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Non-technical summary

Research question:
Since the influential paper of Stock and Watson (2002), the dynamic factor model (DFM)
has been widely used to forecast macroeconomic key variables such as GDP. The DFM is
capable of summarizing a huge number of indicators containing macroeconomic, financial
and survey data in a small number of factors. This strong advantage of the DFM enables
econometricians to overcome the restriction of dimensionality faced by the usual vector
autoregressive models.

The DFM also has some weaknesses, however. Three refinements have been considered
in recent literature. Because of publication lags regarding macroeconomic key variables,
GDP for example, it is necessary to estimate current values for the corresponding quarter
(nowcasting) and also to estimate past values (unknown yet) for the preceding quarter.
For now-casting, the dynamic factor model is modified by using the mixed data sam-
pling technique. The mixed data sampling technique is able to capture information from
high frequency (monthly) indicators in order to estimate low frequency (quarterly) key
variables. The second refinement uses pre-selection methods to optimally choose a small
number of indicators from a large number of indicators. This kind of pre-selection im-
proves efficiency when extracting factors by applying principal component analysis. This
pre-selected set of indicators (called targeted indicators in the literature) is able to avoid
arbitrariness by choosing a very large number of initial indicators. The third refinement
takes into account the non-stationarity of macroeconomic variables, which was completely
ignored by the DFM. The error correction mechanism models the co-integrating relation-
ship between the key variables and factors, and thus captures not only the short-run
dynamics, which is the case for the DFM, but also the long-run dynamics of the non-
stationary macroeconomic variables.

Contribution:
This paper proposes a forecasting model using targeted mixed-frequency indicators which
includes three refinements to the dynamic factor model, namely the mixed data sampling
technique, pre-selection methods and the error correction mechanism. These three tech-
niques have already been well considered by many authors, but the novelty of our model
is the combination of all three in a single model.

Results:
The empirical results based on euro area data show a superior nowcasting and forecasting
performance of our new model compared to that of the subset models, namely the DFM,
the DFM plus mixed data sampling, the DFM plus mixed data sampling and pre-selection.



Nichttechnische Zusammenfassung

Fragestellung:
Seit der Publikation von Stock und Watson (2002), fungiert das dynamische Faktormodel
(DFM) als eines der am häufigsten genutzten Prognosemodelle für makroökonomische
Variablen wie das Bruttoinlandsprodukt. Das DFM ist in der Lage, eine Vielzahl von
makroökonomischen, finanzwirtschaftlichen und Umfrage bezogenen Indikatoren in eine
kleine Anzahl von Faktoren zusammenzufassen. Dieser Vorteil ermöglicht, die Dimensi-
onsrestriktion der vektorautoregressiven Modelle aufzuheben.

Das DFM hat aber seinerseits auch einige Schwächen. Drei Schwächen und deren
Verbesserungsvorschläge werden in der Fachliteratur diskutiert. Wegen der Publikations-
verzögerung ist es notwendig, auch eine Schätzung für laufende Quartale (Nowcasting)
durchzuführen. Für das Nowcasting lässt sich das DFM mit Verwendung des gemischten
Frequenzen-Verfahrens (MIDAS) modifizieren. Dabei nutzt das MIDAS-Verfahren Infor-
mationen aus den höher frequentierten (monatlichen) Indikatoren für die Schätzung der
niedrig (quartal-) frequentierten Variablen aus. Die zweite Verbesserung besteht darin, ei-
ne kleine Anzahl von besonders aussagekräftigen Indikatoren vorab auszuwählen (Vorsor-
tierungsmethode). Diese Art von Vorsortierungen erhöht die Effizienz bei der Bestimmung
von Faktoren via Hauptkomponentenanalyse. Die dritte Verbesserung trägt der Nicht-
Stationarität der makroökonomischen Variablen Rechnung. Der Fehler-Korrektur-Term
berücksichtigt die Kointegrationsbeziehung zwischen der zu prognostizierenden Varia-
ble und den zu erklärenden Faktoren. Deshalb kann die Fehler-Korrektur-Modellierungen
nicht nur die kurzfristigen Dynamiken, sondern auch die langfristigen Dynamiken erfassen.

Beitrag:
In diesem vorliegenden Aufsatz wird ein Prognosemodell vorgeschlagen, das die drei oben
genannten Verbesserungen in sich vereinen kann.

Ergebnisse:
Die empirischen Ergebnisse basierend auf den aggregierten Euroraumdaten, die für die
ökonomischen Analysen und Prognosen bei der Bundesbank genutzt werden. Dabei zeigt
sich, dass das vorgeschlagene Prognosemodell eine signifikant höhere Güte als konkurrie-
rende Modelle hat.
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1 Introduction

Macroeconomic forecasting is one of the important tasks of both researchers and prac-
titioners. This is because forecasts serve as the basic information for economic policy
decisions. Recently, macroeconomic nowcasting1 has also become an important part of
forecasting practice. By performing nowcasting, the mixed data sampling (MIDAS) tech-
nique enables us to use information contained in high frequency indicators for forecasting
some macroeconomic low frequency key variables. We will come back to discuss this
modeling technique, but first review forecasting models in chronological order.

Since the seminal work of Engle and Granger (1987), the error correction model (ECM)
was one of the widely used forecasting models in the late 1980s and 1990s. The ECM is
useful for short-run forecasting,2 especially in times when the economic environment is
strongly above or below the equilibrium and tends to adjust towards it. Another strong
advantage of the ECM is that the short-run dynamics and long-run adjustment can be
captured separately. This property is useful for forecasters, because it gives them scope
for deeper economic interpretations of the development of the economic key variables.
This ECM is usually based on a framework of vector autoregression (VAR) which has
a drawback of a limited dimensionality, usually denoted the “curse of dimensionality
problem” in the literature.

Stock andWatson (2002) popularized the (approximate) dynamic factor model (DFM),
which has been widely used in empirical forecasting practice. One of the strongest ad-
vantages of the DFM is that it overcomes the dimensionality constraints of the VAR (and
VARECM). The DFM is capable of summarizing a large number of indicators in terms
of a small number of factors, which can be used for forecasting some economic key vari-
ables. However, the DFM in Stock and Watson (2002) is based on stationary data, ie,
an integration restriction is imposed by means of a first-difference operation when the
underlying macro variables (indicators) are non-stationary. This is one drawback of the
DFM, because the DFM cannot use the long-run information which can be only captured
by modeling the EC mechanism. Thus, the DFM and the ECM can be regarded as being
complementary to each other when they can be combined in a model. One more drawback
of the DFM is that it is merely assumed that factors obtained by the principle component
(PC) method have some explanatory power for the key variables to be forecast, see Stock
and Watson (2002). In other words, the DFM is based on the assumption that each of the
indicators in a large dataset has some significant explanatory power for the key variables.
This is, however, not always an adequate assumption in empirical applications.

1In the following, the word ‘forecasting’ is also used as a synonym or generic term for ‘nowcasting’,
unless they need to be distinguished from each other.

2Christoffersen and Diebold (1998) studied the implication of co-integration restriction for forecasting
and conclude that this is the opposite of the folk wisdom–it turns out that imposition of co-integrating
restrictions helps at short, but not long, horizons. · · · This is because the long-horizon forecast of the
error correction term is always 0. (The error correction term, by construction, is covariance station-
ary with a zero mean.) [Christoffersen and Diebold, 1988, Journal of Business & Economic Statistics,
p. 452] They correctly pointed out that this folk wisdom, namely that imposing co-integration would
help more in long-horizon forecasting, has arisen from the misinterpretation of the simulation results
in Engle and Yoo (1987), who compared forecasts from a VAR in levels (which impose neither integra-
tion nor co-integration) with forecasts from the co-integrated system (which impose both integration and
co-integration.) [Christoffersen and Diebold, 1988, Journal of Business & Economic Statistics, p. 455].
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To overcome these drawbacks of the DFM, refinements in two directions have been
considered in the literature. Bai (2004) considers the generalized dynamic factor model
(GDFM) with non-stationary factors and possible co-integration among them. Recently,
Banerjee et al. (2014, 2015) introduced the factor-augmented error correction model
(FECM) capturing the co-integrating relationship between factors and the key variables
to be forecast and demonstrate empirically the superior forecasting performance of the
FECM over the DFM. Their papers used both the dataset in Stock and Watson (2005)
for the US and the Euro Area Wide Model dataset of Fagan et al. (2001).

The other refinement focuses on a pre-selection of indicators. The choice of a large
dataset is usually based on the economic intuitions or/and the experiences of forecasters,
but a degree of arbitrariness cannot be avoided in the selection of a huge number of
indicators. In the framework of the DFM, Boivin and Ng (2006) study the relationship
between the dimension of the panel data and forecasting performance and conclude that
the factors extracted from as few as 40 series seem to do no worse, and in many cases,

better than the ones extracted from 147 series. Bai and Ng (2008) also argue that · · · the

dynamic factor model as it stands does not take into account the predictive ability of Xit

(indicators) for yt (key variables). Consequently, they proposed targeted indicators using
some pre-selection methods such as the least absolute shrinkage and selection operator
(lasso)3 and report improvements at all forecast horizons over the DFM using fewer but
informative indicators. In the framework of Bayesian shrinkage, De Mol et al. (2008)
showed that a wide range of prior choice leads to a forecasting performance that is as
good as the principal component (PC) method. This result supports the intuition that
a combination of some selection methods and the PC method could improve forecasting
performance of the DFM. Li and Chen (2014) also report in a slightly different regard4

on a significant improvement in forecasting performance based on the lasso regression as
compared with the DFM alone. Using the dynamic sparse partial least squares method
which selects an informative subset of indicators, Fuentes et al. (2015) demonstrate
empirically, based on the same database as Stock andWatson (2005), a better performance
in improving efficiency compared with that of the DFM.

One more modification can be achieved by adopting the mixed data sampling (MIDAS)
technique. Ghysels et al. (2004) and Ghysels et al. (2007) introduced this method to
explain low frequency variables using information contained in high frequency data. It
is a useful tool, especially for nowcastings when quarterly GDP, which is usually known
some weeks after the end of quarter, should be forecast in current quarters by means of
the monthly data available. Marcellino and Schumacher (2010), for example, combine the
DFM with the MIDAS technique for nowcasting German GDP. Götz et al. (2014) combine
the MIDAS technique with EC modeling and empirically demonstrate the usefulness of
the EC term in the MIDAS context.

In this paper, we introduce a factor error correction model using targeted mixed-
frequency indicators (which can be synonymously regarded as a lasso-based factor-
augmented mixed-frequency error correction model (LFMECM)), which takes into ac-

3Tibshirani (1996) introduced this method to obtain greater prediction accuracy and economic in-
terpretability for estimation in linear models. See the subsequent section for some details on the lasso
technique.

4They compare the forecasting performance of pooling forecasters based on the DFM and based on
the lasso regression without pooling
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count all three refinements of the DFM, namely the MIDAS technique, the pre-selection
method, and EC modeling. As will be shown, the GDFM of Bai (2004) is a basic element
of our LFMECM. The linkage between the possible explanatory power of the factors and
the key variables to be forecast will be reinforced using the lasso technique (Tibshirani,
1996), or rather, the elastic net (EN) (Zou and Hastie, 2005) at the beginning of modeling
our LFMECM. From the pre-selected panel data (targeted indicators), the PC method
will extract the long-run and short-run factors separately. The long-run factors will build
the EC term, while the short-run factors represent the short-run dynamics as processed
in the DFM by Stock and Watson (2002). Here, the long-run factors are estimated at
a quarterly frequency. The build-up of the short-run lags, however, is at a monthly fre-
quency, although our key variables to be forecast such as GDP are observed at a quarterly
frequency. The two different frequencies will be connected by the MIDAS technique.

The paper is organized as follows. Section 2 describes the LFMECM and its three
elements, the pre-selection methods (namely, the lasso and EN techniques), the DFM in
the framework of EC modeling and the MIDAS techniques. None of these elements is
new, each of them is well documented in the literature. What is novel in this paper is the
combination of these three elements in a single model. This combination can be justified,
as will be partially shown in the theoretical analysis, in the simulation study, and above
all in the empirical application, by the fact that each of the three elements contributes to
an improvement in the forecasting performance of the standard DFM. Section 3 presents
a simulation study to demonstrate how much the MIDAS and the ECM can be expected
to contribute to the forecasting performance. In this regard, the standard DFM by Stock
and Watson (2002) will serve as the benchmark model. In the empirical application based
on an euro-area dataset used for short-term macroeconomic analysis at the Deutsche
Bundesbank presented in section 4, we show how the pre-selection and estimation of the
long- and short-run factors work empirically and compare the nowcasting performance
of our LFMECM with that of the ‘subset’ models, namely the DFM plus the MIDAS
technique and the DFM plus the MIDAS technique and the lasso/EN. Section 5 provides
some more supplementary extensions and discussions on one-step ahead forecasting. It
also sketches out some asymptotic distributions of estimated parameters in the LFMECM.
Section 6 summarizes the paper.

