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Non-technical summary 

Research question 
Exchange rates are relevant for a variety of economic agents: they influence production 
decisions, prices and portfolio allocations, and more generally they affect a country’s 
competitiveness. There is hence a clear need for reliable models that track the future 
behavior of exchange rates, especially in times of uncertainty and financial stress.  In this 
paper we investigate whether the forecasts of nine major currencies vis-a-vis the US dollar 
can be improved by assuming time variation in the coefficients of the data generating 
process. 

Contribution 
We explore whether modelling parameter time variation, and controlling for 
macroeconomic fundamentals in a time-varying manner, improves the point, interval and 
density forecasts of nine major exchange rates vis-a-vis the US dollar over the period 1976-
2015. In addition, we perform an economic evaluation by building optimized trading 
strategies based on the competing forecast models. 

Results 
Three main results emerge from the empirical exercise. First, modelling parameter time-
variation significantly refines the estimation of forecast uncertainty, though it does not 
improve point forecasts. In particular, time-varying parameter models deliver 68% and 95% 
forecast confidence intervals which are on average accurately calibrated. Second, using two 
scoring rules commonly used in the literature, we find that modelling parameter time 
variation is better suited at long horizons and in periods of high volatility, especially in the 
decade between 2000 and 2010. Third, the economic evaluation shows that trading 
strategies based on time-varying parameter models lead to higher portfolios returns, and to 
higher utility values for investors. 



Nichttechnische Zusammenfassung 

Fragestellung 
Wechselkurse haben für eine Vielzahl von Wirtschaftsakteuren eine hohe Relevanz: Sie 
beeinflussen Produktionsentscheidungen, Preise sowie die Portfolioallokation und ganz 
allgemein die Wettbewerbsfähigkeit eines Landes. Dies macht deutlich, dass zuverlässige 
Modelle benötigt werden, die das künftige Verhalten von Wechselkursen, insbesondere in 
Phasen von Unsicherheit und finanziellen Spannungen, abbilden. In der vorliegenden Studie 
wird untersucht, ob die Prognosen zur Entwicklung von neun wichtigen Währungen 
gegenüber dem US-Dollar dadurch verbessert werden können, dass bei den Koeffizienten 
des Datengenerierungsprozesses eine Zeitvariation unterstellt wird. 

Forschungsbeitrag 
Wir prüfen, ob die Punkt-, Intervall- und Dichteprognosen neun wichtiger Wechselkurse im 
Verhältnis zum US-Dollar von 1976 bis 2015 durch die Modellierung der Zeitvarianz von 
Parametern und die zeitabhängige Berücksichtigung makroökonomischer Fundamentaldaten 
verbessert werden können. Überdies führen wir eine ökonomische Evaluierung durch, indem 
wir optimierte Handelsstrategien auf Basis der konkurrierenden Prognosemodelle 
konstruieren. 

Ergebnisse 
Aus der empirischen Studie lassen sich drei wesentliche Ergebnisse ableiten: Erstens 
verfeinern Modelle mit zeitvariablen Parametern die Schätzung der Prognoseunsicherheit 
erheblich, verbessern jedoch nicht die Punktprognosen. So liefern solche Modelle 68 %- und 
95 %-Prognose-Konfidenzintervalle, die im Schnitt korrekt kalibriert sind. Zweitens kommen 
wir unter Verwendung zweier Bewertungsregeln, die in der Fachliteratur üblicherweise 
herangezogen werden, zu dem Schluss, dass die Modellierung der Zeitvarianz von 
Parametern für längere Zeiträume und in Phasen hoher Volatilität (insbesondere in der 
Dekade von 2000 bis 2010) besser geeignet ist. Drittens zeigt die ökonomische Evaluierung, 
dass Handelsstrategien, die auf Modellen mit zeitvariablen Parametern beruhen, zu einer 
höheren Portfoliorendite führen und einen größeren Nutzwert für Anleger haben. 
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We explore whether modelling parameter time variation improves the point, interval and

density forecasts of nine major exchange rates vis-a-vis the US dollar over the period 1976-

2015. We find that modelling parameter time variation is needed for an accurate calibration

of forecast confidence intervals, and is better suited at long horizons and in high-volatility

periods. The biggest forecast improvements are obtained by modelling time variation in the

volatilities of the innovations, rather than in the slope parameters. Moreover, we do not

find evidence that parameter time variation helps to unravel exchange rate predictability by

macroeconomic fundamentals. Finally, an economic evaluation of the different forecast mod-

els reveals that controlling for parameter time variation leads to higher portfolios returns,

and to higher utility values for investors.
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1 Introduction

Exchange rates have an impact on the production decisions of firms, on portfolio allocations,

and on a country’s prices and competitiveness. Hence, there is a clear need for reliable models

that track the current evolution of exchange rates and predict their future behaviour, especially

in times of uncertainty. Since the seminal work of Meese and Rogoff (1983), a vast literature

has been devoted to the construction and evaluation of exchange-rate point forecasts, and

has established, with few exceptions, that the best forecast model is a simple random walk.

