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Abstract

The credit value-at-risk model underpinning the Basel II Internal Ratings-Based ap-
proach assumes that idiosyncratic risk has been diversified away fully in the portfolio,
so that economic capital depends only on systematic risk contributions. We develop
a simple methodology for approximating the effect of undiversified idiosyncratic risk
on VaR. The supervisory review process (Pillar 2) of the new Basel framework offers
a potential venue for application of the proposed granularity adjustment (GA).

Our GA is a revision and extension of the methodology proposed in the Basel II
Second Consultative Paper. The revision incorporates some technical advances as
well as modifications to the Basel II rules since the Second Consultative Paper of
2001. Most importantly, we introduce an “upper bound” methodology under which
banks would be required to aggregate multiple exposures to the same underlying
obligor only for a subset of their obligors. This addresses what appears to be the most
significant operational burden associated with any rigorous assessment of residual
idiosyncratic risk in the portfolio. For many banks, this approach would permit
dramatic reductions in data requirements relative to the full GA.

Key words : Basel II, granularity adjustment, value-at-risk, idiosyncratic risk
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Non-Technical Summary

Name concentration in a lending portfolio arises when there are few borrowers in a
bank portfolio or when loan amounts are very unequal in distribution. The portfolio
credit risk model underpinning the Basel II Internal Ratings-Based (IRB) approach
does not account for name concentration. Rather, it assumes that the bank’s portfo-
lio is perfectly fine-grained, meaning that every single loan accounts only for a very
small share in the total portfolio exposure. Real bank portfolios are, of course, not
perfectly fine-grained.

In this paper, we develop a simple granularity adjustment (GA) for quantifying
the contribution of name concentrations to portfolio risk. The supervisory review
process (Pillar 2) of the new Basel framework offers a potential venue for application
of the proposed method. This version of the GA is a revision and extension of earlier
methodologies, and is intended in particular to reduce the cost of implementation.
In practical application, it is the data inputs (and not the formulae applied to
those inputs) that can pose the most serious operational burden. When a bank has
multiple exposures to the same underlying obligor, it is necessary that these multiple
exposures be aggregated into a single exposure for the purpose of assessing the
effect of name concentration (whether by our methodology or any robust potential
alternative). This aggregation of information is currently a significant challenge for
many banks. Our revised GA proposal permits banks to calculate a conservative
“upper bound” on the GA on the basis of the largest exposures in the portfolio, and
thereby avoids the need for aggregation of data on each and every obligor. For many
banks this approach would permit dramatic reductions in data requirements relative
to earlier granularity adjustment proposals.

We apply our GA methodology to a variety of realistic portfolios drawn from the
German central credit register (Millionenkreditmeldewesen). The results show that
the effect of name concentration can be material, and that our proposed GA is a
robust tool for its assessment.



Nicht-Technische Zusammenfassung

Adressenkonzentration in einem Kreditportfolio entsteht, wenn sehr wenige Kredit-
nehmer in dem Portfolio sind oder wenn die Kreditvolumina sehr ungleich verteilt
sind. Das Kreditrisikomodell, welches dem Internen Ratings-Basierten (IRB) Ansatz
von Basel II unterliegt, berücksichtigt die Adressenkonzentration nicht. Es wird
vielmehr sogar angenommen, dass das Portfolio einer Bank perfekt granular ist, in
dem Sinne, dass jeder einzelne Kredit nur einen sehr kleinen Anteil zum Gesamtport-
folio beiträgt. Reale Bankportfolios sind selbstverständlich nicht perfekt granular.

In dieser Arbeit stellen wir eine einfache Granularitätsanpassung (GA) als Methode
vor, mit der der Beitrag von Adressenkonzentration zum Risiko eines Portfolios
quantifiziert werden kann. Das bankenaufsichtliche Überprüfungsverfahren (Säule 2)
unter Basel II bietet ein Anwendungsfeld für die vorgeschlagene Methode. Diese
Version der GA ist eine Überarbeitung und Erweiterung früherer Methoden und
dient insbesondere dazu, die Kosten für eine Umsetzung in der Praxis zu reduzieren.
In praktischen Anwendungen stellen meistens die benötigten Daten (und nicht die
Formel, die auf diese Daten angewendet wird) das größte Hindernis dar. Wenn
eine Bank mehrere Kredite an denselben Kreditnehmer vergeben hat, erfordert die
Messung von Adressenkonzentration, dass diese Kredite aggregiert werden. Das
ist unabhängig davon, ob die von uns vorgeschlagene Methode oder eine beliebige
robuste Alternative verwendet wird. Diese Aggregation von Kreditinformationen
stellt momentan eine wesentliche Herausforderung für die Banken dar. Unsere über-
arbeitete GA bietet den Banken die Möglichkeit, eine obere Schranke für die GA in
einem Portfolio zu berechnen, indem sie sich ausschließlich auf Informationen über
die größten Kredite stützt. Dadurch entfällt die Notwendigkeit, Daten für jeden
einzelnen Kreditnehmer zu aggregieren. Für viele Banken würde dieser Ansatz eine
erhebliche Reduktion der Datenanforderungen im Vergleich zu früheren Methoden
zur Bestimmung der Granularitätsanpassung darstellen.