2 The factor error correction model using targeted

mixed-frequency indicators: the lasso-based factor-

augmented mixed-frequency error correction model

(LFMECM)

The basic model of the LFMECM is the single equation error correction model (SEECM).
The SEECM was developed to capture a stable relationship between consumer expendi-
ture and income in the UK economic equilibrium by Davidson et al. (1978). Banerjee et
al. (1990) complete the dynamic SEECM for non-stationary variables by using a linear
transformation of the autoregressive-distributed lag model. The SEECM is a widely used
model in economic analysis, both in structural analysis and in forecasting practice. This
is because the SEECM is capable of capturing both the adjustment towards the economic
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equilibrium (a stable long-run relationship in level) and the short-run dynamics (in differ-
ence) and, hence, can reproduce economic equilibrium hypotheses in a statistical model.5

In terms of forecasting, the ECM is rather useful for short-horizon forecasting exercises—
this is the opposite of the folk wisdom as noted by Christorfferson and Diebold (1998).6

The structure of the LFMECM consists of the SEECM plus three further methodological
techniques: a pre-selection method, ie, the lasso and the EN method, extracting long-
and short-run targeted indicators via the PC method, the dynamic factor EC modeling,
and the MIDAS technique. In the next subsections, each of these methods will be briefly
summarized in the context of the LFMECM.

2.1 Pre-selection of indicators: the lasso and the elastic net

Lasso: The lasso technique, popularized by Tibshirani (1996), is used to estimate and
select variables simultaneously. Pre-selection can be achieved by minimizing the residual
sum of squares subject to the sum of the absolute value of the coefficients being less than
a threshold parameter. The lasso estimate by Tibshirani (1996) in penalized form is given
as:

βlasso = argminβ

{

1

2N

N
∑

i=1

(yi − xT
i β)

2 + θ
n

∑

j=1

|βj|
}

, (1)

where y (T × 1) is a key variable of interest, X (T × N) a panel of indicators, and n
the number of pre-selected indicators. The expression in (1) is the ordinary least squares
(OLS) with a L1-norm penalty multiplied by the lasso parameter, θ. This second term
serves as a selection mechanism to set some coefficients for indicators of little relevance
with respect to the GDP to zero in the panel data. As documented in many empirical
papers, for example Korobilis (2013) and Gefang (2014), this pre-selection improves fore-
casting accuracy and, at the same time, guarantees greater explanatory power for the
factors estimated from the (pre-selected) panel data for the key variables. Regarding the
DFM of Stock and Watson (2002), the lasso selects a set of targeted indicators in the sense
of Bai and Ng (2008) for forecasting a certain economic variable (GDP in our case). Be-
cause of the reinforcement of the correlation between GDP and the panel data, it justifies
the assumption of the approximate DFM of Stock and Watson (2002) that the estimated
factors have some explanatory power concerning the key variable to be forecast.7 The
lasso estimates in (1) have the oracle property (Fan and Li, 2001) by being given the nec-
essary condition (see Theorem 1, Zou, 2005), meaning that the lasso correctly detects the
sparse subset indicators and the lasso estimates follow asymptotic normality. Regarding
the determination of the lasso parameter, θ, Tibshirani (1996) proposes three methods via
minimizing the prediction errors regarding the response variable, y. Slightly differently,
we choose the optimal lasso parameter by minimizing historical forecasting MSE and/or

5See Banerjee et al. (2014) for empirical forecasting exercises; Engle and Yoo (1987), and Christorf-
ferson and Diebold (1998) for the ECM and forecasting; Kremers et al. (1992), Ericsson (1994), Banerjee
et al. (1999) for theoretical analysis of the SEECM.

6For this reason, our LFMECM focuses on now- and one-step ahead forecasting. Kurz-Kim (2008)
also concludes based on his simulation that the SEECM produces superior forecasts for short horizons,
but not for long horizons.

7Stock and Watson (2002, p. 148) merely assume existence of a causal relationship between the panel
data (without pre-selection) represented by factors and the key variable to be forecast.
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MAD in our empirical applications. In practice, the set of optimal indicators chosen by
the optimal lasso parameter is not restricted to be the same for every time period. Instead,
the indicators are selected at each forecasting point in time, and the forecasting equation
is re-estimated after new factors are estimated, as also recommended in Bai and Ng (2008).

Elastic net (EN): Zou and Hastie (2005) propose the EN, which can be regarded as
a ‘generalized’ lasso technique with regard to the penalty term whose extreme is either
lasso or ridge regression.8 The EN estimate is given as:

βen = argminβ

{

1

2N

N
∑

i=1

(

yi − xT
i β

)2
+ θ

[

n
∑

j=1

(

1− α

2
β2
j + α|βj|

)

]}

. (2)

The generalization of the lasso is carried out by the tuning parameter, α ∈ [0, 1]. For
α ∈ (0, 1), the penalty term interpolates between the L1- and L2-norm of β.9 The EN
is the same as the lasso in (1) when α = 1 and the ridge regression when α = 0. This
generalization has important advantages in empirical forecasting applications. Macroe-
conomic panel data often have the N>>T problem and high pairwise correlations of the
indicators in a group. For such cases, as pointed out in Zou and Hastie (2005), the length
of time dimension T would be the upper limit of the number of selected variables. In the
latter case, the lasso takes just one variable of the highly correlated variables instead of
a factor of the group. In our empirical application using the euro area panel data, these
two advantages of the EN play a useful role. We will come back to this topic later.

2.2 Long-run and short-run targeted indicators

Suppose that we have a set of non-stationary monthly panel data, XM
i,t , with the cross-

section dimension i = 1, . . . , N and the time domain dimension t = 1, . . . , TM . Moreover,
we have a non-stationary quarterly GDP, Y Q

t with t = 1, . . . , TQ which has to be forecast.
It is assumed that both of them (XM

i,t , Y
Q
t ) are non-stationary, where the symbols Q and

M stand for a quarterly and monthly frequency, respectively. Using the EN technique, we
now try to obtain a set of long-run targeted indicators and short-run targeted indicators.

In order to apply the EN technique to the (non-stationary) quarterly GDP series, we
transform the (non-stationary) monthly panel into quarterly panel. As usually recom-
mended in literature, we also take values of every last month in a quarter and regard
them as quarterly data, as XQ

it := Xi,1:3:T .
10 Using the EN technique in (2), where Y Q

t

(XQ
it ) is used as a variable on the left (right) hand side, we choose a subset of XQ

it as
our (long-run) targeted indicators for the (non-stationary) level of GDP. In order to ob-
tain a set of short-run targeted indicators, we simply use a difference operator and build
quarterly growth rates of endogenous and exogenous variables in (2) as: yQt := ∆Y Q

t and
xQ
it := ∆XQ

it . Using the EN technique in (2), where yQt (xQ
it) is used as a variable on the left

8See Hoerl and Kennard (1970) for the ridge regression.
9As will be shown in our empirical application, the best forecasting models in the sense of the mean-

squared forecasting error have usually an α ∈ (0, 1).
10The empirical reason for this choice shows a better forecasting performance of our model than other

possibilities such as mean value of three months in a quarter. Furthermore, from econometric point of
view this choice ensures the asymptotic nominal size of tests for co-integration in the presence of mixed
sampling frequencies and temporal aggregation. See also subsection 5.3 for more discussions on this topic.
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(right) hand side, we first choose a subset of xQ
it (quarterly difference) and determine xM

it

(monthly difference) as our targeted (short-run) indicators for the (stationary) difference
of GDP.

This means that the stationary regressors in our model are not the differenced non-
stationary factors, but factors derived from the differenced non-stationary (and, hence,
stationary) panel data. The theoretical reason for this is that the sum of a short-run factor
is not equal to the corresponding long-run factor, when the innovation process as a linear
combination of the panel data and their factors is I(1)-process. See Bai and Ng (2004) for
more details on this topic. The empirical reason for this is that, as will be shown in our
empirical applications, the subset of targeted long-run indicators is usually different to
that of targeted short-run indicators. Furthermore, it is also economic intuition that some
economic variables relate more to long-run dynamics, others more to short-run dynamics
of GDP.11

2.3 Dynamic factor EC modeling

Our starting point is the GDFM of Bai (2004):

XM
i,t = Ai(L)F

M
t + ei,t

FM
t = FM

t−1 + ǫt,

where Ai(L) is a vector of polynomials of the lag operator; each of ei,t and ǫt is a stationary
zero-mean vector process. In this model, the partial sum of errors drives the factors
and, therefore, factors are non-stationary. These non-stationary factors as common trend
again drive (ie, are causal to) each of the variables in the panel data. Furthermore, the
relationship between XM

i,t and FM
t is also dynamic.

Y Q
t = Aj(L)F

Q
jt + et

FQ
jt = FQ

j,t−1 + ǫjt.

Now, consider a factor augmented autoregressive model with exogenous variables
(FARX) which contains the generalized dynamic component of factors in the sense of
Bai (2004), and the dynamic component of endogenous variable in the sense of Stock and
Watson (2002), as:

Y Q
t

=
P+1
∑

p=1

bpY
Q
t−p

+

Qj+1
∑

q=0

aqjF
Q
j,t−qj

+ u
t

(3)

The equation in (3) can be now transformed in the SEECM without any change in
the residual structures of the FARX.12 Using yQt := ∆Y Q

t and fQ
jt := ∆FQ

jt , the SEECM
can be given as:

yQ
t
= b[Y Q

t−1
− βF

t−1
]−

P
∑

p=1

b
p
yQ
t−1

+

Qj
∑

qj=0

a
qj
f
jt−qj

+ u
t

(4)

11In the context of the co-integration analysis, they are usually defined as permanent and transitory
components. See, for more details, Cochrane (1994).

12For this transformation, see Davisdson et al. (1978) and Banerjee et al. (1990).
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where b =
∑P

p=1 bp−1 the loading parameter for the error correction term; β =
∑J

j=1

∑Qj

q=0 aqj/b
the co-integrating parameter for the estimated regressors (long-run factors); P is the or-
der of lagged endogenous variables; Qj is the order of j-th lagged exogenous variables;
J is the number of exogenous variables (usually symbolized by r in the frame of factor
models.)13

In the next step, we substitute fQ
jt = ∆FQ

jt with fM
jt in the following factor expression:

yMt = aj(L)f
M
jt + zt

fM
jt = fM

j,t−1 + εjt,

where yMt are the unobservable monthly changes in GDP and fM
jt are the short-run factors

derived from the monthly short-run indicators xM
it .

Remark (a): The error correction term can be regarded as the static factor model (Bai,
2004, p. 139):

xl
it =

r(l)
∑

j=1

λijf
l
jt + elit

f l
t = f l

t−1 + ǫlt,

where elit is a stationary error process and ǫlt is a (r×1)-dimensional stationary zero-mean
vector process.

Substituting xl
it with yt, we get a factor augmented ECM system that is exactly the

same (up to the factor augmentation) as the triangular ECM, introduced by Phillips
(1991, Econometrica, p. 286) as

yt =

r
∑

j=1

βj f̂
l
jt + et (5)

f̂ l
t = f̂ l

t−1 + εlt, (6)

where βj is a (1 × r) matrix of co-integrating coefficients.14 Phillips (1991) interprets
(5) as a stochastic version of the linear equilibrium relationship, where et represents the
stationary deviation from equilibrium. We will use this triangular ECM in our empirical
application in order to calculate departures from the economic equilibrium for our EC
term in (4). We will come back to this issue later.

13An example of this ECM transformation is given by setting P = 1;Q = 0; J = 1 as follows:

Y Q
t

= b
1
Y Q

t−1
+ b

2
Y Q

t−2
+ a

0
FQ

t
+ a

1
FQ

t−1
+ u

t

Y Q
t

− Y Q
t−1

= −Y Q
t−1

+ b
1
Y Q

t−1
+ b

2
Y Q

t−1
− b

2
Y Q

t−1
+ b

2
y
t−2

+ a
0
FQ

t−1
− a

0
FQ

t−1
+ a

0
FQ

t−1
− a

1
FQ

t−1
+ u

t

yQ
t

= (b
1
+ b

2
− 1)Y Q

t−1
− b

2
yQ
t−1

+ a
0
fQ
t

+ (a
0
+ a

1
)fQ

t−1
+ u

t

yQ
t

= b[Y Q
t−1

− βF
t−1

]− b
1
yQ
t−1

+ a
0
f
t
+ u

t

Analogously, arbitrarily higher lag orders for both endogenous and exogenous variables of the FARX and
the number of exogenous variables as well can be transformed in SEECM.

