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Non-technical Summary

Research question

Against the backdrop of the financial crisis, central banks implemented quantita-
tive easing (QE) and forward guidance (FG) policies. Over the past few years, a
consensus has emerged that such measures lead to expansionary macroeconomic
effects. However, it is also well known that New Keynesian models can give rise
to puzzles if the nominal interest rate is constrained by the zero lower bound or a
temporary peg (due to a FG policy). In this study, we focus on the reversal puzzle
(see Carlstrom et al., 2015): If the central bank implements QE in combination
with FG, the effects on output and inflation increase with the length of FG up
to some critical duration; if this critical duration is exceeded, the model predicts
recession and deflation.

Contribution

Our contribution is threefold. First, we illustrate the relevance of the reversal
puzzle in a plausible policy scenario by analyzing the macroeconomic effects of QE
in combination with FG of variable duration. Second, we derive the analytical
solution of the model and show that two ingredients are necessary, though not
sufficient, for the puzzle to occur: First, the solution of the model needs to feature
complex eigenvalues, and second, monetary policies’ FG needs to be perfectly
anticipated by the agents. Third, we formulate two possibilities for overcoming
sign switches in the model’s simulations.

Results

We find that the reversal puzzle is very tenacious and that it is intimately related
to agents’ expectations in the economy. This is illustrated by two different modifi-
cations to our analysis, which both lead to the disappearance of the reversal puzzle.
First, we show that a deviation from the assumption of perfect foresight (i.e. if we,
instead, solve the model under certainty equivalence) eliminates the puzzle. Sec-
ond, if we retain the assumption of perfect foresight but manage agents’ inflation
expectations with a price-level-targeting strategy, the reversal puzzle is also ab-
sent. Both modifications and its implications for the reversal puzzle are explained
using the solution of the model.



Nichttechnische Zusammenfassung

Fragestellung

Zahlreiche Notenbanken haben auf die jüngste Krise mit Wertpapierankaufpro-
grammen (QE) reagiert und dabei Orientierungen über die zukünftige Ausrichtung
der Geldpolitik gegeben (”forward guidance” - FG). In überwiegender Übereinstim-
mung haben diese Maßnahmen expansiv gewirkt. Es ist jedoch auch bekannt, dass
das Neukeynesianische Modell mitunter Anomalien produziert, und zwar wenn
der Politikzins temporär restringiert wird. Wir befassen uns mit einer solchen
Anomalie, dem sogenannten reversal puzzle (Carlstrom et al., 2015): Wenn die
Zentralbank ein Kaufprogramm in Kombination mit FG implementiert, steigen
zunächst die makroökonomischen Effekte mit der Länge von FG bis zu einer kri-
tischen Dauer an; wird diese kritische Dauer überschritten, kehren sich die Effekte
um, und das Modell prognostiziert eine Rezession und Deflation.

Beitrag

Dieses Papier trägt dreifach zur Literatur bei. Zunächst veranschaulichen wir die
Relevanz des reversal puzzle in einem plausiblen Politikszenario. Dabei analysieren
wir die Effekte von QE in Kombination mit einem Zinspeg von unterschiedlicher
Dauer. Daran anschließend nutzen wir die analytische Lösung des Modells und
zeigen, dass zwei Bedingungen für das Auftreten des genannten Phänomens not-
wendig (aber nicht hinreichend) sind: Erstens, die Lösung des Modells muss kom-
plexe Eigenwerte enthalten, und zweitens, der Zinspeg muss von den Agenten
vollkommen antizipiert werden. Abschließend diskutieren wir zwei Möglichkeiten,
wie das revesal puzzle vermieden werden kann.

Ergebnisse

Wie unsere Ergebnisse zeigen, kann das reversal puzzle sehr hartnäckig sein und
hängt eng mit der Erwartungsbildung der Akteure in der Ökonomie zusammen.
Wir illustrieren dies mit Hilfe zweier Modifikationen. Im Kontext der ersten Mod-
ifikation zeigen wir, dass das reversal puzzle ausbleibt, wenn wir die Annahme
vollkommener Voraussicht aufgeben (d.h., wenn die Agenten den Zinspeg nicht
antizipieren). Im Rahmen der zweiten Modifikation behalten wir zwar die An-
nahme perfekter Voraussicht bei, ändern die Inflationserwartungen der Agenten in
dem Sinn, als wir nach Ende des Zinspegs eine Strategie der Preisniveausteuerung
unterstellen. Auch dann tritt das reversal puzzle nicht auf. Beide Modifikationen
und ihre Implikationen für das reversal puzzle werden anhand der analytischen
Lösung des Modells erläutert.
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1 Introduction

In the aftermath of the financial crisis, major central banks adopted a series of

unconventional monetary policy measures both to restore the functioning of the

monetary transmission mechanism and to provide further accommodation in a

low-inflation environment. In particular, sovereign bond purchase programs, often

referred to as quantitative easing (QE), and forward guidance were implemented

by major central banks as policy responses to anemic growth and low inflation.

Such unconventional measures were adopted as alternative instruments when cen-

tral banks had reached the effective lower bound on nominal short-term interest

rates. While there is no consensus yet as to how far a given purchase program

can stimulate output and inflation, empirical models and (suitably modified) New

Keynesian models alike support the view that QE and forward guidance are expan-

sionary at the zero lower bound (see, for example, Carlstrom, Fuerst and Paus-

tian, 2017; Gertler and Karadi, 2013; Chen, Cúrdia and Ferrero, 2012, and the

references therein).

However, recently Cochrane (2015), Garćıa-Schmidt and Woodford (2015), and

Carlstrom et al. (2015) among others have illustrated that the standard New Key-

nesian model can give rise to puzzles if the policy rate is kept constant for some

time, typically at the zero lower bound.1 Prominent among these is the forward

guidance puzzle. In this phenomenon, forward guidance (i.e., an announced in-

tention of the central bank to keep the nominal interest rate constant for a given

period of time) implies huge expansionary and inflationary effects in the canonical

1Unlike the papers by Cochrane (2015) and Garćıa-Schmidt and Woodford (2015) our paper
is not about multiplicity and equilibrium selection. For a discussion of multiplicity in the context
of the zero lower bound, see also Holden (2017).
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New Keynesian model (e.g., Del Negro, Giannoni and Patterson, 2015). A related

effect, the reversal puzzle, has been described recently by Carlstrom et al. (2015).

According to the nature of this puzzle, pegging the interest rate for a sufficiently

long period of time in the standard New Keynesian model can give rise to coun-

terintuitive sign reversals in the path of the endogenous variables. The effect of

the interest-rate peg can switch from highly expansionary to highly contractionary

even for small changes in the length of the interest-rate peg.

In this paper, we illustrate that the reversal puzzle can be a tenacious problem in

the context of analyzing the effects of a QE program2 and make two suggestions

about how to overcome it. For our analysis, we jointly analyze a temporary, fully

anticipated interest-rate peg in combination with a QE program in the model

of Carlstrom et al. (2017). In the absence of the peg, the model predicts the

orthodox view, that is, an increase in output and inflation in response to the

launch of a QE program. If, however, the central bank keeps the policy rate

constant for some time, the responses of the model’s variables can switch their

sign: Output and inflation first increase with the duration of the peg and tend

to explode as the duration of the peg approaches some critical value (after four

quarters in our analysis). But if the duration of the peg exceeds this critical value,

the model predicts a counterintuitive sign reversal (i.e., the reversal puzzle) or, put

differently, a sizeable deflation instead of inflation. Furthermore, if we continue

to hold the interest rate fixed for an even longer period of time, the sign of the

model’s predictions changes once again. Thus, the qualitative response of output

and inflation oscillates as the duration of the peg expands into the far future. We

2For the peg to produce this puzzle, some shock must occur. We choose a QE shock to design
a plausible policy scenario.
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provide intuition for this puzzling result and show analytically that the reversal

critically hinges on two things: First, the model needs to feature endogenous state

variables, which imply complex eigenvalues in the solution of the system, and

second, the assumption that the interest-rate peg is perfectly anticipated. The

necessity of complex eigenvalues in the model’s solution was already pointed out

by Carlstrom et al. (2015). In particular, they find, based on the canonical 3-

equation DNK model with inflation indexation, that a necessary and sufficient

condition for the existence of the reversal puzzle is that the explosive eigenvalues

become complex-valued. However, in contrast to Carlstrom et al. (2015), we show

that if we use a richer model to describe a plausible policy scenario the existence of

complex eigenvalues is merely a necessary but no longer a sufficient condition. We

further show that the presence of the reversal puzzle is very robust with respect

to the calibration of the model.