Wir wenden unsere GA Methode auf mehrere realistische Portfolios an, die auf dem
Millionenkreditmeldewesen basieren. Unsere Ergebnisse zeigen, dass der Effekt der
Adressenkonzentration bedeutend sein kann und dass die von uns vorgeschlagene
GA eine robuste Methode für ihre Messung darstellt.
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Granularity Adjustment for Basel II∗

1. Introduction

In the portfolio risk-factor frameworks that underpin both industry models of credit

VaR and the Internal Ratings-Based (IRB) risk weights of Basel II, credit risk in

a portfolio arises from two sources, systematic and idiosyncratic. Systematic risk

represents the effect of unexpected changes in macroeconomic and financial market

conditions on the performance of borrowers. Borrowers may differ in their degree of

sensitivity to systematic risk, but few firms are completely indifferent to the wider

economic conditions in which they operate. Therefore, the systematic component of

portfolio risk is unavoidable and only partly diversifiable. Idiosyncratic risk repre-

sents the effects of risks that are particular to individual borrowers. As a portfolio

becomes more fine-grained, in the sense that the largest individual exposures ac-

count for a smaller share of total portfolio exposure, idiosyncratic risk is diversified

away at the portfolio level.

Under the Asymptotic Single Risk Factor (ASRF) framework that underpins the

IRB approach, it is assumed that bank portfolios are perfectly fine-grained, that

is, that idiosyncratic risk has been fully diversified away, so that economic capital

depends only on systematic risk. Real-world portfolios are not, of course, perfectly

fine-grained. The asymptotic assumption might be approximately valid for some of

the largest bank portfolios, but clearly would be much less satisfactory for portfolios

of smaller or more specialized institutions. When there are material name concen-

trations of exposure, there will be a residual of undiversified idiosyncratic risk in

the portfolio. The IRB formula omits the contribution of this residual to required

economic capital.

The impact of undiversified idiosyncratic risk on portfolio VaR can be assessed via a

methodology known as granularity adjustment. The basic concepts and approximate

∗Much of this work was completed while M. Gordy was a visiting scholar at the Indian School of
Business and while E. Lütkebohmert was at the Deutsche Bundesbank. We thank Klaus Düllmann,
Dirk Tasche and Birgit Uhlenbrock for helpful comments. The opinions expressed here are our own,
and do not reflect the views of the Deutsche Bundesbank or of the Board of Governors of the Federal
Reserve System.
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form for the granularity adjustment were first introduced by Gordy in 2000 for

application in Basel II (see Gordy, 2003). It was then substantially refined and put

on a more rigorous foundation by Wilde (2001b) and Martin and Wilde (2003).1

In this paper, we propose and evaluate a granularity adjustment (GA) suitable for

application under Pillar 2 of Basel II (Basel Committee on Bank Supervision, 2006).

Our proposed methodology is similar in form and spirit to the granularity adjust-

ment that was included in the Second Consultative Paper (CP2) of Basel II (Basel

Committee on Bank Supervision, 2001). Like the CP2 version, the revised GA is

derived as a first-order asymptotic approximation for the effect of diversification

in large portfolios within the CreditRisk+ model of portfolio credit risk. Also in

keeping with the CP2 version, the data inputs to the revised GA are drawn from

quantities already required for the calculation of IRB capital charges and reserve

requirements.

In practical application, it is the data inputs (and not the formulae applied to those

inputs) that can pose the most serious obstacles to cost-effective implementation.

For this reason, we should elaborate here on an important caveat to our claim that

all GA inputs are made available in the course of calculating IRB capital and reserve

requirements. When a bank has multiple exposures to the same underlying obligor,

it is required that these multiple exposures be aggregated into a single exposure

for the purpose of calculating GA inputs. For the purpose of calculating IRB cap-

ital requirements, by contrast, the identity of the obligor is immaterial, as capital

charges depend only on characteristics of the loan and obligor (e.g., type of loan,

default probability, maturity) and not on the name of the borrower per se. This is

a great convenience when data on different sorts of exposures are held on different

computer systems, as the job of calculating capital may be delegated to those in-

dividual systems and reported back as subportfolio aggregates which can then be

added up in a straightforward fashion to arrive at the bank-level capital and reserve

requirements. When we measure granularity, we cannot ignore borrower identity.

From the perspective of single name concentration, ten loans of 1 million Euros each

to ten distinct borrowers jointly carry much less idiosyncratic risk than the same

ten loans made to a single borrower. It is understood that the need to aggregate

1The results of Martin and Wilde (2003) can be viewed as an application of theoretical work by
Gouriéroux, Laurent, and Scaillet (2000). Other early contributions to the GA literature include
Wilde (2001a) and Pykhtin and Dev (2002). Gordy (2004) presents a survey of these developments
and a primer on the mathematical derivation.
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information across computer systems on multiple exposures to a single borrower is

the most significant challenge for banks in implementing a granularity adjustment.

In defense of this aggregation requirement, we note that such aggregation would be

necessary in any effective measure of granularity, and so is not a drawback peculiar

to the GA we propose in this paper. Furthermore, one might ask how a bank can ef-

fectively manage its name concentrations without the ability to aggregate exposures

across the different activities of the bank.

To reduce the burden associated with exposure aggregation, the revised GA provides

for the possibility that banks be allowed to calculate the GA on the basis of the

largest exposures in the portfolio, and thereby be spared the need to aggregate data

on each and every obligor. To permit such an option, regulators must be able to

calculate the largest possible GA that is consistent with the incomplete data provided

by the bank. Our approach, therefore, is based on an upper bound formula for the

GA as a function of data on the m largest capital contributions out of a portfolio

of n loans (with m ≤ n). As m grows towards n (i.e., as the bank provides data

on a larger share of its portfolio), the upper bound formula converges to the “full

portfolio”GA. The advantage to this approach is that the bank can be permitted to

choose m in accordance with its own trade-off between higher capital charges (for

m small) and higher data collection effort (for m large).

Our revised methodology takes advantage of theoretical advances that have been

made since the time of CP2. In particular, the GA of CP2 required a first-stage

calculation in which the portfolio would be mapped to a homogeneous portfolio

of similar characteristics. In the revision GA, the heterogeneous portfolio is used

directly in the formula. The resulting algorithm is both simpler and more accurate

than the one of CP2.