14We set the dimension of yt to one. This is because we can forecast only a single variable with one
dataset which was chosen in relation to yt by the lasso technique.
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Remark (b): According to Corollary 1 of Theorem 3 in Bai and Ng (2006) and the analyt-
ical results of Banerjee et al. (2014), the forecasting error of models with a co-integrating
term is smaller than that of models without a co-integrating term (the difference amount
to the product of the squared loading parameter plus the squared error correction term),
when there exists a stable long-run relationship among the variables involved.

2.4 Mixed frequency in the framework of ECM

In order to be able to nowcast, we introduce the MIDAS technique regarding the short-
run dynamics of exogenous variables (the short-run factors). In order to incorporate
EC modeling into the MIDAS technique in a slightly different way from the usual EC
modeling, we derive the (stationary) short-run factors from the differenced non-stationary
panel data, instead of using the differenced (non-stationary) long-run factors as discussed
above. The static error correction term still remains as a static, quarterly relationship
between GDP and the long-run factors, but the short-run dynamics of exogenous variables
are now disaggregated, or rather, used at a monthly frequency as derived from the monthly
indicators.15 Combining this MIDAS technique, the final form of our LFMECM is given
as:

yQ
t
= b



Y Q
t−1 −

rl
∑

k=1

βkF
Q
k,t−1



+

p
∑

i=1

biy
Q
t−i +

rs
∑

k=1

q
k

∑

j=0

2
∑

m=0

akjmf
M
k,t−j−m/3 + uQ

t , (7)

where yQ are changes in quarterly GDP; rl the optimal number of long-run factors–in
the sense of Bai (2004); FQ

k the k-th long-run factor; rl the optimal number of short-run
factors–in the sense of Bai and Ng (2002); fM

k,t−j−m/3 the j-th lag with the m-th month

of the k-th short-run factor. Using the LFMECM in (7), we now- and forecast quarterly
growth rates of GDP by means of i) a quarterly EC term taken from the quarterly non-

stationary factors (yQt−1 − ∑rl

k=1 βkF
Q
k,t−1) multiplied by its loading parameter, b; ii) p

times of quarterly lagged endogenous variables (
∑p

i=1 biy
Q
t−i); iii)

∑rs

k=1

∑q
k

j=0 1 × 3 times

of each monthly lagged exogenous variables (
∑rs

k=1

∑q
k

j=0

∑2
m=0 akjmf

M
k,t−j−m/3); and iv) a

disturbance term (uQ
t ) with the usual zero-mean normality assumption. In our forecasting

practice, we use unrestricted MIDAS, ie, every lag of monthly data has to be estimated.
In general, this unrestricted MIDAS suffers from parameter proliferation for samples of
a relatively small size. The reason for using the unrestricted MIDAS are, however, two-
fold: as will be shown, the optimal number of short-run factors for our stationary panel
as determined by the criteria in Bai and Ng (2002) is one. Therefore, the number of
terms having to be estimated is not large, so that the advantage of efficiency offered by
unrestricted MIDAS outweighs the disadvantage of parameter proliferation. The second
and perhaps more important reason is a practical one. An estimated unrestricted model
gives forecasters a clearer understanding of the changes and contributions of each monthly
lag with respect to the now-/forecasting values. This will, therefore, enable us to better
interpret our now-/forecasts.

15Götz et al. (2014) propose an error correction model using the MIDAS technique. Despite the
unconventional concept of a dynamic co-integrating relationship, they show that their model produces a
better forecasting performance than models without a error correction term.
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3 A simulation study

To check the possible improvement in forecasting performance brought about by MIDAS
and EC modeling, we conduct a Monte-Carlo simulation. For this purpose, we generate a
co-integrating relationship directly from a set of three (non-stationary) factors which are
assumed to be given. This means that the pre-selection is not considered in the simulation
study.16 Consequently, our benchmark model is the DFM for this simulation study which
is compared with the MDFM (DFM with the MIDAS technique only), the FECM (DFM
with the EC technique only) and the FMECM (DFM with both the MIDAS and the EC
technique).

Data generating process: The data generating process is the triangular system intro-
duced by Phillips (1991), which has a very similar structure to the GDFM given by Bai
(2004). Under the assumption of a stable long-run relationship among the non-stationary
variables (GDP and the factors in our case), the data generating process is given as:17

Yt =
r

∑

i=1

βiFit + u
0t
, t = 1, . . . , TM

Fit = F
i,t−1

+ u
it
,

with











u
0t

u
1t

...
u

rt











:= ut = et +
∑∞

j=1
m

j
e
t−j

, et ∼ iid N(0,Σ). Furthermore, we construct a

pseudo quarterly time series as Y Q
t = Y{t,1:3:TM}, t = 1, . . . , TQ.

Simulation design: To generate samples based on the SEECM in (4), we set a number
of factors, r = 3, length of factors, TM = 259 (hence, TQ = 87) for the sake of empirical
relevance, co-integrating parameters, β1 = β2 = β3 = 1 without any loss of generality,

Σ =









1 0.75 0.5 −0.25
0.75 1 0 0
0.5 0 1 0
−0.25 0 0 1









, j = 1; m
1
= −0.25 × I4. The four forecasting

models, DFM MDFM and FECM, are given as:

yQ
t
=

p
∑

i=1

biy
Q
t−i +

rs
∑

k=1

q
k

∑

j=0

akjf
M
k,t−j + uQ

t ; (8)

yQ
t
=

p
∑

i=1

biy
Q
t−i +

rs
∑

k=1

q
k

∑

j=0

2
∑

m=0

akjmf
M
k,t−j−m/3 + uQ

t ; (9)

16One reason for excluding a pre-selection in this way is the intractability of constructing a data
generating process which reflects our empirical data appropriately. A more important reason is the
indifference of a possible pre-selection regarding the comparison of forecasting performance among the
four models examined in our simulation.

17See also Phillips and Hansen (1990) for a comparison of the data generating process.
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yQ
t
= b



Y Q
t−1 −

rl
∑

k=1

βkF
Q
k,t−1



+

p
∑

i=1

biy
Q
t−i +

rs
∑

k=1

q
k

∑

j=0

akjf
M
k,t−j + uQ

t , (10)

yQ
t
= b



Y Q
t−1 −

rl
∑

k=1

βkF
Q
k,t−1



+

p
∑

i=1

biy
Q
t−i +

rs
∑

k=1

q
k

∑

j=0

2
∑

m=0

akjmf
M
k,t−j−m/3 + uQ

t , (11)

respectively. The model in (8) is the popular model proposed in Stock and Watson. The
model in (9) is used in Marcellino and Schumacher (2010). The model in (10) is introduced
in Banerjee et al. (2014, 2015). The model in (11) seems to be exactly the same as that
in (7), but each of the long- and short-run factors in (7) is taken from a set of targeted
indicators (via a pre-selection), while those in (11) are not. For specification of the four
forecasting models, we set the lag order of the three exogenous variables (pseudo factors)
to q1 = q2 = q3 = 4. We perform a recursive one-step ahead out of sample forecasting
with tstart = 51. Consequently, we collect 27 forecasters from each of the four forecasting
models. 10,000 replications were made.

Simulation results: The simulation results are summarized in Table 1 and in Figure
1. The numbers in Table 1 are the average of the 10,000 root mean-squared forecasting
errors (RMSFEs or MSEs for short) and mean absolute deviation (MAD). Each statistic
(MSE and MAD) is calculated from the 27 one-step ahead forecasters which are generated
by the four forecasting models.

Table 1. Forecasting performancea

Model DFM MDFM FECM MFECM
Statistics
MSE 3.59 3.12 2.31 1.44

(2.49) (2.17) (1.60)
MAD 2.84 2.46 1.82 1.10

(2.58) (2.24) (1.65)

aThe numbers in parentheses are ratios in comparison with the MFECM.

Table 1 shows that both the MF and the EC technique improve forecasting performance

and that the improvement brought about by the EC mechanism is greater than that of the

MF technique. The clear superiority of forecasting performance via the EC technique was

expected, because a co-integrating relationship is assumed in the data generating process.

In other words, if there exists a stable long-run relationship between the macroeconomic

key variables (GDP in our case) and the factors in the real economy, ignoring a co-

integration restriction in the building of forecasting models would lead to systematic

10



larger forecasting errors.18 More detailed information on the forecasting performance of

the four models can be found in a distribution of the entire MSEs. Figure 1 shows the

distributions of the 10,000 MSEs generated by the four forecasting models.

Figure 1. Forecasting performance: MSE distributions
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As is clearly shown in Figure 1, the mean value of the distributions produced by the four

models becomes smaller when MIDAS and especially the EC technique is used (also shown

in Table 1). At the same time, the variance also becomes smaller, with the reduction in

variance brought about by the EC mechanism being larger (3rd panel) than that of the

MIDAS technique (2nd panel). Consequently, the MFECM has the smallest mean and

variance. The third moment for all four models is right-skewed because of the lower

limitation, and this is also the reason why distributions with a small mean seem to be

more right-skewed, which is the case for the LFMECM.

18Via Corollary 1 of Theorem 3 in Bai and Ng (2006, p. 1139), the h-step forecasting error is given

as N(0, σ2 + var(ŷT+h)). When the (correct) co-integration restriction is ignored, the h-step forecasting

error would be N(0, σ2 + var(ŷT+h)) + b2u2
EC , where b is the loading parameter for the EC term; and

uEC is the (ignored) EC term.
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4 An empirical application

As discussed in the previous section, the basic element of our LFMECM is the DFM of

Stock and Watson (2002) with three added refinements, namely the MIDAS, the lasso/EN

technique and the EC mechanism. Because of the complementary property of the added

elements, it is of course possible to construct a DFM by using one or some of them as

is already shown in our simulation study. In our empirical application, we include two

models for the purpose of comparing the forecasting performance which can be regarded as

subset models of the LFMECM. The three models (two subset models plus the LFMECM)

are listed as:

• Mixed-frequency dynamic factor model (MFM = DFM + MIDAS)

• Lasso-based mixed-frequency dynamic factor model (LMDFM = DFM + MIDAS

+ EN)

• Lasso-based mixed-frequency (dynamic factor) error correction model (LFMECM

= DFM + MIDAS + EN + ECM)

The DFM is not included as a competing model in our empirical comparison. This is

because the superiority of the MFM and the FECM is already well documented in the

literature and also in our simulation study. In line with the results of some recent papers

on this topic, each of the three elements, as will be shown in our empirical part, can

contribute to improving forecasting performance.19

4.1 Data

For our empirical application we use the euro area dataset used at the Deutsche Bun-

desbank for macroeconomic analysis and forecasting. The key variable of interest to be

forecast, the euro-area GDP, is aggregated, seasonally and calendar adjusted quarterly

data from 2000QI to 2016QI (TQ = 65, number of quarterly observations). The panel

data serving as a set of high frequency indicators consists of the 115 monthly time series

(N = 115, number of time series before pre-selection) and spans 2000M01 to 2016M03

(TM = 195, number of monthly observations).20 A large part of the panel data is euro-

area aggregated data, some of which are disaggregated national data such as industrial

production in Germany, France, Italy and Spain, for example. In the face of the data

19See Marcellino and Schumacher (2010) for the contribution of the MIDAS technique; Banerjee et al.

(2014, 2015) for that of the EC mechanism; and Bai and Ng (2008) for that of the lasso/EN technique.
20The dataset used for our nowcasting exercise is a final one, not a real-time data, ie, all revisions made

before 31 May 2016 have already been taken into account. Measurement of the influence of revisions

on relative forecasting accuracy is another issue and is presumably of little relevance in comparison to

forecasting performance.
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structure, namely TQ < N and high pairwise correlations of the indicators in a group,

the EN technique has more advantages than the lasso with respect to a pre-selection as

discussed in subsection 2.1. The whole dataset used in our empirical application is listed

in detail in Appendix A. Figure 1 shows the logarithm of euro-area GDP (upper panel)

and its quarterly growth rates (lower panel), where the growth rate for 2000QI is not

determined.