The analytical solution of the model suggests that the expectations of the agents

in the economy are key for the appearance of the reversal puzzle. We illustrate

this finding by discussing two different modifications to our analysis. First, if

agents take the nominal interest-rate peg into account only contemporaneously,

but expect the peg to be absent in the future (no anticipation), i.e., if they operate

as under certainty equivalence, sign reversals disappear irrespective of the duration

of the peg. Thus, if we deviate from the assumption of perfect anticipation of the

interest-rate peg and, instead, assume that agents’ expectations do not incorporate

forward guidance into their decisions (i.e., the future development of the nominal

interest-rate peg), the reversal puzzle does not occur. Second, if we retain the

assumption that agents perfectly anticipate the future interest rate path but change
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agents’ expectations by assuming that monetary policy is going to follow a different

monetary policy rule, namely price-level targeting instead of a Taylor rule, the

reversal puzzle vanishes, too.

These two suggestions for overcoming the reversal puzzle therefore underscore the

fact that the appearance of the reversal puzzle is intimately related to agents’ ex-

pectations. If people do not anticipate the interest-rate peg, it is merely a series of

unanticipated shocks and therefore the reversal does not appear. But why is price-

level targeting effective at overcoming the reversal? If monetary policy follows a

price-level-targeting rule, the central bank aims at stabilizing the aggregate price

level around a predetermined path. Thus, if there is a shock that pushes the price

level away from the target-price path, future inflation will be required to adjust in

a way to bring the price path back to target. Put differently, past deviations from

target are corrected under price-level targeting. If monetary policy is credible, the

forward-looking rational agent thus expects a complete correction of past devia-

tions. This mitigates the expansionary effect of the anticipated peg and QE from

the very beginning. A bit more technically, the response of inflation to a series of

forward guidance shocks will neither grow exponentially and reach an asymptote

nor will it reverse its sign. As a consequence, sign reversals do not occur even

for very long durations of pegged nominal interest rates (in our example for much

more than 15 years).

The importance of forward-lookingness and therefore inflation expectations for the

explanation of the reversal puzzle has already been emphasized by Carlstrom et al.

(2015), who analyzed the reversal puzzle in the context of a standard New Keyne-
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sian model.3 They argue that, in particular, inflation indexation is an important

precondition for the sign switch to arise: If there is a backward-looking element

in the Phillips curve, which is due to indexation, there is ”...nothing to anchor the

terminal level of inflation”4 at the end of the peg.5 By contrast, in their model

variant without indexation, the level of inflation after the peg does not depend on

the previous pegged period (the same is true for output) and therefore the Taylor

rule (that kicks in after the peg) imposes a terminal condition on the inflation

rate.6

To overcome the reversal puzzle Carlstrom et al. (2015) suggest assuming sticky

information instead of Calvo pricing (see also Kiley, 2016). The key difference

between the sticky-price and the sticky-information framework is that under sticky

prices (and assuming indexation) the Phillips curve states that current inflation

depends on both lagged inflation and expectations of tomorrow’s inflation, whereas

under sticky information the Phillips curve states that only past expectations of

the current marginal costs and inflation matter for inflation today. In this sense

the firms are much less forward-looking in the sticky information framework. As

a consequence, there are no inflation reversals in their sticky-information model.7

3Laséen and Svensson (2011) and Lindé, Smets and Wouters (2016) also mention the appear-
ance of sign switches when simulating their models in combination with a transient interest-rate
peg. However, both studies do not elaborate on the source of the puzzle.

4See Carlstrom et al. (2015), p. 234.
5If the Phillips curve entails lagged inflation (which adds an endogenous state variable to

the system), the terminal level of inflation is no longer exogenous. Put differently, there is
nothing to pin down the terminal level of inflation at the end of the peg. Consequently, if initial
inflation depends on terminal inflation, but terminal inflation depends on initial inflation, the
counterintuitive reversal may arise.

6Solving the model backward gives a monotonic (exponential) path for inflation (and output).
7Several other authors relate the existence of the forward guidance puzzle to the important

role of expectations and provide alternative approaches to deal with it. Notable examples in-
clude Farhi and Werning (2017) who depart from the assumption of rational expectations and
adopt some form of bounded rationality, and Angeletos and Lian (2016) who introduce an incom-
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We organize our paper as follows. The next section presents the model we use for

the analysis and its main characteristics. Section 3 explains how we implement

the QE program and the transient interest-rate peg. Section 4 presents a short

description of the solution method. Section 5 provides our first set of simulation

results. In subsection 5.1, we analyze the effects of a QE program without an

interest-rate peg to illustrate the transmission of the QE program: The model is

consistent with the prevailing view that QE generates a positive response of infla-

tion and output. Subsection 5.2 then illustrates the effects of QE in combination

with an interest-rate peg of variable duration and shows that the model produces

a reversal puzzle if the policy rate is kept constant for a sufficiently long period of

time. We then derive the solution of the model and show why reversals appear.

Subsection 5.3 documents that the reversal puzzle is hard to get rid off since it

remains for a very wide range of calibrations of the model. In section 6 we present

the aforementioned two modifications to our analysis, which – independently of

each other – help to overcome the reversal puzzle. In subsection 6.1 we deviate

from the assumption of perfect foresight and assume that agents do not anticipate

the peg at all. Subsequently, in subsection 6.2, we retain the assumption of per-

fect foresight, but change the way monetary policy is conducted from a standard

Taylor rule to a price-level-targeting rule. Section 7 concludes.

plete information setup into the New-Keynesian model, thereby relaxing the routinely applied
assumption of common knowledge.
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2 A model with financial intermediaries

To assess the effects of a government bond purchase program and to be able to

describe under what conditions an interest-rate peg can give rise to a reversal,

we use the fully non-linear version of an estimated New Keynesian model with

financial intermediaries (henceforth FIs) which was recently developed by Carl-

strom et al. (2017). The model differs from ”standard” DSGE models (see, for

instance, Fernández-Villaverde and Rubio-Ramı́rez, 2006; Christiano, Eichenbaum

and Evans, 2005; Smets and Wouters, 2007) in the following ways.

Bond market: One key feature leading to the effectiveness of bond purchases

in this model is that the financial market is assumed to be segmented. In par-

ticular, it is assumed that only FIs can purchase long-term bonds in the financial

market. There are two types of long-term bonds available: investment bonds, Ft,

issued by households and government bonds, Bt, issued by the government. Fol-

lowing Woodford (2001), long-term investment and long-term government bonds

are modeled as perpetuities, which pay exponentially decaying coupons 1, κ, κ2, ... .

Perpetuities issued at time t pay their first coupon in t+ 1, as shown in table 1.

Table 1: Bond pricing

TEXT t t+1 t+2 t+3 t+4

Bond Price TEXT Qt

Coupon TEXT 1 κ κ2 ...

The corresponding price of the perpetuity is given by Qt = 1/(R10
t − κ), implying

that the gross yield to maturity (i.e., the discount rate that makes the present
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value of the bond’s stream of promised cash payments equal to its price) is given

by R10
t = Q−1

t + κ. The duration is calibrated to be ten years (40 quarters), i.e.,

40 = (1− κ)(−1), which implies κ = 0.975.

