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Non-technical summary

Research Question

This paper investigates the dynamic linkages in terms of the conditional mean and con-

ditional volatility between stock and bond returns, within a wide range of advanced

economies, over the different phases of the recent financial crisis. Moreover, it examines

the impact of the time-varying volatility transmission between stock and bond markets on

the dynamic conditional correlation between these markets as well as on the construction

of a minimum variance portfolio in such times.

Contribution

The present paper contributes to the existing literature by analysing the dynamic linkages

between stock and bond market returns and volatilities in a completely time-varying

framework over the different stages of the recent financial crisis. To this end, we adopt a

bivariate volatility model which allows for volatility spillovers of either positive or negative

sign. The possibility of negative volatility spillovers between stock and bond returns has

been mainly disregarded in the existing literature.

Results

Our results show the existence of a time-varying pattern of mean and volatility spillovers

between stock and bond returns over the different stages of the recent financial crisis.

In a broad sense, the return spillovers are mainly dominated by the spillover effect from

stock to bond returns and get stronger throughout the different stages of the recent crisis.

The volatility spillovers, on the other hand, are stronger from bond returns to those of

stocks than vice versa, and also exhibit time-variation, especially over the European debt

crisis. Our results have important implications for investors and risk managers because

portfolio performance comparisons suggest that the portfolio volatility can be reduced

by considering the time-varying return and volatility spillovers when calculating the risk-

minimising weights of the selected assets in the portfolio.



Nichttechnische Zusammenfassung

Fragestellung

Diese Arbeit beschäftigt sich mit der dynamischen Wechselwirkung zwischen bedingtem

Mittelwert und bedingter Volatilität von Aktien- und Anleiherenditen in vielen entwickel-

ten Volkswirtschaften über die verschiedenen Phasen der jüngsten Finanzkrise. Darüber

hinaus untersucht sie die Auswirkungen der zeitvariablen Volatilitätsübertragung zwi-

schen den Aktien- und Anleihemärkten auf die bedingte dynamische Korrelation zwischen

diesen Märkten sowie auf die Erstellung eines Portfolios mit minimaler Varianz.

Beitrag

Die vorliegende Arbeit leistet einen Beitrag zur vorhandenen Literatur, indem sie die

dynamischen Verknüpfungen zwischen Aktien- und Anleiherenditen und Volatilitäten in

einem völlig zeitvariablen Rahmen über die verschiedenen Phasen der jüngsten Finanzkri-

se analysiert. Dazu verwenden wir ein bivariates Volatilitätsmodell, welches Volatilitäts-

Spillovers von positivem oder negativem Vorzeichen ermöglicht. Die Möglichkeit negativer

Volatilitäts-Spillovers zwischen Aktien- und Anleiherenditen wurde in der bisherigen Li-

teratur weitgehend vernachlässigt.

Ergebnisse

Unsere Ergebnisse zeigen das Vorliegen eines zeitvariablen Musters von Rendite- und Vo-

latilitäts-Spillovers zwischen Aktien- und Anleihemärkten über die verschiedenen Pha-

sen der jüngsten Finanzkrise. Im Großen und Ganzen werden die Rendite-Spillovers

überwiegend vom Spillover-Effekt von Aktien- zu Anleiherenditen dominiert und verstärken

sich im Ablauf der jüngsten Krise. Die Volatilitäts-Spillovers sind dagegen von Anleihe- zu

Aktienrenditen stärker als vice versa, und auch sie ändern sich im Zeitablauf, vor allem im

Verlauf der europäischen Schuldenkrise. Unsere Ergebnisse haben wichtige Implikationen

für Investoren und Risikomanager, denn Portfolio-Performance-Vergleiche lassen darauf

schließen, dass die Portfoliovolatilität reduziert werden kann, wenn die zeitabhängigen

Rendite- und Volatilitäts-Spillovers bei der Berechnung der risikominimierenden Gewich-

te der ausgewählten Assets im Portfolio berücksichtigt werden.
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1 Introduction

The characteristics of stock and bond market returns and their cross-volatility linkages
have drawn the attention of practitioners and researchers in applied financial economics
for a long time. Moreover, given that stock and bond returns can exhibit a variety of
dynamics and that their linkages in terms of the first and second moments may also
comprise time-varying properties, more and more attention to these properties has been
paid in the past few years in the light of recent historical events, such as the introduction
of the euro in 1999, the Great Recession and, more recently, the European sovereign debt
crisis.

The existing empirical studies on stock and bond return dynamics mainly focus on
their contemporaneous linkages, such as stock-bond return comovements, financial market
integration, contagion and flight-to-quality (safe-haven) analysis (see, e.g., Baur (2010),
Baele, Bekaert, and Inghelbrecht (2010) and Connolly, Stivers, and Sun (2005, 2007)
among others). Baur (2010) explains the decline of the stock-bond correlation with an
increasing portfolio rebalancing due to the globalisation of financial markets. Baele et al.
(2010) show that liquidity measures play an important role in explaining the time-variation
in stock-bond correlation. Connolly et al. (2005, 2007) find a negative relation between
stock market uncertainty and future stock-bond return correlation. Furthermore, Cap-
piello, Engle, and Sheppard (2006), Connolly et al. (2005) and Hartmann, Straetmans,
and de Vries (2004), among others, find evidence for contagion and flight-to-quality be-
tween a wide range of stock and bond markets in times of financial turmoil.1

These studies, however, mostly analyse the simultaneous dynamics of stock and bond
markets. By contrast, lagged linkages, such as volatility transmission between these mar-
kets, have attracted less attention despite their relevance for investment strategies and
risk management decisions.2 Fleming, Kirby, and Ostdiek (1998) indeed support the im-
portance of volatility spillovers using the theoretical model of Ross (1989) showing that
lagged volatility linkages arise from information spillovers caused by portfolio shifts across
stock, bond and money markets. The authors also highlight the prominence of both si-
multaneous and lagged volatility linkages for a variety of financial decisions from tactical
asset allocation via derivative pricing to risk management strategies. Moreover, Forbes
and Rigobon (2002) note that cross-market correlations are derived from the volatilities
of the considered variables, and hence may lead to biased correlation and misleading in-
terpretation of the contagion because stock market volatilities tend to increase in times
of financial crisis. Against this backdrop, cross-market volatility spillovers may have a re-
markable impact on the overall volatility linkages between stock and bond markets. Given
the common interpretation of volatility as a statistical risk measure of an asset, volatility
transmission can shed light on how risk spills over across financial markets. Therefore,

1See also Kim, Moshirian, and Wu (2006) who investigate the impact of the introduction of the euro
on stock and bond markets showing that it led to an almost perfect correlation among bond markets in
the euro area.

2Studies focusing on volatility linkages between financial assets define volatility spillovers as an effect
of lagged squared residuals of one asset on the conditional volatility of the other because possible linkages
between the lagged variance of one asset and the variance of the other have been mainly disregarded in
conventional volatility transmission studies. In order to avoid any misconception, we refer to the former
as return shock (ARCH) spillovers and to the latter as volatility (GARCH) spillovers throughout this
study.
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multi-asset class portfolio managers may consider volatility transmission across different
markets by reducing the risk of their holdings.

In addition, McAleer and da Veiga (2008) emphasise the importance of volatility
spillovers in forecasting Value-at-Risk of portfolios consisting of different risky assets.
Fleming et al. (1998) and Diebold and Yilmaz (2012) also show that volatility linkages
have become stronger in the aftermath of the 1987 US stock market crash and the collapse
of Lehman Brothers in late 2008, respectively. Ehrmann, Fratzscher, and Rigobon (2011)
further find strong evidence for the transmission of shocks both within asset classes and
across assets at an international level with a focus on the US and the euro area. Notwith-
standing this, volatility transmission mechanisms may also play an important role for
monetary policy decision-makers in policy setting to stabilise financial markets in times
of financial crises. Consequently, policy measures focusing on risk reduction in one mar-
ket may have a(n) (un)favourable impact on other financial markets if volatilities of these
markets are closely linked with each other.

However, unlike the contagion analysis, there are very few studies on the time-varying
dynamics of cross-asset volatility transmission between stock and bond markets. Relevant
studies include Scruggs and Glabadanidis (2003), Cappiello et al. (2006) and Kim et al.
(2006), who conclude that bond return shocks have a stronger impact on stock returns
and that the introduction of the common currency led to almost perfect correlation among
bond markets in the euro area. However, these studies focus only on return shock spillovers
and do not consider possible volatility spillovers via lagged conditional variances between
assets. In fact, Conrad and Weber (2013) emphasise that return shock spillovers may be
offset or amplified by the volatility spillovers. It follows that a more thorough investigation
of the dynamic linkages between the two assets is of paramount interest, particularly work
which can identify clear causal volatility transmission mechanisms.

Moreover, previous studies on the linkages between stock and bond markets also dis-
regard possible time-variation in the return shock spillovers and volatility transmission
mechanism, even though the time-varying pattern of the dependence between financial
assets is well-known by now. For example, the theoretical trading model of Fleming
et al. (1998) supports the time-varying characteristics of volatility transmission indicat-
ing stronger volatility spillovers when the benefits of cross-market hedging are greater
than practical considerations, such as transaction costs. Kim et al. (2006) also note that
their new findings on return shock spillovers may arise from using different time peri-
ods compared to related studies. Similarly, Conrad and Weber (2013) and Karanasos,
Paraskevopoulos, Menla Ali, Karoglou, and Yfanti (2014) find evidence for changing per-
sistence of stock market volatilities and time-varying volatility spillovers during financial
crises, respectively.

Finally, Chuliá and Torró (2008) emphasise the economic value of volatility transmis-
sion defining a trading rule based on news content of volatilities from stock and bond
markets in the euro area. This trading decision is based on a time-invariant volatility
news impact curve. However, the information content of macroeconomic news affecting
both stock and bond markets may be subject to remarkable changes as bad news for
stock markets can be considered good news for bond markets (and vice versa) in times of
financial turmoil. This may also give rise to negative volatility spillovers across different
markets which have been mainly ignored in the related literature. Indeed, Kim et al.
(2006) document negative return shock spillovers between national stock and bond mar-
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kets in the euro area consistent with the interpretation of negative spillovers as volatility
trade-off between markets by Conrad and Karanasos (2010).

The present paper contributes to the existing literature by analysing the dynamic
linkages between stock and bond returns in terms of the first and second moments in a
completely time-varying framework. In particular, the time-varying pattern of the linkages
between financial returns is explored over the different stages of the recent financial crisis,
using daily data from a wide range of developed countries over the period from January
1999 to September 2015. That is, the different stages of the most recent crisis considered
include the subprime mortgage crisis in the US, the peak of the global financial crisis, and
the European sovereign debt crisis. These stages are defined on the basis of the timeline
of the global financial crisis of BIS (2009) and our own interpretation of the timing of
the more recent sovereign debt crisis in the euro area. To the best of our knowledge, the
time-varying dynamic linkages between stock and bond market returns in terms of the
first and second moments during the recent financial crises are yet to be explored in the
literature, and this paper aims to fill this gap.

The adopted framework is a bivariate volatility model. Specifically we model the
conditional mean equation in a VAR-framework - replacing it by a vector error correction
model (VECM) in cases where stock and bond prices are cointegrated -, and then build
the conditional variance equations with an unrestricted extended dynamic conditional
correlation (UEDCC) AGARCH model. We refer to this model as VAR (VECM) UEDCC-
AGARCH. It follows that the adopted model employs the DCC-framework of Engle (2002)
to capture the time-varying characteristics of the conditional correlation, and is flexible
enough to examine return and volatility linkages simultaneously allowing for shifts in
volatility spillovers over the recent turbulent periods, in the sense of Karanasos et al.
(2014).3 Finally, our bivariate model allows for volatility spillovers of either positive
or negative sign by imposing the non-negativity conditions of Conrad and Karanasos
(2010). The possibility of negative volatility spillovers between stock and bond returns has
been mainly disregarded in the existing literature. Hence, allowing for negative volatility
spillovers and shifts in stock and bond market returns and volatility linkages may unveil
new results which might be missed in exploring the volatility transmission pattern between
these assets.

Our results show the existence of a time-varying pattern of mean and volatility spillovers
between stock and bond returns over the different stages of the recent financial crisis. In
a broad sense, the return and shock spillovers are mainly dominated by the spillover ef-
fect from stock to bond returns and get stronger on the onset of the recent crisis and
throughout its different stages. The volatility spillovers, on the other hand, show that
such spillovers from bond returns to those of stocks are stronger and also exhibit time-
variation, especially over the European debt crisis (e.g., they turn from positive in the
pre-crisis to negative during the European debt crisis in most countries). Overall, the
findings indicate limited diversification opportunities for investors, especially during the

3Similar UEDCC-GARCH models have been recently used in Caporale, Hunter, and Menla Ali (2014),
Karanasos et al. (2014) and Rittler (2012). Our VAR-UEDCC-AGARCH specification models the mean
equation in a VAR-framework and allows for asymmetries in the conditional variances in the sense of
Caporale et al. (2014) and Rittler (2012), respectively, while it allows for shifts in the coefficients of return
and volatility spillovers based on Karanasos et al. (2014). Moreover, Karanasos et al. (2014) also allow for
regime switches between increasing and decreasing stock market returns compared to our specification.
Overall, Karanasos et al. (2014) can be considered as a generalisation of our specification.
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European sovereign debt crisis period. However, our results have important implications
in terms of the construction of a minimum variance portfolio. Accordingly, the portfolio
performance comparison results suggest that the portfolio volatility can be reduced con-
sidering the time-varying return and volatility spillovers in calculating the risk-minimising
weights of the selected assets in the portfolio despite limited diversification opportunities
within national financial markets.

The remainder of this paper is set out as follows. Section 2 describes the data and
provides a preliminary analysis. Section 3 introduces the econometric framework used in
this paper, while Section 4 discusses the empirical findings and practical implications of
our study. Section 5 concludes.

2 Data description and preliminary analysis

We employ daily data to analyse the time-varying dynamic linkages between stock and
bond returns and volatilities over the recent financial crisis. Hence, we consider a wide
range of developed economies, including Australia, Austria, Belgium, Canada, Denmark,
Finland, France, Germany, Greece, Ireland, Italy, Japan, the Netherlands, Norway, Por-
tugal, Spain, Sweden, Switzerland, the UK and the US over the period from January 1,
1999 to September 30, 2015.4 We use the main local stock exchange indices for stock
prices, while bond prices are the DataStream benchmark indices for 10-year government
bond prices in each economy. The stock and bond prices in levels are given in logarithm
and denoted by the variables st and bt, respectively. Figure 1 plots the time series data
over the period under investigation. Moreover, log returns of stocks and bonds are con-
tinuously compounded, multiplied by 100, and hence given in percentages. That is, they
are calculated as Rs,t = 100 ∗ (st − st−1) and Rb,t = 100 ∗ (bt − bt−1) for stock and bond
markets, respectively. Tables A.1–A.4 in Appendix A report a wide range of descriptive
statistics for return series. All time series have been obtained from Thomson DataStream.