Last, our revised methodology is adapted to the changes in the definition of regula-

tory capital. At the time of CP2, capital requirements were expressed in terms of

expected loss (EL) plus unexpected loss (UL), whereas the finalized Basel II distin-

guishes UL capital requirements from EL reserve requirements. The GA is invariant

to EL so is unaffected by this definitional issue. However, the inputs to the GA

do depend on the distinction between EL and UL, and so the formulae have been

modified accordingly.

The methodology for the GA is set out in Section 2. In Section 3, we show how to

construct an upper bound based on partial information for the portfolio. Section 4
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describes the dataset that we have used for our numerical studies. The performance

of the GA is assessed in various ways in Section 5. We conclude with some thoughts

on the role of model choice in crafting a granularity adjustment and with a list of

some tasks left for future work.

2. Methodology

In principle, the granularity adjustment can be applied to any risk-factor model of

portfolio credit risk, and so we begin with a very general framework. We mainly

follow the treatment of Martin and Wilde (2003) in the mathematical presentation,

though our parameterization of the GA formula will differ. Let X denote the sys-

tematic risk factor. For consistency with the ASRF framework of Basel II and for

ease of presentation, we assume that X is unidimensional (i.e., that there is only

a single systematic factor). Let n be the number of positions in the portfolio, and

assume that exposures have been aggregated so that there is a unique obligor for

each position. Let Ui denote the loss rate on position i, let Ai denote its exposure at

default (EADi), and let Ln be the loss rate on the portfolio of the first n positions,

i.e.,

Ln =
n∑

i=1

si · Ui, (1)

where si denotes the portfolio share of each instrument si = Ai/
∑n

j=1 Aj.

Let αq(Y ) denote the qth percentile of the distribution of some random variable

Y . When economic capital is measured as value-at-risk at the qth percentile, we

wish to estimate αq(Ln). The IRB formula, however, delivers the qth percentile of

the conditional expected loss αq(E[Ln|X]). The difference αq(Ln) − αq(E[Ln|X])

is the “exact” adjustment for the effect of undiversified idiosyncratic risk in the

portfolio. Such an exact adjustment cannot be obtained in analytical form, but we

can construct a Taylor series approximation in orders of 1/n. Define the functions

µ(X) = E[Ln|X] and σ2(X) = V [Ln|X] as the conditional mean and variance of the

portfolio loss respectively, and let h be the probability density function of X. Wilde

(2001b) shows that the first-order granularity adjustment is given by

GA =
−1

2h(αq(X))

d

dx

(
σ2(x)h(x)

µ′(x)

) ∣∣∣
x=αq(X)

(2)
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This general framework can accommodate any definition of “loss.” That is, we can

measure the Ui on a mark-to-market basis or an actuarial basis, and either inclusive

or exclusive of expected loss. The latter point is important in light of the separation

of “total capital” (the concept used in CP2) into its EL and UL components in

the final Basel II document. Say we measure the Ui and Ln inclusive of expected

loss, but wish to define capital on a UL basis. Let ULn be the “true” UL for the

portfolio, and let ULasympt
n be its asymptotic approximation which assumes that the

idiosyncratic risk is diversified away. Then

αq(Ln)−αq(E[Ln|X]) = (ULn + ELn)−
(
ULasympt

n + E[E[Ln|X]]
)

= ULn−ULasympt
n

because the unconditional expected loss (ELn = E[Ln]) is equal to the expectation

of the conditional loss (E[E[Ln|X]]). Put more simply, expected loss “washes out”

of the granularity adjustment.

In the GA formula, the expressions for µ(x), σ2(x) and h(x) are model-dependent.

For application of the GA in a supervisory setting, it would be desirable to base the

GA on the same model as that which underpins the IRB capital formula. Unfortu-

nately, this is not feasible for two reasons: First, the IRB formula is derived within

a single-factor mark-to-market Vasicek model closest in spirit to KMV Portfolio

Manager. The expressions for µ(x) and σ2(x) in such a model would be formidably

complex. The effect of granularity on capital is sensitive to maturity, so simplifica-

tion of the model to its default-mode counterpart (closest in spirit to a two-state

CreditMetrics) would entail a substantive loss of fidelity. Furthermore, even with

that simplification, the resulting expressions for µ(x) and σ2(x) remain somewhat

more complex than desirable for supervisory application. The second barrier to us-

ing this model is that the IRB formula is not fit to the model directly, but rather is

linearized with respect to maturity. The “true” term-structure of capital charges in

mark-to-market models tends to be strongly concave, so this linearization is not at

all a minor adjustment. It is not at all clear how one would alter µ(x) and σ2(x) to

make the GA consistent with the linearized IRB formula.

As fidelity to the IRB model cannot be imposed in a direct manner, we adopt an

indirect strategy. We base the GA on a model chosen for the tractability of the

resulting expressions, and then reparameterize the inputs in a way that restores

consistency as much as possible. Our chosen model is an extended version of the

single factor CreditRisk+ model that allows for idiosyncratic recovery risk.2 As

2CreditRisk+ is a widely-used industry model for portfolio credit risk that was proposed by
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CreditRisk+ is an actuarial model of loss, we define the loss rate as Ui = LGDi ·Di,

where Di is a default indicator equal to 1 if the obligor defaults, 0 otherwise. The

systematic factor X generates correlation across obligor defaults by shifting the

default probabilities. Conditional on X = x, the probability of default is

PDi(x) = PDi · (1− wi + wi · x) .

where PDi is the unconditional probability of default. The factor loading wi controls

the sensitivity of obligor i to the systematic risk factor. We assume that X is gamma-

distributed with mean 1 and variance 1/ξ for some positive ξ.3 Finally, to obtain an

analytical solution to the model, in CreditRisk+ one approximates the distribution

of the default indicator variable as a Poisson distribution.