Financial intermediaries: In addition to the assumption of a segmented finan-

cial market, the model features financial intermediaries which trade in the financial

market. These FIs use accumulated net worth, Nt, and (short-term) deposits, Dt,

to finance purchases of long-term (investment and government) bonds. From the

perspective of the FIs, long-term government bonds and long-term investment

bonds are perfect substitutes. Their balance sheet – in real terms – is given by

B̄t + F̄t =
Dt

Pt
+Nt = LtNt, (1)

where Lt denotes leverage of the FIs and B̄t ≡ Bt

Pt
Qt and F̄t ≡ Ft

Pt
Qt denote the

real market values of government and investment bonds, respectively.

The ability of FIs to adjust their liability position (for instance, in response to

financial market shocks) is assumed to be limited by two constraints. First, FIs

face quadratic adjustment cost in net worth accumulation; second, FIs are leverage-

constrained, because they face what is known as a ”hold-up”problem. This hold-up

problem emerges because FIs can choose to default on obligations to depositors.

If FIs choose to default, depositors can, by assumption, only seize a share (1−µt)

of the FIs assets. The remaining share will be kept by FIs. However, the share of

seized assets is assumed to depend on the level of net worth of the FIs as well as on

other state variables. In particular, higher net worth makes the hold-up problem
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less severe.

To make sure that the FIs will never default on their obligations to depositors, the

value of their expected profits needs to be greater than (or at least equal to) the

value of the share of assets that can be seized in the event of a default. Thus, the

binding time-t incentive compatibility constraint is given by

Et
Pt
Pt+1

Λt+1

[(
RL
t+1 −Rd

t

)
Lt +Rd

t

]
Nt = µtLtNtEtΛt+1

Pt
Pt+1

RL
t+1, (2)

where Pt denotes the price level at time t, RL
t and Rd

t denote the long-term and

the deposit rates, and Λt+1 describes the Lagrangian multiplier associated with

the household’s optimal consumption decision. In equation (2), the left-hand side

describes the time-t+1 expected profits (measured in consumption equivalents)

and the right-hand side denotes the value of the share of assets (also measured in

consumption equivalents) that the FIs will seize in the case in which they choose

to default.

Given these two constraints (i.e., the net worth adjustment cost and the incentive

constraint), the FIs maximize their value function:

Vt = Et

∞∑
s=0

(βζ)sΛt+sdivt+s, (3)

where ζ is an additional impatience parameter of the FIs and divt+s denotes ex-

pected future dividends, subject to their budget constraint:

divt +Nt [1 + f (Nt)] ≤
Pt−1

Pt

[(
RL
t −Rd

t−1

)
Lt−1 +Rd

t−1

]
Nt−1, (4)
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which states that dividends and adjustments of the stock of net worth (diminished

by adjustment cost) need to be financed by generated profits. In this budget

constraint, RL
t+1 ≡

(
1+κQt+1

Qt

)
and f (Nt) ≡ ψn

2

(
Nt−Nss

Nss

)2

denotes the net worth

adjustment cost.8

Households: Households are assumed to maximize their utility

Et

∞∑
s=0

βsexp(rnt+s)

{
ln(Ct+s − hCt+s−1)− χ

H1+η
t+s (j)

1 + η

}
, (5)

where β is the discount factor, η is the inverse elasticity of labor supply, χ is

the relative utility weight of labor, Ct is consumption, h is the degree of habit

formation, Ht(j) is the labor input of household j, and exp(rnt) is a discount

factor shock which follows an AR(1) process. Households take into account the

following budget constraint:

Ct +
Dt

Pt
+ P k

t It +
Ft−1

Pt
≤

Wt(j)

Pt
Ht(j) +Rk

tKt−1 − Tt +
Dt−1

Pt
Rt−1 +

Qt(Ft − κFt−1)

Pt
+ divt, (6)

where Dt denotes short-term deposits, Kt is the physical capital stock, Wt(j)

denotes the nominal wage, Rd
t = Rt is the nominal interest rate on deposits,9 Rk

t is

the real rental rate of capital, Tt is lump-sum taxes, and divt is the dividend flow

8The right-hand side of equation (4) can be expanded into two components: RLt Lt−1Nt−1 −
Rdt−1 (Lt−1Nt−1 −Nt−1), where the first component, RLt Lt−1Nt−1, describes the FI’s income
from credit operations and the second component, Rdt−1 (Lt−1Nt−1 −Nt−1), denotes the cost
associated with its deposits.

9Since T-bills are used to implement the short-term policy rate, Rt, and T-bills are perfect
substitutes with deposits, the deposit rate equals the policy rate.
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from financial intermediaries. In addition, households take into account the law of

motion for physical capital:

Kt ≤ (1− δ)Kt−1 + It, (7)

and, in particular, a loan-in-advance constraint, which describes that capital invest-

ment of households needs to be financed by the issuance of long-term investment

bonds:

P k
t It ≤

Qt (Ft − κFt−1)

Pt
=
QtCIt
Pt

, (8)

where P k
t is the real price of capital, It denotes investment in physical capital, Ft−1

denotes household’s nominal liabilities at time t, CIt = (Ft − κFt−1) is the time-t

issuance of new investment bonds, and Qt denotes the time-t price of newly issued

bonds. As described below, it is mainly through this loan-in-advance constraint

that QE, via its impact on bond prices, is going to have real effects.

The rest of the model is standard in the sense that it exhibits the typical New

Keynesian features. As in Erceg, Henderson and Levin (2000), households are

monopolistic suppliers of differentiated labor inputs Ht(j). They set wages on a

staggered basis (à la Calvo). In each period, the probability of resetting the wage

is (1 − θw), while with the complementary probability the wage is automatically

increased following an indexing rule, Wt(j) = Πιw
t−1Wt−1 (j). The problem for

household j who can reset its wage at time t is

max
Wt(j)

Et

∞∑
s=0

θswβ
s

{
−χ

H1+η
t+s (j)

1 + η
exp(rnt+s)λw,t+s + Λt+s

Wt(j)

Pt+s
Ht+s(j)

}
, (9)
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where the first term describes the disutility of labor, which is subject to a discount

factor shock and a markup shock, λw,t+s. The second term describes the real wage

income, which is multiplied by the household’s marginal utility of consumption,

Λt+s.

Goods market: Final goods producers combine differentiated intermediate goods,

Yt(i), into a homogeneous good, Yt, according to the technology:

Yt =

[
∫ 1

0 Yt(i)
εp−1

εp di

] εp
εp−1

. (10)

The final goods producers buy the intermediate goods on the market, package Yt,

and resell it to consumers. These firms maximize profits in a perfectly competitive

environment.

A continuum of monopolistically competitive firms combine capital Kt−1 and labor

Ht to produce intermediate goods according to a standard Cobb-Douglas technol-

ogy:

Yt(i) = AtKt−1(i)αHt(i)
1−α, (11)

where At denotes a technology shock which follows an AR(1) process. These

firms maximize profits subject to their production function. The intermediate

goods producers set prices based on Calvo contracts. In each period, firms adjust

their prices with probability (1 − θp). For those firms that cannot adjust their

prices in a given period, prices will be reset according to the following indexation

rule: Pt(i) = Π
ιp
t−1Pt−1(i). Thus, the corresponding maximization problem for the
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intermediate goods producers is

max
Pt(i)

Ωt = Et

∞∑
s=0

θsp
βsΛt+s

Λt

Pt(i)
(

s∏
k=1

Π
ιp
t+k−1

)
Pt+s

− λp,t+smct+s(i)

 Yt+s(i), (12)

where λp,t+s is an AR(1) price mark-up shock, Πt is gross inflation, ιp denotes the

degree of price indexation, and mct denotes real marginal cost.