Figure 2. Euro-area GDP and its quarterly growth rates, 2000QI - 2016QI

2000 2002 2004 2006 2008 2010 2012 2014 2016
4.45

4.5

4.55

4.6

4.65

4.7

Lo
g(

G
D

P
)

Level of GDP

2000 2002 2004 2006 2008 2010 2012 2014 2016

−3

−2

−1

0

1

%

Changes of GDP

Quarterly GDP in the euro area grew at a steady rate of almost 0.5% up to 2008QII,

which was when the recent worldwide economic recession was triggered by the financial

crisis. The recovery was disturbed again by what was called the euro crisis. After that

(since 2013QII), the average monthly growth rate to date has been a little more than

0.3%. This tells us that a trend break occurred around the financial crisis. We will come

back to this issue later, when we estimate the EC term as departures from the long-run

equilibrium.
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4.2 Determination of model structure

4.2.1 Choice of lasso and tuning parameter

In empirical applications, we will usually have two sets of data. One of them contains only

non-stationary indicators, the other only stationary ones. The indicators in the former

data are allowed to be included in the latter data in difference. So far, we will have to

apply the lasso and the EN technique twice, namely to the long-run targeted indicators and

the short-run targeted indicators.21 The justification for those separate sets of non- and

stationary indicators is based on more economic intuition (than on statistical necessity).

It is usually assumed that some economic variables, such as industrial production, foreign

trade and number of employees, drive the long-run trend of GDP, while other economic

variables, such as financial variables and survey data are more a reflection of the short-

run dynamics of GDP.22 In line with Bai and Ng (2008), the determination of the two

kind of predictor sets should be replicated at each forecasting point in time to ensure the

sparsistency (selecting the correct sparsity pattern) of the lasso estimates in empirical

practice. Furthermore, this replication can also be motivated by the economic intuition

that the optimal indicators can vary along the business cycle.

In our empirical application, we use a grid searching method to find an optimal lasso

and tuning parameter. To do this, we set θ ∈ [0.01 : 0.01 : 0.5] and α ∈ [0.01 : 0.01 : 1]. By

construction, the larger θ is, the smaller is the optimal number of pre-selected indicators.23

If α = 1, the pre-selection regression will be the same as the OLS regression; and if α = 0,

the pre-selection regression would be the same as the ridge regression.24 By construction

of our LFMECM, we need two types of θ: one for the non-stationary data (henceforth

called the long-run lasso parameter, denoted as θl), and another for the stationary data

(henceforth called the short-run lasso parameter, denoted as θs). For each of the 101 α,

we will have 502 combinations of θl and θs, ie, there are 252,500 combinations of α, θl

and θs in our grid search. From these 252, 500 combinations we pick out the combination

as a set of the optimal model parameters, α̂, θ̂l and θ̂s at which the MSE (or MAD,

alternatively) of the forecasts is smallest.

Figure 3a shows the minimum MSE (and MAD) values from each of the 502 combina-

tions of θl and θs for the corresponding α, where the upper panel results from monthly type

21Analogously to the OLS for non-stationary indicators, the lasso and EN estimates are also consistent

and oracle efficient, meaning that they select the correct sparsity pattern. See Kock (2012) on this topic,

for example.
22This categorization, especially regarding the short-run dynamics, does not necessarily mean that

variables that are more responsible for short-run dynamics are stationary and vice versa.
23In the empirical applications based on our data, we observed a very small (but still positive) number

of pre-selected indicators when θ = 0.5.
24Usually, the empirically optimal tuning parameter has been determined α ∈ (0.50 1).
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1 (ie, every third month from 2000M01 until 2016M01); the middle panel from monthly

type 2 (ie, every third month from 2000M02 until 2016M02); and the lower panel from

monthly type 3 (ie, every third month from 2000M03 until 2016M03). In each of the

panels, the solid (dotted) line shows the MSE (MAD).

Figure 3a. Model parameters (α, θl, θs) according to MSE and MAD
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In this example, based on a dataset from 2000QI - 2016QI for quarterly GDP; and 2000M1

- 2016M05 for the monthly panel, the optimal model parameters shown in Figure 3a are

α = 0.90, 0.85, 0.85 based on MSE, and α = 0.22, 0.98, 0.86 based on MAD. For the lasso

parameter, θl = 0.22, 0.06, 0.06 based on MSE, and θl = 0.17, 0.06, 0.05 based on MAD;

θs = 0.50, 0.50, 0.50 based on MSE, and θs = 0.49, 0.43, 0.50 based on MAD.25

The 101 points (corresponding to the 101 α values) on the solid (dotted) line in all panels

of Figure 3a are the minimums of 2500 MSE (MAD) values determined from the 2500

combinations of θl and θs. In order to show how the 2500 MSE or MAD values are

25For this sample, the long-run lasso parameters (θl) are mostly small, while the short-run lasso param-

eters (θs) are mostly large, or rather, equal to the upper bound. Usually, the optimal model parameters

do not often take the extreme value of their definition area θl, θs ∈ [0.01, 0.50].
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distributed for a given α value, Figure 3b shows the case of the monthly type 2 with a

given value of α = 0.85. In this case θl = 0.06 and θs = 0.43 are determined.

Figure 3b. Lasso parameters (θl, θs) for α = 0.85
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The optimal model parameters usually change from month to month (but do not do

so necessarily).26 Using the given tuning parameter (α = 0.85) and long- and short-

run lasso parameter (θl = 0.06 θs = 0.43) in our example, we would select 27 (long-

run) targeted indicators for estimating our long-run factors and 15 (short-run) targeted

indicators for estimating our short-run factors for the time period from 2000QI to 2016QI.

Some indicators are included in both of the targeted indicators.27

4.2.2 Optimal number of long- and short-run factors

In the framework of the asymptotic principal components for large panels, Bai and Ng

(2002) provide some useful criteria to determine the optimal number of factors for sta-

tionary panel data, and Bai (2004) considers similar criteria for non-stationary panel

data. According to the panel criteria of Bai and Ng (2002), the optimal number of factors

can be estimated by minimizing two quantities which stand in a tradeoff relationship by

changing the number of factors: the first quantity is a usual sum of the squared residuals

from regressions of Xit on the k factors for all i and t, given as:

V (k, F̂ k) = minΛ,F k

1

NT

N
∑

i=1

T
∑

t=1

(X
it
− λk′

i F̂
k
t )

2,

26The parameter fluctuation (uncertainty) is also observed from quarter to quarter. The reason for

this is that the unknown model parameters were determined using a relatively small size of sample with

maximal 22 observations.
27The numbers of the pre-selected 27 long-run targeted indicators are 9, 11, 13, 14, 15, 16, 22, 31,

34, 40, 42, 44, 48, 59, 62, 75, 79, 83, 85, 86, 92, 99, 101, 103, 104, 113, 114, and the numbers of the

pre-selected 15 short-run targeted indicators are 2, 9, 13, 14, 16, 18, 22, 36, 59, 60, 69, 96, 109, 113, 115.

See the description of data in Appendix A for matching the numbers to the corresponding indicators.
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where F̂ k
t are k-dimensional estimated factors which will decrease as k increases. The

second quantity is a function of k, N and T as a penalty for overfitting, given as

kg(N, T ),

which will increase as k increases. The optimal number of factors can be obtained by

minimizing the sum of the two quantities, namely panel criteria (PC) depending on k as:

PC(k) := V (k, F̂ k) + kg(N, T ).

Then, the optimal number of factors is determined in an interval between 1 and a certain

upper limit, say kmax, as:

k̂ = argmink∈[1,kmax]PC(k).

Bai and Ng (2002) consider three kinds of penalty terms (kg(N, T )) and provide three

panel criteria as

PC1(k) = V (k, F̂ k) + kσ̂2

(

N + T

NT

)

ln

(

NT

N + T

)

PC2(k) = V (k, F̂ k) + kσ̂2

(

N + T

NT

)

lnC2
NT

PC3(k) = V (k, F̂ k) + kσ̂2

(

lnC2
NT

C2
NT

)

,

where CNT = min{
√
N,

√
T} and σ̂2 provides a proper scaling of the penalty term, and

can be replaced by V̂ (kmax, F̂
kmax) in empirical applications. All three criteria are asymp-

totically equivalent, but have different properties in finite samples (as will also be shown

in our empirical applications).

Bai (2004) also provides three criteria to determine the optimal number of factors

for non-stationary panel data. They are very similar to those of the panel criteria for

stationary panel above, and are called integrated panel criteria (IPC), as

IPC1(k) = V (k, F̂ k) + kσ̂2αT

(

N + T

NT

)

ln

(

NT

N + T

)

IPC2(k) = V (k, F̂ k) + kσ̂2αT

(

N + T

NT

)

lnC2
NT

IPC3(k) = V (k, F̂ k) + kσ̂2αT

(

N + T − k

ln(NT )

)

,

where αT = T/(4 ln lnT ).

Using the PC and IPC, we estimate the optimal number of long-run and short-run

factors for our empirical data. We do this by first applying the EN technique to select

a subset from both our (whole) non-stationary and stationary panel data, where, as

discussed in previous subsection, the non-stationary data are observed (constructed) at

a quarterly frequency and the stationary panel data at a monthly frequency. The results

from our empirical data are summarized in Table 2.
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Table 2. Optimal number of factors a

Data X̃it ∆Xit

Criteria IPC1(k) IPC2(k) IPC3(k) PC1(k) PC2(k) PC3(k)

k

1 0.7268 0.7343 1.0385 0.8716 0.8769 0.8630

2 0.7065 0.7216 1.3254 0.9444 0.9551 0.9273

3 0.7872 0.8098 1.7088 1.0184 1.0343 0.9927

4 0.9162 0.9463 2.1359 1.1205 1.1418 1.0863

5 1.0465 1.0842 2.5600 1.2458 1.2725 1.2030

6 1.1897 1.2349 2.9925 1.3826 1.4146 1.3312

7 1.3496 1.4024 3.4371 1.5244 1.5616 1.4644

8 1.5187 1.5790 3.8864 1.6680 1.7106 1.5995

aX̃it means the non-stationary panel at a quarterly frequency after a pre-selection via the EN method,

and ∆Xit means the stationary panel at a monthly frequency after a pre-selection via the EN method.

Table 2 shows that the optimal number of indicators for the stationary factors is

1 according to all three criteria, and 2 for the non-stationary factors according to the

IPC1(k) and IPC2(k); 1 according to the IPC3(k). Consequently, we choose 1 factor

from the stationary panel for the short-run dynamics in our model. The results for the

non-stationary panel are not unique. But we choose 2 factors from the non-stationary

panel.28 The third criterion IPC3(k) is rather conservative and is no more strongly

consistent when N is large relative to T . More results to determine the optimal number

of factors for the quarterly panel data and the monthly panel without applying the EN

(ie, for the whole set of our panel data) are given in Table C1 and Table C2 in Appendix

C.

4.2.3 Other specifications

For empirical applications, the lag order of the endogenous variable p and the k exogenous

variable q1, · · · , qk have to be determined in (7), where k = 1 according to Table 1. The

usual lag criteria can be used; we use an empirical one. More precisely, we compare the

MSE of models with different lag lengths for some given α, θl and θs. From this method,

a lag length of 4 for both the endogenous and the exogenous variable turns out to be

an optimal one. For quarterly variables like GDP, the lag length of 4 is usually used in

empirical works and makes sense economically, even if the data are seasonally adjusted.

Consequently, we set p = q1 = 4.

28In a historical evaluation, it turned out that the now-/forecasting performance measured by the MSE

based on a two long-run factors is superior to that based a one long-run factor.
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4.3 An example: the latest nowcasting

Before we present the nowcasting performance of the models based on our 22 histori-

cal data samples (in the next subsection), this subsection presents one example for the

(longest) time period from 2001QI to 2016QI, and hence, the latest nowcasting. We will

nowcast three times, in January 2016, February 2016 and March 2016, for 2016QI. At the

beginning of building a nowcasting model, we have to determine optimal model param-

eters and the optimal number of long- and short-run factors. For the latest nowcasting,

we use the longest sample for which the choice of tuning and lasso parameters, and the

number of the long- and short-run factors have been already done in previous subsections.

4.3.1 Estimated LFMECM

To estimate our LFMECM, we first need to estimate the long- and short-run factors.

According to the PC and IPC criteria we choose 2 long-run factors and 1 short-run

factor. Figure 4 shows the two estimated long-run factors together with GDP, where the

solid line signifies GDP, the dashed line the first long-run factor, and the dotted line the

second long-run factor. All three time series are standardized to aid visual comparison.

Figure 4. Estimated long-run factors
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It seems that the first long-run factor carries the (linear) GDP trend (where the possible

trend break can again be seen here), the second long-run factor the cyclical part of the

GDP.