In the standard version of CreditRisk+, the recovery rate is assumed to be known

with certainty. Our extended model allows LGDi to be a random loss-given-default

with expected value ELGDi and variance VLGD2
i . The LGD uncertainty is assumed

to be entirely idiosyncratic, and therefore independent of X.

We next obtain the µ(x) and σ2(x) functions for this model. Let us define at

the instrument level the functions µi(x) = E[Ui|x] and σ2
i (x) = V [Ui|x]. By the

conditional independence assumption, we have

µ(x) = E[Ln|x] =
n∑

i=1

siµi(x)

σ2(x) = V [Ln|x] =
n∑

i=1

s2
i σ

2
i (x).

In CreditRisk+, the µi(x) function is simply

µi(x) = ELGDi ·PDi(x) = ELGDi ·PDi ·(1− wi + wi · x).

For the conditional variance, we have

σ2
i (x) = E[LGD2

i ·D2
i |x]− ELGD2

i ·PDi(x)2 = E[LGD2
i ] · E[D2

i |x]− µi(x)2. (3)

As Di given X is assumed to be Poisson distributed, we have E[Di|X] = V [Di|X] =

PDi(X), which implies

E[D2
i |X] = PDi(X) + PDi(X)2.

Credit Suisse Financial Products (1997).
3Note that we must have E[X] = 1 in order that E[PDi(X)] = PDi.
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For the term E[LGD2
i ] in the conditional variance, we can substitute

E[LGD2
i ] = V [LGDi] + E[LGDi]

2 = VLGD2
i + ELGD2

i

This leads us to

σ2
i (x) =

(
VLGD2

i + ELGD2
i

)
·
(
PDi(X) + PDi(X)2

)
− µi(x)2

= Ciµi(xq) + µi(xq)
2 · VLGD2

i

ELGD2
i

where Ci is defined as

Ci ≡
ELGD2

i + VLGD2
i

ELGDi

. (4)

We substitute the gamma pdf h(x) and the expressions for µ(x) and σ2(x) into

equation (2), and then evaluate the derivative in that equation at x = αq(X). The

resulting formula depends on the instrument-level parameters PDi, wi, ELGDi and

VLGDi.

We now reparameterize the inputs. Let Ri be the EL reserve requirement as a share

of EAD for instrument i. In the default-mode setting of CreditRisk+, this is simply

Ri = ELGDi ·PDi .

Let Ki be the UL capital requirement as a share of EAD. In CreditRisk+, this is

Ki = E[Ui|X = αq(X)] = ELGDi ·PDi ·wi · (αq(X)− 1) (5)

When we substitute Ri and Ki into the CreditRisk+ GA, we find that the PDi and

wi inputs can be eliminated. We arrive at the formula

GAn =
1

2K∗

n∑
i=1

s2
i

[(
δCi(Ki +Ri) + δ(Ki +Ri)

2 · VLGD2
i

ELGD2
i

)
−Ki

(
Ci + 2(Ki +Ri) ·

VLGD2
i

ELGD2
i

)]
,

(6)

where K∗ =
∑n

i=1 siKi is the required capital per unit exposure for the portfolio as

a whole and where

δ ≡ (αq(X)− 1) ·
(

ξ +
1− ξ

αq(X)

)
.

Note that the expression for δ depends only on model parameters, not data inputs, so

δ is a regulatory parameter. It is through δ that the variance parameter ξ influences

7



the GA. In the CP2 version, we set ξ = 0.25. Assuming that the target solvency

probability is q = 0.999, this setting implies δ = 4.83. This is the value used in the

numerical exercises of Section 5, but we also examine the sensitivity of the GA to the

choice of ξ. Alternative calibrations of ξ are explored in the Appendix. For policy

purposes, it is worthwhile to note that setting ξ = 0.31 would be well within any

reasonable empirical bounds on this parameter, and would yield the parsimonious

integer value δ = 5.

The volatility of LGD (VLGD) neither is an input to the IRB formula, nor is it

restricted in any way within the IRB model. Banks could, in principle, be permitted

or required to supply this parameter for each loan. Given the scant data currently

available on recoveries, it seems preferable to impose a regulatory assumption on

VLGD in order to avoid the burden of a new data requirement. We impose the

relationship as found in the CP2 version of the GA:

VLGD2
i = γ ELGDi(1− ELGDi) (7)

where the regulatory parameter γ is between 0 and 1. When this specification

is used in industry models such as CreditMetrics and KMV Portfolio Manager, a

typical setting is γ = 0.25.

The GA formula can be simplified somewhat. The quantities Ri and Ki are typi-

cally small, and so terms that are products of these quantities can be expected to

contribute little to the GA. If these second-order terms are dropped, we arrive at

the simplified formula:

G̃An =
1

2K∗

n∑
i=1

s2
iCi (δ(Ki +Ri)−Ki) . (8)

Here and henceforth, we use the tilde to indicate this simplified GA formula. The

accuracy of this approximation to equation (6) is evaluated in Section 5.

Before proceeding, we pause to mention some alternative methodologies. Perhaps

the very simplest approach would be based on a Herfindahl-Hirschman Index (HHI),

which is defined as the sum of the squares of the portfolio shares of the individual

exposures. Holding all else equal, the closer the HHI of a portfolio is to 1 the

more concentrated the portfolio is, so the higher the appropriate granularity add-on

charge. As with any ad hoc approach, it is difficult to say what the “appropriate”

add-on for a given HHI should be. Furthermore, as we will see in Section 5, the
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effect of granularity on economic capital is quite sensitive to the credit quality of

the portfolio, so the HHI approach would need to somehow take this into account.