Capital goods producers transform It units of final goods into ϕt

[
1− S

(
It
It−1

)]
It

units of new capital goods. The function S(·) captures the presence of adjustment

cost in investment – i.e., S
(

It
It−1

)
≡ ψi

2

(
It
It−1
− 1
)2

– and ϕt represents an AR(1)

investment-specific shock. The time-t profit of capital producers is given by

P k
t ϕt

[
1− S

(
It
It−1

)]
It − It. (13)

Government policies: Fiscal policy is passive, i.e., lump-sum taxes move to

support interest payments on government debt while there are no other government

expenditures. The central bank follows a standard Taylor rule:

Rt = (Rt−1)ρ
(
RssΠ

τΠ
t

(
Yt
Yt−1

)τy)1−ρ

. (14)

Equilibrium conditions: In total, the non-linear model features 30 equilibrium

conditions, 7 AR(1) processes, and 8 exogenous shocks (in addition to the shocks
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for the AR(1) processes, the shock εTRt controls the exogenous transient interest-

rate peg).10

The corresponding endogenous variables are gathered in the vectors Υ1t and Υ2t,

and the exogenous variables in the vector υt:

Υ1t =
{

Λt, Ct, It, Ht,Mt, R
k
t , Vt, Rt, R

L
t , R

10
t , Qt, F̄t, Nt, Lt,mct, ...

MPKt,MPLt, P
k
t , Yt, D

p
t , Kt,Πt,Π

?
t , X

pn
t , X

pd
t , X

wn
t , Xwd

t , w?t , wt, D
w
t

}

Υ2t =
{
B̄t, At, rnt,Φt, µt, λp,t+s, λw,t+s

}
υt =

{
εTRt , εB̄t , ε

A
t , ε

rn
t , ε

Φ
t , ε

µ
t , ε

λp
t , ε

λw
t

}
.

While we incorporate all of the shocks to obtain empirically plausible estimates

for the model’s structural parameters (see table 2 in appendix B), we set most

of the shocks to zero when we analyze the reversal puzzle. Specifically, we then

only consider the shocks to the two policy rules, i.e., υt =
{
εTRt , εB̄t .

}
. The first is

needed to implement an interest-rate peg, the latter to trigger the QE program,

which is described formally in the next section.

10The individual equations of the non-linear equilibrium conditions are presented in Appendix
A.
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3 Modeling QE and an interest-rate peg

We assume that the government controls the supply of long-term bonds indepen-

dently of macroeconomic conditions. As in Carlstrom et al. (2017), a QE program

is implemented by a persistent AR(2) process for the real market value of long-term

bonds available to the financial intermediaries:

B̄t = B̄(1−ρ̄1+ρ̄2)
ss

(
B̄t−1

)ρ̄1
(
B̄t−2

)−ρ̄2 εB̄t . (15)

This assumption is useful for two reasons: First, the AR(2) process is part of the

model’s equilibrium conditions and therefore taken into account by every agent.

Thus, agents perfectly anticipate the path of the outstanding stock (value) of gov-

ernment bonds in the economy once a QE program has been started. Second, the

(inverse) hump shape implied by an AR(2) process is well suited to representing

a plausible QE program: During the phase of purchases, the total value of out-

standing bonds held by the public (i.e., excluding the central bank) declines, while

it returns only gradually to the steady state after the purchases stop eventually –

in our case after 6 quarters. Technically, the QE program is triggered by a single

shock, i.e., εB̄t < 1, that occurs in the first period of the model simulation (see

figure 1).
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Figure 1: Total value of long-term bonds held by the public
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Note: The solid line represents the evolution of B̄t (i.e., the market value of long-term bonds)

in percentage deviation from the steady state over 25 quarters.

The interest-rate peg is implemented via a sequence of shocks, which consists of

binary dummy variables, εTRt ∈ {0, 1}.11 These are set to one for periods of pegged

nominal rates and zero otherwise:

Rt = εTRt (Rss) +
(
1− εTRt

)
(Rt−1)ρ

(
RssΠ

τΠ
t

(
Yt
Yt−1

)τy)1−ρ

. (16)

4 Solution method

We conduct our analysis by solving the non-linear model under perfect foresight,

i.e., the agents in the economy anticipate future shocks perfectly. The model

11One could probably implement the transient interest-rate peg via a non-differentiable func-
tion (i.e., a min- or max-operator). However, this would render the peg endogenous with regard
to its duration. Implementing the peg via the dummy approach allows us to determine the
duration of the peg in a completely exogenous way.
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equations can be cast into the following general form:

Et [Γ (Υt+1,Υt,Υt−1, υt)] = 0, (17)

where Et denotes the expectation operator, Γ is a non-linear function, Υt summa-

rizes all endogenous variables of the system, and υt includes the two exogenous

variables, εB̄t and εTRt . As mentioned, knowledge of the latter shock implies that

the agents in the economy also fully anticipate the interest rate path of monetary

policy. Thus, every component of υt is perfectly known and we can proceed as

if the economy were purely deterministic. That is, we can skip Et from equation

(17) and stack the set of equilibrium equations (for each of the T periods of the

simulation horizon) as follows:

Γ (Υ2,Υ1,Υ0, υ1) = 0

...

...

Γ (ΥT+1,ΥT ,ΥT−1, υT ) = 0. (18)

We solve the system of stacked equations via Newton’s method as described in

Adjemian and Juillard (2014).12 The simulations are initialized at the steady state

– such that Υ0 is given – and will return to it within our pre-specified simulation

horizon,13 i.e., the initial as well as the terminal state (ΥT+1) of the simulations

12We implement this procedure using Dynare 4.4.3., which offers several algorithms to solve
models under the assumption of perfect foresight. The appearance of the reversal puzzle is not
a feature of the specific algorithm we use to obtain the subsequent results.

13We set T = 500 to ensure a successful transition between initial and terminal state.
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will be the steady state.

5 The reversal puzzle

5.1 The benchmark case: QE without interest-rate peg

We first consider a QE shock without an accompanying transient interest-rate peg

to describe the transmission of QE in this model. While it is not the primary

focus of our analysis, it shows that the model is perfectly able to reproduce the

conventional result: QE is expansionary and inflationary.

The exogenous process describing the bond purchase program is triggered by a

single shock in the first period of the simulation. As monetary policy follows a

prototypical Taylor rule, εTRt is zero for all t.
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Figure 2: Simulation of a QE shock without accompanying transient interest-rate
peg
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Note: The figure shows responses of (quarterly) output, investment, real investment bonds, net

worth, and the financial distortion in percent deviations from the steady state. Inflation, the

real interest rate, leverage, as well as the short- and long-term rates are measured in

(annualized) percentage point deviations from the steady state.

The transmission can be described as follows. The decreasing supply of long-

term government bonds available for FIs implies an upward pressure on its price

and, correspondingly, lowers its yield to maturity – moderately but persistently

(the yield to maturity is given by R10
t = 1/Qt + κ). The term premium, too,

decreases (which in the present model is essentially the distortion that is related

to the loan-in-advance constraint).14 The decrease in available bonds leads to a

reduction in banks’ net worth and leverage. Thus, the purchase of bonds shortens

the FIs’ balance sheet, but net worth mobility is limited due to the portfolio

14Accordingly, the QE program reduces the distortion that is due to market segmentation.
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adjustment cost.15 Correspondingly, FIs demand for investment bonds increases

(portfolio adjustment). Since investment bonds and government bonds are perfect

substitutes, the price of investment bonds also rises. Therefore, the households’

loan-in-advance constraint is relaxed and, as a result, investment demand increases.

Higher investment demand, in turn, increases aggregate output and so does the

inflation rate. In short, QE is expansionary and inflationary in the present model

and, as a response, monetary policy increases its policy rate if it follows a Taylor

rule.