In order to account for shifts in return and volatility spillovers between stock and
bond markets, we consider a pre-crisis period from January 1, 1999 to August 8, 2007
and a crisis period from August 9, 2007 to September 30, 2015. Moreover, we further
divide the crisis period into three different stages based on the international financial
crisis timeline of BIS (2009) and our own evaluation of the timing of the sovereign debt
crisis in the euro area. The first phase of the crisis period covers the subprime mortgage
crisis in the US starting on August 9, 2007 as subprime problems spread to interbank
markets. Consequently, stock prices in the US, the euro area, the UK and Japan declined
by approximately 18%, 26%, 17% and 30%, respectively, while bond prices started to rise
remarkably. The second stage refers to the peak of the global financial crisis which covers
the period from the collapse of Lehman Brothers on September 15, 2008 to the first signs of
stabilisation and recovery in mid-March 2009. The collapse of Lehman Brothers triggered
a rapid sell-off on global stock markets, which fuelled the stock market downturns across
developed economies. In this period, stock prices dropped by 34%, 33%, 22% and 30% in
the US, the euro area, the UK and Japan, respectively. On the other hand, bond prices
rose by 9%, on average, in these economies. In line with the BIS (2009), we consider

4The sample period for Greece reduces to April 1, 1999 – September 30, 2015, as the bond price index
for Greece is only available from April 1, 1999 onwards.
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March 2009 as the end of the global financial crisis, also consistent with the empirical
studies of Baur (2012) and Dimitriou, Kenourgios, and Simos (2013). Thus, we regard
the period from April 2009 to May 2010 as a non-crisis period similar to the pre-crisis one.
In addition to the subprime mortgage crisis and the global financial crisis, we also consider
the euro area debt crisis starting with the Greek bailout on May 2, 2010. Against the
background of ongoing political and economic uncertainties in the euro area, we assume
that our third stage of the global financial crisis, referred as the euro area debt crisis,
lasts until the end of our sample period. Compared to the other two financial crises,
stock and bond markets seem to exhibit different dynamics during the sovereign debt
crisis in the euro area. While increased global liquidity backed by expansive monetary
policies across developed economies appears to rally the stock markets (+60%, +57%,
+10% and +43% in the US, Germany, the UK and Japan, respectively), bond prices also
increased significantly (+20%, +32%, +5% and +15% in the US, Germany, the UK and
Japan, respectively). The strong price increase of German government bonds, which are
considered among the safest in the euro area, may reflect financial markets’ perception of
ongoing economic and political uncertainties related to the common currency area.

Alternatively, we applied the methodologies of Bai and Perron (2003) and Inclán and
Tiao (1994) to test for breaks in stock and bond returns in a preliminary analysis. How-
ever, these procedures result in too many potential break dates for a proper econometric
analysis within a multivariate GARCH framework.5 Hence, we rely on commonly accepted
crisis phases in our empirical analysis enabling us to observe whether global stock-bond
return and volatility spillovers have changed during these stages.

3 The econometric methodology

In this paper, we employ a bivariate VAR (VECM) UEDCC-AGARCH model to inves-
tigate the joint return and volatility dynamics between stock and bond prices. While
our framework is able to capture the time-varying characteristics of the correlation struc-
ture, it also allows for different spillover dynamics in the conditional mean and volatility
equations during the recent financial crises. In the first step, we specify the conditional
mean equation in a VAR-framework. However, when detecting a cointegrating relation-
ship between stock and bond prices, the mean equation is instead specified as a VECM.
The conditional variances, on the other hand, are modelled as the unrestricted extended
dynamic conditional correlation (UEDCC) GARCH specification to capture the joint
volatility dynamics of stock and bond returns. Furthermore, the conditional mean as
well as volatility equations allow for shifts in spillover dynamics to capture the variation
throughout the financial turmoil.

3.1 Modelling the mean equation

We model the conditional mean equation by employing a VAR model. The vector
r′t = [rs,t, rb,t] contains the stock and bond returns, denoted as rs,t and rb,t, respectively.
Accordingly, the conditional mean equation is specified as

5The results of the variance break tests of the Inclán and Tiao (1994) and Bai and Perron (2003)
methods for choosing break dates are available upon request from the authors.
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Figure 1: Log of stock and bond prices
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Figure 1 (continued): Log of stock and bond prices
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rt = µ+

p∑
i=1

ψirt−i +

p∑
i=1

3∑
l=1

ψDl dlrt−i + εt (1)

µ =

[
µs
µb

]
, ψi =

[
ψss,i ψsb,i
ψbs,i ψbb,i

]
, ψDl =

[
0 ψdlsb,i
ψdlbs,i 0

]
, εt =

[
εs,t
εb,t

]
where µ is a vector of constants and ψi is the 2 × 2 coefficient matrix for the lagged
time period which is denoted with the subscript i. The coefficients ψss,i and ψbb,i are the
autoregressive coefficients indicating the response of stock and bond returns to their own
lagged values, respectively. The off-diagonal elements of ψi matrix, ψsb,i and ψbs,i, measure
the mean or return spillovers from bond to stock market, and vice versa. Moreover, ψDl
is a cross-diagonal matrix with non-zero elements ψdlij,l for i, j = s, b, s 6= b capturing the
spillovers between stock and bond returns in times of the different stages of the recent
crisis modelled with the shift dummies dl for l = 1, 2, 3 for the subprime mortgage crisis,
the global financial crisis and the euro area debt crisis, respectively. Finally, εt|Ft−1 ∼
N(0,Ht) is the normally distributed innovation vector with the corresponding conditional
covariance matrix Ht. According to the weak form of the efficient market hypothesis,
which goes back to Fama (1965), past returns do not have predictive power on future asset
returns. However, we set the lag length to p = 1 (if necessary, further lags are added) to
eliminate any serial correlation based on the multivariate Q−statistic of Hosking (1981).

Note that the conditional mean equation, Eq. (1), is instead specified as a VECM in
cases where stock and bond prices (in logs) are cointegrated. We test for cointegration be-
tween stock and bond prices employing the Engle and Granger (1987) two-step procedure
and the Johansen (1995) trace test as well as the Gregory and Hansen (1996) method
which allows for a structural break at an unknown date in the cointegrating relationship.
Accordingly, the VECM takes the following form:

rt = µ+

p∑
i=1

ψirt−i +

p∑
i=1

3∑
l=1

ψDl dlrt−i + ηectt−1 + η∗ectt−1 + εt (2)

where ectt−1 is the lagged error correction term, and η′ = [ηs, ηb] is the vector consisting
of coefficients capturing the short-term adjustments towards the long-run relationship,
whereas η∗ captures the shifts in the adjustment coefficients in cases where the Gregory
and Hansen (1996) test detects a structural break in the cointegrating relationship, if any.

3.2 Modelling volatility spillovers

In financial econometrics, multivariate GARCH models are widely used to investigate link-
ages between different asset classes, such as correlation structure and volatility spillovers
between assets.6 In this paper, we employ the (asymmetric) unrestricted extended dy-
namic conditional correlation (UEDCC) AGARCH framework similar to Karanasos et al.
(2014). This specification uses the dynamic conditional correlation structure of Engle

6The reader is referred to Bauwens, Laurent, and Rombouts (2006), Tsay (2006) and Silvennoinen
and Teräsvirta (2009) for a more detailed survey on the multivariate GARCH family.
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(2002) allowing for volatility transmission between stock and bond returns. In addition,
the adoption of the non-negativity conditions of Conrad and Karanasos (2010) for the con-
ditional variance enables volatility spillovers of either positive or negative sign. Finally,
we include three dummy variables to capture potential shifts in the volatility transmission
between the two variables.

More specifically, the conditional covariance matrix is given by (see Engle (2002))

Ht = DtRtDt (3)

where Dt = diag{
√
hi,t} is the n × n diagonal matrix of conditional volatilities with

elements
√
hi,t, while the conditional correlation matrix Rt is time-varying.7

In the initial DCC-GARCH model of Engle (2002), the conditional variances are ob-
tained from the univariate GARCH process which implicitly does not allow for volatility
transmission between the variables. In contrast, we compute conditional variances from a
multivariate GARCH model allowing for volatility spillovers. Following Karanasos et al.
(2014) and Rittler (2012), we employ the UEDCC-AGARCH(1,1) framework to model
the conditional variances specified as

ht = ω + Aε2t−1 +
3∑
l=1

Aldlε
2
t−1 + Γ1ε2t−1 + Bht−1 +

3∑
l=1

Bldlht−1 (4)

where ω = [ωi]i=s,b is the two-dimensional vector of constants, while Γ is a diagonal
matrix with elements γii for i = s, b and 1 is a diagonal matrix consisting of indicator
functions with 1εii,t−1<0 being equal to one if εii,t−1 < 0 and zero otherwise for i = s, b.
Note that the model is able to capture asymmetric responses of the conditional variances
to negative shocks. However, the model reduces to a symmetric one where there is no
evidence for asymmetry. Moreover, A and B are (2× 2) ARCH and GARCH parameters
matrices, respectively. Furthermore, Al and Bl are (2 × 2) cross-diagonal matrices with
non-zero elements αlij and βlij for i, j = s, b, s 6= b capturing the shifts in volatility spillover
parameters during the financial crises. The different stages of the recent global crisis
correspond to the dummied periods dl for l = 1, 2, 3. The parameter matrices take the
following form:

ω =

[
ωs
ωb

]
, A =

[
αss αsb
αbs αbb

]
, Al =

[
0 αdlsb
αdlbs 0

]
,

Γ =

[
γss 0
0 γbb

]
, 1 =

[
1εss,t−1<0 0

0 1εbb,t−1<0

]
, B =

[
βss βsb
βbs βbb

]
, Bl =

[
0 βdlsb
βdlbs 0

]
.

In the initial conditional correlation models, parameter matrices A and B are assumed
to be non-negative definite diagonal matrices. Jeantheau (1998) generalised the diagonal
CCC-GARCH framework allowing for non-negative off-diagonal elements in A and B
matrices, named as extended constant conditional correlation (ECCC) models by He and
Teräsvirta (2004). Furthermore, Conrad and Karanasos (2010) showed in a multivariate

7The initial CCC-GARCH model of Bollerslev (1990) assumes that the conditional correlations be-
tween time series in the model are constant over time, and thus the conditional covariance matrix reduces
to Ht = DtRDt.
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case that not all elements in B need to be positive for the conditional covariance matrixHt

to be positive definite for all t and named their model an unrestricted extended constant
conditional correlation (UECCC) GARCH model. Moreover, Rittler (2012) extended the
UECCC-model to an UEDCC-AGARCH model adopting the non-negativity conditions
of Conrad and Karanasos (2010).

Following Conrad and Karanasos (2010), we also impose the four necessary and suffi-
cient conditions of the bivariate process of order (1, 1) to ensure the positive definiteness
of the conditional covariance matrix Ht almost surely for all t without placing any sign
restriction on the coefficients in the B matrix. Assuming that the model described in
equation (4) is identified and invertible8 in the sense of Jeantheau (1998) and Conrad and
Karanasos (2010), respectively, the non-negativity conditions are (i) (1−βbb)ωs+βsbωb > 0
and (1 − βss)ωb + βbsωs > 0, (ii) φ1 and φ2 are real and φ1 > |φ2|, (iii) A∗ ≥ 0 and (iv)
[B− max(φ2, 0)I]A∗ > 0 where A∗ = A + Γ1 is the sum of parameter matrices and >
(≥) denotes the elementwise inequality operator. Overall, these conditions do not place
a priori any sign restriction on the coefficients in the B matrix, and hence enable us to
analyse volatility spillovers of both positive and negative signs.9

Moreover, we use the DCC model of Engle (2002) to model the conditional covariance
matrix which takes the following form:

Qt = (1− αDCC − βDCC)Q̄+ αDCCzt−1z
′
t−1 + βDCCQt−1 (5)

where zt is the standardised residuals vector. While Qt = (qij,t) is the time-varying
covariance matrix of zt, Q̄ is the unconditional covariance matrix of the standardised
residuals. Moreover, αDCC and βDCC are assumed to be positive scalars with αDCC +
βDCC < 1 satisfying the stationarity condition. Furthermore, the time-varying covariance
matrix Qt is transformed into the correlation matrix Rt by

Rt = diag{Qt}−1/2Qtdiag{Qt}−1/2 (6)

where diag{Qt} is a diagonal matrix which ensures that Rt is the correlation matrix
with diagonal elements ρii,t = 1 and off-diagonal elements ρij,t = qij,t/

√
qii,tqjj,t < |1| for

i, j = s, b, i 6= j.
We estimate all the bivariate models using the quasi-maximum likelihood estimator

of Bollerslev and Wooldridge (1992) in order to compute non-normality robust standard
errors. Thus, the assumption on normally distributed innovation vector can be dropped
and Var[εt|Ft−1] = Ht states the conditional variance matrix.

8The invertibility assumption indicates that the inverse roots of |I−B(L)|, denoted by φ1 and φ2, lie
inside the unit circle with I and L being the identity matrix and lag operator, respectively. For more
details, see Assumption A2 in Conrad and Karanasos (2010).

9Our bivariate UEDCC-AGARCH model reduces to the baseline DCC-GARCH model of Engle (2002)
for αij = αl

ij = βij = βl
ij = γii = 0 with i, j = s, b, i 6= j. Therefore, the baseline model is nested in our

framework and can also be considered as a special case of our model without all the spillover effects and
asymmetry.
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4 Empirical results

We start our empirical analysis by testing for possible cointegrating relationships between
stock and bond prices (in logs) before we proceed with bivariate model estimations. Ac-
cordingly, we specify the conditional mean equations in the next step. Then we build
the conditional variance equations considering the possible volatility linkages. Finally, we
estimate our bivariate models and present a summary of our results in Tables 1 and 2.

4.1 Cointegration test results

We first investigate whether stock and bond prices exhibit a long-run relationship in
order to model the conditional mean equations properly. The Engle and Granger (1987),
Johansen (1995) and Gregory and Hansen (1996) tests are employed in this regard.

While the Engle and Granger (1987) and Johansen (1995) procedures test for a time-
invariant cointegrating relationship between the two variables, they may fail to detect
any long-run relationship between stock and bond prices if it is subject to structural
changes. Hence, we also apply the Gregory and Hansen (1996) method which allows for
a structural break in the cointegrating relationship at an unknown date. Gregory and
Hansen (1996) consider three types of structural shift in the cointegrating relationship
under the alternative hypothesis. In particular, they allow for a shift in the intercept,
denoted as Model C, a shift in the intercept and the trend, denoted as Model C/T, and a
regime shift, which the authors define as a shift in the intercept and the slope coefficient
of the cointegrating relationship and denote it as Model C/S.

The results of the Engle and Granger (1987) and Johansen (1995) trace tests cannot
reject the null hypothesis of no cointegration between stock and bond prices in any of
the cases. The test results are presented in Tables A.5 and A.6 in Appendix A. On
the other hand, the Gregory and Hansen (1996) tests reject the null hypothesis of no
cointegration between both series in favour of a cointegrating relationship with a break in
the intercept and the slope coefficient in the US, Canada and Japan. The corresponding
Tables A.7–A.10 present the test results with related alternative hypotheses in Appendix
A. Moreover, the suggested break date for the US is late 2011, which is shortly after the
first downgrade of the US sovereign debt rating in history. The suggested break dates for
Canada and Japan, on the other hand, are late 2011 and early 2013, respectively. Both
countries had general elections before the related break dates, and thus the change in
both long-run relationships may reflect financial market uncertainty associated with the
economic policies linked to the election outcomes.

4.2 Return spillover results

The estimation results of the return spillover coefficients are summarised in Table 1 for all
countries. The full model estimations of the bivariate VAR (VECM) UEDCC-AGARCH
models are presented in Tables A.11–A.30, respectively, in Appendix A for Austria, Bel-
gium, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Portugal, Spain,
Denmark, Norway, Sweden, Switzerland, the UK, the US, Canada, Japan and Australia
(the insignificant parameters are dropped).10 Note that in many cases, a lag length of 1

10The dropped parameters from each model were jointly insignificant, at least at the 10% level.
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is enough to avoid serially correlated residuals. However, to eliminate autocorrelations,
we add further lags and use a lag length of p = 2 in the mean equations of Germany,
Italy, Portugal, Spain and the UK as well as a lag length of p = 3 in the mean equation of
Switzerland. Accordingly, the multivariate Q–statistics do not reject the null hypothesis
of no serial correlation in the standardised residuals at any conventional level in all cases.
Hence, the estimated bivariate models seem to be well specified.

Furthermore, while the conditional mean equations are built as VAR models, they are
replaced by VECM specifications in cases where stock and prices are cointegrated on the
basis of the results in Section 4.1. Accordingly, we model the conditional mean equations
within a VECM framework in the US, Canada and Japan.11 The corresponding results
indicate that the long-run relationship between stock and bond markets breaks down with
the first downgrade of the US sovereign debt credit rating in history (see ηii coefficients).
By contrast, stock market prices start to adjust toward the long-run equilibrium with
bond prices after August 2011 in Canada. Finally, in Japan, stock prices adjust toward
the long-run equilibrium with bond prices prior to 2013; however, they start to diverge
from their long-run relationship at the beginning of 2013.