One suspects that an appropriately modified HHI-based approach would be no less

complex than a model-based approach and certainly would be less robust. Finally,

an HHI-based approach does not avoid in any way the operational burden associated

with aggregation of multiple exposures to a single exposure per obligor.

Another approach, due to Vasicek (2002), lies somewhere between ad hoc and model-

based. In this method, one augments systematic risk (by increasing the factor

loading) in order to compensate for ignoring the idiosyncratic risk. The trouble

is that systematic and idiosyncratic risk have very different distribution shapes.

This method is known to perform quite poorly in practice.

Much closer to our proposal in spirit and methodology is the approach of Emmer and

Tasche (2005). Emmer and Tasche (2005) offer a granularity adjustment based on

a one-factor default-mode CreditMetrics model, which has the advantage of relative

proximity of the model underpinning the IRB formula. As discussed earlier, however,

we believe this advantage to be more in appearance than in substance because of

the importance of maturity considerations in the IRB model. As a mark-to-market

extension of the Emmer and Tasche (2005) GA appears to be intractable, maturity

considerations would need to be introduced indirectly (as in our proposal) through

the inputs. Reparameterization along these lines is feasible in principle, but would

lead to a rather more complicated formula with more inputs than our CreditRisk+-

based GA.

Finally, an alternative that has not been much studied is the saddlepoint based

method of Martin and Wilde (2003). Results in that paper suggest that it would be

quite similar to the GA in performance and pose a similar tradeoff between fidelity

to the IRB model and analytical tractability. Indeed, it is not at all likely that the

saddlepoint GA would yield a closed-form solution for any industry credit risk model

other than CreditRisk+.

3. An upper bound based on incomplete data

As discussed in the introduction, aggregation of multiple exposures into a single ex-

posure per obligor is very likely to be the only substantive challenge in implementing
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the granularity adjustment. To reduce this burden on the banks, we propose that

banks be permitted to calculate the GA based on a subset consisting of the largest

exposures. An upper bound can be calculated for the influence of exposures that

are left out of the computation. This approach is conservative from a supervisory

point of view because the upper bound is always at least as large as the “true” GA.

The bank can therefore be given the flexibility to find the best trade-off between

the cost of data collection and the cost of the additional capital associated with the

upper bound.

In order to convey most clearly the intuition behind our approach, we first present the

upper bound in the special case of a portfolio that is homogeneous in PD and ELGD.

We then present the upper bound for the more realistic case of a heterogeneous

portfolio.

3.1. Homogeneous case

The simplest upper bound is for the case in which exposures are homogeneous in

PD and ELGD, but heterogeneous in exposure size. Assume that the bank has

determined the m largest aggregate exposures in the portfolio of n obligors (m ≤ n),

and that we have sorted these aggregated EAD values as A1 ≥ A2 ≥ . . . ≥ Am. The

shares s1 ≥ s2 ≥ . . . ≥ sm are, as in Section 2, calculated with respect to the total

portfolio EAD in the denominator. This latter quantity certainly will be available

in the bank’s balance sheet.

When PD and ELGD are homogeneous, we have Ki = K∗ = K and Ri = R for all

i, and similarly Ci = C is also independent of i. Hence the simplified GA reads

G̃An =
1

2K
C(δ(K +R)−K) ·HHI,

where HHI is the Herfindahl-Hirschman Index

HHI =
n∑

i=1

s2
i .

Using only the first m ≤ n exposures, and defining Sm as the cumulative share of

these exposures, Sm =
∑m

i=1 si, we know that HHI is bounded by

HHI =
m∑

i=1

s2
i +

n∑
i=m+1

s2
i ≤

m∑
i=1

s2
i + sm ·

n∑
i=m+1

si =
m∑

i=1

s2
i + sm · (1− Sm).
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This leads to the following upper bound for the simplified granularity adjustment

G̃A
upper

n =
1

2K
C(δ(K +R)−K) ·

(
m∑

i=1

s2
i + sm · (1− Sm)

)
. (9)

3.2. Heterogeneous case

In the general case of a heterogeneous portfolio, the upper bound becomes more

complicated because the meaning of “largest exposures” is no longer unambiguous.

Do we mean largest by EAD, by capital contribution, or by some other measure?

It turns out that we require information on both the distribution of aggregated

positions by EAD and by capital contribution. Specifically, we assume:

1. The bank has identified the m obligors to whom it has the largest aggregated

exposures measured in capital contribution, i.e., Ai · Ki. Denote this set of

obligors as Ω. For each obligor i ∈ Ω, the bank knows (si,Ki,Ri).

2. For the n−m exposures that are unreported (that is, exposures for which the

obligor is not in Ω), the bank determines an upper bound on share (denoted

s̄) such that si ≤ s̄ for all i in the unreported set.

3. The bank knows K∗ and R∗ for the portfolio as a whole.

The first assumption is straightforward and unavoidable, as this is where the need

arises to aggregate multiple exposures for a subset of obligors in the portfolio. In-

ternal risk management reporting typically includes a list of the “tallest trees” in

capital usage by customer, and therefore it is reasonable to assume that aggregated

capital contribution data for the largest customers are internally available. If such

data are unavailable, we might question whether the bank is making any substantive

business use of its internal economic capital models.

