that core banks have smaller balance sheet totals

than periphery banks.

Not surprisingly, entropy decreases with an increasing concentration ratio as a higher concen-

tration of assets among few core banks implies a more unequal distribution of claims within the

financial system. Furthermore, for a given number of core banks, the average percentage of as-

sets affected by bank failure increases with the concentration ratio. One reason is that the total

amount of assets of the bank that fails first, and therefore the initial percentage of assets affected

by bank failure, is higher. But this is not the only effect. With increasing size of core banks

compared to banks in the periphery (i.e. a higher CR), and all other variables kept equal, the

average weights of the links between core banks increase in the liability matrices generated. Thus

the amount of interbank assets between core banks becomes larger on average, which makes core

banks more vulnerable to interbank contagion. And the more core banks fail, the more banks in

the periphery are on average affected by domino effects.

Comparing the stability of the financial system by varying the number of core banks ncore it can

18Additionally, simulations with a periphery bank failing were run. Not surprisingly, in this case, the financial

system is more stable than in the case of a core bank failing.
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be seen that, all other parameters kept equal, the stability of the financial system increases with

an increasing number of core banks. This effect is again due to the size of the core banks. For a

given concentration ratio, the size of the core banks decreases with an increasing number of core

banks. Thus, the average amount of interbank assets between core banks also becomes smaller

and the probability that domino effects between core banks occur, is reduced.

Hence, the main result of this paragraph is:
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Figure 15: % of total assets of banking system affected on average dependent on entropy and

concentration ratio

Result 5: Increasing asset concentration (a higher concentration ratio for a given number of

core banks or a lower number of core banks for a given concentration ratio) within a money

center system makes it more unstable on average.

4.3.2 Comparison to random graphs

Additionally, the stability of a money center system is compared to the stability of a random

graph. As a benchmark, the investigation of the stability of random graphs with the same system

size (in terms of total assets) and the same number of banks as in the money center system is

included in each subsequent figure. When modelling the random graph, it is assumed that all
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Figure 16: % of total assets of banking system affected on average dependent on entropy and

concentration ratio
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concentration ratio
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Figure 18: % of total assets of banking system affected on average dependent on entropy and

concentration ratio

banks have homogeneous balance sheet totals and are linked randomly with a certain probability.

The money center system is interlinked according to the description in Section 4.3.

However, one has to be careful when setting the parameter values for the money center system.

Within a random graph, the average amount of bilateral interbank exposures (over the whole

sample of generated matrices) is the same between all banks. In a money center model, though,

if the concentration ratio is chosen too low (or the number of core banks is chosen too high),

i.e. core banks do not have a balance sheet total that is large enough compared to periphery

banks, the assumed network topology of the money center model leads to interbank connections

where core banks have less exposures to each other than to banks in the periphery. The reason

is that periphery banks have all their interbank exposures to one core bank by assumption. To

obtain a valid liability matrix for given balance sheet totals, the result is a very low weight on

interbank exposures among core banks. This does not fit to realistic banking systems. Thus,

in the following simulations, it is assumed that the average amount of bilateral interbank assets

each core bank holds against another core bank is at least as high as the average amount of bilat-

eral interbank assets a core bank holds against a periphery bank. This amounts to a minimum

concentration ratio of CR = 0.25 for ncore = 2, CR = 0.35 for ncore = 3, CR = 0.4 for ncore = 4

and CR = 0.45 for ncore = 5.19

19These results are obtained by calculating the average amount of bilateral interbank assets between two core

banks and between a core and a periphery bank by simulation for different values of CR (in steps of 0.05). The
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Figures 19 to 22 show that (for the same values of N , Abanks, φ, LGD and r) the random graph

is always more stable on average than the money center system with the minimum concentration

ratio derived above.20

Several reasons for this result can be mentioned. First, in the money center model, the initial

percentage of assets affected by bank failure is larger than in the random graph. The reason

is that, for the given minimum concentration ratio, core banks in the money center model are

always larger than banks in a random graph. Second, a large balance sheet total of the failing

core bank implies on average a high amount of interbank claims defaulting in the first round.

Thus, the initial shock is larger compared to a random graph. Third, among core banks there are

only limited possibilities of risk diversification, as they are only linked to the other core banks

and to few periphery banks. Additionally, there is no sufficient risk diversification possible for

periphery banks that hold all their claims against one core bank. Fourth, money center models

are always strongly connected by assumption, i.e. they have only one strongly connected com-

ponent. Hence, domino effects can never be curtailed by disconnection of the financial system.
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Figure 19: % of total assets of banking system affected on average dependent on entropy and

concentration ratio (money center system) or connectivity (random graph)

value of CR, where the discrepancy between the average amount of interbank assets each core bank holds against

another core bank and the average amount of interbank assets a core bank holds against a periphery bank is

minimal, is then chosen as the minimum concentration ratio for further simulations.

20In additional simulations the same result was obtained for extreme values of LGD and r.
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Thus, to summarize the main findings of this paragraph, it can be said that:

Result 6: Under the assumption that the average amount of bilateral interbank assets be-

tween two core banks is at least as high as between a core and a periphery bank, a money center

system with asset concentration among core banks is, in all previously conducted simulations,

less stable on average than a system of banks with homogeneous size that follows a random

graph.