Pre-crisis

Starting with the pre-crisis period, the results point mainly to the existence of positive
return spillovers between stock and bond market returns in both directions in selected
economies, as summarised in Table 1. We document that the spillovers from bond to
stock markets are stronger than spillovers in the opposite direction in all economies;
nonetheless, more economies exhibit return spillover effects from stock to bond markets
in this period. Against this backdrop, we find positive bidirectional return spillovers
between stock and bond markets in the Netherlands, Portugal, the UK and Canada.
Moreover, financial markets exhibit positive return spillovers from stock to bond markets
in Austria, Belgium, France, Ireland, Italy, Spain, Denmark and the US, but negative
ones in Australia and Japan, prior to the subprime mortgage crisis. Finally, we are not
able to find any clear evidence for return spillovers between both financial markets in
Finland, Germany, Greece, Norway, Sweden and Switzerland in this period.

Subprime mortgage crisis

The spillover dynamics between stock and bond markets start to change with the first
signs of the global financial turmoil. For example, the pre-crisis bidirectional return
spillovers between the two variables exhibit a remarkable positive shift during the sub-
prime mortgage crisis in the UK. Further, a positive spillover effect from bond to stock
markets becomes evident in the US. Similarly, Finland also experiences a positive spillover
effect from stock to bond markets, whereas the positive pre-crisis return spillover effects
from stock to bond markets in the Netherlands and Portugal get stronger. By contrast,
the negative pre-crisis return spillover effects from stock to bond markets turn to positive

11Similarly, we also modelled the conditional mean equations in the US, Canada and Japan allowing
for three shifts during the crisis periods in the cointegrating relationship as in the spillover coefficients.
However, the results remained mainly unchanged. The related estimation results are available from the
authors upon request.
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Table 1: Results of the bivariate VAR-UEDCC-AGARCH estimations: Return Spillover Coefficients

AT BE FI FR DE GR IE IT NL PT SP DK NO SE CH UK US CA JP AU

ψsb,i
0.0768
(0.04)

0.1048
(0.04)

0.1453
(0.05)

0.0651
(0.03)

ψd1
sb,i

0.3149
(0.18)

0.2618
(0.11)

ψd2
sb,i

0.5617
(0.30)

0.4186
(0.25)

−0.5883
(0.34)

0.4635
(0.26)

0.5608
(0.21)

1.7926
(0.62)

ψd3
sb,i

0.1530
(0.07)

0.0413
(0.02)

−0.1311
(0.05)

−0.1193
(0.06)

−0.0661
(0.04)

ψbs,i
0.0160
(0.00)

0.0144
(0.00)

0.0101
(0.00)

0.0182
(0.00)

0.0190
(0.00)

0.0064
(0.00)

0.0142
(0.01)

0.0198
(0.00)

0.0117
(0.00)

−0.0069
(0.00)

−0.0214
(0.01)

ψd1
bs,i

0.0244
(0.01)

0.0213
(0.01)

0.0303
(0.01)

−0.0533
(0.01)

0.0280
(0.01)

0.0211
(0.01)

0.0434
(0.02)

ψd2
bs,i

0.0214
(0.01)

−0.0250
(0.01)

−0.0407
(0.02)

0.0111
(0.01)

0.0810
(0.04)

ψd3
bs,i

0.0277
(0.01)

0.0220
(0.01)

0.0183
(0.01)

0.0158
(0.01)

0.0929
(0.02)

0.0173
(0.01)

0.0458
(0.02)

−0.0172
(0.01)

0.0237
(0.01)

0.0140
(0.00)

0.0361
(0.02)

LogL −7735.69 −7362.52 −8741.97 −8148.36 −8113.52 −11770.33 −8581.19 −8511.63 −7556.44 −8892.98 −8760.61 −7674.29 −7862.10 −8222.09 −6379.35 −7537.31 −8439.24 −7202.53 −6167.41 −7997.95

Q(5)
19.00
[0.52]

18.4610
[0.56]

18.98
[0.52]

25.03
[0.20]

19.01
[0.52]

22.02
[0.34]

15.57
[0.74]

27.50
[0.12]

17.03
[0.65]

24.64
[0.22]

21.91
[0.35]

12.40
[0.90]

18.14
[0.58]

17.25
[0.64]

26.27
[0.16]

27.52
[0.12]

26.68
[0.14]

23.72
[0.26]

12.31
[0.91]

22.63
[0.31]

Q2(5)
19.15
[0.45]

26.0467
[0.13]

26.18
[0.13]

26.19
[0.13]

25.78
[0.14]

25.34
[0.15]

21.26
[0.32]

23.10
[0.23]

26.29
[0.12]

19.01
[0.46]

26.79
[0.11]

21.92
[0.29]

20.46
[0.37]

23.95
[0.20]

16.99
[0.59]

22.58
[0.26]

27.13
[0.10]

16.37
[0.63]

22.90
[0.24]

21.06
[0.33]

Notes: Subscripts s and b refer to stock and bond market returns’ equation, respectively. The subscripts ss (bb) denote coefficients referring to stock and
bond market return’s own past, while sb (bs) denotes the spillover coefficients. Moreover, the superscript dl for l = 1, 2, 3 stands for the shifts in spillover
coefficients in related crisis periods. Heteroscedasticity-robust standard errors are given in parentheses. Q(p) and Q2(p) are the multivariate Hosking
(1981) test for pth order serial autocorrelation in standardised and squared standardised residuals, respectively. The related p-values are reported in
squared brackets.
In all return spillover coefficients, i = 1 unless it is stated otherwise. For Germany, i = 2 is used for ψbs,i and ψdl

bs,i for l = 1, 2, 3. For Greece, i = 2 for all

ψdl
sb,i with l = 1, 2, 3. In Spain, ψbs,2 = −0.0082 in addition to the reported coefficients. Finally, i = 2 for all return spillover coefficients in Switzerland.

Overall, we exclude the insignificant coefficients from the mean equations. Hence, we omit the usual annotation to show the significance level of the
coefficients for brevity in this table. For exact significance levels of each coefficient, see Tables A.11–A.30.
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in Australia and Japan. On the other hand, Danish financial markets exhibit a negative
spillover effect from stock to bond markets during the first crisis stage.

Peak of the global financial crisis

The time-variation in the return dynamics between stocks and bonds continues with the
peak of the global financial crisis. More specifically, Denmark experiences bidirectional
negative return spillovers between these markets during this period. In the meantime, a
negative spillover effect from stock to bond markets arises in Norway. While the positive
return spillovers in Germany, Portugal, Switzerland and the UK get stronger from bond
to stock markets, the spillover effect in the opposite direction exhibits a positive shift in
Ireland and Australia. Finally, a positive bidirectional return spillover effect is found in
Japan.

Euro area sovereign debt crisis

The euro area debt crisis period further shows different dynamics between the two returns
under consideration. Specifically, we find evidence for bidirectional return spillovers in
Germany, Greece, Portugal and the UK. Thereof, the spillover effects are positive in
both directions in Germany and Greece, whereas the spillover effects from bond to stock
markets are negative in Portugal and the UK. The stronger positive spillover effects in
Germany and Greece are also consistent with the characteristics of the financial markets
in each country. While it underpins the joint collapse of stock and bond markets in
Greece, the stronger positive spillover effect in Germany points to the robustness of its
financial markets during the euro area debt crisis. Moreover, we find negative spillover
coefficients for the US and Norway. While the negative spillover coefficient weakens the
initially positive spillover effect from bond to stock markets in the US, it results in a
negative spillover in the reverse direction in Norway. Finally, the positive spillovers from
stock to bond markets become stronger in Belgium, Finland, France, the Netherlands,
Japan and Australia.

Overall, our results suggest the existence of time-varying return spillovers between
stock and bond markets in selected economies through the most recent financial turmoil.
Figure 2 illustrates the return spillover coefficients in each stage of the financial crisis. A
graphical inspection indicates that the spillover effect from bond to stock markets is less
frequent than in the other direction. While the slightly positive spillover effect from bond
to stock markets gets stronger during the first two stages of the global financial turmoil, it
gets weaker during the euro area debt crisis. By contrast, the right panel shows that the
spillover effect - despite its smaller magnitude - from stock to bond markets gets stronger
and more intense during the euro area debt crisis. Last but not least, a pure comparison
of the absolute size of the return spillover coefficients has to be interpreted cautiously
bearing in mind that it does not take into account that stock returns are much more
volatile than those of bonds.

4.3 Volatility spillover results

After presenting the return dynamic linkages between stock and bond markets in the
previous section, we now take a closer look at the volatility linkages between the two
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Table 2: Results of the bivariate VAR-UEDCC-AGARCH estimations: Volatility Transmission Coefficients

AT BE FI FR DE GR IE IT NL PT SP DK NO SE CH UK US CA JP AU

αsb
0.0189
(0.01)

0.0702
(0.03)

αd1
sb

0.3845
(0.11)

0.6674
(0.32)

0.6440
(0.29)

0.4988
(0.26)

αd2
sb

0.6742
(0.37)

0.3379
(0.15)

0.2870
(0.13)

0.6305
(0.15)

αd3
sb

βsb
−0.0973
(0.05)

0.2009
(0.08)

0.3595
(0.09)

0.5635
(0.01)

0.1351
(0.04)

0.6065
(0.16)

0.0386
(0.02)

0.6286
(0.19)

0.2495
(0.10)

0.3432
(0.09)

0.0791
(0.03)

0.2095
(0.08)

βd1
sb

−0.6221
(0.29)

−0.2774
(0.08)

−0.6153
(0.22)

0.2728
(0.12)

βd2
sb

−0.4502
(0.13)

βd3
sb

0.1614
(0.04)

−0.0585
(0.03)

−0.2136
(0.04)

0.0123
(0.01)

−0.2174
(0.07)

−0.0255
(0.02)

−0.2967
(0.12)

−0.1294
(0.04)

−0.1656
(0.05)

−0.1494
(0.04)

−0.0430
(0.01)

−0.0361
(0.01)

αbs
0.0002
(0.00)

0.0004
(0.00)

0.0002
(0.00)

0.0010
(0.00)

αd1
bs

0.0004
(0.00)

0.0004
(0.00)

0.0009
(0.00)

0.0005
(0.00)

0.0015
(0.00)

0.0008
(0.00)

0.0049
(0.00)

0.0088
(0.00)

0.0009
(0.00)

αd2
bs

0.0005
(0.00)

0.0023
(0.00)

0.0003
(0.00)

0.0018
(0.00)

0.0014
(0.00)

αd3
bs

0.0005
(0.00)

0.0015
(0.00)

0.0004
(0.00)

0.0003
(0.00)

0.0007
(0.00)

0.0020
(0.00)

0.0010
(0.00)

0.0030
(0.00)

0.0008
(0.00)

0.0034
(0.00)

βbs
0.0008
(0.00)

0.0005
(0.00)

0.0003
(0.00)

0.0005
(0.00)

0.0005
(0.00)

0.0005
(0.00)

0.0003
(0.00)

βd1
bs

−0.0013
(0.00)

−0.0044
(0.00)

−0.0065
(0.00)

βd2
bs

0.0007
(0.00)

0.0005
(0.00)

−0.0003
(0.00)

βd3
bs

0.0324
(0.01)

0.0028
(0.00)

0.0028
(0.00)

0.0006
(0.00)

−0.0024
(0.00)

−0.0031
(0.00)

−0.0004
(0.00)

αDCC
0.0402
(0.01)

0.0472
(0.01)

0.0449
(0.01)

0.0461
(0.00)

0.0433
(0.01)

0.0196
(0.00)

0.0160
(0.01)

0.0431
(0.01)

0.0435
(0.01)

0.0208
(0.01)

0.0340
(0.01)

0.0359
(0.01)

0.0176
(0.01)

0.0280
(0.01)

0.0322
(0.01)

0.0368
(0.01)

0.0467
(0.00)

0.0301
(0.01)

0.0259
(0.01)

0.0359
(0.01)

βDCC
0.9417
(0.01)

0.9369
(0.01)

0.9399
(0.02)

0.9413
(0.00)

0.9486
(0.01)

0.9804
(0.00)

0.9828
(0.01)

0.9538
(0.01)

0.9453
(0.01)

0.9787
(0.01)

0.9628
(0.02)

0.9421
(0.01)

0.9703
(0.03)

0.9629
(0.01)

0.9511
(0.01)

0.9511
(0.02)

0.9446
(0.01)

0.9603
(0.01)

0.9684
(0.01)

0.9557
(0.01)

Notes: Subscripts s and b refer to stock and bond market returns’ equation, respectively. The subscripts ss (bb) denote coefficients referring to stock and
bond market returns’ own past, while sb (bs) denotes the spillover coefficients. Moreover, the superscript dl for l = 1, 2, 3 stands for the shifts in spillover
coefficients in related crisis periods. The αDCC and βDCC coefficients are the related parameters of the dynamic conditional correlation Q as specified in
equation (5). Heteroscedasticity-robust standard errors are given in parentheses.
Overall, we exclude the insignificant coefficients from the variance equations. Hence, we omit the usual annotation to show the significance level of the
coefficients for brevity in this table. For exact significance levels of each coefficient, see Tables A.11–A.30.
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Figure 2: Return Spillover Coefficients: All countries

Notes: The graphs plot the return spillover coefficients of all countries over the period 1999:1:1−2015:9:30.
Accordingly, the black, light grey, dark grey and grey bars represent the spillover coefficients during the
pre-crisis period, subprime mortgage crisis, the peak of the global financial crisis and the euro area
sovereign debt crisis, respectively. While the left panel shows the spillover coefficients from bond to stock
markets, the right panel illustrates the spillover effect in the opposite direction.

financial variables across the crisis periods.
Table 2 summarises the estimated results of the return shock and volatility spillovers,

as well as the dynamic correlation for all countries. The coefficient estimates of the full
bivariate UEDCC-AGARCH models are reported in the right panel of Tables A.11–A.30
in Appendix A (the insignificant parameters are dropped). The multivariate Q–statistics
for the squared standardised residuals indicate that the multivariate models are able to
capture the variance dynamics properly in all cases. Our results also appear to fulfil the
non-negativity conditions of Conrad and Karanasos (2010) and the stationarity condition
of Engle (2002) (αDCC and βDCC are positive and significant and their sum is less than
one in all cases). In comparison with the earlier studies on the linkages between stock and
bond market returns, we also consider volatility spillovers, captured by the βij coefficients
for i, j = s, b, s 6= b, in addition to return shock spillover parameters, modelled with the
αij for i, j = s, b, s 6= b, in our bivariate models. Furthermore, we allow the spillover
coefficients to shift in times of financial crisis, that is, the superscript dl for l = 1, 2, 3
denotes the shifts in spillover coefficients in related crisis periods, as discussed earlier.

Overall, the results of the variance equations indicate that stock and bond market re-
turns exhibit strong conditional heteroscedasticity as the ARCH- and GARCH-parameters
are positive and highly significant in almost all cases. In addition, γss coefficients cap-
turing the asymmetric response of stock market volatility to its past return shocks are
positive and highly significant in all cases. These asymmetric characteristics of stock mar-
ket returns are in line with the previous literature and confirm mostly the stylised facts
of stock returns. Unlike the asymmetric properties of stock returns, previous studies did
not pay much attention to asymmetries in the bond market returns. Yet, our results show
that the γbb coefficient, which captures the asymmetric response of bond market volatility
to its own past return shocks, is positive and highly significant for a large number of bond
markets in the euro area. These asymmetric characteristics of bond market returns may
be an outcome of the recent financial turmoil and the subsequent economic and political
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uncertainties in the euro area.