The second assumption is perhaps more difficult, but is necessary in order to obtain

a bound on unreported exposure shares. A bank can easily identify s̄ if, for example,

internal risk management systems report on the obligors to which the bank has the

greatest exposure in EAD.4 Denote this set by Λ, and let λ be the smallest si in this

4For example, there may be a lending rule that requires the director of the bank to sign off on
all loans above a certain threshold.
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set. Then s̄ is either the largest of the si which is in Λ but not in Ω or (if this set is

empty) simply λ, i.e.,

s̄ = max{si : si ∈ Λ\Ω ∪ {λ}}

The third assumption hardly needs justification, as these porfolio-level quantities

are calculated in the course of determining IRB capital requirements. In particular,

K∗ and R∗ can be obtained in the usual manner without aggregation of exposures

by obligor.

We generalize the notation K∗ and R∗ so that

K∗
k =

k∑
i=1

siKi and R∗
k =

k∑
i=1

siRi,

i.e., K∗
k and R∗

k are partial weighted sums of the Ki and Ri sequences, respectively.

Finally, for notational convenience define

Qi ≡ δ(Ki +Ri)−Ki.

Using the above notation, the GA can be reformulated as follows

G̃An =
1

2K∗

n∑
i=1

s2
iCi(δ(Ki +Ri)−Ki)

=
1

2K∗ ·

(
m∑

i=1

s2
i QiCi +

n∑
i=m+1

s2
i QiCi

)
.

(10)

The summation over 1 to m is known by Assumption 1. By Assumption 2, we know

that s̄ ≥ si for i = m + 1, . . . , n. Our assumption on VLGD in equation (7) is

sufficient to guarantee that Ci ≤ 1. Therefore,

n∑
i=m+1

s2
i QiCi ≤ s̄

n∑
i=m+1

siQi = s̄

(
δ

n∑
i=m+1

si(Ki +Ri)−
n∑

i=m+1

siKi

)
.

Next observe that

n∑
i=m+1

siKi = K∗ −K∗
m

n∑
i=m+1

siRi = R∗ −R∗
m.
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Assumption 1 implies that K∗
m and R∗

m are known to the bank. Thus we arrive at

n∑
i=m+1

s2
i QiCi ≤ s̄((δ − 1)(K∗ −K∗

m) + δ(R∗ −R∗
m)). (11)

Finally we obtain the following upper bound for the heterogeneous case

G̃A
upper

m =
1

2K∗

(
m∑

i=1

s2
i QiCi + s̄ ((δ − 1)(K∗ −K∗

m) + δ(R∗ −R∗
m))

)
. (12)

4. Data on German bank portfolios

To show the impact of the granularity adjustment on economic capital we need to

apply the GA to realistic bank portfolios. We use data from the German credit

register, which includes all bank loans greater or equal to 1.5 Million Euro. This

data set has been matched to the firms’ balance sheet data to obtain obligor specific

PDs. More specifically, a logistic regression model based on balance sheet data

between 12 and 24 months before default classified as default balance sheets has

been used.5 The resulting portfolios are much smaller than the portfolios reported

in the German credit register, however, there are still a number of banks with more

than 300 exposures in this matched data set which we consider as an appropriate

size for calculating the GA. We grouped the banks in large, medium, small and very

small banks where large refers to a bank with more than 4000 exposures, medium

refers to one with 1000 − 4000 exposures, small refers to a bank with 600 − 1000

exposures and very small to a bank with 300− 600 exposures.

To accommodate privacy restrictions on these data, we aggregate portfolios for three

different banks into a single data set. We then sort the loans by exposure size and

remove every third exposure. The resulting portfolio of 5289 obligors is still realistic

in terms of exposure and PD distribution and is similar in size to some of the larger

portfolios in the matched data set of the German credit register and the firm’s

balance sheet data. The mean of the loan size distribution is 3973 thousand Euros

and the standard deviation is 9435 thousand Euros. Quantiles are reported in Table

1. Henceforth, we refer to this portfolio as “portfolio A.”

5The model has been found to provide a high accuracy in terms of an area under the ROC
curve of more than 0.8. See Gerke et al. (2006).
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Table 1

Exposure distribution in Portfolio A

Level Quantile

5% 50.92

25% 828.80

50% 1811.75

75% 3705.50

95% 13637.36

Figure 1 shows the PD distribution for the aggregated portfolio A for different PD

categories which we denote here by S&P’s common rating grades. The PD ranges

for the different rating grades are listed in Table 2 below.

Figure 1. Borrower Distribution by Rating Grade

The average PD of the data set is 0.43% and hence lower than the average PD of

a portfolio of a smaller or medium sized bank in Germany, which is approximately

0.8% (Kocagil et al., 2001, p. 8). Moody’s, for example, understates average net

14



Table 2

PD ranges associated with rating buckets

Rating Grade PD Ranges in %

AAA PD ≤ 0.02

AA 0.02 ≤ PD ≤ 0.06

A 0.06 ≤ PD ≤ 0.18

BBB 0.18 ≤ PD ≤ 1.06

BB 1.06 ≤ PD ≤ 4.94

B 4.94 ≤ PD ≤ 19.14

C 19.14 ≤ PD

loan provisions of 0.77% for German banks during the period 1989− 1999 (Kocagil

et al., 2001, p. 7), which is more than two times the average loss of the firms in our

sample during the same period. Approximately 70% of the portfolio in our data set

belongs to the investment grade domain (i.e., rated BBB or better) and the remain-

ing 30% to the subinvestment grade. In smaller or medium sized banks in Germany

the percentage of investment grade exposures in a portfolio is approximately 37%

(Taistra et al., 2001, p. 2). As a consequence the value of the GA in our aggregated

portfolio A will be smaller than the GA in a true bank portfolio of similar exposure

distribution.

The data set does not contain information on LGD, so we impose the Foundation

IRB assumption of ELGD = 0.45.