5.2 Sign reversals: QE with interest rate peg

To illustrate the reversal puzzle that is closely related to the interest-rate peg, we

now assume that the central bank does not follow a Taylor rule but instead keeps

the short-term nominal interest rate unchanged for a pre-announced period of time,

P , alongside its QE program. Arguably, this scenario bears major relevance since

a QE program is typically introduced when the policy rate cannot be lowered any

further. Furthermore, central banks typically do not want to offset the desired

expansionary effect of a QE program by increasing the policy rate.

Figure 3 presents the results for output, inflation, and the short- as well as long-

term rates. Panel (a) shows simulated time paths when the policy rate is kept

constant for up to four periods, i.e., {P ∈ Z | 0 ≤ P ≤ 4}, panel (b) presents the

corresponding outcomes for {P ∈ Z | 5 ≤ P ≤ 10}, and panel (c) shows results for

{P ∈ Z | 19 ≤ P ≤ 25}.
15Note: since net worth mobility is limited, arbitrage opportunities are not eliminated imme-

diately.
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Figure 3: Simulation results of a QE shock in combination with an interest-rate
peg of variable duration under perfect foresight

(a) Zero to four periods of pegged rates
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(b) Five to ten periods of pegged rates
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(c) 19 to 25 periods of pegged rates
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Note: The figure shows simulation results for output, inflation, short-term interest rate, and
long-term interest rate based on a QE shock in combination with an interest-rate peg of
duration P . The period zero denotes the steady-state. The QE shock, together with the first
forward guidance shock, occurs in period one. Panel (a) shows results for 0 ≤ P ≤ 4, panel (b)
shows results for 5 ≤ P ≤ 10, and panel (c) shows results for 19 ≤ P ≤ 25.
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For up to three periods of pegged interest rates, the QE program leads to a com-

paratively modest increase in inflation and output. For a duration of four quarters,

however, the corresponding responses increase markedly. The peak effect of output

for an additional period of pegged rates (i.e., P = 4 compared to P = 3) is about

four times larger.

If we increase the duration of pegged rates further, i.e., 5 ≤ P ≤ 10 (see panel (b)),

the simulated time series reverse their sign, that is, inflation and output decrease

considerably after the inception of QE. Put differently, for 5 ≤ P ≤ 10 the model

predicts a severe recession in response to a QE program. Yet, if we increase

the duration of the interest-rate peg even further (see panel (c)), the sign of the

simulated time series switches once again, predicting a rather large expansionary

effect. Thus, in response to a QE shock in combination with an interest-rate peg,

the model variables oscillate with the duration of the peg.

How can such a remarkable reversal be explained? As explained in our introduc-

tion, Carlstrom et al. (2015) argue that in the context of a standard 3-equation

New Keynesian model, it is, in particular, inflation indexation that is an impor-

tant precondition for the sign switch to arise. This is because, if the Phillips curve

entails lagged inflation (which adds an endogenous state variable to the system),

then the terminal level of inflation is no longer exogenous. There is nothing to pin

down the terminal level of inflation at the end of the peg. Consequently, if initial

inflation depends on terminal inflation, but terminal inflation depends on initial

inflation, a counterintuitive reversal may arise. To gain a deeper understanding of

why reversals may occur, we complement the analysis by Carlstrom et al. (2015).

In particular, we first take a closer look at the forward solution of the sub-system
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of the difference equations. Later on, we complete the discussion by elaborating

on the backward solution.

We consider the linearized version of the model, which we can write in the following

general form:

Γ0Yt = Γ1Yt−1 + Φεt + Ψηt. (19)

Yt denotes the endogenous variables, εt describes the fundamental shocks (for in-

stance, the QE shock or the shock governing the interest-rate peg), and ηt indicates

the forecast errors. Following Sims (2001), we apply the QZ decomposition:

Q
′
ΛZ

′
= Γ0 (20)

Q
′
ΩZ

′
= Γ1. (21)

As a result, we can rewrite equation (19) such that

Q
′
ΛZ

′
Yt︸︷︷︸
ωt

= Q
′
ΩZ

′
Yt−1︸ ︷︷ ︸
ωt−1

+Φεt + Ψηt. (22)

Premultiplying by Q and redefining Z
′
Yt ≡ wt implies

Λwt = Ωwt−1 +QΦεt +QΨηt. (23)
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Partitioning equation (23) into explosive and nonexplosive parts yields

Λ11 Λ12

0 Λ22


w1,t

w2,t

 =

Ω11 Ω12

0 Ω22


w1,t−1

w2,t−1

+

Q1

Q2

 (Φεt + Ψηt) , (24)

where the second equation, i.e., the one containing the unstable eigenvalues, can

separately be written as

Λ22w2,t = Ω22w2,t−1 +Q2 (Φεt + Ψηt) . (25)

Multiply equation (25) by Ω−1
22 to obtain

Ω−1
22 Λ22w2,t = Ω−1

22 Ω22w2,t−1 + Ω−1
22 Q2 (Φεt + Ψηt) . (26)

Rewrite this expression as

Jw2,t = w2,t−1 + Ω−1
22 Q2 (Φεt + Ψηt) . (27)

In this expression, J ≡ Ω−1
22 Λ22 collects the ratios (i.e., the generalized eigenvalues)

of the diagonal elements of Λ and Ω. Thus, J contains the generalized eigenvalues

on its diagonal (i.e., when αjj denotes the diagonal elements of matrix Λ and δjj

denotes the diagonal elements of matrix Ω, then the generalized eigenvalues on the

diagonal of matrix J are the ratios of these diagonal elements of Λ and Ω), such
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that

J =



α11

δ11
∗

α22

δ22

. . .

∗ αjj

δjj


. (28)

Shifting equation (27) one period forward and solving for w2,t, we finally obtain

w2,t = Jw2,t+1 − Ω−1
22 Q2 (Φεt+1 + Ψηt+1) . (29)

Iterating forward yields:

w2,t = −
∞∑
n=1

Jn−1Ω−1
22 Q2 (Φεt+n + Ψηt+n) . (30)

Here, it is assumed that limn→∞ J
nw2,t+n = 0. Since equation (30) contains future

fundamental shocks and forecast errors, taking expectations leads to

w2,t = −Et

{
∞∑
n=1

Jn−1Ω−1
22 Q2Φεt+n

}
. (31)

Since under perfect foresight the transient interest-rate peg is perfectly known to

the agents in the economy, Et [εt+n] will be nonzero for the time period the central

bank actually fixes the policy rate (i.e., P > 0) and zero afterwards. If some of the

diagonal elements of J turn out to be complex, they can be written in polar form.

Define the complex diagonal elements
αjj

δjj
= zjj. Then, we can write zjj = a+bi or

in polar form zjj = r (cosφ+ i sinφ).16 If now – because of known nonzero future

16a describes the real part of a complex eigenvalue and bi describes the imaginary part. While
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εt+n – also powers of J enter the solution for w2,t, we can write (by de Moivre’s

formula):

zkjj = rk (cos kφ+ i sin kφ) , for k = 0, ..., P − 1. (32)

Hence, the forward solution of the system involves trigonometric functions, which

depend on the length P of a given interest-rate peg. Thus, the longer the central

bank keeps the policy rate fixed (i.e., the bigger P is), the farther we ”move” along

the trigonometric functions contained on the diagonal elements of matrix J . As a

consequence, with an increasing duration of pegged policy rates, the simulations

(which we presented in figure 3) first approach an asymptote (i.e., the effect of an

additional period of pegged policy rates grows exponentially) and afterwards the

simulations switch their sign before they reach another asymptote and switch their

sign again, and so on.

While the reversal completely vanishes if one shuts down inflation indexation in the

context of the 3-equation DNK model, as indicated by Carlstrom et al. (2015), this

should not be expected for the more elaborate medium-sized model presented here,

since this model contains several other backward-looking elements (i.e., endogenous

state variables like capital, wages, net worth, etc.). And it is the interplay of

backward and forward-looking elements in the model that can give rise to complex-

valued eigenvalues and, thus, sign switches in the model’s simulations.

a and b are real numbers describing a pair of numerical Cartesian coordinates, r and φ denote
the corresponding polar coordinates (i.e., distance and angle).