Pre-crisis

The results point to weak return shock spillovers between the stock and bond markets
across the selected economies. We only document positive return shock spillover effects
from bond to stock markets in Ireland and Spain, and from stock to bond markets in
Germany, Italy, Switzerland and the US during the pre-crisis period. By contrast, we find
positive bidirectional volatility spillovers between stock and bond markets in Belgium, the
Netherlands, Portugal, Denmark and Japan. On the other hand, unidirectional positive
volatility spillovers from bond to stock markets are evident for France, Germany, Italy,
Sweden, the UK and the US, whereas the Austrian financial markets experience a negative
spillover effect in the opposite direction during the pre-crisis period. Last but not least,
the positive return shock spillovers from bond to stock markets encounter the opposite
effect via volatility spillovers in Ireland and Spain.

Subprime mortgage crisis

The results suggest that positive bidirectional return shock spillovers become evident be-
tween both domestic financial markets in Austria, France and the Netherlands. Moreover,
both pre-crisis positive return shock spillovers in Germany and Ireland get stronger in re-
lated directions during the first stage of the financial crisis. In addition, financial markets
in Spain, Switzerland, the UK, the US and Canada start to exhibit positive return shock
spillovers from stock to bond markets. We also document that the volatility spillovers
turn negative in France, Germany and the Netherlands from bond to stock markets, and
in Spain, the UK and the US from stock to bond markets during this period.

Peak of the global financial crisis

During the peak of the global financial crisis, we find bidirectional positive return shock
spillovers for Australia, whereas this positive spillover effect is offset by a strong negative
volatility spillover effect from bond to stock markets. Moreover, we document positive
unidirectional return shock spillovers from bond to stock returns in Ireland, Switzerland
and the US, and in the reverse direction in Belgium, Greece, the Netherlands and Switzer-
land. Finally, financial markets in Sweden and the UK exhibit positive volatility spillovers
from stock to bond returns, whereas Japanese financial markets experience negative ones
in the same direction during the period.

Euro area sovereign debt crisis

Against the background of the source of uncertainty, the return shock and volatility
spillovers dominate the euro area financial markets during the recent sovereign debt crisis.
While the positive univariate return shock spillovers from stock to bond markets become
stronger in euro area economies such as Austria, Belgium, Finland, France, Germany,
Italy and the Netherlands, as well as in Switzerland, the UK and the US, we do not find
any clear return shock spillover in the other direction. However, this is compensated by
the mainly significant volatility spillover coefficients in many countries. We document
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positive volatility spillovers from bond to stock markets in Austria and Greece, whereas
the volatility spillovers in the same direction are negative for Finland, Germany, the
Netherlands, Portugal, as well as for non-euro area economies such as Denmark, Norway,
Sweden, the UK, the US and Canada. Considering the volatility spillovers from stock to
bond markets, we find a positive spillover effect in Greece, Ireland, Spain and Denmark,
as well as a negative effect for the Swiss, Japanese and US financial markets.

Figure 3: Volatility Spillover Coefficients: All countries

Notes: The graphs plot the return shock and volatility spillover coefficients of all countries over the period
1999:1:1−2015:9:30. Moreover, the black, light grey, dark grey and grey bars represent the spillover
coefficients during the pre-crisis period, subprime mortgage crisis, the peak of the global financial crisis
and the euro area sovereign debt crisis, respectively. While the upper figures show the return shock
spillover coefficients (left: from bond to stock; right: from stock to bond markets), the bottom figures
illustrate the volatility spillover coefficients (left: from bond to stock; right: from stock to bond markets).

Overall, our findings provide evidence that both return shock and volatility spillover
effects are subject to considerable shifts during the financial crises. As Figure 3 illustrates,
our extended model appears to be able to capture the time-variation in the volatility
transmission properly. Against this backdrop, both return shock and volatility spillovers
from bond to stock markets are stronger than in the opposite direction. Moreover, the
return shock spillovers in both directions (upper panels) get stronger during the first two
stages of the recent financial turmoil. While we do not find any significant return shock
spillover from bond to stock markets, the same spillover effect in the opposite direction
remains stronger than its pre-crisis counterpart during the sovereign debt crisis in the
euro area. On the other hand, the positive pre-crisis volatility spillovers from bond to
stock markets (bottom left panel) become mostly negative during the first two phases
of the financial crisis, while it turns positive but weaker than its pre-crisis values during
the sovereign debt crisis in the euro area. By contrast, the volatility spillovers from
stock to bond markets (bottom right panel) remain stronger than the pre-crisis levels
for many countries during the last years of our sample. In a broad sense, these stronger
return shock and volatility spillover effects from bond to stock markets are also consistent
with the previous studies such as Scruggs and Glabadanidis (2003) and Kim et al. (2006)
which, however, only focus on the return shock spillovers. In fact, especially for the period
covering the euro area debt crisis, the return shock spillovers from bond to stock markets
remain absent, whereas our results provide strong evidence for a (negative) volatility
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spillover effect during this period. Therefore, studies disregarding the volatility spillovers
- which may have important implications for investors and policy-makers, especially in
times of financial crisis - may fail to detect any lagged linkages between volatilities of both
financial markets.

4.4 Dynamic conditional correlations

Figure 4 illustrates the evolution of the dynamic conditional correlations between stock
and bond markets, along with the corresponding correlations obtained from the base-
line model in order to pinpoint the importance of the lagged volatility linkages on the
correlation dynamics.

As evident from these figures, the dynamic correlations of our model (black line)
show an increasingly negative stock-bond return correlation in euro area financial markets
during the first years of the common currency area. This is consistent with previous
studies, such as Cappiello et al. (2006) and Kim et al. (2006), confirming the segmentation
of stock and bond markets at national levels in the euro area. However, these correlations
start to follow different patterns across euro area financial markets with the emergence of
the global financial crisis. Such correlations start to increase rapidly in financially weak
euro area economies, especially after the collapse of Lehman Brothers in late 2008. The
correlations rise to 80% in Greece, Italy, Ireland, Portugal and Spain during the peak of
the euro area sovereign debt crisis pointing to a joint collapse of the national stock and
bond markets. By contrast, they remain mainly negative in core EMU economies during
the recent global financial turmoil. However, they spike in almost all European economies
during the second half of 2013 reflecting financial market uncertainty associated with the
future of the euro area. By contrast, they remain mainly in the negative territory in
developed economies outside continental Europe, such as the US, Canada, Japan and
Australia, during the recent financial turmoil.

Figure 4 also highlights the differences between the dynamic correlations obtained from
the baseline and extended models by a pairwise comparison for each country.12 Overall,
the dynamic correlations obtained from the extended model seem to exhibit more erratic
movements than those obtained from the baseline model, which is also consistent with our
estimation results. This implies that the lagged volatility transmission has a remarkable
impact on the correlation structure. In general, both dynamic correlations are supposed
to have the same form in the absence of spillover effects. Accordingly, the dynamic
correlations tend to move together when the spillovers are weak, whereas stronger spillover
effects between both financial variables lead to remarkable deviations of the correlations
obtained from the baseline and extended models. For example, the positive volatility
spillover effect in the pre-crisis period is offset by a negative spillover effect in Portugal
during the euro area debt crisis. This is reflected by the different correlations in the pre-
crisis period in Figure 4, while this difference is absent from the negative spillovers and
both correlations seem to have similar dynamics during the sovereign debt crisis in the

12The model selection is also supported by statistical as well as economic arguments. First, our time-
varying spillover coefficients are highly significant for all stock and bond markets considered in this study.
This is also backed by a statistical model comparison based on the likelihood ratios or information criteria.
The estimation results of the initial DCC-model of Engle (2002) are not reported in this paper for brevity,
but are available from the authors upon request.
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Figure 4: DCC comparison between stock and bond returns
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Notes: The graphs plot the dynamic conditional correlations obtained from the baseline (grey line) and extended (black line) models between domestic
stock and bond market returns for selected economies over the period 1999:1:1−2015:9:30.

20



Figure 4 (continued): DCC comparison between stock and bond returns
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Notes: The graphs plot the dynamic conditional correlations obtained from the baseline (grey line) and extended (black line) models between domestic
stock and bond market returns for selected economies over the period 1999:1:1−2015:9:30.
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euro area. Against this backdrop, the lagged volatility transmission seems to also have
important practical implications for investors, volatility traders and risk managers.

4.5 Economic implications of volatility spillovers

This subsection aims to emphasise the economic implications of time-varying volatility
spillovers for investors and risk managers. Earlier studies, such as Kroner and Sultan
(1993), Kroner and Ng (1998) and Ewing and Malik (2005) show that the choice of the
variance model has important implications for risk-minimising portfolio weights as well as
the hedge ratios. Kroner and Sultan (1993) argue that the risk-minimising hedge ratio is
time-varying and hence suggest using a GARCH framework for estimating the covariance
matrix. Moreover, Kroner and Ng (1998) show that different multivariate volatility models
can lead to different estimations for the risk-minimising portfolio weights and hedge ratios.
Similarly, Ewing and Malik (2005) highlight the importance of volatility shifts in portfolio
management. Against this background, this paper emphasises the relevance of time-
varying volatility spillovers in the estimation of the portfolio weights (and hedge ratios)
of the considered assets in the multivariate volatility framework. To this end, we compare
the relative performance of the portfolio constructed with the weights obtained from the
VAR (VECM) UEDCC-AGARCH model (extended portfolio) to that of the portfolio
in which the risk-minimising portfolio weights are calculated with the baseline DCC-
GARCH framework (baseline portfolio) in terms of average portfolio returns, volatility
and information ratios.

Similar to the related studies, we first consider the problem of calculating the optimal
asset holdings of the fully invested portfolio under the no-shorting constraint. Against
this backdrop, the equation for risk-minimising portfolio weights takes the following form
for equities

ws,t =
hbb,t − hsb,t

hss,t − 2 ∗ hsb,t + hbb,t
(7)

with the optimal portfolio holdings of stocks considering the no-shorting constraint
being

w∗s,t =


0 if ws,t < 0

ws,t if 0 ≤ ws,t ≤ 1

1 if ws,t > 1.

(8)

Accordingly, w∗b,t = 1− w∗s,t corresponds to the optimal portfolio weights of the bond
holdings. After calculating the risk-minimising portfolio weights of stocks and bonds ob-
tained from the extended and baseline frameworks, we use these weights to construct
the extended and baseline portfolios, which consist of domestic stocks and 10-year gov-
ernment bonds for all countries considered in this study. Then, we calculate the daily
portfolio returns, their standard deviations and the information ratios of the constructed
portfolios and compare their performances accordingly. Table 3 summarises the results
of the portfolio performance comparison over different periods and for various country
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groups.13

In Table 3, the top and bottom panels present the differences in average daily returns
and information ratios, while the positive numbers point to a better performance of the
extended portfolio relative to the baseline portfolio in terms of more returns/lower losses
and better information ratios.14 Moreover, the volatility differences of both portfolios are
reported in the middle panel in which negative values point to a better performance in
the sense of lower standard deviation of the extended portfolio compared to that of the
baseline one. The numbers in brackets tell in how many cases (out of the total number
of countries considered in each group) the portfolio based on weights obtained from the
extended GARCH framework performed better than based on those from the baseline
portfolio.

Overall, the extended portfolio generated on average slightly lower returns than the
portfolio based on the baseline DCC framework and worse information ratios over the full
sample; however, it provided better returns and information ratios in 7 out of 20 countries
considered in this empirical analysis. Considering different country groups, our portfolio
performed better in some peripheral euro area members as well as developed countries in
the rest of the world in terms of average returns. Moreover, it generated more returns
than the baseline portfolio in 16 out of 20 countries during the subprime mortgage crisis,
while it was beaten by the baseline portfolio in the other two crisis stages. However, the
aim of constructing a risk-minimising portfolio is to build a minimum variance portfolio
rather than generating more excess returns, and thus the focus has been shifted from
average daily returns to portfolio volatilities. As such, the daily returns of the extended
portfolio were less volatile than those of the baseline portfolio in 18 out of the 20 countries
over the full sample period. Moreover, this mainly remained unchanged in most countries
over the course of the most recent global financial crisis. In summary, our results suggest
that considering the time-variation in the return and volatility spillovers in a multivariate
volatility modelling framework leads to lower portfolio volatility, on average.

5 Conclusion

In this paper, we analyse the time-varying dynamic linkages between stock and bond
market returns and volatilities for twenty advanced economies over the period January
1999 to September 2015. In particular, we examine how return and volatility spillovers
between both financial variables have been affected by the different stages of the most
recent financial crisis. Our contributions to the existing literature are threefold: (i) Our

13SMC, GFC and EDC stand for the subprime mortgage crisis, the peak of the global financial crisis
and the euro area sovereign debt crisis, respectively. Peripheral EMU: Belgium, Greece, Ireland, Italy,
Portugal and Spain; Core EMU: Austria, Finland, France, Germany and the Netherlands; Non-EMU-
Europe: Denmark, Norway, Sweden, Switzerland and the UK; RoW: Australia, Canada, Japan and
the US. The results of a country-by-county portfolio performance comparison are not reported here for
brevity, but are available from the authors upon request.

14The information ratio is a measure for the risk-adjusted returns of a portfolio compared to a bench-
mark. It is defined as the excess returns (portfolio returns minus benchmark returns) divided by its stan-
dard deviation (excess returns and its standard deviation are also referred to as active return and tracking
error, respectively). The information ratio takes the following form: IR = (Rp − Rb)/

√
V ar(Rp −Rb)

where Rp and Rb are the realised returns of the extended and baseline portfolios, respectively, and√
V ar(Rp −Rb) is the standard deviation of the excess returns.
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Table 3: Portfolio Performance Comparison

All
countries

Peripheral
EMU

Core EMU Non-EMU-
EU

RoW

Average Daily Return Differences ×10−3

FullSample
−0.00200

(7/20)
0.00111
(3/6)

−0.00490
(1/5)

−0.00527
(1/5)

0.00107
(2/4)

PreCrisis
−0.00195

(8/20)
0.00349
(4/6)

−0.00613
(1/5)

−0.00654
(1/5)

0.00086
(2/4)

SMC
0.02257
(16/20)

0.01936
(5/6)

0.03188
(5/5)

0.01945
(4/5)

0.01964
(2/4)

GFC
−0.03716

(1/20)
−0.04345

(0/6)
−0.04711

(0/5)
−0.06006

(0/5)
0.01333
(1/4)

EDC
−0.00324

(8/20)
−0.00120

(3/6)
−0.00600

(1/5)
−0.00324

(2/5)
−0.00284

(2/4)
Average Standard Deviation Differences ×10−3

FullSample
−0.02841
(18/20)

−0.10420
(6/6)

−0.01047
(5/5)

−0.01043
(4/5)

0.04037
(3/4)

PreCrisis
0.00802
(12/20)

0.00899
(4/6)

−0.00132
(2/5)

−0.00298
(4/5)

0.03199
(2/4)

SMC
−0.01258
(15/20)

−0.01610
(4/6)

−0.03005
(4/5)

−0.01770
(4/5)

0.02095
(3/4)

GFC
−0.03978
(15/20)

−0.03754
(6/6)

−0.03844
(4/5)

−0.02615
(3/5)

−0.06185
(2/4)

EDC
−0.04580
(17/20)

−0.17331
(6/6)

−0.01546
(5/5)

−0.01568
(4/5)

0.06989
(2/4)

Information Ratios

FullSample
−0.0073
(7/20)

0.0034
(3/6)

−0.0155
(1/5)

−0.0153
(1/5)

−0.0033
(2/4)

PreCrisis
−0.0093
(8/20)

0.0060
(4/6)

−0.0198
(1/5)

−0.0248
(1/5)

0.0002
(2/4)

SMC
0.0597
(16/20)

0.0512
(5/6)

0.0991
(5/5)

0.0604
(4/5)

0.0223
(2/4)

GFC
−0.0838
(1/20)

−0.0858
(0/6)

−0.1149
(0/5)

−0.0977
(0/5)

−0.0247
(1/4)

EDC
−0.0077
(8/20)

0.0037
(3/6)

−0.0196
(1/5)

−0.0085
(2/5)

−0.0090
(2/4)

Notes: This table reports a summary of the relative performance of the extended to baseline portfolio.
The portfolios are compared in terms of their average daily returns, standard deviations and information
ratios over the different crisis stages as well as the full sample. Accordingly, the differences between
average daily portfolio returns and standard deviations are reported in percentage points for all countries
and various country groups. While positive numbers report a better performance (relatively more returns
or fewer losses) in terms of returns and information ratios, the negative numbers in the middle panel point
to better performance in the sense of less volatility compared to the baseline portfolio. The numbers in
brackets refer to in how many cases out of the total number of countries considered in each group the
portfolio based on the extended GARCH framework performed better than the baseline portfolio.
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adopted bivariate VAR (VECM) UEDCC-AGARCH model enables us to model volatility
spillovers directly via linkages between lagged conditional variances of stock and bond
returns, (ii) We examine how return and volatility spillovers between both financial vari-
ables have been affected by the different stages of the most recent financial crisis, and (iii)
Our bivariate model is also flexible enough to capture possible negative volatility spillovers
between both financial variables. Hence, a thorough empirical analysis of the dependence
between stock and bond returns is conducted during the period under investigation.