5. Numerical results

In Table 3, we present granularity adjustments calculated on real bank portfolios

varying in size and degree of heterogeneity. As we would expect, the GA is invariably

small (12 to 14 basis points) for the largest portfolios, but can be substantial (up

to 161 basis points) for the smallest. The table demonstrates the strong correlation

between Herfindahl index and GA across these portfolios, though of course the
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correspondence is not exact as the GA is sensitive to credit quality as well. As a

reference portfolio, we included a portfolio with 6000 loans each of PD = 0.01 and

ELGD = 0.45 and of homogeneous EAD. The GA for the largest real portfolio is

roughly six times as large as the GA for the homogeneous reference portfolio, which

demonstrates the importance of portfolio heterogeneity in credit concentrations.

Table 3

Granularity Adjustment for real bank portfolios

Portfolio Number of Exposures HHI GA (in %)

Reference 6000 0.00017 0.018

Large > 4000 < 0.001 0.12− 0.14

Medium 1000− 4000 0.001− 0.004 0.14− 0.36

Small 600− 1000 0.004− 0.011 0.37− 1.17

Very Small 250− 600 0.005− 0.015 0.49− 1.61

We have also computed the VaR in the CreditRisk+ model and the relative add-on

for the GA on the VaR. For a large portfolio this add-on is 3% to 4% of VaR. For

a medium sized bank the add-on lies between 5% and 8% of VaR. In a study based

on applying a default-mode multi-factor CreditMetrics model to US portfolio data,

Heitfield et al. (2006) find that name concentration accounts for between 1% and

8% of VaR depending on the portfolio size. These results are quite close to our own

for the GA, despite the difference in model and data.

Table 4 shows the relative add-on for the granularity adjustment on the Risk Weighted

Assets (RWA) of Basel II for small, medium and large portfolios as well as for the

reference portfolio with 6000 exposures of unit size. The reference portfolio is used

to point out the influence of the GA even for large portfolios that would be seen

as very fine-grained. For the reference portfolio of 6000 exposures of unit size with

homogeneous PD = 1% and ELGD = 45% the GA is approximately 0.018% and the

IRB capital charge is 5.86%. Thus the add-on due to granularity is approximately

0.3% and the economic capital to capture both systematic risk and risk from single

name concentration is 5.878% of the total portfolio exposure. For the real bank

portfolios of our data set the add-on for the GA is higher than for the reference

portfolio, although it is still quite small for large and even for some of the medium
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sized bank portfolios. For smaller portfolios with 300 to 1000 exposures the add-on

for the GA is more significant.

Table 4

GA as percentage add-on to RWA

Portfolio Number of Exposures Relative Add-On for RWA

Reference 6000 0.003

Large > 4000 0.04

Medium 1000− 4000 0.04− 0.10

Small 300− 1000 0.17− 0.32

Figure 2 shows the dependence of the simplified GA on the default probability.

Each point on the curve represents a homogeneous portfolio of n = 100 borrowers

of the given PD. Dependence on portfolio quality is non-negligible, particularly for

lower-quality portfolios. Such dependence cannot be accommodated naturally and

accurately in ad hoc methods of granularity adjustment based on exposure HHI.

Figure 2. Effect of Credit Quality on Simplified GA
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The sensitivity of the GA to the variance parameter ξ of the systematic factor X is

explored in Figure 3. We see that the granularity adjustment is strictly increasing

in ξ, and that the degree of sensitivity is not negligible. Increasing ξ from 0.2 to

0.3 causes a 10% increase in the GA for Portfolio A. Uncertainty in dependence

parameters of this sort is a perennial challenge in portfolio credit risk modeling.

A guiding principle in the design of Basel II has been to impose regulatory values

on parameters (e.g., the asset correlation parameter ρ) that cannot be estimated

to reasonable precision with extant data. Similar judgmental treatment is required

here. While the absolute magnitude of the GA is sensitive to ξ, its relative magnitude

across bank portfolios is much less so. In this sense, the proper functioning of the

GA as a supervisory tool does not materially depend on the precision with which ξ

is calibrated.

Figure 3. Effect of the Variance of the Systematic Factor on Simplifed GA

Our next task is to verify the accuracy of the simplified granularity adjustment G̃A

as an approximation to the “full” GA of equation (6). We construct six stylized

portfolios of different degrees of exposure concentrations. Each portfolio consists

of n = 1000 exposures and has constant PD and ELGD fixed at 45%. Portfolio

P0 is completely homogeneous whereas portfolio P50 is highly concentrated since

the largest exposure A1000 = 100050 accounts for 5% of the total exposure of the

portfolio. The values for both the simplified G̃An and the full GA for each of these

portfolios are listed in Table 5. We see that the approximation error increases with

concentration and with PD. For realistic portfolios, the error is trivial. Even for

the case of portfolio P10 and PD = 4%, the error is only 3 basis points. The error

18



Table 5

Approximation error of the simplified G̃An

Portfolio P0 P1 P2 P10 P50

PD = 1%

Exposure Ai 1 i i2 i10 i50

G̃A in % 0.107 0.142 0.192 0.615 2.749

GA in % 0.109 0.146 0.197 0.630 2.814

PD = 4%

Exposure Ai 1 i i2 i10 i50

G̃A in % 0.121 0.161 0.217 0.694 3.102

GA in % 0.126 0.168 0.227 0.726 3.243

grows to 12 basis points in the extreme example of P50 and PD = 4%, but even this

remains small relative to the size of the GA.