We now add the one estimated short-run factor to estimate the LFMECM in the

second step. Figure 5 shows quarterly changes of the GDP (upper panel) and the one

estimated monthly short-run factor (lower panel).
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Figure 5. Estimated short-run factor
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As Figure 5 clearly shows, the estimated monthly short-run factor is very similar to the

changes in GDP. This means that short-run factors capture changes in the variable of

interest, while the long-run factors explain trends and/or the cyclical component. As al-

ready discussed in Figure 1 for GDP, Figure 5 also reflects two aspects in the development

of GDP. During the two crises (financial and euro crisis) GDP was below the equilibrium.

The growth rates before the financial crisis lie above the equilibrium regarding the whole

sample period.

To estimate our LFMECM, we use the standard two-step method of Engle and Granger

(1987). For the estimation of the EC term, we use a static regression containing the level

of GDP and the two estimated long-run factors plus a constant term. In order to match

the observational frequency of quarterly GDP and the long-run monthly factors we use

every third one (last month of a quarter) of the long-run monthly factors.29 The static

long-run relationship is given as:

Y Q
t = c+ β1F

Q
1t + β2F

Q
2t + uEC

t . (12)

29The use of factors observed in the last month of a quarter also has consequences in the asymptotic

distributions of estimated co-integrating parameters. We will discuss on this topic again later.
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In the spirit of Bai (2004) and Phillips (1991) the long-run factors are given as:

FQ
1t = FQ

1t−1 + u1t

FQ
2t = FQ

2t−1 + u2t.

This static long-run relationship in (12) is usually estimated based on the ordinary

least squares (OLS) estimation. Alternatively, one can also use the fully-modified OLS

(FMOLS) of Phillips and Hansen (1990). The FMOLS takes the contemporaneous dy-

namic relationship between GDP and the factors, namely the endogeneity problem, in a

static EC regression into account. Furthermore, the FMOLS also corrects the serial corre-

lation of the residuals from the static EC regression. The two corrections by the FMOLS

are performed via the long-run covariance (as referred to in the literature) between the

innovation processes uEC
t , u1t, u2t. Define two quantities using ut = [uEC

t u1t u2t] as:

Ω = lim
TQ→∞

1

TQ

TQ
∑

t=1

TQ
∑

s=1

E[usu
′
t] =

[

Ω11 Ω12

Ω21 Ω22

]

Λ = lim
TQ→∞

1

TQ

TQ
∑

t=1

t
∑

s=1

E[usu
′
t] =

[

Λ11 Λ12

Λ21 Λ22

]

,

where Ω11 and Λ11 are a scala, and Ω22 and Λ22 are a (2 × 2)-dimensional matrix.30

Under the assumption of co-integration among the non-stationary variables involved, Ω

is proportional to the spectral density evaluated at frequency 0 (free from autocorrelation

and endogeneity). Calculate the bias due to endogeneity as:

Λ+
21 = Λ21 − Λ22Ω

−1
22 Ω21.

Estimate the error correction term as:

ûEC
t = (yt − Ω̂12Ω̂

−1
22 û2t)−





TQ
∑

t=1

(yt − Ω̂12Ω̂
−1
22 û2t)F

′
t − (0 Λ̂+′

21)









TQ
∑

t=1

FtF
′
t



 (13)

To calculate the long-run variance and covariance matrix for finite samples, we use kernel

estimations containing a bandwidth parameter. To meet a significant degree of serial

correlation from the residuals ut, Hansen (1992) suggests a pre-whitening of the estimated

residuals ût via a vector autoregression with order 1 as ût = φ̂ût−1 + êt. The kernel

estimator takes the form as given in Hansen (1992):

Ω̂ =
TQ
∑

j=−TQ

w(j/M)
1

TQ

TQ
∑

t=j+1

êt−j ê
′

t

Λ̂ =

TQ
∑

j=0

w(j/M)
1

TQ

TQ
∑

t=j+1

êt−j ê
′

t,

30See Phillips and Hansen (1990) and Hansen (1992).
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where w(·) is a weight function containing a bandwidth parameter, M . Some kernel esti-

mations are considered in the literature. To avoid arbitrariness and also to improve the

MSE of the semi-parametric FMOLS estimate, based on the minimization of asymptotic

truncated MSEs, Andrews (1991) proposes a plug-in bandwidth estimator, M̂ , for the

Bartlett, the quadratic spectral and the Parzen kernel estimation. In our empirical ap-

plication, we adopt the Parzen kernel estimation whose bandwidth parameter is usually

larger than those of the Bartlett, the quadratic spectral and/or the Turkey and Hanning

kernel.31

The estimated co-integrating parameters in (12) are 0.26 and 0.16, with corresponding

highly significant t-values of 47.73 and 19.82 for β1 and β2, respectively.
32 Figure 6 shows

the estimated co-integration residuals (ûEC
t ), where the upper panel shows residuals via

the FMOLS estimation, and the lower panel those via the OLS estimation.

Figure 6. Estimated co-integration residuals
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31The bandwidth parameter of the Parzen kernel for our empirical data is ≈3, while those of the

quadratic spectral and the Turkey and Hanning kernel are ≈2 and that of the Bartlett kernel is ≈1.

However, the difference in the estimated co-integration residuals among the kernel estimations is, for our

empirical data, not very significant.
32In section 5 we will discuss critical values of estimated parameters in non-stationary regressions.
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The two residuals seem rather similar at first glance. The differences seem to be clearer

in periods of major economic fluctuations, excessive booms or crises. Consequently, the

largest difference is found in 2009QI, which is the quarter in which the largest economic

contraction in the euro area (as part of the recent world-wide economic recession caused

by the 2008 financial crisis) was observed (see also the upper panel in Figure 5). The

EC term (departure from the economic equilibrium) from the OLS estimation for this

quarter shows a positive value, while that from the FMOLS estimation shows a negative

value. This means that the EC mechanism for the next period, as a product of a negative

significant loading parameter (which is, by construction, always negative if significant) and

the corresponding EC residual, will be a negative value via the OLS estimation, and a

positive value via the FMOLS estimation. It is generally expected that the long-run trend

will move towards the economic equilibrium, ie, the EC mechanism should be positive in

recession, and negative in an excessive boom.

Together with the estimated co-integration residuals and one short-run factor, we now

estimate our LFMECM for nowcasting in a historical setting from 2010QIV to 2016QI

based on our monthly panel from 2000M01 to 2016M03. For each quarter we need three

estimated nowcasting models for monthly types 1, 2 and 3. More precisely, we estimate

our LFMECM for nowcasting the quarter 2010QIV based on our monthly panel from

2000M01 to 2010M10 as the first historical model for monthly type 1, and replicate

the same estimation for nowcasting the quarter 2010QII using our monthly panel from

2000M01 to 2010M04 as the second historical model for monthly type 1, and so on.

Consequently, the last (22th) historical model for monthly type 1 for nowcasting the

quarter 2016QI will then be the estimation using our monthly panel from 2000M01 to

2016M01. The same procedure was performed for monthly types 2 and 3.

Before we present the historical nowcasting performance of the models, we will show

the estimated LFMECM for the (longest) time period from 2000QI to 2016QI as an

example of nowcasting in practice. Table 3a presents the estimated coefficients of our

LFMECM in (7) for all three monthly types 1, 2 and 3.
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Table 3a. Estimated coefficients based on MSEa

Type

of Lag(i, j) 1 2 3 4

month Coefficients

1 ĉ 1.61( 3.93)

b̂ -0.20(-1.49)

b̂i 0.28( 1.42) 0.07( 0.34) 0.08( 0.41) -0.07(-0.42)

â1j0 -1.59(-5.49) 0.50( 1.57) 0.23( 0.69) 0.16( 0.48)

â1j1 -1.08(-3.16) 0.45( 1.19) -0.35(-0.95) 0.33( 0.98)

â1j2 -0.05(-0.14) 0.52( 1.43) 0.09( 0.25) -0.33(-1.10)

2 ĉ 1.11( 3.49)

b̂ -0.00(-0.06)

b̂i 0.11( 0.70) 0.02( 0.15) 0.39( 2.42) 0.08( 0.97)

â1j0 1.24( 6.06) 0.25( 1.08) -0.53(-2.29) -0.37(-1.67)

â1j1 0.99( 4.80) 0.01( 0.05) 0.26( 1.10) -0.31(-1.46)

â1j2 0.74( 2.95) -0.41(-1.56) -0.17(-0.65) -0.59(-2.73)

3 ĉ 0.68( 5.60)

b̂ 0.03( 0.37)

b̂i 0.02( 0.11) 0.12( 0.81) 0.20( 1.32) 0.03( 0.51)

â1j0 0.71( 3.53) 0.73( 3.01) -0.18(-0.74) -0.25(-1.05)

â1j1 0.86( 4.06) 0.27( 1.21) -0.55(-2.51) -0.25(-1.27)

â1j2 0.80( 3.97) 0.10( 0.47) 0.12( 0.52) -0.18(-1.00)

aThe corresponding t-values are given in parentheses. All estimated coefficients for high frequency terms

including constant terms are multiplied by 103.

The three estimated models for the three different monthly types differ from each other.

The monthly frequencies in the first lag seem to usually be significant for all three monthly

types. The estimated t-statistics for the loading parameters are -1.49, -0.06 and 0.37 and,

hence, not significant for all three monthly types according to the critical values of the

tECM test given in Banerjee et al. Some of the coefficients for high frequency terms for all

three monthly types are significant in different lags, and some are not. For our 2016QII

nowcasting, we take all lags (both lag endogenous and lag exogenous variables including

the EC term) ie, we do not delete insignificant lags.33 The estimated model chosen based

on MAD is given in Table 3b, where models for monthly types 2 and 3 are the same as

those based on MSEs (and therefore not reported).

33We tried various significance levels to eliminate insignificant lags from our nowcasting model, but

little improvement can be achieved by any significance levels.
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Table 3b. Estimated coefficients based on MADa

Type

of Lag(i, j) 1 2 3 4

Month Coefficients

1 ĉ 1.48( 3.54)

b̂ 0.09( 0.68)

b̂i 0.25( 1.26) 0.09( 0.40) 0.14( 0.70) -0.05(-0.28)

â1j0 -1.50(-5.09) 0.48( 1.48) 0.06( 0.18) 0.05( 0.14)

â1j1 -1.42(-4.08) 0.38( 1.00) -0.15(-0.41) 0.31( 0.88)

â1j2 -0.16(-0.45) 0.71( 1.93) 0.18( 0.52) -0.21(-0.69)

aThe corresponding t-values are given in parentheses. All estimated coefficients for high frequency in-
cluding constant terms are multiplied by 103.

4.4 Nowcasting results

From our quarterly data from 2000QI - 2016QI, we use the first 43 observations as our

starting estimation periods, ie, our first nowcasting begins with 2010QIV and ends in

2016QI. For each of the 22 quarters, we will nowcast three times, at the first month, at

the second month and at the last month of the corresponding quarter.34 Therefore, we

will collect 22 nowcasters for each of the three models (MFM, LMFM and LFMECM)

and for each of the monthly types.

4.4.1 Historical comparison

Figure 7a shows the results of our empirical historical nowcasting performance for the

three models whose optimal model parameters were measured by the MSEs, where the

upper panel shows results nowcasted by the MFM, the middle panel by the LMFM and

the bottom panel by the LFMECM. In each panel, monthly type 1 is marked with an ‘x’;

monthly type 2 with a ‘+’; the monthly type 3 with ‘o’; and the dotted line shows the

growth rates of aggregate GDP for the euro area.

34The difference between the three monthly types lies in the availability of the latest observations from

the whole monthly time series. In practical forecasting exercises based on unbalanced data, this means

that this forecasting timing will be called “monthly type 1” if at least one of the longest time series in the

panel reaches the first month of a quarter, namely January, April, August and October. Monthly types

2 and 3 can be determined in a similar fashion. The longest time series is/are usually the soft data, such

as survey data, because of their short lag in availability.
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Figure 7a. Historical growth rates of GDP and nowcasters 2010QIV - 2016QI

2011 2012 2013 2014 2015 2016

−0.5

0

0.5

1

MFM

%

2011 2012 2013 2014 2015 2016

−0.5

0

0.5

1

LMFM

%

2011 2012 2013 2014 2015 2016

−0.5

0

0.5

1

LFMECM

%

Figure 7a shows the consistency of each model, ie, the improvement in nowcasting perfor-

mance by adding new information month by month in a quarter. For all three models, we

can observe the consistency characteristic, ie, in general (but not for every quarter), the

‘o’ symbol (signifies the third month) is located most closely around GDP; the ‘x’ symbol

(signifies the first month) furtherst away from GDP (in both signs); and the ‘+’ symbol

(signifies the second month) is located somewhere between the two. The results with the

same setting, but based on the MAD, are shown in Figure D1 in Appendix D.
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Figure 7b shows the same results of our empirical historical nowcasting performance for

the three models as presented in Figure 7a. The only difference is that the nowcasters

are re-scaled according to the growth rates of realized GDP. The results with the same

setting, but based on the MAD, are shown in Figure D2 in Appendix D.