The results suggest that mean, shock and volatility spillovers between stock and bond
returns exhibit a substantial time-variation over the recent financial crisis. In particular,
the results show that the return and shock spillovers are mostly running from stocks
to bonds; such spillovers are time-varying over the different stages of the recent crisis.
Regarding volatility spillovers, they are mostly running from bond returns to those of
stock and are also time-varying, especially during the European sovereign debt crisis,
but not during the other stages of the recent crisis and the pre-crisis period. These
findings are broadly consistent with previous studies (e.g., Scruggs and Glabadanidis
(2003), Kim et al. (2006), among others), even though such studies only focus on return
shock spillovers. By contrast, we also include the volatility transmission mechanism into
our variance equations in addition to return shock spillovers. For instance, while the
return shock spillover coefficients remain insignificant, the volatility spillover coefficients
are highly significant during the euro area debt crisis. This also highlights the importance
of the lagged volatility structure for a proper volatility transmission modelling between
financial markets.

The results reflect cross-country differences in terms of policies and to what extent
they have been affected by the different stages of the recent financial crisis. Moreover,
our findings have important practical implications. They suggest limited diversification
opportunities for investors within national economies during the European sovereign debt
crisis, since the two financial assets are shown to be strongly interlinked during such
period. However, the portfolio performance comparison results suggest that the portfolio
volatility can be reduced considering the time-varying return and volatility spillovers
in calculating the risk-minimising weights of the selected assets in the portfolio despite
limited diversification opportunities within national financial markets.

This paper can be considered as an initial step to incorporate the time-varying volatil-
ity transmission mechanism in examining linkages between financial markets. In this
regard, our study can also be extended in various ways. While this study documents sig-
nificant time-variation in the volatility transmission, the determinants of these shifts in the
transmission are not closely studied here. It may be an interesting extension to examine
the main driving forces behind the time-varying volatility transmission and the structural
channels of the transmission mechanism. On the other hand, we define the same crisis
periods for all countries under investigation in order to observe the possible changes in
the transmission mechanism. While this approach finds strong evidence for time-varying
volatility linkages between the national stock and bond markets, the crisis periods can
also be estimated for each country endogenously. This will certainly shed light on the
country-specific factors influencing the volatility linkages between the domestic financial
markets. Moreover, changes in the spillover coefficients are assumed to be known and set
ex-post in this study. However, the changes in return and volatility spillover coefficients
may be captured in real-time implementation by allowing for time-varying parameters
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e.g. obtained by estimating the model in rolling windows. Despite these limitations, this
paper is able to pinpoint the importance of the time-varying volatility transmission on
the linkages between stock and bond returns appropriately. Hence, the remaining open
questions are left for further research.
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A Appendix

Table A.1: Descriptive Statistics - core EMU members

Statistics Variable Germany France NetherlandsAustria Finland Belgium

Mean
rs,t 0.151 0.003 -0.006 0.016 0.007 -0.001
rb,t 0.008 0.008 0.008 0.009 0.007 0.008

Std. Dev.
rs,t 1.152 1.473 1.455 1.406 1.846 1.267
rb,t 0.349 0.354 0.336 0.337 0.328 0.358

Skewness
rs,t -0.021 -0.001 -0.105 -0.214 -0.355 0.025
rb,t -0.175 -0.177 -0.216 -0.284 -0.145 -0.199

Ex. Kurtosis
rs,t 4.322 4.739 6.284 7.626 7.267 5.924
rb,t 1.867 2.818 1.503 2.282 1.506 4.409

JB
rs,t 3402.*** 4089.*** 7197.*** 10659.*** 9694.*** 6390.***
rb,t 657.9*** 1468.*** 445.2*** 1006.*** 428.0*** 3568.***

LB(10)
rs,t 22.99** 56.49*** 67.70*** 29.64*** 21.65** 52.06***
rb,t 38.38*** 27.25*** 32.97*** 59.39*** 24.85*** 126.51***

LB2(10)
rs,t 2240.*** 2112.*** 3527.*** 4181.*** 508.4*** 2761.***
rb,t 409.9*** 672.1*** 358.4*** 684.8*** 413.6*** 2941.***

Notes: This table reports descriptive statistics of stock and bond returns for selected economies, denoted
by rs,t and rb,t, respectively. JB is the Jarque–Bera test for normality. LB(p) and LB2(p) are Ljung and
Box (1978) tests for the pth order serial correlation on returns ri,t and squared returns r2i,t for i = s, b,
respectively.
*,** and *** denote statistical significance at 10%, 5% and 1% levels, respectively.

Table A.2: Descriptive Statistics - peripheral EMU members

Statistics Variable Greece Italy Ireland Portugal Spain

Mean
rs,t -0.036 -0.012 0.005 -0.018 -0.001
rb,t -0.010 0.008 0.007 0.008 0.009

Std. Dev.
rs,t 1.909 1.514 1.372 1.194 1.485
rb,t 1.645 0.442 0.518 0.722 0.449

Skewness
rs,t -0.211 -0.081 -0.572 -0.193 0.069
rb,t 1.072 0.653 0.456 -0.606 0.904

Ex. Kurtosis
rs,t 5.897 4.343 7.833 31.82 5.006
rb,t 122.2 19.48 31.82 50.72 16.010

JB
rs,t 6362.*** 3437.*** 11406.*** 6850.*** 4567.***
rb,t 2680125.*** 69361.*** 184417.*** 468467.*** 47258.***

LB(10)
rs,t 40.17*** 46.59*** 35.15*** 46.39*** 30.79***
rb,t 304.8*** 94.16*** 231.6*** 229.5*** 215.1***

LB2(10)
rs,t 532.1*** 1868.*** 2860.*** 1328.*** 1465.***
rb,t 704.6*** 522.7*** 885.6*** 387.4*** 320.3***

Notes: See Table A.1.
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Table A.3: Descriptive Statistics - non-EMU Europe

Statistics Variable Sweden Norway Denmark Switzerland UK

Mean
rs,t 0.016 0.037 0.033 0.004 0.001
rb,t 0.005 0.007 0.007 0.005 0.006

Std. Dev.
rs,t 1.514 1.376 1.266 1.189 1.208
rb,t 0.339 0.348 0.347 0.291 0.386

Skewness
rs,t 0.055 -0.623 -0.240 -0.176 -0.160
rb,t -0.172 -0.138 -0.082 0.059 -0.014

Ex. Kurtosis
rs,t 3.492 6.523 5.633 6.924 6.136
rb,t 2.827 3.721 3.948 5.767 1.811

JB
rs,t 2222.*** 8027.*** 5819.*** 8750.*** 6873.***
rb,t 1477.*** 2534.*** 2842.*** 6057.*** 597.4***

LB(10)
rs,t 29.90*** 20.53** 36.38*** 72.14*** 81.99***
rb,t 58.52*** 93.86*** 56.17*** 26.28*** 34.62***

LB2(10)
rs,t 1640.*** 4386.*** 2762.*** 2831.*** 3067.***
rb,t 242.9*** 467.9*** 334.5*** 155.5*** 422.5***

Notes: See Table A.1.

Table A.4: Descriptive Statistics - non-EMU developed countries

Statistics Variable US Canada Japan Australia

Mean
rs,t 0.010 0.016 0.006 0.014
rb,t 0.005 0.008 0.006 0.004

Std. Dev.
rs,t 1.241 1.122 1.357 0.989
rb,t 0.483 0.369 0.255 0.497

Skewness
rs,t -0.178 -0.656 -0.367 -0.493
rb,t -0.061 -0.163 -0.559 -0.081

Ex. Kurtosis
rs,t 8.122 9.396 6.315 5.941
rb,t 2.579 1.074 6.717 2.682

JB
rs,t 12031.*** 16387.*** 7356.*** 6603.***
rb,t 1214.*** 229.5*** 8442.*** 1314.***

LB(10)
rs,t 52.14*** 53.75*** 20.55** 14.59
rb,t 16.75* 12.10 15.95* 39.51***

LB2(10)
rs,t 3412.*** 3515.*** 2892.*** 3025.***
rb,t 402.4*** 288.4 1807.*** 381.6***

Notes: See Table A.1.

31



Table A.5: Results of the Engle and Granger cointegration tests between stock and
bond prices

Country st on bt bt on st

Germany -2.093 (5) -1.398 (5)
France -1.785 (10) 0.690 (10)
Netherlands -1.775 (8) 0.410 (4)
Austria -1.486 (2) 0.274 (5)
Finland -2.140 (7) 0.059 (4)
Belgium -1.809 (10) 0.241 (5)
Greece -1.168 (10) -1.580 (10)
Italy -1.850 (6) -0.688 (12)
Ireland -1.634 (8) -1.372 (3)
Portugal -1.419 (9) -0.742 (12)
Spain -2.001 (5) -0.001 (8)
Sweden -2.047 (6) -1.390 (7)
Norway -2.397 (1) -1.771 (10)
Denmark -2.233 (8) -2.216 (8)
Switzerland -1.748 (7) -0.269 (7)
UK -2.304 (8) -0.750 (6)
US -1.662 (5) -1.688 (2)
Canada -2.410 (6) -1.744 (5)
Japan -1.339 (6) -0.387 (11)
Australia -2.177 (3) 0.274 (5)

Notes: This table reports the results of the Engle and Granger cointegration tests between the log of
stock prices (st) and the log of bond prices (bt). The pairwise Engle and Granger tests are conducted
by regressing st on bt and vice versa for each of the selected economies. The lag order is chosen by
considering the AIC and given in parenthesis. The 1%, 5%, and 10% critical values from the MacKinnon
(1991) for the augmented Dickey−Fuller test statistic are −3.89, −3.33, and −3.04, respectively.
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Table A.6: Results of the Johansen (1995) cointegration tests between stock and bond
prices

Country Lags r Eigenvalues Trace test 95% c.v.

Germany 5
r = 0 0.002 8.562 15.410
r ≤ 1 0.000 0.343 3.840

France 5
r = 0 0.002 9.236 15.410
r ≤ 1 0.000 0.060 3.840

Netherlands 8
r = 0 0.003 12.466 15.410
r ≤ 1 0.000 1.178 3.840

Austria 1
r = 0 0.001 3.923 15.410
r ≤ 1 0.000 0.321 3.840

Finland 1
r = 0 0.002 8.249 15.410
r ≤ 1 0.000 0.000 3.840

Belgium 3
r = 0 0.003 12.866 15.410
r ≤ 1 0.000 0.931 3.840

Greece 11
r = 0 0.001 3.091 15.410
r ≤ 1 0.000 0.215 3.840

Italy 6
r = 0 0.002 7.478 15.410
r ≤ 1 0.000 0.930 3.840

Ireland 6
r = 0 0.001 6.395 15.410
r ≤ 1 0.000 0.626 3.840

Portugal 12
r = 0 0.002 9.696 15.410
r ≤ 1 0.001 2.146 3.840

Spain 6
r = 0 0.002 8.098 15.410
r ≤ 1 0.000 0.404 3.840

Sweden 1
r = 0 0.002 9.646 15.410
r ≤ 1 0.000 0.008 3.840

Norway 6
r = 0 0.003 11.609 15.410
r ≤ 1 0.000 0.000 3.840

Denmark 6
r = 0 0.002 10.251 15.410
r ≤ 1 0.000 0.197 3.840

Switzerland 7
r = 0 0.002 8.337 15.410
r ≤ 1 0.000 0.191 3.840

UK 9
r = 0 0.003 11.191 15.410
r ≤ 1 0.000 0.214 3.840

US 8
r = 0 0.002 7.377 15.410
r ≤ 1 0.000 0.256 3.840

Canada 5
r = 0 0.002 7.099 15.410
r ≤ 1 0.000 0.086 3.840

Japan 0
r = 0 0.001 4.289 15.410
r ≤ 1 0.000 0.859 3.840

Australia 3
r = 0 0.001 6.206 15.410
r ≤ 1 0.000 0.334 3.840

Notes: This table reports the results of the Johansen cointegration tests between the log of stock prices
and the log of bond prices. The trace test column consists of the Johansen trace test statistics for each
country’s stock and bond prices. r is the cointegrating rank. The lag length is selected using the Akaike
Information Criterion (AIC). 33



Table A.7: Results of the Gregory and Hansen cointegration tests between stock and
bond prices: core EMU members

Regression Model Germany France Netherlands Austria Finland Belgium

st on bt C -2.963(0) -2.626(8) -2.837(8) -3.076(1) -3.155(0) -2.592(3)
[2001:08:27] [2001:10:10] [2002:08:07] [2004:05:06] [2001:07:25] [2008:10:24]

C/T -3.698(12) -2.588(8) -2.836(10) -3.341(1) -3.18(0) -3.178(3)
[2001:10:09] [2001:10:10] [2002:08:08] [2008:07:29] [2001:07:18] [2008:08:28]

C/S -3.809(3) -3.04(5) -3.374(11) -3.118(8) -3.299(12) -2.779(2)
[2004:12:08] [2004:03:15] [2004:11:25] [2006:05:24] [2003:07:03] [2004:03:05]

bt on st C -2.913(6) -2.562(2) -2.889(6) -3.193(12) -3.033(5) -2.814(2)
[2011:10:03] [2012:06:08] [2012:06:11] [2011:10:27] [2011:11:16] [2012:06:08]

C/T -4.543(1) -4.431(1) -4.69(1) -4.287(9) -4.369(4) -4.194(1)
[2006:03:20] [2006:03:10] [2006:03:16] [2007:02:27] [2006:03:17] [2006:05:12]

C/S -3.88(2) -3.463(6) -3.988(12) -3.548(1) -3.764(1) -3.677(10)
[2008:07:17] [2008:09:16] [2008:09:02] [2011:06:29] [2011:06:01] [2008:09:04]

Notes: This table reports the results of the Gregory and Hansen cointegration tests between the log of
stock prices (st) and the log of bond prices (bt). The pairwise Gregory and Hansen tests are conducted
by regressing st on bt and vice versa for each of the selected economies. The lag order is chosen by
considering the AIC and given in parenthesis. The critical values for each specification are taken from
Gregory and Hansen (1996).