26



5.3 A sensitivity analysis

One might conjecture that the results thus far depend very much on the specific

parameterization of the model. In this section, we document that this is not the

case. To this end, we conduct an extensive grid search over the model’s structural

parameters and illustrate for which duration of the anticipated interest-rate peg

reversals in the initial response of inflation occur. Specifically, we vary each param-

eter one-by-one, holding the other parameters constant at their benchmark values,

to document that the reversal does not arise only for a very specific paramterization

of the model.

The household sector: Figure 4 shows that simply reducing the forward-

lookingness of the agents in the economy by decreasing the discount parameter

β (see subpanel (a) in the upper left), or increasing the backward-lookingness of

the agents by increasing the consumption habit parameter, does not prevent rever-

sals from occuring. We only observe that the duration of the peg that is required

for the reversal to appear changes. For instance, if households discount future

consumption more heavily (a smaller value for β), the peg has to be a few quar-

ters longer in order for the reversal to appear (this is consistent with Carlstrom

et al. (2015) who document that the implementation of a discounted Euler equa-

tion, along the lines of McKay, Nakamura and Steinsson (2016), does not resolve

the reversal puzzle). In addition, variations in the parameters determining the

investment decision of the households (i.e., the capital depreciation rate δ and the

capital adjustment costs ψi shown in the subpanels (c) and (d)) do not prevent

sign switches.
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Figure 4: Duration of nominal interest-rate peg for which the reversal puzzle occurs
for different values of the household sector’s structural parameters

(a) Discount parameter β
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(b) Habit parameter h
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(c) Capital depreciation δ
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(d) Capital adjustment cost ψi
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Note: The figure shows simulations for increasing durations of a pegged policy rate of up to

thirty quarters for different parameter values. The blue points indicate a different sign

compared to the scenario without interest-rate peg. The red line marks the calibrated value for

the respective parameters, which were used to carry out the analysis in subsections 5.1 and 5.2.

The firm sector: Figure 5 presents results from our grid search over the param-

eter values which drive the behavior of the price and wage setters (i.e., the Calvo

parameters for prices, θp, and wages, θw, as well as the parameters for price and

wage indexation, ιp and ιw). Once again, we observe that the required duration of

the interest-rate peg in order for the reversal to appear, varies with different pa-

rameter values. However, we observe that if firms behave in a less forward-looking

manner (i.e., for Calvo parameters for prices and wages > 0.9), the peg has to be
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a few years longer in order for the reversal to appear.

Figure 5: Duration of nominal interest-rate peg for which the reversal puzzle occurs
for different values of the firm sector’s structural parameters

(a) Calvo parameter: prices θp
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(b) Calvo parameter: wages θw
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(c) Price indexation ιp
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(d) Wage indexation ιw
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Note: The figure shows simulations for increasing durations of a pegged policy rate of up to

thirty quarters. Again, the blue points indicate a different sign compared to the scenario

without interest-rate peg. The red line marks the calibrated value for the respective

parameters, which were used to carry out the analysis in subsections 5.1 and 5.2.

It should be noted that even if we shut down price and wage indexation jointly

(i.e., ιp = 0 and ιw = 0) and re-run all the grids for all structural parameter values,

sign reversals still occur. Thus, beyond indexation, there remain elements in the

present model that produce sign switches.
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Monetary policy: Figure 6, finally, presents the results from a grid search over

the Taylor-rule coefficients, which become active, of course, only after the peg has

ended.17 As before, the occurrence of sign switches in the simulations does not

depend on individual parameter values. Only the length of the peg, for which the

reversal occurs, is affected by changes of the parameters. In particular, a more

aggressive inflation stabilization (i.e., a higher coefficient τπ) requires a longer

duration of the interest-rate peg in order for the reversal to occur. Introducing

history dependence by means of interest rate smoothing does not prevent reversals

from occurring, either; see upper left panel in figure 6.

17Note that the agents perfectly anticipate the duration of forward guidance. Thus, they are
perfectly aware of the point in time at which the Taylor rule is in place again.
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Figure 6: Duration of nominal interest-rate peg for which the reversal puzzle occurs
for different values of the Taylor-rule parameters

(a) Interest rate smoothing ρ
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(b) MP reaction coefficient on inflation τπ
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(c) MP reaction coefficient on output τy
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Note: The figure shows simulations for increasing durations of a pegged policy rate of up to

thirty quarters. Once more, the blue points indicate a different sign compared to the scenario

without interest-rate peg. The red line marks the calibrated value for the respective

parameters, which were used to carry out the analysis in subsections 5.1 and 5.2.

6 Overcoming the reversal puzzle

6.1 No anticipation

Thus far, we have illustrated that the reversal puzzle is a very robust feature of the

simulation set-up. Due to the presence of complex-valued eigenvalues, the model’s

dynamics switch sign, depending on the duration of a temporary interest-rate peg.
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However, the complex eigenvalues on the main diagonal of the matrix J only imply

a sign switch in the model simulations if the agents anticipate the interest-rate peg

(i.e., Et [εt+n] 6= 0). Thus, an obvious modification is to assume that agents do not

anticipate the interest-rate peg. Instead, they are surprised each period that the

interest rate is kept constant.

To examine such a scenario, we use a procedure that has recently also been em-

ployed by Arias, Erceg and Trabandt (2016), Christiano, Eichenbaum and Tra-

bandt (2015), and Adjemian and Juillard (2013). In contrast to the perfect fore-

sight approach, the endogenous variables are now computed by running a deter-

ministic simulation for each period of the simulation horizon with the previous

period as an initial condition for the next period and the steady state as terminal

condition. In each period, agents now expect that the exogenous shocks will be

zero for all future periods, i.e., they assume Et (εt+n) = 0. Less technically, they

expect that monetary policy does not peg its policy rate for an extended period of

time P . Thus, at every step of the simulation (i.e., in each period), future shocks

will not be anticipated, which implies that certainty equivalence applies. Figure 7

presents the corresponding simulation results.
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Figure 7: Simulation results of a QE shock in combination with an unanticipated
interest-rate peg of variable duration
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Note: The figure shows simulation results for output, inflation, short-term interest rate, and

long-term interest rate, based on a QE shock in combination with an unanticipated

interest-rate peg of duration P , with 0 ≤ P ≤ 10. The period zero denotes the steady state.

The QE shock, together with the first forward guidance shock, occurs in period one. The

simulations are carried out based on the assumption that both price and wage indexation are

present (i.e., ιp = 0.3876 and ιw = 0.3807).

In the absence of anticipation, the dynamics of aggregate output and inflation

neither explode nor reverse their sign, even if we extend the duration of the peg

considerably. To see why this is the case, consider equation (31), which we show

here again for convenience:

w2,t = −Et

{
∞∑
n=1

Jn−1Ω−1
22 Q2Φεt+n

}
. (33)

Recall: we solve the non-linear model for each period of the entire simulation
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horizon. In each period, the model is solved under the assumption that εt+n = 0

for all n > 0. Thus, now the solution for w2,t does not depend on the matrix J

anymore, such that the corresponding complex eigenvalues are no longer relevant.

As a consequence, the simulated time paths of the model will not move along the

trigonometric functions resulting from the complex elements on the main diagonal

of matrix J . Thus, the explosive complex eigenvalues cannot induce explosive

or cyclical effects in the solution of w2,t. The model-implied dynamics following

a QE shock and a corresponding implementation of a transient interest-rate peg

therefore deliver orthodox results.

6.2 Price-level targeting

While the anticipation of the interest-rate peg and therefore the expectations of

the agents about future shocks are key to understanding the reversal puzzle, it is

somewhat unrealistic, or at least unattractive, to assume, as in the last section,

that agents are not able to take into account announced monetary policy measures

like forward guidance. We now present a way of overcoming the puzzle without

imposing such a strong assumption.