Figure 7b. Historical growth rates of GDP and nowcasters 2010QIV - 2016Q
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Figure 8a shows a comparison of the empirical historical nowcasting performance for the

three models in each panel for the three different monthly types. For this nowcasting

exercise, the optimal model parameters were measured by the MSE and all the other

settings are the same as those used in Figure 7a.

Figure 8a. Historical growth rates of GDP and nowcasters 2010QIV - 2016QI
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Figure 8a shows that, as expected, in all three monthly types the nowcasters from the

LFMECM (denoted as ‘o’) are often closer to realized GDP than those from the MFM

(denoted as ‘x’); while those from the LMFM (denoted as ‘+’) are located somewhere

between the two. The results with the same setting, but based on the MAD, are shown

in Figure D3 in Appendix D.
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Figure 8b shows a comparison of the empirical historical nowcasting performance for the

three models in each panel for the three different monthly types as presented in Figure

8a. The only difference is that the nowcasters are re-scaled according to the growth rates

of realized GDP.

Figure 8b. Historical growth rates of GDP and nowcasters 2010QIV - 2016QI
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Figure 8b gives a clear picture of the forecasting consistency and forecasting accuracy

of the three models as demonstrated in Figures 7a and 8a. The results with the same

setting, but based on the MAD, are shown in Figure D4 in Appendix D.
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Table 4 summarizes the results measured by the MSE and the MAD shown in the previ-

ous Figures (Figure 7a-b and Figure 8a-b), where the numbers in parentheses are ratios

compared with those of the LFMECM.

Table 4. Empirical nowcasting performance (in %) a

Model MFM LMFMb LFMECMc

Month Statistic

1. MSE 0.39 0.29 0.29

(1.34) (1.00)

MAD 0.31 0.23 0.23

(1.35) (1.00)

2. MSE 0.37 0.24 0.22

(1.68) (1.09)

MAD 0.30 0.20 0.18

(1.67) (1.11)

3. MSE 0.35 0.24 0.22

(1.59) (1.09)

MAD 0.28 0.20 0.18

(1.56) (1.11)

aThe numbers in parentheses are the ratios based on the FLMECM. bFor the LMFM, we set α =

0.90, 0.85, 0.85 and θ = 0.50, 0.50, 0.50 based on both criteria, namely MSE and MAD, as optimal model

parameters for month types 1, 2 and 3 (ie, first, middle and last months in a quarter), respectively.
cFor the LFMECM, we set α = 0.90, 0.85, θl = 0.22, 0.06, 0.06 and θs = 0.50, 0.50, 0.50 for both criteria,

namely MSE and MAD, as optimal model parameters for month types 1, 2 and 3 (ie, first, middle and

last months in a quarter), respectively. The optimal model parameters based on the two criteria are often

the same ones, but that is not necessarily always the case.

In general, the use of the lasso technique substantially improved the nowcasting perfor-

mance of the MFM, and a further improvement was achieved by using the EC mechanism.

This is true of all types of months. The largest difference for both MSE and MAD can be

seen in the 2nd month: the lasso technique improves the nowcasting performance of the

MFM by more than 50% measured by both statistics; and the EC technique subsequently

improves the nowcasting performance of the LMFM by more than 10% again. The rela-

tive improvements in the 3rd month are similar to (albeit slightly smaller than) those in

the 2nd month.

When evaluating forecasting models, the measure of bias can also be of interest, al-

though it is a part of the MSE. Table 5 shows the empirical results regarding bias.
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Table 5. Bias of empirical nowcasts (in %)

Model MFM LMFM LFMECM

Month Statistic

1. Bias -0.02 -0.00 0.03

max+ 0.87 0.63 0.53

max− -0.63 -0.50 -0.48

2. Bias 0.09 0.06 0.01

max+ 0.75 0.41 0.40

max− -0.39 -0.32 -0.37

3. Bias 0.10 0.05 0.02

max+ 0.69 0.50 0.50

max− -0.45 -0.30 -0.32

Table 5 indicates that the improvement in nowcasting performance by the LMFM and the

LFMECM as compared to the MFM is achieved not only by reducing the variance of the

nowcasters but also by diminishing their bias. The reduction of bias behaves from 0.1%

in the MFM to 0.05% in the LFM and to 0.02% in the LFMECM in the 3rd month, for

example. The positive (over-estimation) maximum nowcasting errors decline from 0.69%

inthe MFM to 0.50% in the LFM and to 0.50% in the LFMECM in the 3rd month; and the

negative (under-estimation) maximum nowcasting errors decline from -0.45% in the MFM

to 0.30% in the LFM and to 0.32% in the LFMECM in the 3rd month. Improvement

from the LMFM to the LFMECM cannot be observed in every criterion.

4.4.2 Several tests regarding forecast accuracy

F -test: Using the standard F -test we test the equality of two variances of residuals

estimated by the three nowcasting models. The sum of squared residuals of an estimated

forecasting model in comparison with that of another forecasting model shows the relative

forecasting performance. This is because forecasting errors are a function of the sum of

squared estimated residuals. The F -statistic is given as

F =

[

(n1 − 1)−1
n1
∑

i=1

(X1i − X̄1)

]/[

(n2 − 1)−1
n2
∑

i=1

(X2i − X̄2)

]

, (14)

where n1 and n2 are sample sizes of the two random variables X1 and X2, respectively. In

our case, X1 andX2 are the residuals of two paired nowcasting models, and n1 = n2 = 1089

for the whole nowcasting periods resulting from 22 nowcasting models for each of the

paired models (ie, 39 estimated residuals from each of the nowcasting models for 2010QIV,
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40 estimated residuals for 2011QI, · · · , 60 estimated residuals for 2016QI). The results of

the F -test are summarized in Table 6.

Table 6. F -test for equality of two variances of empirical nowcasters (in %) a

Model MFM/LMFM MFM/LFMECM LMFM/LFMECM

F -statistic 1.1286 1.1612 1.0289

aThe corresponding critical values at the 95% and 99% significance levels are 1.1039 and 1.1519, respec-

tively, which were calculated by a simulation.

Table 6 shows a large improvement of nowcasting performance through the LMFM and es-

pecially through the LFMECM. The improvement through the LMFM and the LFMECM

in comparison with the MFM is statistically highly significant at the 95% and 99% levels.

For a detailed comparison for every nowcasting period, see Table 1 in Appendix E.

Theil’s U-statistic: Theil (1966) introduced a U-statistic as a measure of forecasting

accuracy given as:

U =

[

T+H
∑

h=T+1

(ŷh − yT+h)
2

]1/2 /[

T+H
∑

h=T+1

y2T+h

]1/2

, (15)

where ŷ and y stand for a pair of predicted and observed quantity. Because the benchmark

is the realized quantity in this statistic, it can be interpreted as a performance measure

of forecasting models of interest in comparison with a constant model. Therefore, U-

statistic values that are lower than 1 signify an improvement over the constant forecast.

The forecasters of the constant model would be the mean of the realizations in forecast

periods a posteriori or the mean of the observations in estimation period a priori for all

forecast periods. Under the assumption of no structural breaks, the two means will be

the same. The empirical result of the Theil’s U-test is summarized in Table 7.

Table 7. Theil’s U-statistic of empirical nowcasters (in %) a

Model MFM LMFM LFMECM

Month

1. 1.15 0.87 0.87

2. 1.05 0.68 0.65

3. 0.99 0.70 0.65

As shown in Table 7, the more information is available, the better every model works,

(as the MIDAS technique should do). In other words, the forecasting performance in

month 2 is better than that in month 1; and the forecasting performance in month 3 is

better than that in month 2. However, the improvement of the MFM can be achieved
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only marginally in the 3rd month. For month types 1 and 3, the MFM works even worse

than the constant model. The values of the U-statistic for the LMFM and the LFMECM

are clearly lower than 1, where the values for the LFMECM are smaller than those for

the LMFM, except in month 1.

5 Discussion

5.1 Balancing the data

In panel data with a monthly frequency, the lengths of the individual indicators are

usually unequal because of the different publication lags. Soft indicators, like survey

and financial data, usually have very short publication lags, while hard indicators, like

industrial productions and labor markets, have relatively longer publications lags, usually

of two or three months. For now- and forecasting, one should, therefore, first fill the

missing current observations in comparison to the longest indicator(s). The topic of

balancing data is, however, not part of this paper because we concentrate on comparing

the forecasting performance of a set of competing models. Nevertheless, we show one

alternative balancing method based on the generalized autoregression (GAR) method

introduced in Kurz-Kim (2008) and compare its efficiency with that of the EM algorithm

widely used in the literature. A brief description of the GAR and results of the comparison

are given in Appendix B.

5.2 One-step-ahead forecasting

The main focus of the paper is nowcasting, but the models can be also compared in terms

of their short-run forecasting performance. In general, the main arguments for using the

LFMECM and the main results of the LFMECM remain unchanged for forecasting ex-

ercises which were discussed and shown by the nowcasting exercises above. We merely

summarize the results of the one-step-ahead forecasting exercise which are presented anal-

ogously to Table 3a-b in Table 8a-b.
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Table 8a. Estimated coefficientsa

Month Coefficients Lag(i, j) 1 2 3 4

1b ĉ 0.66( 1.15)

b̂ -0.06(-0.21)

b̂i 0.57( 2.85) 0.34( 1.63) 0.02( 0.11) -0.28(-1.27)

â1j0 0.75( 3.11) -0.35(-1.16) -0.67(-2.17) -0.08(-0.26)

â1j1 -0.42(-1.46) 0.44( 1.40) 0.74( 2.52) 0.22( 0.83)

â1j2 -0.37(-1.19) -0.34(-1.07) -0.39(-1.25) 0.08( 0.31)

2c ĉ 2.15( 4.31)

b̂ -0.36(-3.23)

b̂i 0.14(0.80) 0.01( 0.07) -0.03(-0.16) -0.14(-0.78)

â1j0 0.80( 2.76) -0.60(-0.90) -0.30(-0.90) -0.65(-1.97)

â1j1 0.97( 3.23) 0.04(-1.19) -0.38(-1.19) -0.13(-0.42)

â1j2 -0.42(-1.38) 0.89( 2.69) 0.83( 2.69) 0.43( 1.80)

3d ĉ 1.82( 3.93)

b̂ -0.23(-1.68)

b̂i -0.02(-0.10) 0.07( 0.45) 0.15( 0.91) 0.02( 0.18)

â1j0 1.05( 5.01) -0.18(-0.73) 0.61( 2.43) 0.48( 1.96)

â1j1 0.29( 1.16) -0.66(-2.57) -0.12(-0.46) -0.29(-1.17)

â1j2 0.61( 2.67) 0.23( 1.02) -0.49(-2.20) -0.28(-1.27)
aThe corresponding t-values are given in parentheses. All estimated coefficients for high frequency terms
including constant terms are multiplied by 103. t-statistics are given in absolute values with the exception
of t̂ECM . bα = 0.37, θl = 0.16, θs = 0.20.cα = 0.97, θl = 0.43, θs = 0.25.dα = 0.76, θl = 0.50, θs = 0.01.

Table 8b. Estimated coefficientsa

Month Coefficients Lag(i, j) 1 2 3 4

1b ĉ 1.90( 3.46)

b̂ -0.21(-2.20)

b̂i 0.55( 2.88) 0.22( 1.05) -0.12(-0.57) -0.42(-1.84)

â1j0 0.43( 1.75) -0.33(-1.13) -0.45(-1.54) -0.41(-1.33)

â1j1 -0.22(-0.76) 0.24( 0.75) 1.21( 4.05) 0.38( 1.38)

â1j2 -0.42(-1.32) -0.32(-1.01) -0.15(-0.47) 0.21( 0.79)

2c ĉ 2.15( 4.31)

b̂ -0.36(-3.23)

b̂i 0.14( 0.80) 0.01( 0.07) -0.03(-0.16) -0.14(-0.78)

â1j0 0.80( 2.76) -0.60(-1.85) -0.30(-0.90) -0.65(-1.97)

â1j1 0.97( 3.23) 0.04( 0.13) -0.38(-1.19) -0.13(-0.42)

â1j2 -0.42(-1.38) 0.89( 2.74) 0.83( 2.69) 0.43( 1.80)

3d ĉ 0.59( 1.19)

b̂ -0.04(-0.22)

b̂i 0.09( 0.34) 0.34( 1.31) 0.22( 0.88) 0.03( 0.13)

â1j0 1.87( 5.99) -0.97(-2.61) 0.32( 0.86) 0.04( 0.11)

â1j1 0.89( 2.65) -0.96(-2.72) -0.61(-1.75) 0.19( 0.60)

â1j2 0.11( 0.33) -0.22(-0.61) -0.38(-1.06) -0.42(-1.39)
aThe same as in Table 8a. bα = 0.97, θl = 0.43, θs = 0.25.cα = 0.97, θl = 0.44, θs = 0.19.dα = 0.74, θl =
0.18, θs = 0.49.
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Table 9 summarizes the results measured by the MSE analogously to Table 4, where the

numbers in parentheses are ratios compared with those of the LFMECM.