5 Conclusion

In this paper, the impact of the structure of the interbank liabilities matrix on financial stability

is analyzed. After characterizing the financial system according to the number of banks, total

assets in the banking system, equity ratio, the ratio of interbank to total assets and loss given

default, a large number of valid interbank liability matrices is created by random generator for

given row and column sums. Thus, for the first time, interbank contagion is investigated for

a large sample of interbank matrices. These matrices are then characterized by entropy and

relative entropy to the maximum entropy solution, which constitute measures of the equality of

the distribution of interbank exposures. This procedure makes it possible to investigate financial

stability dependent on how equally interbank exposures are distributed. As a next step, domino

effects resulting from the default of one bank are modelled. As long as banks are assumed to
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be of equal size (to be able to only focus on the effects of the structure of the liability matrix),

it does not matter which bank fails first. Additionally, as a large number of valid matrices is

generated, results do not depend on the sample of matrices.

The first simulations are conducted for complete networks and “intermediate” parameter values.

The main result is that a more equal distribution of interbank claims leads to a more stable

financial system.

These results, however, change if an incomplete network is considered. Starting with a random

graph and, again, “intermediate” parameter values, it can be seen that the sign of the correlation

between equality of distribution of claims and percentage of assets affected by bank failures

changes with decreasing connectivity. Furthermore, a crucial result of these simulations is that

not only completeness and interconnectedness of a financial network, as investigated theoretically

in Allen and Gale (2000), matters, but also the distribution of claims within the financial network.

In this paper, cases can be shown where, contrary to the findings of Allen and Gale, a complete

network (with an unequal distribution of claims) is less stable than an incomplete but perfectly

interconnected network (with an equal distribution of claims).

As a next step, further sensitivity analysis is implemented by varying loss given default, banks’

equity ratio and the ratio of interbank assets to total assets. The main result in this context is

that the sign of the correlation between entropy and the average percentage of assets affected

by bank failure depends on connectivity, loss given default and equity ratio. For high values of

LGD and low values of r (i.e. parameters that make a financial system vulnerable to interbank

contagion) the sign of the correlation between entropy and the average percentage of assets

affected tends to be positive, while for low values of LGD and high values of r (i.e. parameters

that make a financial system resilient to interbank contagion) the sign of the correlation tends

to be negative. For “intermediate” parameter values the sign of the correlation changes from

negative to positive with decreasing connectivity.

A second, probably more realistic, approach to modelling incomplete networks is to consider

money center systems. The main idea of money center models is to distinguish between large

core banks that are strongly connected to each other and small banks in the periphery that are

only linked to one core bank. Not surprisingly, the more concentrated assets are within a money

center system, the less stable it is. Additionally, using reasonable parameters for the number of

core banks and the concentration of assets among core banks, it turns out that, for all simulations

run, the money center system is less stable than a random graph with homogeneous bank size.

As a conclusion, this paper extends the existing literature on interbank contagion within a
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financial network by explicitly considering the distribution of claims within the financial system,

and therefore gives a variety of insights into the determinants of financial stability. This approach

can be widened to aspects of interbank contagion extending domino effects (e.g. contagion due to

liquidity problems or refinancing problems). Therefore, this approach leaves a lot of new topics

for future research.
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7 Appendix

7.1 Appendix 1: Generation of the maximum entropy solution of an

interbank liability matrix

The starting point is a matrix X with given row sums Li, i ∈ {1, ..., N} and column sums Aj ,

j ∈ {1, ..., N}.21

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

A1 A2 · · · AN

L1 · · · · · · · · · · · ·
L2 · · · · · · · · · · · ·
...

...
...

...
...

LN · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

with
∑N

i=1 Li = L,
∑N

j=1 Aj = A and A = L.

As entropy methods must be applied on probability fields, some normalization of row and column

sums is necessary:

Xp =

⎛
⎜⎜⎜⎜⎜⎜⎝

ap
1 ap

2 · · · ap
N

lp1 · · · · · · · · · · · ·
lp2 · · · · · · · · · · · ·
...

...
...

...
...

lpN · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

with lpi = Li

L and ap
j = Aj

A .

Furthermore
∑N

i=1 lpi =
∑N

j=1 ap
j = 1.

The ap’s and lp’s are interpreted as realizations of the marginal distributions f(a) and f(l), the

elements of the liability matrix Xp
(
= xp

ij

)
as realizations of their joint distribution f(a, l). If f(a)

and f(l) are independent, the elements xp
ij of the normalized matrix are given by xp

ij := lpi ap
j .

21See Upper and Worms (2004)
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This results in maximizing the entropy of Xp.

Xp =

⎛
⎜⎜⎜⎜⎜⎜⎝

ap
1 ap

2 · · · ap
N

lp1 xp
11 xp

12 · · · xp
1N

lp2 xp
21 xp

22 · · · xp
2N

...
...

...
...