Table A.8: Results of the Gregory and Hansen cointegration tests between stock and
bond prices: peripheral EMU members

Regression Model Greece Italy Ireland Portugal Spain

st on bt C -2.088 (2) -3.131 (8) -2.95 (12) -2.366 (1) -2.436 (5)
[2013:02:01] [2008:07:25] [2008:08:20] [2011:06:28] [2005:03:11]

C/T -3.457 (1) -3.54 (8) -4.379 (9) -3.064 (1) -3.745 (0)
[2005:06:17] [2005:10:10] [2008:08:15] [2006:01:17] [2006:01:16]

C/S -2.765 (1) -3.378 (8) -2.952 (12) -2.664 (1) -3.241 (4)
[2003:06:18] [2008:07:25] [2008:08:20] [2011:04:27] [2003:06:23]

bt on st C -2.267 (12) -2.938 (12) -2.95(3) -2.063 (4) -2.618 (1)
[2010:05:25] [2013:02:12] [2013:02:20] [2013:03:08] [2013:03:19]

C/T -2.549 (12) -3.745 (12) -2.948 (3) -2.151 (4) -2.815 (8)
[2010:05:25] [2005:12:09] [2013:02:20] [2013:03:08] [2006:05:16]

C/S -2.489 (12) -3.913(9) -4.495 (12) -2.294 (4) -3.057 (0)
[2011:09:29] [2011:07:14] [2010:10:06] [2013:03:08] [2011:06:21]

Notes: See Table A.7.
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Table A.9: Results of the Gregory and Hansen cointegration tests between stock and
bond prices: non-EMU European economies

Regression Model Sweden Norway Denmark Switzerland UK

st on bt C -3.084 (8) -3.361 (1) -2.673 (1) -2.528 (6) -2.907 (8)
[2001:10:03] [2005:04:26] [2013:02:18] [2012:12:19] [2001:10:03]

C/T -3.328 (0) -2.894 (0) -2.413 (11) -2.987 (5) -3.832 (7)
[2001:07:26] [2005:07:06] [2008:07:31] [2012:04:30] [2001:10:02]

C/S -3.177 (0) -3.358 (1) -2.887 (1) -3.02 (5) -3.383 (4)
[2001:07:23] [2005:04:14] [2003:06:19] [2005:02:14] [2009:09:24]

bt on st C -2.931 (1) -3.042 (2) -3.292 (1) -2.944 (2) -3.839 (1)
[2002:04:08] [2011:06:22] [2009:01:02] [2011:08:22] [2011:06:28]

C/T -4.342 (1) -3.901 (2) -4.346 (11) -4.028 (2) -4.821 (1)
[2006:03:23] [2006:08:14] [2011:09:28] [2006:02:28] [2011:06:28]

C/S -3.348 (1) -3.24 (1) -3.428 (1) -3.446 (2) -4.126 (1)
[2008:05:19] [2008:08:20] [2008:07:18] [2010:04:07] [2010:04:07]

Notes: See Table A.7.

Table A.10: Results of the Gregory and Hansen cointegration tests between stock and
bond prices: non-EU developed economies

Regression Model US Canada Japan Australia

st on bt C -3.311 (0) -3.168 (8) -3.56 (2) -3.268 (0)
[2011:11:17] [2005:10:13] [2013:03:22] [2004:12:07]

C/T -4.615 (12) -3.259 (10) -4.376 (2) -4.418 (0)
[2011:07:22] [2005:03:11] [2013:01:30] [2008:05:08]

C/S -3.503 (0) -3.712 (0) -4.034 (2) -3.276 (0)
[2009:01:08] [2003:06:13] [2013:03:26] [2004:12:07]

bt on st C -4.031 (1) -3.169 (1) -4.112 (2) -4.155 (1)
[2010:11:26] [2008:10:27] [2013:02:13] [2011:06:29]

C/T -6.096*** (12) -5.23** (0) -5.101** (0) -4.963 (1)
[2011:10:10] [2011:08:08 ] [2013:01:25] [2012:03:15]

C/S -4.447 (12) -3.473 (0) -4.644 (2) -4.199 (1)
[2010:11:26] [2008:08:19] [2010:05:03] [2011:06:30]

Notes: See Table A.7.
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Table A.11: Results of the bivariate VAR-UEDCC-AGARCH estimation: Austria

Mean Equation Variance Equation

µs 0.0469∗∗∗

(0.01)
ψsb,1 ωs 0.0415∗∗∗

(0.01)
αsb αbs

µb 0.0067
(0.00)

ψd1
sb,1 ωb 0.0013∗∗∗

(0.00)
αd1
sb 0.3845∗∗∗

(0.11)
αd1
bs 0.0004∗∗

(0.00)
ψss,1 0.0662∗∗∗

(0.01)
ψd2
sb,1 αss 0.0176∗∗

(0.01)
αd2
sb αd2

bs

ψbb,1 0.0628∗∗∗

(0.02)
ψd3
sb,1 αbb 0.0292∗∗∗

(0.01)
αd3
sb αd3

bs 0.0005∗∗∗

(0.00)
ψbs,1 0.0160∗∗∗

(0.00)
βss 0.8963∗∗∗

(0.01)
βsb −0.0973∗∗

(0.05)
βbs

ψd1
bs,1 βbb 0.9469∗∗∗

(0.01)
βd1
sb βd1

bs

ψd2
bs,1 γss 0.1133∗∗∗

(0.02)
βd2
sb βd2

bs

ψd3
bs,1 γbb 0.0165∗

(0.01)
βd3
sb 0.1614∗∗∗

(0.04)
βd3
bs

αDCC 0.0402∗∗∗

(0.01)
βDCC 0.9417∗∗∗

(0.01)
LogL −7735.69
Q(5) 19.00

[0.52]
Q2(5) 19.15

[0.45]

Notes: Subscripts s and b refer to stock and bond market returns’ equation, respectively. The subscripts
ss (bb) denote coefficients referring to stock and bond market return’s own past, while sb (bs) denotes
the spillovers coefficients. Moreover, the superscript dl for l = 1, 2, 3 stands for the shifts in spillover
coefficients in related crisis periods. Heteroscedasticity-robust standard errors are given in parentheses.
Q(p) andQ2(p) are the multivariate Hosking (1981) test for pth order serial autocorrelation in standardised
and squared standardised residuals, respectively. The related p-values are reported in squared brackets.
∗∗∗ Significant at 1%
∗∗ Significant at 5%
∗ Significant at 10%
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Table A.12: Results of the bivariate VAR-UEDCC-AGARCH estimation: Belgium

Mean Equation Variance Equation

µs 0.0201∗

(0.01)
ψsb,1 ωs 0.0107∗∗

(0.00)
αsb αbs

µb 0.0061
(0.00)

ψd1
sb,1 ωb 0.0021∗∗

(0.00)
αd1
sb αd1

bs

ψss,1 0.0429∗∗∗

(0.01)
ψd2
sb,1 αss αd2

sb αd2
bs

ψbb,1 0.0884∗∗∗

(0.02)
ψd3
sb,1 αbb 0.0270∗∗∗

(0.01)
αd3
sb αd3

bs 0.0015∗∗

(0.00)
ψbs,1 0.0144∗∗∗

(0.00)
βss 0.8878∗∗∗

(0.01)
βsb 0.2009∗∗∗

(0.08)
βbs 0.0008∗∗∗

(0.00)
ψd1
bs,1 βbb 0.9214∗∗∗

(0.02)
βd1
sb βd1

bs

ψd2
bs,1 γss 0.1716∗∗∗

(0.02)
βd2
sb βd2

bs

ψd3
bs,1 0.0277∗∗∗

(0.01)
γbb 0.0343∗∗∗

(0.01)
βd3
sb βd3

bs

αDCC 0.0472∗∗∗

(0.01)
βDCC 0.9369∗∗∗

(0.01)
LogL −7362.52
Q(5) 18.46

[0.56]
Q2(5) 26.05

[0.13]

Notes: Subscripts s and b refer to stock and bond market returns’ equation, respectively. The subscripts
ss (bb) denote coefficients referring to stock and bond market return’s own past, while sb (bs) denotes
the spillovers coefficients. Moreover, the superscript dl for l = 1, 2, 3 stands for the shifts in spillover
coefficients in related crisis periods. Heteroscedasticity-robust standard errors are given in parentheses.
Q(p) andQ2(p) are the multivariate Hosking (1981) test for pth order serial autocorrelation in standardised
and squared standardised residuals, respectively. The related p-values are reported in squared brackets.
∗∗∗ Significant at 1%
∗∗ Significant at 5%
∗ Significant at 10%
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Table A.13: Results of the bivariate VAR-UEDCC-AGARCH estimation: Finland

Mean Equation Variance Equation

µs 0.0499∗∗∗

(0.02)
ψsb,1 ωs 0.0105∗∗

(0.00)
αsb αbs

µb 0.0062
(0.00)

ψd1
sb,1 ωb 0.0011∗∗

(0.00)
αd1
sb αd1

bs

ψss,1 0.0332∗∗

(0.01)
ψd2
sb,1 αss 0.0239∗∗∗

(0.01)
αd2
sb αd2

bs 0.0005∗

(0.00)
ψbb,1 0.0552∗∗∗

(0.01)
ψd3
sb,1 αbb 0.0366∗∗∗

(0.01)
αd3
sb αd3

bs 0.0004∗

(0.00)
ψbs,1 βss 0.9544∗∗∗

(0.01)
βsb βbs

ψd1
bs,1 0.0244∗∗

(0.01)
βbb 0.9506∗∗∗

(0.01)
βd1
sb βd1

bs

ψd2
bs,1 γss 0.0381∗∗∗

(0.01)
βd2
sb βd2

bs

ψd3
bs,1 0.0220∗∗∗

(0.01)
γbb βd3

sb −0.0585∗

(0.03)
βd3
bs

αDCC 0.0449∗∗∗

(0.01)
βDCC 0.9399∗∗∗

(0.02)
LogL −8741.97
Q(5) 18.98

[0.52]
Q2(5) 26.18

[0.13]

Notes: Subscripts s and b refer to stock and bond market returns’ equation, respectively. The subscripts
ss (bb) denote coefficients referring to stock and bond market return’s own past, while sb (bs) denotes
the spillovers coefficients. Moreover, the superscript dl for l = 1, 2, 3 stands for the shifts in spillover
coefficients in related crisis periods. Heteroscedasticity-robust standard errors are given in parentheses.
Q(p) andQ2(p) are the multivariate Hosking (1981) test for pth order serial autocorrelation in standardised
and squared standardised residuals, respectively. The related p-values are reported in squared brackets.
∗∗∗ Significant at 1%
∗∗ Significant at 5%
∗ Significant at 10%
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Table A.14: Results of the bivariate VAR-UEDCC-AGARCH estimation: France

Mean Equation Variance Equation

µs 0.0142
(0.01)

ψsb,1 ωs 0.0076
(0.01)

αsb αbs

µb 0.0071∗

(0.00)
ψd1
sb,1 ωb 0.0011∗∗∗

(0.00)
αd1
sb 0.6674∗∗

(0.32)
αd1
bs 0.0004∗

(0.00)
ψss,1 −0.0402∗∗∗

(0.01)
ψd2
sb,1 αss αd2

sb αd2
bs

ψbb,1 0.0548∗∗∗

(0.01)
ψd3
sb,1 αbb 0.0379∗∗∗

(0.01)
αd3
sb αd3

bs 0.0003∗∗∗

(0.00)
ψbs,1 0.0101∗∗

(0.00)
βss 0.8925∗∗∗

(0.01)
βsb 0.3595∗∗∗

(0.09)
βbs

ψd1
bs,1 βbb 0.9515∗∗∗

(0.01)
βd1
sb −0.6221∗∗

(0.29)
βd1
bs

ψd2
bs,1 γss 0.1581∗∗∗

(0.02)
βd2
sb βd2

bs

ψd3
bs,1 0.0183∗∗∗

(0.01)
γbb βd3

sb βd3
bs

αDCC 0.0461∗∗∗

(0.00)
βDCC 0.9413∗∗∗

(0.00)
LogL −8148.36
Q(5) 25.03

[0.20]
Q2(5) 26.19

[0.13]

Notes: Subscripts s and b refer to stock and bond market returns’ equation, respectively. The subscripts
ss (bb) denote coefficients referring to stock and bond market return’s own past, while sb (bs) denotes
the spillovers coefficients. Moreover, the superscript dl for l = 1, 2, 3 stands for the shifts in spillover
coefficients in related crisis periods. Heteroscedasticity-robust standard errors are given in parentheses.
Q(p) andQ2(p) are the multivariate Hosking (1981) test for pth order serial autocorrelation in standardised
and squared standardised residuals, respectively. The related p-values are reported in squared brackets.
∗∗∗ Significant at 1%
∗∗ Significant at 5%
∗ Significant at 10%
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Table A.15: Results of the bivariate VAR-UEDCC-AGARCH estimation: Germany

Mean Equation Variance Equation

µs 0.0372∗∗∗

(0.01)
ψsb,1 ωs 0.0057

(0.01)
αsb αbs 0.0002∗∗∗

(0.00)
µb 0.0054

(0.00)
ψd1
sb,1 ωb 0.0010∗∗∗

(0.00)
αd1
sb αd1

bs 0.0009∗∗

(0.00)
ψss,1 ψd2

sb,1 0.5617∗

(0.30)
αss αd2

sb αd2
bs

ψss,2 ψd3
sb,1 0.1530∗∗

(0.07)
αbb 0.0221∗∗∗

(0.00)
αd3
sb αd3

bs 0.0007∗∗∗

(0.00)
ψbb,1 0.0473∗∗∗

(0.01)
ψbs,2 βss 0.8879∗∗∗

(0.01)
βsb 0.5635∗∗∗

(0.01)
βbs

ψbb,2 ψd1
bs,2 βbb 0.9555∗∗∗

(0.01)
βd1
sb −0.2774∗∗∗

(0.08)
βd1
bs

ψd2
bs,2 γss 0.1587∗∗∗

(0.01)
βd2
sb βd2

bs

ψd3
bs,2 0.0158∗∗

(0.01)
γbb 0.0137∗∗∗

(0.00)
βd3
sb −0.2136∗∗∗

(0.04)
βd3
bs

αDCC 0.0433∗∗∗

(0.01)
βDCC 0.9486∗∗∗

(0.01)
LogL −8113.52
Q(5) 19.01

[0.52]
Q2(5) 25.78

[0.14]

Notes: Subscripts s and b refer to stock and bond market returns’ equation, respectively. The subscripts
ss (bb) denote coefficients referring to stock and bond market return’s own past, while sb (bs) denotes
the spillovers coefficients. Moreover, the superscript dl for l = 1, 2, 3 stands for the shifts in spillover
coefficients in related crisis periods. Heteroscedasticity-robust standard errors are given in parentheses.
Q(p) andQ2(p) are the multivariate Hosking (1981) test for pth order serial autocorrelation in standardised
and squared standardised residuals, respectively. The related p-values are reported in squared brackets.
∗∗∗ Significant at 1%
∗∗ Significant at 5%
∗ Significant at 10%
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Table A.16: Results of the bivariate VAR-UEDCC-AGARCH estimation: Greece

Mean Equation Variance Equation

µs 0.0189
(0.02)

ψsb,2 ωs 0.0242∗∗∗

(0.01)
αsb αbs

µb 0.0012
(0.01)

ψd1
sb,2 ωb 0.0034∗∗∗

(0.00)
αd1
sb αd1

bs

ψss,1 0.0888∗∗∗

(0.01)
ψd2
sb,2 αss 0.0523∗∗∗

(0.01)
αd2
sb αd2

bs 0.0023∗∗

(0.00)
ψss,2 −0.0274∗∗

(0.01)
ψd3
sb,2 0.0413∗∗

(0.02)
αbb 0.1000∗∗∗

(0.03)
αd3
sb αd3

bs

ψbb,1 0.0925∗∗∗

(0.01)
ψbs,1 βss 0.9099∗∗∗

(0.02)
βsb βbs

ψbb,3 ψd1
bs,1 βbb 0.8500∗∗∗

(0.02)
βd1
sb βd1

bs

ψd2
bs,1 γss 0.0590∗∗∗

(0.02)
βd2
sb βd2

bs

ψd3
bs,1 0.0929∗∗∗

(0.02)
γbb 0.0626∗∗

(0.03)
βd3
sb 0.0123∗

(0.01)
βd3
bs 0.0324∗∗∗

(0.01)
αDCC 0.0196∗∗∗

(0.00)
βDCC 0.9804∗∗∗

(0.00)
LogL −11770.33
Q(5) 22.02

[0.34]
Q2(5) 25.34

[0.15]

Notes: Subscripts s and b refer to stock and bond market returns’ equation, respectively. The subscripts
ss (bb) denote coefficients referring to stock and bond market return’s own past, while sb (bs) denotes
the spillovers coefficients. Moreover, the superscript dl for l = 1, 2, 3 stands for the shifts in spillover
coefficients in related crisis periods. Heteroscedasticity-robust standard errors are given in parentheses.
Q(p) andQ2(p) are the multivariate Hosking (1981) test for pth order serial autocorrelation in standardised
and squared standardised residuals, respectively. The related p-values are reported in squared brackets.
∗∗∗ Significant at 1%
∗∗ Significant at 5%
∗ Significant at 10%
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Table A.17: Results of the bivariate VAR-UEDCC-AGARCH estimation: Ireland