Table 9. Empirical forecasting performance (in %) a

Model MFM LMFMb LFMECMc

Month Statistic

1. MSE 0.48 0.42 0.39

(1.23) (1.08)

2. MSE 0.49 0.44 0.36

(1.36) (1.22)

3. MSE 0.35 0.24 0.22

(1.59) (1.09)

aThe numbers in parentheses are the ratios based on the FLMECM. bFor the LMFM, we set α =

0.97, 0.97, 0.85 and θ = 0.19, 0.25, 0.50 based on MAD, as optimal model parameters for month types

1, 2 and 3 (ie, first, middle and last months in a quarter), respectively. cFor the LFMECM, we set

α = 0.90, 0.85, θl = 0.44, 0.43, 0.06 and θs = 0.19, 0.25, 0.50 based on MAD, as optimal model parameters

for month types 1, 2 and 3 (ie, first, middle and last months in a quarter), respectively.

The forecasting accuracy of all three models is, as expected, generally worse than that

of the nowcasting exercise (shown in Table 4). The relative ratios between the MFM

and LFMECM became smaller, while those between the LMFM and LFMECM became

larger. The consistency of forecast timing is not given for the LFM and the LMFM (from

monthly type 1 to 2), whereas it is still given for the LFMECM. The results based on the

MAD are very similar to those based on the MSE, and hence not reported.

To sum up, the one-step-ahead forecasting exercise confirms that the modeling of the

two refinements to the MFM, namely the lasso and EC techniques, improve not only

nowcasting, but also forecasting performance (at least one-step-ahead forecasting).

5.3 Asymptotic distributions of the estimated LFMECM pa-

rameters

This subsection roughly sketches the asymptotic distributions of the estimated LFMECM

parameters. Most of the relevant results are already documented in the literature. We

merely reproduce them in the context of the LFMECM.35

Suppose that we have monthly panel data Xit i = 1, . . . , N t = 1, . . . , TM ; and a key

variable to be forecast yt t = 1, . . . , TQ. Before we analyze asymptotics of our LFMECM,

35Because we use the estimated LFMECM with all terms (including possibly insignificant terms) as

our forecasting model, the asymptotic analysis of the estimated parameters is of theoretical interest.
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it is necessary to mention the lasso and the EN technique influence on the asymptotic

distribution of the estimated parameters of our LFMECM. In the first stage of building

our LFMECM, a pre-selection method like lasso or/and EN technique was already ap-

plied. This kind of pre-selection method obviously reduces the cross-section dimension.

Consequently, the factors used in our LFMECM as regressors are estimated from this pre-

selected (reduced) panel. As analyzed in Bai and Ng (2006), the least squares estimates

from the factor augmented regressions are
√
T -consistent and asymptotically normal if√

T/N → 0. Therefore, the reduction of the cross-section dimension via a pre-selection

method has (only) an effect on the rate of convergence and no influence on the asymptotic

distributions of the estimated parameters of the LFMECM.

Recall now our LFMECM

yQ
t
= buEC

t−1 −
P
∑

p=1

b
p
yQ
t−1

+

Qj
∑

qj=0

a
qj
f̂
jt−qj

+ uQ
t
, (16)

where

uEC
t−1 = Y Q

t−1
− β̂F̂

t−1
. (17)

In this two-step equation system, there are four types of parameters:

Type 1: b̂p – parameters for the observable stationary regressor, yQ
t
;

Type 2: â
qj

– parameter for estimated stationary MIDAS regressor, fM
t
;

Type 3: β̂ – co-integrating parameter for estimated non-stationary regressor, F̂Q
t−1

;

Type 4: b̂ – loading parameter for the estimated error correction term, ûEC
t via the

two-step estimation by Engle and Granger (1987).

• The parameters of the type 1 (b̂p) are standard. They are asymptotically stan-

dard normal distributed even if they are combined in a regression with estimated

regressors, see Theorem 1 in Bai and Ng (2006).

• Under certain assumptions and
√
T/N → 0, asymptotic distributions of the pa-

rameters for the estimated stationary MIDAS regressors, â
qj
, are also normally dis-

tributed according to Theorem 1 in Bai and Ng (2006) and Theorem 3.2 in Ghysels

et al. (2004).

• According to Theorem 1(a) in Phillips (1986), asymptotic distributions of the pa-

rameters for the estimated non-stationary regressor, β the co-integrating parameter,

is a functional form of two Brownian motions (partial sums of Y Q and FQ). Ghysels

and Miller (2015) examine the effects of mixed sampling frequencies and temporal
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aggregation on the size of commonly used tests for co-integration. One of their

conclusions is that the nominal size is obtained asymptotically when all series are

skip sampled in the same way, for example, end-of-period sampling. This is just

what we are doing: we take factors every third month to match the quarterly GDP

so as to build the error correction dynamics.

• The asymptotic distribution of the loading parameter for the error correction term,

b, is again non-standard and a functional form of two Brownian motions (partial

sums of uEC
t and uQ

t ) as shown in Kremers et al. (1992) and Banerjee et al. (1999).

Consequently, the critical values of the t
ECM

test are tabulated in Banerjee et al.

(1999).

6 Concluding remarks

This paper introduced a novel now- and forecasting model which contains three refine-

ments to the dynamic factor model of Stock and Watson (2002). Our lasso-based factor-

augmented error correction model combines the advantages of three refinements: the

pre-section methods (the lasso and the EN technique) reinforce the explanatory power

of the estimated factors (extracted from a small number of targeted indicators) for the

key variables to be forecast; the MIDAS technique enables us to nowcast some key vari-

ables using high frequency indicators; EC modeling is capable of capturing not only the

short-run dynamics, but also long-run ones and, therefore, provides forecasters with a

deeper insight into the forecasts as described in section 2. A simulation study presented

in section 3 confirms an improvement in forecasting performance by each of the elements

embedded in our model. An empirical application in section 4 and partly in section 5

clearly demonstrates an improvement in now- and forecasting performance of the standard

factor model through our LFMECM.
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A Appendix A: Data description

GDP : euro area 19, quarterly, working day and seasonally adjusted, index

Industrial production (total 13)

1. Euro area 19 (fixed composition) - IP index, total industry

2. Euro area 19 (fixed composition) - IP index, total industry (excluding construction)

3. Euro area 19 (fixed composition) - IP index, manufacturing

4. Euro area 19 (fixed composition) - IP index, construction

5. Euro area 19 (fixed composition) - IP index, all buildings

6. Euro area 19 (fixed composition) - IP index, all civil engineering works

7. Euro area 19 (fixed composition) - IP index, total industry excluding construction and MIG Energy

8. Euro area 19 (fixed composition) - IP index, electricity, gas, steam and air conditioning supply

9. Euro area 19 (fixed composition) - IP index, MIG capital goods industry

10. Euro area 19 (fixed composition) - IP index, MIG durable consumer goods industry

11. Euro area 19 (fixed composition) - IP index, MIG energy

12. Euro area 19 (fixed composition) - IP index, MIG intermediate goods industry

13. Euro area 19 (fixed composition) - IP index, MIG non-durable consumer goods industry

Retail (total 4)

14. Euro area 19 (fixed composition) - total turnover index, retail trade including fuel, except of motor
vehicles and motorcycles

15. Euro area 19 (fixed composition) - total turnover index, manufacture of food products; manufacture
of beverages

16. Euro area 19 (fixed composition) - total turnover index, retail sale of non-food products including
fuel

17. Euro area 19 (fixed composition) - car registration, new passenger car, absolute value

Labor market (total 1)

18. Euro area 19 (fixed composition) - standardized unemployment rate, total (all ages), Eurostat

Industry survey (total 7)

19. Industrial confidence Indicator (Q2 + Q4 + Q5) / 3

20. Production trend observed in recent months

21. Assessment of order-book levels

22. Assessment of export order-book levels

23. Assessment of stocks of finished products

24. Production expectations for the months ahead

25. Selling price expectations for the months ahead

26. Employment expectations for the months ahead

Consumer survey (total 8)

27. Confidence indicator (Q2 + Q4 + Q7 +Q11) / 4

28. General economic situation over last 12 months

29. General economic situation over next 12 months

30. Price trends over last 12 months

31. Price trends over next 12 months
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32. Unemployment expectations over next 12 months

33. Major purchases at present

34. Major purchases over next 12 months

Construction survey (total 5)

35. Confidence indicator (Q3 + Q4) / 2

36. Building activity development over the past 3 months

37. Evolution of current overall order books

38. Employment expectations over the next 3 months

39. Prices expectations over the next 3 months

Retail trade survey (total 5)

40. Confidence indicator (Q1 - Q2 + Q4) / 3

41. Business activity (sales) development over the past 3 months

42. Volume of stock currently hold

43. Business activity expectations over the next 3 months

44. Employment expectations over the next 3 months

Services survey (total 11)

45. Confidence indicator (Q1 + Q2 + Q3) / 3

46. Business situation development over the past 3 months

47. Evolution of demand over the past 3 months

48. Expectation of demand over the next 3 months

49. Evolution of employment over the past 3 months

50. Expectations of employment over the next 3 months

51. Markit Surveys, euro area manufacturing PMI headline adjusted

52. Markit Surveys, euro area services PMI headline adjusted

53. Markit Surveys, euro area composite (M+S) PMI headline adjusted

54. Markit Surveys, euro area composite (M+S) PMI output index adjusted

55. Markit Surveys, euro area composite (M+S) PMI new orders index adjusted

56. Markit Surveys, euro area composite (M+S) PMI employment index adjusted

Prices (total 6)

57. Euro area 19 (fixed composition) - producer price index, domestic sales, total industry (excluding
construction)

58. Euro area 19 (fixed composition) - producer price index, domestic sales, MIG energy

59. Euro area 19 (fixed composition) - producer price index, domestic sales, MIG intermediate Goods
industry

60. Euro area 19 (fixed composition) - producer price index, domestic sales, MIG non-durable consumer
goods industry

61. Euro area 19 (fixed composition) - HICP - overall index, monthly index

62. Euro area 19 (fixed composition) - HICP - all-items excluding energy and unprocessed food,
monthly index, Eurostat

International trade (total 4)

63. Total trade - intra euro area 19 (fixed composition) trade, export ECU/Euro, Eurostat

64. Total trade - extra euro area 19 (fixed composition) trade, export ECU/Euro, Eurostat

65. Total trade - intra euro area 19 (fixed composition) trade, import ECU/Euro, Eurostat
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66. Total trade - extra euro area 19 (fixed composition) trade, import ECU/Euro, Eurostat

Foreign countries (USA) (total 5)

67. US, PMI manufacturing index

68. US, unemployment rate

69. US, industrial output, industrial production index

70. US, employment, civilian

71. US, total retail trade

Commodities (total 7)

72. World price index (2010) - raw materials - total (euro based)

73. World price index (2010) - raw materials - excl. energy-based products (euro based)

74. HWWA comodity price index - raw materials - crude oil (USD based)

75. Gold price, US Dollar, fine ounce (fixing in London)

76. Crude oil future price - 1 month ahead

77. World price index (2010) - raw materials - coal (USD based)

78. World price index (2010) - raw materials - copper (USD based)

Financial market (total 3)

79. ECB nominal effective exchange rate

80. ECB real effective exchange rate, CPI deflated

81. ECB nominal effective exchange rate, producer price deflated

Exchange rate (total 3)

82. Euro/USD exchange rate

83. Euro/British pound exchange rate

84. Euro/Yen exchange rate

stock markets (total 4)

85. Euro Stoxx 50 index

86. Euro Stoxx 50 volatility index

87. Standard & Poors 500 Index

88. Dow Jones Index (price-weighted average of 30 blue chips)

Bonds, treasury notes, interest rates (total 13)

89. Government bond rate 10-year, GDP-weighted composition

90. Interest rate, loans

91. Interest rate, housing loans

92. Spread corporate AA and government bond maturities 7-10 years

93. Spread corporate BBB and government bond maturities 7-10 years

94. Eonia

95. 1-month interest rate, Euribor

96. 3-month interest rate, Euribor

97. 6-month interest rate, Euribor

98. 1-year interest rate, Euribor

99. 10-year government bond yield

100. Spread Euribor 1 year 1 month

101. Spread 10 year 3 month
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Money (total 3)

102. Money M1

103. Money M2

104. Money M3

Euro countries (total 11)

105. Germany - IP index, total industry (excluding construction)

106. Germany - IP index, construction

107. France - IP index, total industry (excluding construction)

108. France - IP index, construction

109. Italy - IP index, total industry (excluding construction)

110. Italy - IP index, construction

111. Spain - IP index, total industry (excluding construction)

112. Spain - IP index, construction

113. Spain - total turnover index, accommodation and food service activities

114. Spain - total turnover index, information and communication

115. Spain - total turnover index, total of other services and retail trade as covered by the STS Regu-
lation
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B Appendix B: Generalized autoregression for data

balancing

The missing months are usually the latest two or three months. In order to meet this

problem, Stock and Watson (2002) use the EM algorithm. Alternatively, this paper uses

the generalized autoregression (GAR) method proposed by Kurz-Kim (2008). As will be

shown, this GAR technique turns out to be a useful alternative to the EM algorithm. A

brief summary of the GAR is as follows.