An effective way of making a noteworthy change in what agents expect is to as-

sume that monetary policy follows a price-level-targeting rule after the nominal

interest-rate peg. Indeed, price-level targeting is known to be able to induce stabi-

lization effects, even if the interest rate is kept constant. This is because price-level

targeting implies history dependence of monetary policy, which in turn strengthens

the expectations channel.
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To illustrate the consequences of such a change in the monetary policy strategy, we

therefore substitute the Taylor rule in Equation (16) with the following price-level

targeting rule:

Rt = εTRt (Rss) +
(
1− εTRt

)
(Rt−1)ρ

(
RssP

τp
t

(
Yt
Yt−1

)τy)1−ρ

, (34)

where Pt describes the price level, and τp the response coefficient of monetary pol-

icy to deviations of the price level from its target (which is equal to one in our

analysis).

Figure 8: Duration of nominal interest-rate peg for which inflation reversals occur
for different values of τp

(a) Duration of pegged rates: one to thirty quar-
ters
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(b) Duration of pegged rates: thirty to sixty
quarters
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Note: The figure shows simulations for increasing duration of a pegged policy rate. As above,

the blue points indicate a different sign compared to the scenario without interest-rate peg.

The red line marks the calibrated value for τp.

Figure 8 shows the results from a corresponding grid search analysis. The ‘empty’

figure highlights that if the monetary authority switches to a price-level-targeting

rule, the reversal puzzle completely vanishes, even for much longer durations of
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pegged policy rates, i.e., for more than fifteen years. Why is this the case? The

main difference between inflation targeting and price-level targeting is that, under

the former strategy, shocks to the price level are treated as bygones. Thus, a

policy that aims at keeping the future inflation rate close to a given target value

in the medium term, will not correct for past shocks. Instead, under price-level

targeting, the central bank commits itself to correcting deviations of the price level

from its target. Thus, if there is a shock that pushes the price level away from the

target price path, future inflation will be required to adjust in a way to bring the

price path back to target. As a result, past deviations from target are corrected

under price-level targeting. If monetary policy is credible, the forward-looking

rational agents are going to expect a complete correction of past deviations. This,

in turn, dampens agents’ expectations about output and inflation deviations and

therefore mitigates the expansionary effect of the anticipated nominal interest-rate

peg together with the expansionary QE program on output and inflation from the

very beginning. Due to the muted output and inflation responses, sign reversals

do not occur even for very long durations of pegged nominal interest rates. Put

differently, the response of inflation to, for instance, a series of forward guidance

shocks (i.e., shocks governing the nominal interest-rate peg, εTRt ) will neither grow

exponentially and reach an asymptote nor will it reverse its sign.
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Figure 9: Macroeconomic implications of nominal interest-rate peg under price-
level targeting
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Note: The figure shows simulations for output, inflation, and the short- as well as long-term

interest rates, for an increasing duration of a pegged policy rate (i.e., zero to ten periods). The

period zero denotes the steady state. The QE shock, together with the first forward guidance

shock, occurs in period one.

Figure 9 presents the simulated time paths for output, inflation, and the short-

as well as long-term interest rate. The model implies plausible dynamics under

reasonable policy scenarios, and even more importantly, the simulations do not

change dramatically for only minor changes in the policy scenario.

It is important to note that, with the price-level-targeting specification, the com-

plex eigenvalues, showing up in the solution of the system, do not vanish (see also

table 3 in appendix C). Put differently, the existence of complex eigenvalues is thus

merely a necessary but not a sufficient condition for the reversal to appear. Intu-

itively, to observe a reversal, the complex eigenvalues of the forward and backward

37



solution have to ‘interact’ in a very specific way. To understand why these complex

eigenvalues do not induce cyclical effects in the case of price-level targeting – even

though there are anticipated future shocks hitting the system – we have to take a

look at the solution of the system of difference equations as a whole.

Having already solved for w2,t in equation (31), the final step is to solve for w1,t.

Following Sims (2001) again, we consider the unique solution of the system18 in

terms of wt = [w1,t, w2,t]
′, which is formulated below as

Λ11 Λ12 − ΞΛ22

0 I


w1,t

w2,t

 =

Ω11 Ω12 − ΞΩ22

0 0


w1,t−1

w2,t−1

+

Q1 − ΞQ2

0

 (Φεt)

− Et

 0∑∞
n=1 J

n−1Ω−1
22 Q2Φεt+n

 ,
where the matrix Ξ describes the relationship between fundamental and expecta-

tional errors, i.e., Q1Ψ = ΞQ2Ψ.

Rearranging and taking the inverse formula for partitioned matrices into account

18As derived in equation (43) in Sims (2001).
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yields:

w1,t

w2,t

 =

Λ−1
11 −Λ−1

11 (Λ12 − ΞΛ22)

0 I


Ω11 Ω12 − ΞΩ22

0 0


w1,t−1

w2,t−1


+

Λ−1
11 −Λ−1

11 (Λ12 − ΞΛ22)

0 I


Q1 − ΞQ2

0

 (Φεt)

−

Λ−1
11 −Λ−1

11 (Λ12 − ΞΛ22)

0 I


 0∑∞

n=1 J
n−1Ω−1

22 Q2Φ

Etεt+n.

Thus, the solution for w1,t is also affected by nonzero future εt+n via the matrix J

w1,t = ...− Λ−1
11 (Λ12 − ΞΛ22)

(
∞∑
n=1

Jn−1Ω−1
22 Q2Φ

)
Etεt+n. (35)

In contrast to the forward solution (i.e., the solution for w2,t), the matrices Λ11,

Λ12, and Ξ now enter the expression for the solution of the stable part of the

system (i.e., the solution for w1,t). This implies that these matrices may govern

the whole system in such a way that the complex eigenvalues contained in both

the stable and the unstable parts may ’cancel’ each other out in the system. If

this is the case, anticipated future shocks will no longer induce cyclical effects in

the simulation of the model.

To reiterate, given the assumption of perfect foresight, the presence of complex

eigenvalues in the solution of the system is only a necessary but not a sufficient

condition for the reversal puzzle to appear. It seems to be the balance between

stable and unstable complex elements in the solution of the model that matters.
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This reinforces the suggestion by Carlstrom et al. (2015), who argue that the

source of the reversal puzzle is a feedback between forward and backward-looking

factors of the underlying model. To us, this explanation is mirrored in the complex

elements of the solution of the underlying system of difference equations.

7 Conclusion

The reversal puzzle is one of several peculiarities (like the forward guidance puzzle,

paradox of toil etc.) that the New Keynesian model can produce when the nominal

interest rate is constrained due to the zero lower bound or a temporary interest rate

peg. In this study, we demonstrate that the reversal puzzle is a relevant and tena-

cious phenomenon in a medium-scale DSGE model (with many endogenous state

variables) by analyzing a plausible policy scenario in which the model economy is

affected by a QE program and forward guidance.

We provide results from extensive numerical research suggesting that the rever-

sal puzzle appears for a wide range of different parameterizations of the model

under investigation. In particular, we show that the reversal puzzle is not just

the outcome of an irrelevant or negligible parameter constellation. It is rather

an empirically relevant part of the overall parameter space that delivers inflation

reversals for plausible durations of forward guidance.

We discuss two modifications of our analysis to overcome the reversal puzzle which

shed light on the important role of agents’ expectations in delivering the puzzle.

The first modification is to assume that agents in the model economy act under

certainty equivalence, i.e., they take the nominal interest-rate peg into account
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only contemporaneously, but expect the peg to be absent in the future. The

second modification is to assume a price-level targeting rule instead of a Taylor rule

while keeping the assumption of perfect foresight. Both modifications suggest the

conclusion that the reversal puzzle disappears when expectations do not respond

strongly to future shocks – in the first modification because the agents do not

take into account future shocks at all (and, correspondingly, do not adjust their

expectations), and in the second modification because the agents expect the central

bank to fully correct for the shocks that make the price level deviate from its target

path (which implies that agents correspondingly adjust their inflation expectations

from the very beginning).