...

lpN xp
N1 xp

N2 · · · xp
NN

⎞
⎟⎟⎟⎟⎟⎟⎠

with
∑N

j=1 xp
ij = lpi and

∑N
i=1 xp

ij = ap
j .

The problem is that the matrix Xp has non-zero elements on the main diagonal which means

that banks lend to themselves. To avoid this phenomenon, a new matrix Xp
0 with zero elements

on the diagonal has to be created, i.e. xp
ij is set equal to zero for i = j.

Xp
0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

ap
1 ap

2 · · · ap
N

lp1 0 xp
12 · · · xp

1N

lp2 xp
21 0 · · · xp

2N
...

...
...

...
...

lpN xp
N1 xp

N2 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

The new matrix should deviate from the maximum entropy solution as little as possible. Thus,

out of all possible normalized matrices Xp, a matrix X∗ has to be created that minimizes the

relative entropy with respect to the matrix Xp
0 .

x∗ = argmin xp′ · lnxp

xp
0

(8)

s.t. x∗ ≥ 0 and Ax∗ =
[
ap′

, lp
]′

,

where x∗ and xp
0 are (N2 − N) × 1 vectors containing the off-diagonal elements of X∗ and Xp

0 ,

ap and lp are the row and column sums of Xp (
[
ap′

, lp
]′

has the size 2N × 1), and A is a

2N × (
N2 − N

)
matrix containing zeros and ones so that the restrictions concerning row and

column sums are fulfilled.

This minimization problem can be either solved using the RAS algorithm (see Blien and Graef

(1991)) or using the “fmincon-command” of MATLAB’s optimization toolbox. Both approaches

lead to the same results.
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After solving the minimization problem, a matrix X∗ is obtained that deviates from the assump-

tion of independence as little as possible.

X∗ =

⎛
⎜⎜⎜⎜⎜⎜⎝

ap
1 ap

2 · · · ap
N

lp1 0 x∗
12 · · · x∗

1N

lp2 x∗
21 0 · · · x∗

2N
...

...
...

...
...

lpN x∗
N1 x∗

N2 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

As a last step, X∗ can be transformed back into a “real” liability matrix X by multiplying

each element x∗
ij as well as the row and column sums lpi and ap

j with L or A.
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7.2 Appendix 2: Specification of the linear relationship between en-

tropy and relative entropy to the maximum entropy solution

Consider a network of N nodes (N − 1 banks and one external sector) and, in particular, the

(N − 1)× (N − 1) interbank liability matrix that is normalized by the total amount of interbank

assets / liabilities. Normalization implies that the sum of row as well as the sum of column

sums has to be equal to 1. The characteristic of the maximum entropy solution of the interbank

matrix is that claims are distributed as equally as possible for given row and column sums. Thus,

under the assumption that all banks are of equal size, the general result of the maximum entropy

solution is a matrix with row and column sums of 1
N−1 and off-diagonal elements of 1

(N−1)(N−2) ,

respectively:

X∗ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
N−1

1
N−1 · · · 1

N−1

1
N−1 0 1

(N−1)(N−2) · · · 1
(N−1)(N−2)

1
N−1

1
(N−1)(N−2) 0 · · · 1

(N−1)(N−2)

...
...

...
...

...
1

N−1
1

(N−1)(N−2)
1

(N−1)(N−2) · · · 0

⎞
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The relative entropy is given by:

RE =
∑N−1

i=1

∑N−1
j=1 lpij ln

(
lpij

xp
ij

)
with 0 · ln(0) := 0 and 0 · ln( 0

0 ) := 0.

This equation can be rearranged:

RE =
∑N−1

i=1

∑N−1
j=1 lpij ln

(
lpij

) − ∑N−1
i=1

∑N−1
j=1 lpij ln

(
xp

ij

)

Assuming that xp
ij constitutes an element of the matrix of the maximum entropy solution, yields

the following equation:

RE =
∑N−1

i=1

∑N−1
j=1 lpij ln

(
lpij

) − ∑N−1
i=1

∑N−1
j=1 lpij ln

(
1

(N−1)(N−2)

)
=

∑N−1
i=1

∑N−1
j=1 lpij ln

(
lpij

) − ln
(

1
(N−1)(N−2)

) (∑N−1
i=1

∑N−1
j=1 lpij

)
=

∑N−1
i=1

∑N−1
j=1 lpij ln

(
lpij

) − ln
(

1
(N−1)(N−2)

)
· 1

Entropy is given by:

ENT = −∑N−1
i=1

∑N−1
j=1 lpij · ln

(
lpij

)
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with 0 · ln(0) := 0.

Inserting the equation for entropy yields the following result:

RE = −ENT − ln
(

1
(N−1)(N−2)

)
or

RE = ln ((N − 1)(N − 2)) − ENT

As an example, consider 11 nodes in the system (10 banks and one external sector). The rela-

tionship between entropy and relative entropy to the maximum entropy solution is thus given

by:

RE = 4.4998 − ENT

This equation can be confirmed by simulation (see Figure 23).
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Figure 23: Negative linear relationship between entropy and relative entropy to the maximum

entropy solution for N = 11
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