Let ∆d be the difference operator of order d, i.e., ∆dyt = (1−L)dyt, where L is the lag

operator as Lyt = yt−1; and ∆δ be the δth lag difference operator, i.e., ∆δyt = yt − yt−δ.

Then, a d-order difference AR process of order p (with respect to the usual AR part) and

q (with respect to the lag difference) based on a δth lag difference is given as:

−
p

∑

i=0

q
∑

j=0

aij∆
d
δ+jyt−i = µ+ ut, δ ∈ IN, q < δ.

As is usual for empirical macroeconomic applications, let d = 1 and δ = 4; we then

have

∆4yt = µ + a
10
∆4yt−1 + · · ·+ a

p0
∆4yt−p +

a
01
∆4+1yt + a

11
∆4+1yt−1 + · · ·+ a

p1
∆4+1yt−p +

...

a
0q
∆4+qyt + a

1q
∆4+qyt−1 + · · · + a

pq
∆4+qyt−p + ut

The usual difference AR(p) is a special case with q = 0 as:

−
p

∑

i=0

a
i0
∆δyt−i = µ+ ut,

with a
00
= −1. The quasi difference autoregression (QAR) of order q (QAR(q)) is another

special case with p = 0 as:

−
q

∑

j=0

a
0j
∆δ+jyt = µ+ ut,

with a
00
= −1.

Now, a sum of the two special cases AR(p) and QAR(q) results in the generalized

linear (first-)difference autoregression of order p and q (GAR(p, q)) based on the δth lag

difference (see Kurz-Kim, 2008, JoF):

∆δyt = µ+

p
∑

i=1

a
i0
∆δyt−i +

q
∑

j=1

a
0j
∆δ+jyt + ut δ ∈ IN, q < δ. (18)

45



The factor induced balancing via the EM-algorithm recommended by Stock and Wat-

son (2002) is an iterative method with the following steps. Suppose we have panel data

with a cross section dimension of N and time dimension of T , where every observation in

this panel data is known. However, at time T +1 only some of the time series, say n, are

available, but the rest of the N time series, say m := N − n is still not available.

Step 1. Estimates the factors and loading parameters based on the panel data (N×T )

as:

xit =

r
∑

k=1

λ̂
(T )
ki f̂

(N)
ki,t + ûit i ∈ [1, N ]; t ∈ [1, T ].

Step 2. Estimates the factors and loading parameters based on the panel data (n×T +1)

as:

xi,t+1 =
r

∑

k=1

λ̂
(T+1)
ki f̂

(n)
ki,t+1 + ûi,t+1 i ∈ [1, n]; t ∈ [1, T + 1].

Step 3. Estimates the unknown variables at T +1 using the estimated loading parameters

from Step 1. and the estimated factors from Step 2. as:

x̂F
i,T+1 =

r
∑

k=1

λ̂
(T )
ki f̂

(n)
ki,t+1 + ûi,T+1 i ∈ [n + 1, N ].

Analogously, the missing observations T + 2, · · · can be estimated when the missing ob-

servations a month ago become available.

Figure A1 shows a comparison of the MSEs of the 71 estimated variables in the period

from 2003M1 until 2014M12 which, because of publication lags, are not usually available

at the end of each month. The length of the bars in Figure A1 is the difference of the

MSE between the GAR and the EM method.

Figure A1. Comparison of the empirical MSEs of missing variables:

MSE(GAR)-MSE(FM): 2003M1 – 2014M12
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Figure A1 encourages the application of the GAR method in empirical practice. The

estimated MSEs of 50 out of 71 variables of the GAR method are smaller than those of

the EM method. The estimated MSEs of 21 out of 71 variables of the EM method are

smaller than those of the GAR method, but most of the differences are not very large.
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C Appendix C

For more information Appendix C provides optimal numbers of long- and short-run fac-

tors depending on data frequency and without any use of pre-selection. In comparison

with Table 1 in subsection 3.3.2, Table C1 based on quarterly data (constructed by just a

picking method) instead shows 3 as an optimal number of long-run factors (whereas that

of the short-run factors remains unchanged at 1). But we use the monthly data containing

more information as a basis for determining an optimal number of factors. Tables C2 and

C3 indicate that an optimal number of factors is a little larger than those based on a

pre-selected dataset.

Table C1. Optimal number of factorsa

Data X̃it ∆Xit

k Criteria IPC1(k) IPC2(k) IPC3(k) PC1(k) PC2(k) PC3(k)

1 0.6083 0.6168 0.7163 0.8743 0.8914 0.8497
2 0.4687 0.4856 0.6807 0.9445 0.9786 0.8953
3 0.4381 0.4635 0.7503 1.0422 1.0933 0.9683
4 0.4479 0.4817 0.8562 1.1622 1.2303 1.0637
5 0.4705 0.5128 0.9710 1.2945 1.3797 1.1714
6 0.5069 0.5575 1.0956 1.4432 1.5454 1.2954
7 0.5567 0.6159 1.2298 1.5984 1.7177 1.4261
8 0.6145 0.6821 1.3679 1.7668 1.9031 1.5698

aX̃it means the non-stationary panel at a quarterly frequency after a pre-selection via the EN method,

and ∆Xit means the stationary panel at a quarterly frequency after a pre-selection via the EN method.

Table C2. Optimal number of factorsa

Data X̃it ∆Xit

k Criteria IPC1(k) IPC2(k) IPC3(k) PC1(k) PC2(k) PC3(k)

1 0.6773 0.6868 0.7939 0.8637 0.8701 0.8458
2 0.5180 0.5370 0.7499 0.8428 0.8556 0.8069
3 0.4677 0.4961 0.8136 0.8380 0.8572 0.7842
4 0.4972 0.5351 0.9557 0.8446 0.8702 0.7729
5 0.5387 0.5861 1.1085 0.8586 0.8907 0.7690
6 0.5969 0.6538 1.2768 0.8820 0.9204 0.7744
7 0.6725 0.7388 1.4610 0.9125 0.9574 0.7871
8 0.7506 0.8264 1.6465 0.9453 0.9966 0.8020

aX̃it means the non-stationary panel at a monthly frequency without a pre-selection, and ∆Xit means

the stationary panel at a monthly frequency without a pre-selection.
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Table C3. Optimal number of factorsa

Data X̃it ∆Xit

k Criteria IPC1(k) IPC2(k) IPC3(k) PC1(k) PC2(k) PC3(k)

1 0.6352 0.6410 0.7027 0.8574 0.8682 0.8319
2 0.4333 0.4451 0.5672 0.8502 0.8718 0.7992
3 0.3480 0.3657 0.5468 0.8804 0.9128 0.8039
4 0.3388 0.3623 0.6013 0.9133 0.9565 0.8113
5 0.3421 0.3715 0.6670 0.9512 1.0052 0.8237
6 0.3634 0.3987 0.7493 1.0020 1.0667 0.8489
7 0.4001 0.4413 0.8458 1.0562 1.1317 0.8777
8 0.4397 0.4868 0.9439 1.1126 1.1989 0.9085

aX̃it means the non-stationary panel at a quarterly frequency without a pre-selection, and ∆Xit means

the stationary panel at a quarterly frequency without a pre-selection.
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D Appendix D

Appendix D shows the results of the nowcasting performance of the three models chosen
by MAD (while Figures 3a-b and 4a-b show those based on MSEs). As Table 1 has already
shown, the main conclusions remain unchanged.

Figure D1 shows the results of our empirical historical nowcasting performance of the
three models whose optimal model parameters were measured by the MAD, where the
upper panel shows results nowcasted by the MFM, the middle panel those by the LMFM
and the bottom panel those by the LFMECM. In each panel, Monthly type 1 is marked
by an ‘x’; monthly type 2 by a ‘+’; Monthly type 3 by a ‘o’; and the dotted line shows
the growth rates of aggregate GDP for the euro area.

Figure D1. Historical growth rates of GDP and nowcasters 2010QIV - 2016QI
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Figure D2 shows the same results of our empirical historical nowcasting performance
for the three models as presented in Figure 3a. The only difference is that the nowcasters
are re-scaled according to the growth rates of realized GDP.

Figure D2. Historical growth rates of GDP and nowcasters 2010QIV - 2016QI
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Figure D3 shows the results of our empirical historical nowcasting performance for the
three models whose optimal model parameters were measured by the MSE, where the
upper panel shows results for Monthly type 1, the middle panel for Monthly type 2, and
the bottom panel for Monthly type 3. In each panel, the MFM is marked with an ‘x’; the
LMFM with a ‘+’; and the LFMECM with an ‘o’.

Figure D3. Historical growth rates of GDP and nowcasters 2010QIV - 2016QI
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Figure D4 shows the same results of our empirical historical nowcasting performance
for the three models as presented in Figure 4a. The only difference is that the nowcasters
are re-scaled according to the growth rates of realized GDP.

Figure D4. Historical growth rates of GDP and nowcasters 2010QIV - 2016QI
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E Appendix E

Table E1. F -test for equality of two variances of empirical nowcasters (in %)a
Nowcast 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Model Month

MFM 1. 1.04 1.35 1.31 1.25 1.35 1.20 1.21 1.11 1.14 1.06 1.10 1.13 1.11 1.14 1.14 1.25 1.24 1.02 1.04 1.04 1.06 0.96

vs. 2. 1.40 1.64 1.64 1.71 1.65 1.65 1.69 1.66 1.66 1.57 1.71 1.72 1.75 1.78 1.44 1.38 1.37 1.44 1.40 1.40 1.43 1.44

LMFM 3. 1.22 1.46 1.59 1.68 1.75 1.72 1.77 1.80 1.81 1.87 1.88 1.79 1.80 1.81 1.40 1.42 1.40 1.35 1.33 1.33 1.41 1.39

MFM 1. 1.04 1.40 1.37 1.32 1.44 1.20 1.28 1.15 1.20 1.13 1.10 1.14 1.11 1.15 1.16 1.27 1.26 1.03 1.05 1.10 1.10 1.01

vs. 2. 1.46 1.72 1.79 2.03 1.88 1.75 1.88 1.74 1.75 1.64 1.75 1.73 1.82 1.79 1.49 1.41 1.39 1.45 1.40 1.40 1.43 1.44

LFMECM 3. 1.26 1.51 1.73 1.92 1.84 1.87 1.79 1.82 1.81 1.90 1.91 1.80 1.81 1.81 1.40 1.42 1.40 1.35 1.33 1.33 1.42 1.40

LMFM 1. 1.00 1.04 1.05 1.05 1.07 1.01 1.06 1.04 1.05 1.07 1.00 1.01 1.01 1.01 1.02 1.02 1.02 1.01 1.01 1.06 1.04 1.05

vs. 2. 1.04 1.05 1.09 1.19 1.14 1.06 1.11 1.05 1.06 1.04 1.02 1.01 1.04 1.01 1.03 1.02 1.01 1.01 1.00 1.00 1.00 1.00

LFMECM 3. 1.04 1.03 1.09 1.15 1.05 1.09 1.01 1.01 1.00 1.01 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00

aAccording to the usual cumulative F -distribution, the corresponding critical value at 90% for n1 = n2 = 60 is 1.40.
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