Mean Equation Variance Equation

µs 0.0384∗∗∗

(0.01)
ψsb,1 ωs 0.0361∗∗∗

(0.01)
αsb 0.0189∗

(0.01)
αbs

µb 0.0017
(0.00)

ψd1
sb,1 ωb 0.0013∗∗∗

(0.00)
αd1
sb 0.6440∗∗

(0.29)
αd1
bs

ψss,1 0.0460∗∗∗

(0.02)
ψd2
sb,1 αss 0.0326∗∗∗

(0.01)
αd2
sb 0.6742∗

(0.37)
αd2
bs

ψbb,1 0.1004∗∗∗

(0.02)
ψd3
sb,1 αbb αd3

sb αd3
bs

ψbs,1 0.0182∗∗∗

(0.00)
βss 0.8880∗∗∗

(0.02)
βsb βbs 0.0005∗∗∗

(0.00)
ψd1
bs,1 βbb 0.9387∗∗∗

(0.01)
βd1
sb βd1

bs

ψd2
bs,1 0.0214∗

(0.01)
γss 0.0934∗∗∗

(0.02)
βd2
sb βd2

bs

ψd3
bs,1 γbb 0.0888∗∗∗

(0.02)
βd3
sb βd3

bs 0.0028∗∗∗

(0.00)
αDCC 0.0160

(0.01)
βDCC 0.9828∗∗∗

(0.01)
LogL −8581.19
Q(5) 15.57

[0.74]
Q2(5) 21.26

[0.32]

Notes: Subscripts s and b refer to stock and bond market returns’ equation, respectively. The subscripts
ss (bb) denote coefficients referring to stock and bond market return’s own past, while sb (bs) denotes
the spillovers coefficients. Moreover, the superscript dl for l = 1, 2, 3 stands for the shifts in spillover
coefficients in related crisis periods. Heteroscedasticity-robust standard errors are given in parentheses.
Q(p) andQ2(p) are the multivariate Hosking (1981) test for pth order serial autocorrelation in standardised
and squared standardised residuals, respectively. The related p-values are reported in squared brackets.
∗∗∗ Significant at 1%
∗∗ Significant at 5%
∗ Significant at 10%
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Table A.18: Results of the bivariate VAR-UEDCC-AGARCH estimation: Italy

Mean Equation Variance Equation

µs 0.0024
(0.01)

ψsb,1 ωs 0.0116∗∗∗

(0.00)
αsb αbs 0.0004∗∗∗

(0.00)
µb 0.0018

(0.00)
ψd1
sb,1 ωb 0.0013∗∗∗

(0.00)
αd1
sb αd1

bs

ψss,1 −0.0435∗∗∗

(0.01)
ψd2
sb,1 αss 0.0094∗

(0.01)
αd2
sb αd2

bs

ψss,2 ψd3
sb,1 αbb 0.0147∗

(0.01)
αd3
sb αd3

bs 0.0020∗∗∗

(0.00)
ψbb,1 0.0758∗∗∗

(0.01)
ψbs,1 0.0190∗∗∗

(0.00)
βss 0.9132∗∗∗

(0.01)
βsb 0.1351∗∗∗

(0.04)
βbs

ψbb,2 −0.0371∗∗∗

(0.01)
ψd1
bs,1 βbb 0.9316∗∗∗

(0.01)
βd1
sb βd1

bs

ψd2
bs,1 γss 0.1161∗∗∗

(0.02)
βd2
sb βd2

bs

ψd3
bs,1 γbb 0.0687∗∗∗

(0.02)
βd3
sb βd3

bs

αDCC 0.0431∗∗∗

(0.01)
βDCC 0.9538∗∗∗

(0.01)
LogL −8511.63
Q(5) 27.50

[0.12]
Q2(5) 23.10

[0.23]

Notes: Subscripts s and b refer to stock and bond market returns’ equation, respectively. The subscripts
ss (bb) denote coefficients referring to stock and bond market return’s own past, while sb (bs) denotes
the spillovers coefficients. Moreover, the superscript dl for l = 1, 2, 3 stands for the shifts in spillover
coefficients in related crisis periods. Heteroscedasticity-robust standard errors are given in parentheses.
Q(p) andQ2(p) are the multivariate Hosking (1981) test for pth order serial autocorrelation in standardised
and squared standardised residuals, respectively. The related p-values are reported in squared brackets.
∗∗∗ Significant at 1%
∗∗ Significant at 5%
∗ Significant at 10%
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Table A.19: Results of the bivariate VAR-UEDCC-AGARCH estimation: Netherlands

Mean Equation Variance Equation

µs 0.0142
(0.01)

ψsb,1 0.0768∗∗

(0.04)
ωs −0.0077

(0.01)
αsb αbs

µb 0.0046
(0.00)

ψd1
sb,1 ωb 0.0013∗∗∗

(0.00)
αd1
sb 0.4988∗

(0.26)
αd1
bs 0.0005∗∗

(0.00)
ψss,1 ψd2

sb,1 αss αd2
sb αd2

bs 0.0003∗

(0.00)
ψbb,1 0.0614∗∗∗

(0.01)
ψd3
sb,1 αbb 0.0123∗∗

(0.01)
αd3
sb αd3

bs 0.0010∗∗∗

(0.00)
ψbs,1 0.0064∗

(0.00)
βss 0.8850∗∗∗

(0.01)
βsb 0.6065∗∗∗

(0.16)
βbs 0.0003∗∗∗

(0.00)
ψd1
bs,1 0.0213∗

(0.01)
βbb 0.9539∗∗∗

(0.01)
βd1
sb −0.6153∗∗∗

(0.22)
βd1
bs

ψd2
bs,1 γss 0.1688∗∗∗

(0.02)
βd2
sb βd2

bs

ψd3
bs,1 0.0173∗∗

(0.01)
γbb 0.0234∗∗∗

(0.01)
βd3
sb −0.2174∗∗∗

(0.07)
βd3
bs

αDCC 0.0435∗∗∗

(0.01)
βDCC 0.9453∗∗∗

(0.01)
LogL −7556.44
Q(5) 17.03

[0.65]
Q2(5) 26.29

[0.12]

Notes: Subscripts s and b refer to stock and bond market returns’ equation, respectively. The subscripts
ss (bb) denote coefficients referring to stock and bond market return’s own past, while sb (bs) denotes
the spillovers coefficients. Moreover, the superscript dl for l = 1, 2, 3 stands for the shifts in spillover
coefficients in related crisis periods. Heteroscedasticity-robust standard errors are given in parentheses.
Q(p) andQ2(p) are the multivariate Hosking (1981) test for pth order serial autocorrelation in standardised
and squared standardised residuals, respectively. The related p-values are reported in squared brackets.
∗∗∗ Significant at 1%
∗∗ Significant at 5%
∗ Significant at 10%
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Table A.20: Results of the bivariate VAR-UEDCC-AGARCH estimation: Portugal

Mean Equation Variance Equation

µs 0.0165
(0.01)

ψsb,1 0.1048∗∗∗

(0.04)
ωs 0.0137∗∗∗

(0.00)
αsb αbs

µb 0.0019
(0.00)

ψd1
sb,1 ωb 0.0000

(0.00)
αd1
sb αd1

bs

ψss,1 0.1023∗∗∗

(0.01)
ψd2
sb,1 0.4186

(0.25)
αss 0.0370∗∗∗

(0.01)
αd2
sb αd2

bs

ψss,2 ψd3
sb,1 −0.1311∗∗∗

(0.05)
αbb 0.0388∗∗

(0.02)
αd3
sb αd3

bs

ψbb,1 0.0593∗∗∗

(0.02)
ψbs,1 0.0142∗∗∗

(0.01)
βss 0.8968∗∗∗

(0.01)
βsb 0.0386∗∗

(0.02)
βbs 0.0005∗∗

(0.00)
ψbb,2 ψd1

bs,1 0.0303∗∗

(0.01)
βbb 0.9401∗∗∗

(0.01)
βd1
sb βd1

bs

ψd2
bs,1 γss 0.0995∗∗∗

(0.02)
βd2
sb βd2

bs

ψd3
bs,1 0.0458∗∗∗

(0.02)
γbb 0.0531∗∗∗

(0.02)
βd3
sb −0.0255∗

(0.02)
βd3
bs

αDCC 0.0208∗∗∗

(0.01)
βDCC 0.9787∗∗∗

(0.01)
LogL −8892.98
Q(5) 24.64

[0.22]
Q2(5) 19.01

[0.46]

Notes: Subscripts s and b refer to stock and bond market returns’ equation, respectively. The subscripts
ss (bb) denote coefficients referring to stock and bond market return’s own past, while sb (bs) denotes
the spillovers coefficients. Moreover, the superscript dl for l = 1, 2, 3 stands for the shifts in spillover
coefficients in related crisis periods. Heteroscedasticity-robust standard errors are given in parentheses.
Q(p) andQ2(p) are the multivariate Hosking (1981) test for pth order serial autocorrelation in standardised
and squared standardised residuals, respectively. The related p-values are reported in squared brackets.
∗∗∗ Significant at 1%
∗∗ Significant at 5%
∗ Significant at 10%
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Table A.21: Results of the bivariate VAR-UEDCC-AGARCH estimation: Spain

Mean Equation Variance Equation

µs 0.0140
(0.01)

ψsb,1 ωs 0.0185∗∗∗

(0.00)
αsb 0.0702∗∗

(0.03)
αbs

µb 0.0029
(0.01)

ψd1
sb,1 ωb 0.0013∗∗∗

(0.00)
αd1
sb αd1

bs 0.0015∗∗

(0.00)
ψss,1 ψd2

sb,1 αss αd2
sb αd2

bs

ψss,2 ψd3
sb,1 αbb αd3

sb αd3
bs

ψbb,1 0.1100∗∗∗

(0.01)
ψbs,1 0.0198∗∗∗

(0.00)
βss 0.9179∗∗∗

(0.01)
βsb βbs 0.0005∗∗∗

(0.00)
ψbb,2 −0.0328∗∗∗

(0.01)
ψbs,2 −0.0082∗

(0.00)
βbb 0.9388∗∗∗

(0.01)
βd1
sb βd1

bs −0.0013∗∗

(0.00)
ψd1
bs,1 γss 0.1305∗∗∗

(0.02)
βd2
sb βd2

bs

ψd2
bs,1 γbb 0.0778∗∗∗

(0.02)
βd3
sb βd3

bs 0.0028∗∗∗

(0.00)
ψd3
bs,1 αDCC 0.0340∗∗

(0.01)
βDCC 0.9628∗∗∗

(0.02)
LogL −8760.61
Q(5) 21.91

[0.35]
Q2(5) 26.79

[0.11]

Notes: Subscripts s and b refer to stock and bond market returns’ equation, respectively. The subscripts
ss (bb) denote coefficients referring to stock and bond market return’s own past, while sb (bs) denotes
the spillovers coefficients. Moreover, the superscript dl for l = 1, 2, 3 stands for the shifts in spillover
coefficients in related crisis periods. Heteroscedasticity-robust standard errors are given in parentheses.
Q(p) andQ2(p) are the multivariate Hosking (1981) test for pth order serial autocorrelation in standardised
and squared standardised residuals, respectively. The related p-values are reported in squared brackets.
∗∗∗ Significant at 1%
∗∗ Significant at 5%
∗ Significant at 10%
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Table A.22: Results of the bivariate VAR-UEDCC-AGARCH estimation: Denmark

Mean Equation Variance Equation

µs 0.0507∗∗∗

(0.01)
ψsb,1 ωs 0.0355∗∗∗

(0.01)
αsb αbs

µb 0.0049
(0.00)

ψd1
sb,1 ωb 0.0002

(0.00)
αd1
sb αd1

bs

ψss,1 0.0347∗∗

(0.02)
ψd2
sb,1 −0.5883∗

(0.34)
αss 0.0307∗∗∗

(0.01)
αd2
sb αd2

bs

ψbb,1 0.0744∗∗∗

(0.02)
ψd3
sb,1 αbb 0.0283∗∗∗

(0.00)
αd3
sb αd3

bs

ψbs,1 0.0117∗∗∗

(0.00)
βss 0.8367∗∗∗

(0.02)
βsb 0.6286∗∗∗

(0.19)
βbs 0.0005∗∗∗

(0.00)
ψd1
bs,1 −0.0533∗∗∗

(0.01)
βbb 0.9625∗∗∗

(0.00)
βd1
sb βd1

bs

ψd2
bs,1 −0.0250∗

(0.01)
γss 0.1278∗∗∗

(0.02)
βd2
sb βd2

bs

ψd3
bs,1 γbb βd3

sb −0.2967∗∗

(0.12)
βd3
bs 0.0006∗∗∗

(0.00)
αDCC 0.0359∗∗∗

(0.01)
βDCC 0.9421∗∗∗

(0.01)
LogL −7674.29
Q(5) 12.40

[0.90]
Q2(5) 21.92

[0.29]

Notes: Subscripts s and b refer to stock and bond market returns’ equation, respectively. The subscripts
ss (bb) denote coefficients referring to stock and bond market return’s own past, while sb (bs) denotes
the spillovers coefficients. Moreover, the superscript dl for l = 1, 2, 3 stands for the shifts in spillover
coefficients in related crisis periods. Heteroscedasticity-robust standard errors are given in parentheses.
Q(p) andQ2(p) are the multivariate Hosking (1981) test for pth order serial autocorrelation in standardised
and squared standardised residuals, respectively. The related p-values are reported in squared brackets.
∗∗∗ Significant at 1%
∗∗ Significant at 5%
∗ Significant at 10%
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Table A.23: Results of the bivariate VAR-UEDCC-AGARCH estimation: Norway

Mean Equation Variance Equation

µs 0.0668∗∗∗

(0.01)
ψsb,1 ωs 0.0500∗∗∗

(0.01)
αsb αbs

µb 0.0039
(0.00)

ψd1
sb,1 ωb 0.0033∗∗∗

(0.00)
αd1
sb αd1

bs

ψss,1 ψd2
sb,1 αss 0.0330∗∗∗

(0.01)
αd2
sb αd2

bs

ψbb,1 0.1034∗∗∗

(0.01)
ψd3
sb,1 αbb 0.0665∗∗∗

(0.01)
αd3
sb αd3

bs

ψbs,1 βss 0.8747∗∗∗

(0.01)
βsb βbs

ψd1
bs,1 βbb 0.9063∗∗∗

(0.02)
βd1
sb 0.2728∗∗

(0.12)
βd1
bs

ψd2
bs,1 −0.0407∗∗

(0.02)
γss 0.1142∗∗∗

(0.02)
βd2
sb βd2

bs

ψd3
bs,1 −0.0172∗

(0.01)
γbb βd3

sb −0.1294∗∗∗

(0.04)
βd3
bs

αDCC 0.0176
(0.01)

βDCC 0.9703∗∗∗

(0.03)
LogL −7862.10
Q(5) 18.14

[0.58]
Q2(5) 20.46

[0.37]

Notes: Subscripts s and b refer to stock and bond market returns’ equation, respectively. The subscripts
ss (bb) denote coefficients referring to stock and bond market return’s own past, while sb (bs) denotes
the spillovers coefficients. Moreover, the superscript dl for l = 1, 2, 3 stands for the shifts in spillover
coefficients in related crisis periods. Heteroscedasticity-robust standard errors are given in parentheses.
Q(p) andQ2(p) are the multivariate Hosking (1981) test for pth order serial autocorrelation in standardised
and squared standardised residuals, respectively. The related p-values are reported in squared brackets.
∗∗∗ Significant at 1%
∗∗ Significant at 5%
∗ Significant at 10%
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Table A.24: Results of the bivariate VAR-UEDCC-AGARCH estimation: Sweden

Mean Equation Variance Equation

µs 0.0332∗∗∗

(0.01)
ψsb,1 ωs 0.0111∗∗

(0.01)
αsb αbs

µb 0.0019
(0.00)