One explanation for this puzzling exchange rate unpredictability is that it might arise from

the instability of the underlying stochastic process.1 In addition, though point forecasts are

clearly of interest, interval and density forecasts of exchange rates are also relevant for the

decision making of economic agents and for the pricing of financial assets. On this last point

the literature is more limited.

In this paper we assess to what extent modelling parameter time variation improves the

predictability of nine major currencies vis-a-vis the US dollar over the period 1976-2015. As it

can be seen in figure 1, the volatility of these exchange rates has varied greatly over time: it

has fallen after the price shocks and inflationary pressures of the 1970s, and it has increased

again in the last decade, as a consequences of the crises in 2000-2001 and 2007-2008. Motivated

by such considerations, we evaluate whether the point, interval and density forecasts of each of

these exchange rates can be improved by controlling for other currencies and for macroeconomic

fundamentals, as well as by allowing for parameter time-variation in the slope and volatility pa-

rameters. The latter is accounted for through a forgetting factor VAR model, recently proposed

by Koop and Korobilis (2013), which is computationally tractable for medium-sized models, and

exploits the information from current forecast errors to determine the extent of time variation.

Several results emerge from the statistical evaluation. First, modelling parameter time vari-

ation refines the estimation of forecast uncertainty, though it does not improve point forecasts.

The point forecasts from time-varying autoregressive models are in fact more accurate than

those from a random walk only at a one-month horizon, for roughly half the currencies in the

sample. On the other hand, time-varying parameter models deliver 68% and 95% forecast confi-

dence intervals which are on average accurately calibrated, according to unconditional coverage

tests. Conversely, constant-parameter models generate forecast confidence intervals which are

1See for example Rossi (2006) and survey evidence documented by Cheung and Chinn (2001).
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Figure 1: Exchange rate volatility over the years: measured as the square monthly percentage changes in
the exchange rate reported in the title. For a description of the series, see Table 6 in the Appendix.

80 85 90 95 00 05 10 15
  0

200

  0

200

80 85 90 95 00 05 10 15
  0

 50

100

80 85 90 95 00 05 10 15
  0

100

200

80 85 90 95 00 05 10 15

20

40

60

80 85 90 95 00 05 10 15

 50

100

150

200

80 85 90 95 00 05 10 15
  0

100

200

80 85 90 95 00 05 10 15
  0

 50

100

80 85 90 95 00 05 10 15
  0

500

  0

80 85 90 95 00 05 10 15
  0

100

200

excessively large. Moreover, using two scoring rules commonly used in the literature, we find

that modelling parameter time variation is better suited at long horizons and in periods of high

volatility, especially in the decade between 2000 and 2010. The largest forecast improvements

come in fact from modelling time variation in the volatilities of the innovations, rather than in

the slope parameters of the VAR.

Second, modelling parameter time variation is not needed for macroeconomic fundamentals

to show predictive content. A constant parameter model with macroeconomic fundamentals

yields the highest predictive likelihoods at a one and two-year ahead horizons for one third of

the currencies. Modelling variation in the slope parameters worsens the forecast performance

of the constant-parameter model, while allowing for time-varying volatility is beneficial only up

to a one-year ahead horizon.

The different performances of the competing models across periods suggest potential ad-

vantages from forecast combination. An optimal forecast combination based on continuous

ranked probability scores reveals that controlling for macroeconomic differentials lowers point

forecast errors for the Swiss Franc, the Euro, the Yen, and the New Zealand dollar, though this

improvement is seldom statistically significant.

As a final step, we perform an economic evaluation of the different forecast models. In

particular, we build trading strategies based on the forecasts of the competing models, taking

the perspective of a US investor with a one-month trading horizon. The analysis reveals that

2



strategies based on time-varying parameter models yield optimised portfolios with higher mean

returns, but also higher volatility, than a static random walk strategy. Moreover, controlling

for both macroeconomic fundamentals and time-varying parameters leads to the highest per-

formance fee an investor would be willing to pay to switch from a benchmark random walk

strategy, though the amount is not economically large.

Our comprehensive statistical and economic evaluation complements the empirical literature

on exchange rate forecasting, not only for the methodology used, but also for the emphasis

on interval and density forecasts. A wide variety of methods has been used in the empirical

literature on exchange-rate forecasting, and the consensus is that the most difficult benchmark

to beat, in terms of point forecast accuracy, is the random walk.2 A small but increasing

number of papers has instead focused on density forecasts. Relevant examples are Yongmiao

et al. (2007) and Balke et al. (2013), who both show that the density forecasts of a random

walk can be improved either with non-linear models, or with univariate Taylor-rule models

with semiparametric confidence intervals. In addition, Mumtaz and Sunder-Plassmann (2013)

show that a structural time-varying stochastic volatility vector autoregression outperforms its

constant-parameter counterpart on the basis of the mean squared forecast error and of the

Bayesian deviance information criterion. A paper closely related to ours is Della Corte et al.