Finally, we use Portfolio A to demonstrate the effectiveness of the upper bound

provided in Section 3. In Figure 4, we show how the gap between the upper bound

and the “whole portfolio” GA shrinks as m (the number of positions included in

the calculation) increases. With only 150 exposures included out of 5289 in the

whole portfolio, this gap is only 10 basis points. With 300 exposures included, the

gap shrinks to 5 basis points. The tightness of the upper bound is undoubtedly

somewhat sensitive to the characteristics of the portfolio, but from these results we

can tentatively conclude that the upper bound approach performs quite well.

6. Discussion

This paper sets forth a granularity adjustment for portfolio credit VaR that accounts

for a risk that is not captured by the Pillar 1 capital requirement of the Basel II IRB

approach. Our GA is a revision and extension of the methodology first introduced

in the Basel II Second Consultative Paper. The revision incorporates some technical

advances as well as modifications to the Basel II rules since CP2. Most importantly,
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Figure 4. Tightness of the Upper Bound

we introduce an “upper bound” methodology that addresses the most significant

source of operational burden associated with the assessment of residual idiosyncratic

risk in the portfolio (whether through the proposed GA or by any other rigorous

methodology). For many banks, this approach would permit dramatic reductions in

data requirements at modest cost in additional capital requirement.

We have examined the numerical behavior of the GA across a range of portfolio types

and studied its robustness to model parameters. Two further potential sources of

inaccuracy should be considered. First, the GA formula is itself an asymptotic ap-

proximation, and so might not work well on very small portfolios. We do not see this

issue as a material concern. In general, the GA errs on the conservative (i.e., it over-

states the effect of granularity), but is quite accurate for modest-sized portfolios of

as few as 200 obligors (for a low-quality portfolio) or 500 obligors (for an investment-

grade portfolio). Second, the IRB formulae are based on a rather different model of

credit risk, so we have a form of “basis risk” (or “model mismatch”). This is poten-

tially a more serious issue. However, the great advantage to the particular model we

use to underpin the GA is its analytical tractability. This tractability permits us to

reparameterize the GA formula in terms of the IRB reserve requirement and capital

charge, the latter of which includes a maturity adjustment. In effect, we obtain an
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indirect form of maturity adjustment in the GA through maturity-adjustment of the

inputs, rather than maturity adjustment in the formula itself. Furthermore, without

the analytical tractability of our approach, it would not have been possible to derive

a useful upper bound methodology.

For application in practice, a more important limitation of our methodology is that

we assume each position is an unhedged loan to a single borrower. How should we

incorporate credit default swaps (CDS) and loan guarantees in a granularity ad-

justment? Credit risk mitigation activities can decrease name concentration (say,

through purchase of CDS on the largest exposures in the portfolio) or actually indi-

rectly give rise to name concentration in exposure to providers of credit protection.

We will address this problem in future work.

Appendix: Calibration of variance parameter ξ

In models such as CreditMetrics that assume Gaussian systematic factors, the shape

of the distribution for X does not depend on the variance. For this reason, one can

normalize the variance to one without any loss of generality. By contrast, when

X is gamma-distributed as in CreditRisk+, skewness and kurtosis and other shape

measures for X are not invariant to the variance, and so this parameter must be

calibrated. In principle, the parameter ξ presents an extra degree of freedom for

better fitting the model to data, and so is welcome. In practice, however, extremely

long time-series would be required to get a reasonably precise fit. One sees users

impose a fairly wide range of values for ξ, say between 0.2 and 2. Lower values of

ξ imply greater systematic risk, which generally leads to higher economic capital

requires, but which minimizes the GA as a share of economic capital.

Recall that ξ influences the GA through the δ parameter. In Table 6, we report δ

for representative values of ξ (holding fixed q = 0.999). From this, we conclude that

a range of values 4.5 < δ < 6.5 would not be out of line with common practice.

Another way to calibrate ξ is to match the variance of the default probability when

portfolio maturity is one year. When M = 1, the IRB model collapses to the default-

mode CreditMetrics model, and this variance has tractable form Gordy (2000)

V CM
i = V ar[PDi(X)] = Φ2(Φ

−1(PDi), Φ
−1(PDi), ρi)− PD2

i . (13)
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Table 6

δ as a function of ξ (q = 0.999)

ξ 0.20 0.25 0.35 0.50 0.75 1.00 1.50 2.00

δ 4.66 4.83 5.09 5.37 5.68 5.91 6.23 6.45

where ρi is the Basel II asset correlation parameter and Φ2 denotes the bivariate

normal cdf. The corresponding variance for CreditRisk+ is

V CR+
i = V ar[PDi(X)] = (PDi · wi)

2/ξ. (14)

Equating the two variance expressions gives

ξ =
Φ(Φ−1(PDi), Φ

−1(PDi), ρi)− PD2
i

PD2
i · w2

i

. (15)

Next, we obtain an expression for the factor loading wi by matching asymptotic UL

capital charges across the same two models:

KCR+
i = ELGDi ·PDi ·wi · (αq(X)− 1)

KCM
i = Φ

(√
1

1− ρi

Φ−1(PDi) + Φ−1(q)

√
ρi

1− ρi

)
and so

wi =
Φ
(√

1
1−ρ

Φ−1(PDi) + Φ−1(q)
√

ρ
1−ρ

)
− PDi

PDi ·(αq(X)− 1)
. (16)

We substitute this expression for wi into equation (15) to get an implicit formula

for ξ that depends only on PD, the corresponding ρ in the IRB formula, and αq(X).

This last quantity depends on ξ, so we must solve using a nonlinear root-finding

algorithm.

An obvious drawback to this method is that the estimated value of ξ depends on the

chosen PD, whereas ξ ought to be independent of portfolio characteristics. When

PD is set to 1%, we obtain the value ξ = 0.206, which is roughly consistent with the

our baseline parameterization of ξ = 0.25.
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