The modifications we present to overcome the reversal puzzle illustrate the mech-

anisms and the determinants of the puzzle, contributing to a better understanding

of the phenomenon as such. However, in a sense, they are not practical solutions:

Having a specific (policy) analysis in mind, there might be good reasons not to

assume certainty equivalence or a central bank targeting the price level, not least

because these elements might be undesirable from an empirical point of view. De-

veloping practical solutions in this sense might be a promising avenue for future

research.
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Laséen, S. and Svensson, L. E. (2011). Anticipated Alternative Policy Rate Paths

in Policy Simulations, International Journal of Central Banking 7(3): 1–35.
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A Non-linear equilibrium conditions

Below, we show the non-linear equilibrium conditions of the model (without cor-
responding AR(1) processes) outlined in section 2. They largely correspond to
Appendix A in Carlstrom et al. (2017).

Λt =
rnt

Ct − hCt−1

− Et
βhrnt+1

Ct+1 − hCt
(A.1)

Λt = Etβ
Λt+1

Πt+1

Rd
t (A.2)

wt
1+εwη =

εw
εw − 1

Xwn
t

Xwd
t

(A.3)

Xwn
t = λw,tbtχw

εw(1+η)
t H1+η

t + Et

{
θwβΠ

εw(1+η)
t+1 Π

−ιwεw(1+η)
t Xwn

t+1

}
(A.4)

Xwd
t = Λtw

εw
t Ht + θwβΠ

−ιw(εw−1)
t Π

(εw−1)
t+1 Et

{
Xwd
t+1

}
(A.5)

wt
1−εw = (1− θw) (w∗t )

1−εw + θw

(
Πιw
t−1wt−1

Πt

)1−εw
(A.6)

ΛtMtP
k
t = EtβΛt+1

[
Rk
t+1 +Mt+1P

k
t+1 (1− δ)

]
(A.7)

ΛtMtQt = Et
βΛt+1 (1 + κQt+1Mt+1)

Πt+1

(A.8)

V h
t = bt

{
ln (Ct − hCt−1)−Dw

t χ
H1+η
t

1 + η

}
+ βEtV

h
t+1 (A.9)

Rk
t = mctMPKt (A.10)

wt = mctMPLt (A.11)

Π∗t =
εp

εp − 1

Xpn
t

Xpd
t

Πt (A.12)

Xpn
t = Ytλp,tmct(i) + Et

{
θp
βΛt+1

Λt

Π
−ιpεp
t Π

εp
t+1X

pn
t+1

}
(A.13)

Xpd
t = Yt + Et

{
θp
βΛt+1

Λt

Π
ιp(1−εp)
t Π

εp−1
t+1 X

pd
t+1

}
(A.14)

(Πt)
1−εp = (1− θp) (Π∗t )

1−εp + θp
(
Π
ιp
t−1

)1−εp
(A.15)
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Dp
t = Π

εp
t

[
(1− θp)Π∗t

−εp + θp
(
Π
ιp
t−1

)−εp
Dpt−1

]
(A.16)

Dw
t = θw

(
Πt

Πιw
t−1

)εw( wt
wt−1

)εw
Dwt−1 + (1− θw)

(
w∗t
wt

)−εw
(A.17)

Yt = Ct + It (A.18)

Yt = AtK
α
t H

1−α
t /Dpt (A.19)

Kt = (1− δ)Kt−1 + ϕ

(
1− ψI

(
1

2

)(
It
It−1

− 1

)2
)
It (A.20)

P k
t ϕt

{
1− S

(
It
It−1

)
− S ′

(
It
It−1

)
It
It−1

}
=

1− βP k
t+1

Λt+1

Λt

ϕt+1

{
−S ′

(
It+1

It

)(
It+1

It

)2
}

(A.21)

B̄t + F̄t = Nt + Lt (A.22)

Lt =
Et

Λt+1

Πt+1[
Et

Λt+1

Πt+1
+ (Φt − 1)Et

Λt+1

Πt+1

RL
t+1

Rd
t

] (A.23)

P k
t It = F̄t − κ

F̄t
Πt

Qt

Qt−1

(A.24)

Λt [1 + f (Nt) +Ntf
′ (Nt)] = EtΛt+1βζ

Pt
Pt+1

[(
RL
t+1 −Rd

t

)
Lt +Rd

t

]
(A.25)

RL
t =

(1 + κQt)

Qt−1

(A.26)

R10
t = Q−1

t + κ (A.27)

MPKt = αAtKt−1(i)α−1Ht(i)
1−α (A.28)

MPLt = (1− α)AtKt−1(i)αHt(i)
−α (A.29)

Rt = εTRt (Rss) +
(
1− εTRt

)
(Rt−1)ρ

(
RssΠ

τΠ
t

(
Yt
Yt−1

)τy)1−ρ

(A.30)
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B Steady-state & parameter values

Table 2: Parameter values

β Discount factor 0.99

α Capital share 0.33

δ Depreciation rate 0.025

h Habit parameter 0.6

η Inverse elasticity of labor supply 2

εp Elasticity of substitution implying steady-state price markup 5

εw Elasticity of substitution implying steady-state wage markup 5

ιp Price indexation 0.3876

ιw Wage indexation 0.3807

θp Calvo Parameter (Prices) 0.7621

θw Calvo Parameter (Wages) 0.6443

ρ Interest rate smoothing 0.6327

τΠ MP Inflation coefficient 1.5643

τy MP Output coefficient 0.5459

ψi Investment adjustment cost 2

ψn Portfolio adjustment cost 0.79

κ Long-term bond coupon 0.975

Πss Steady-state gross inflation 1

Lss Steady-state leverage level 6

B̄ss

B̄ss+F̄ss
Ratio of government securities to total FI assets 0.35
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C Eigenvalues under inflation targeting and price-

level targeting

Table 3: Eigenvalues of the system

Inflation targeting Price-level targeting

Modulus Real Imaginary Modulus Real Imaginary

— — — 9.433e-17 -9.433e-17 0
2.382e-17 2.382e-17 0 2.217e-16 2.217e-16 0
4.499e-16 -4.499e-16 0 0.3947 0.3947 0

0.3676 0.3676 0 0.4391 0.4391 0
0.5936 0.5936 0 0.6443 0.6443 0
0.6409 0.6339 0.09459 0.6799 0.6799 0
0.6409 0.6339 -0.09459 0.7382 0.7382 0
0.6443 0.6443 0 0.7424 0.6879 0.2793
0.7382 0.7382 0 0.7424 0.6879 -0.2793
0.7621 0.7621 0 0.7621 0.7621 0
0.8717 0.8685 0.07484 0.8588 0.8564 0.06393
0.8717 0.8685 -0.07484 0.8588 0.8564 -0.06393
0.9618 0.9618 0 0.9618 0.9618 0
0.9797 0.9797 0 0.9818 0.9818 0
1.01 1.01 0 1.01 1.01 0
1.036 1.036 0 1.036 1.036 0
1.069 1.069 0.03547 1.048 1.048 0
1.069 1.069 -0.03547 1.161 1.161 0
1.171 1.171 0 1.296 1.214 0.4539
1.225 1.185 0.3098 1.296 1.214 -0.4539
1.225 1.185 -0.3098 1.306 1.306 0
1.325 1.325 0 1.325 1.325 0
1.35 1.35 0 1.402 1.402 0
1.568 1.568 0 1.568 1.568 0
1.594 1.594 0 1.638 1.638 0
Inf Inf 0 Inf Inf 0
Inf Inf 0 Inf Inf 0
Inf Inf 0 Inf Inf 0
Inf -Inf 0 Inf -Inf 0
Inf -Inf 0 Inf -Inf 0
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