ψd1
sb,1 ωb 0.0022∗∗∗

(0.00)
αd1
sb αd1

bs

ψss,1 −0.0312∗∗

(0.01)
ψd2
sb,1 αss αd2

sb αd2
bs

ψbb,1 0.0930∗∗∗

(0.02)
ψd3
sb,1 αbb 0.0527∗∗∗

(0.01)
αd3
sb αd3

bs

ψbs,1 βss 0.9252∗∗∗

(0.01)
βsb 0.2495∗∗∗

(0.10)
βbs

ψd1
bs,1 βbb 0.9279∗∗∗

(0.01)
βd1
sb βd1

bs

ψd2
bs,1 γss 0.1135∗∗∗

(0.02)
βd2
sb βd2

bs 0.0007∗

(0.00)
ψd3
bs,1 γbb βd3

sb −0.1656∗∗∗

(0.05)
βd3
bs

αDCC 0.0280∗∗∗

(0.01)
βDCC 0.9629∗∗∗

(0.01)
LogL −8222.09
Q(5) 17.25

[0.64]
Q2(5) 23.95

[0.20]

Notes: Subscripts s and b refer to stock and bond market returns’ equation, respectively. The subscripts
ss (bb) denote coefficients referring to stock and bond market return’s own past, while sb (bs) denotes
the spillovers coefficients. Moreover, the superscript dl for l = 1, 2, 3 stands for the shifts in spillover
coefficients in related crisis periods. Heteroscedasticity-robust standard errors are given in parentheses.
Q(p) andQ2(p) are the multivariate Hosking (1981) test for pth order serial autocorrelation in standardised
and squared standardised residuals, respectively. The related p-values are reported in squared brackets.
∗∗∗ Significant at 1%
∗∗ Significant at 5%
∗ Significant at 10%
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Table A.25: Results of the bivariate VAR-UEDCC-AGARCH estimation: Switzerland

Mean Equation Variance Equation

µs 0.0197∗

(0.01)
ψsb,2 ωs 0.0310∗∗∗

(0.00)
αsb αbs 0.0002∗∗

(0.00)
µb 0.0049

(0.00)
ψd1
sb,2 ωb 0.0016∗∗∗

(0.00)
αd1
sb αd1

bs 0.0008∗∗

(0.00)
ψss,1 ψd2

sb,2 0.4635∗

(0.26)
αss 0.0217∗

(0.01)
αd2
sb 0.3379∗∗

(0.15)
αd2
bs 0.0018∗∗

(0.00)
ψss,3 −0.0357∗∗

(0.01)
ψd3
sb,2 αbb 0.0193∗∗

(0.01)
αd3
sb αd3

bs 0.0030∗∗∗

(0.00)
ψbb,1 0.0406∗∗∗

(0.01)
ψbs,2 βss 0.8794∗∗∗

(0.01)
βsb βbs

ψbb,3 0.0302∗∗

(0.01)
ψd1
bs,2 βbb 0.9374∗∗∗

(0.01)
βd1
sb βd1

bs

ψd2
bs,2 γss 0.1375∗∗∗

(0.02)
βd2
sb βd2

bs

ψd3
bs,2 γbb 0.0305∗∗∗

(0.01)
βd3
sb βd3

bs −0.0024∗∗∗

(0.00)
αDCC 0.0322∗∗∗

(0.01)
βDCC 0.9511∗∗∗

(0.01)
LogL −6379.35
Q(5) 26.27

[0.16]
Q2(5) 16.99

[0.59]

Notes: Subscripts s and b refer to stock and bond market returns’ equation, respectively. The subscripts
ss (bb) denote coefficients referring to stock and bond market return’s own past, while sb (bs) denotes
the spillovers coefficients. Moreover, the superscript dl for l = 1, 2, 3 stands for the shifts in spillover
coefficients in related crisis periods. Heteroscedasticity-robust standard errors are given in parentheses.
Q(p) andQ2(p) are the multivariate Hosking (1981) test for pth order serial autocorrelation in standardised
and squared standardised residuals, respectively. The related p-values are reported in squared brackets.
∗∗∗ Significant at 1%
∗∗ Significant at 5%
∗ Significant at 10%
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Table A.26: Results of the bivariate VAR-UEDCC-AGARCH estimation: United
Kingdom

Mean Equation Variance Equation

µs 0.0088
(0.01)

ψsb,1 0.1453∗∗∗

(0.05)
ωs −0.0008

(0.01)
αsb αbs

µb 0.0032
(0.00)

ψd1
sb,1 0.3149∗

(0.18)
ωb 0.0007∗∗∗

(0.00)
αd1
sb αd1

bs 0.0049∗∗∗

(0.00)
ψss,1 −0.0443∗∗∗

(0.01)
ψd2
sb,1 0.5608∗∗∗

(0.21)
αss αd2

sb αd2
bs

ψss,2 ψd3
sb,1 −0.1193∗

(0.06)
αbb 0.0191∗∗∗

(0.00)
αd3
sb αd3

bs 0.0008∗∗

(0.00)
ψbb,1 0.0286∗∗

(0.01)
ψbs,1 βss 0.8765∗∗∗

(0.01)
βsb 0.3432∗∗∗

(0.09)
βbs

ψbb,2 −0.0225
(0.01)

ψd1
bs,1 0.0280∗∗

(0.01)
βbb 0.9736∗∗∗

(0.00)
βd1
sb βd1

bs −0.0044∗∗

(0.00)
ψd2
bs,1 γss 0.1749∗∗∗

(0.02)
βd2
sb βd2

bs 0.0005∗∗

(0.00)
ψd3
bs,1 0.0237∗∗

(0.01)
γbb βd3

sb −0.1494∗∗∗

(0.04)
βd3
bs

αDCC 0.0368∗∗∗

(0.01)
βDCC 0.9511∗∗∗

(0.02)
LogL −7537.31
Q(5) 27.52

[0.12]
Q2(5) 22.58

[0.26]

Notes: Subscripts s and b refer to stock and bond market returns’ equation, respectively. The subscripts
ss (bb) denote coefficients referring to stock and bond market return’s own past, while sb (bs) denotes
the spillovers coefficients. Moreover, the superscript dl for l = 1, 2, 3 stands for the shifts in spillover
coefficients in related crisis periods. Heteroscedasticity-robust standard errors are given in parentheses.
Q(p) andQ2(p) are the multivariate Hosking (1981) test for pth order serial autocorrelation in standardised
and squared standardised residuals, respectively. The related p-values are reported in squared brackets.
∗∗∗ Significant at 1%
∗∗ Significant at 5%
∗ Significant at 10%
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Table A.27: Results of the bivariate VECM-UEDCC-AGARCH estimation: United
States

Mean Equation Variance Equation

µs 0.0300∗∗∗

(0.01)
ψsb,1 ωs 0.0144∗∗∗

(0.00)
αsb αbs 0.0010∗∗∗

(0.00)
µb 0.0042

(0.01)
ψd1
sb,1 0.2618∗∗

(0.11)
ωb 0.0015∗∗∗

(0.00)
αd1
sb αd1

bs 0.0088∗∗

(0.00)
ψss,1 −0.0479∗∗∗

(0.01)
ψd2
sb,1 αss αd2

sb 0.2870∗∗

(0.13)
αd2
bs

ψbb,1 ψd3
sb,1 −0.0661∗

(0.04)
αbb 0.0272∗∗∗

(0.00)
αd3
sb αd3

bs 0.0034∗∗∗

(0.00)
ηss −0.1303∗∗

(0.05)
ψbs,1 βss 0.8958∗∗∗

(0.01)
βsb 0.0791∗∗∗

(0.03)
βbs

η∗ss ψd1
bs,1 βbb 0.9590∗∗∗

(0.00)
βd1
sb βd1

bs −0.0065∗

(0.00)
ηbb ψd2

bs,1 γss 0.1530∗∗∗

(0.01)
βd2
sb βd2

bs

η∗bb ψd3
bs,1 γbb βd3

sb −0.0430∗∗∗

(0.01)
βd3
bs −0.0031∗∗∗

(0.00)
αDCC 0.0467∗∗∗

(0.00)
βDCC 0.9446∗∗∗

(0.01)
LogL −8439.24
Q(5) 26.68

[0.14]
Q2(5) 27.13

[0.10]

Notes: Subscripts s and b refer to stock and bond market returns’ equation, respectively. The subscripts
ss (bb) denote coefficients referring to stock and bond market return’s own past, while sb (bs) denotes
the spillovers coefficients. Moreover, the superscript dl for l = 1, 2, 3 stands for the shifts in spillover
coefficients in related crisis periods. Heteroscedasticity-robust standard errors are given in parentheses.
Q(p) andQ2(p) are the multivariate Hosking (1981) test for pth order serial autocorrelation in standardised
and squared standardised residuals, respectively. The related p-values are reported in squared brackets.
∗∗∗ Significant at 1%
∗∗ Significant at 5%
∗ Significant at 10%
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Table A.28: Results of the bivariate VECM-UEDCC-AGARCH estimation: Canada

Mean Equation Variance Equation

µs 0.0361∗∗∗

(0.01)
ψsb,1 0.0651∗∗

(0.03)
ωs 0.0122∗∗∗

(0.00)
αsb αbs

µb 0.0040
(0.00)

ψd1
sb,1 ωb 0.0016∗∗∗

(0.00)
αd1
sb αd1

bs 0.0009∗∗

(0.00)
ψss,1 0.0476∗∗∗

(0.02)
ψd2
sb,1 αss αd2

sb αd2
bs

ψbb,1 ψd3
sb,1 αbb 0.0392∗∗∗

(0.01)
αd3
sb αd3

bs

ηss ψbs,1 βss 0.9351∗∗∗

(0.01)
βsb βbs

η∗ss −0.3803∗∗

(0.18)
ψd1
bs,1 βbb 0.9489∗∗∗

(0.01)
βd1
sb βd1

bs

ηbb ψd2
bs,1 γss 0.1003∗∗∗

(0.01)
βd2
sb βd2

bs

η∗bb ψd3
bs,1 γbb βd3

sb −0.0361∗∗∗

(0.01)
βd3
bs

αDCC 0.0301∗∗∗

(0.01)
βDCC 0.9603∗∗∗

(0.01)
LogL −7202.53
Q(5) 23.72

[0.26]
Q2(5) 16.37

[0.63]

Notes: Subscripts s and b refer to stock and bond market returns’ equation, respectively. The subscripts
ss (bb) denote coefficients referring to stock and bond market return’s own past, while sb (bs) denotes
the spillovers coefficients. Moreover, the superscript dl for l = 1, 2, 3 stands for the shifts in spillover
coefficients in related crisis periods. Heteroscedasticity-robust standard errors are given in parentheses.
Q(p) andQ2(p) are the multivariate Hosking (1981) test for pth order serial autocorrelation in standardised
and squared standardised residuals, respectively. The related p-values are reported in squared brackets.
∗∗∗ Significant at 1%
∗∗ Significant at 5%
∗ Significant at 10%
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Table A.29: Results of the bivariate VECM-UEDCC-AGARCH estimation: Japan

Mean Equation Variance Equation

µs 0.0023
(0.02)

ψsb,1 ωs 0.0466∗∗∗

(0.01)
αsb αbs

µb 0.0090∗∗∗

(0.00)
ψd1
sb,1 ωb 0.0005∗∗∗

(0.00)
αd1
sb αd1

bs

ψss,1 0.0516∗∗∗

(0.01)
ψd2
sb,1 1.7926∗∗∗

(0.62)
αss 0.0241∗∗∗

(0.00)
αd2
sb αd2

bs

ψbb,1 ψd3
sb,1 αbb 0.0662∗∗∗

(0.01)
αd3
sb αd3

bs

ηss −0.1261∗

(0.06)
ψbs,1 −0.0069∗∗

(0.00)
βss 0.8752∗∗∗

(0.01)
βsb 0.2095∗∗∗

(0.08)
βbs 0.0003∗∗

(0.00)
η∗ss 0.1914∗

(0.12)
ψd1
bs,1 0.0211∗∗∗

(0.01)
βbb 0.9053∗∗∗

(0.01)
βd1
sb βd1

bs

ηbb ψd2
bs,1 0.0111

(0.01)
γss 0.1285∗∗∗

(0.01)
βd2
sb βd2

bs −0.0003∗

(0.00)
η∗bb ψd3

bs,1 0.0140∗∗∗

(0.00)
γbb 0.0364∗∗

(0.02)
βd3
sb βd3

bs −0.0004∗∗∗

(0.00)
αDCC 0.0259∗∗∗

(0.01)
βDCC 0.9684∗∗∗

(0.01)
LogL −6167.41
Q(5) 12.31

[0.91]
Q2(5) 22.90

[0.24]

Notes: Subscripts s and b refer to stock and bond market returns’ equation, respectively. The subscripts
ss (bb) denote coefficients referring to stock and bond market return’s own past, while sb (bs) denotes
the spillovers coefficients. Moreover, the superscript dl for l = 1, 2, 3 stands for the shifts in spillover
coefficients in related crisis periods. Heteroscedasticity-robust standard errors are given in parentheses.
Q(p) andQ2(p) are the multivariate Hosking (1981) test for pth order serial autocorrelation in standardised
and squared standardised residuals, respectively. The related p-values are reported in squared brackets.
∗∗∗ Significant at 1%
∗∗ Significant at 5%
∗ Significant at 10%
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Table A.30: Results of the bivariate VAR-UEDCC-AGARCH estimation: Australia

Mean Equation Variance Equation

µs 0.0255∗∗∗

(0.01)
ψsb,1 ωs 0.0123∗∗∗

(0.00)
αsb αbs

µb 0.0019
(0.01)

ψd1
sb,1 ωb 0.0014∗∗∗

(0.00)
αd1
sb αd1

bs

ψss,1 ψd2
sb,1 αss αd2

sb 0.6305∗∗∗

(0.15)
αd2
bs 0.0014∗

(0.00)
ψbb,1 −0.0699∗∗∗

(0.01)
ψd3
sb,1 αbb 0.0331∗∗∗

(0.01)
αd3
sb αd3

bs

ψbs,1 −0.0214∗∗

(0.01)
βss 0.9224∗∗∗

(0.01)
βsb βbs

ψd1
bs,1 0.0434∗∗

(0.02)
βbb 0.9611∗∗∗

(0.01)
βd1
sb βd1

bs

ψd2
bs,1 0.0810∗∗

(0.04)
γss 0.1183∗∗∗

(0.02)
βd2
sb −0.4502∗∗∗

(0.13)
βd2
bs

ψd3
bs,1 0.0361∗∗

(0.02)
γbb βd3

sb βd3
bs

αDCC 0.0359∗∗∗

(0.01)
βDCC 0.9557∗∗∗

(0.01)
LogL −7997.95
Q(5) 22.63

[0.31]
Q2(5) 21.06

[0.33]

Notes: Subscripts s and b refer to stock and bond market returns’ equation, respectively. The subscripts
ss (bb) denote coefficients referring to stock and bond market return’s own past, while sb (bs) denotes
the spillovers coefficients. Moreover, the superscript dl for l = 1, 2, 3 stands for the shifts in spillover
coefficients in related crisis periods. Heteroscedasticity-robust standard errors are given in parentheses.
Q(p) andQ2(p) are the multivariate Hosking (1981) test for pth order serial autocorrelation in standardised
and squared standardised residuals, respectively. The related p-values are reported in squared brackets.
∗∗∗ Significant at 1%
∗∗ Significant at 5%
∗ Significant at 10%

55


	Non-technical summary
	Nicht-technische Zusammenfassung
	1 Introduction
	2 Data description and preliminary analysis
	3 The econometric methodology
	3.1 Modelling the mean equation
	3.2 Modelling volatility spillovers

	4 Empirical results
	4.1 Cointegration test results
	4.2 Return spillover results
	4.3 Volatility spillover results
	4.4 Dynamic conditional correlations
	4.5 Economic implications of volatility spillovers

	5 Conclusion
	References
	A Appendix
	Leere Seite
	Leere Seite
	Leere Seite
	Leere Seite