(2009), who establish that modelling time-varying volatility is important for the one-month

ahead predictive ability of macroeconomic fundamentals. In contrast to the aforementioned

articles, our forecast evaluation exercise comprises forecast horizons larger than one month, a

wider set of evaluation criteria, and is based on a larger forecast sample that includes the 2008

financial crisis.

The paper is organised as follows. In the next Section we briefly outline the theoretical and

empirical literature behind exchange-rate forecasting models. Section 3 describes our empirical

strategy, while Sections 4 and 5 respectively present the statistical and economic evaluation of

the competing models. Section 6 concludes.

2For instance, Carriero et al. (2009) and Dal Bianco et al. (2012) have improved upon the point forecasts of a
random walk by relying respectively on a Bayesian vector autoregression with a large set of exchange rates, and on
a mixed-frequency dynamic factor model with four weekly exchange rates and lower-frequency macroeconomic
fundamentals. However, Rossi (2013) documents that in general the methodologies that deliver lower mean
squared forecast errors than a random walk are typically sensitive to the forecast horizon and to the sample used.
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2 Exchange-rate prediction models: a discussion

Since the seminal work of Meese and Rogoff (1983), empirical research has established that a

simple random walk suffices to deliver the most accurate point forecasts of exchange rates. Mod-

els augmented with macroeconomic and financial fundamentals appear to improve random walk

forecasts only at long horizons, though not systematically across exchange rates and samples.3

There are two prominent explanations for this puzzling result. A first one, suggested by Engel

and West (2005), argues that exchange-rate unpredictability is an implication of the structural

models, rather than being evidence against them. The authors start from the consideration

that all exchange-rate determination models can be rewritten so as to express exchange rates as

present discounted values of current and future fundamentals, as well as unobservable shocks.

Then, exchange rates will exhibit almost no correlation with current fundamentals so long as

fundamentals are persistent and agents are patient, implying that future fundamentals matter

more than current ones. A second explanation lies instead in the instability of the relationship

between exchange rates and their fundamentals, which has been documented, among others,

by Rossi (2006). Instability may arise from trading strategies that involve frequent changes

to the weight attached to fundamentals, as documented through survey evidence by Cheung

and Chinn (2001), or from a gradual time variation in the relationship between exchange rates

and fundamentals, if the structural parameters are unknown to economic agents, as shown in

Bacchetta and Wincoop (2009).

In this work we focus on the instability hypothesis and verify whether allowing for gradual

parameter time variation improves the point and density forecasts relative to a random walk,

and enables fundamentals to show predictive content. In particular, we model time variation

in the relationships among nine major exchange rates vis-a-vis the US dollar, and between the

latter and their macroeconomic fundamentals, as well as in the volatilities of these variables.

But which fundamentals should be considered? Several variables qualify in fact as potential

predictors of future exchange rates. The purchasing power parity theory (PPP), first developed

by Cassel (1918), postulates that the nominal exchange rate (st) should be equal to the sum of

the real exchange rate (qt), and the difference in the general price level between the foreign and

the home country (p∗t − pt):

st = p∗t − pt + qt , (1)

3For a comprehensive review, see Rossi (2013).
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where et = log st is defined as the number of currency units per US dollar in logs, following the

notation used in the empirical application, and small case letters denote the logarithms of the

variables.

Moreover, the uncovered interest rate parity (UIRP) condition suggests that exchange rate

movements compensate differences in the nominal interest rate levels (i∗t − it):

Etst+1 − st = i∗t − it + ρt . (2)

This condition is based on the rational expectation and risk neutrality hypotheses, and ρt can

be interpreted either as a forward premium or as an expectational error.4 Empirical evidence

on both these models is mixed. Among others, Cheung et al. (2005) show that while the mean

squared errors from PPP models are lower than those of a random walk for longer horizons,

UIRP models do not significantly improve on the random walk at any horizon. On the contrary,

both models are found to outperform the random walk by Della Corte et al. (2009), on the basis

of statistical and economic criteria.

A relatively recent branch of exchange-rate prediction models is based on Taylor rules. These

models build upon open-economy frameworks, and assume that the policy rule followed by the

foreign central bank targets the country’s exchange rate, as well as output and inflation. This

assumption is not valid for the US, where it is assumed that the interest rate is set solely as

a function of output and inflation fluctuations. Equating the modified Taylor rules for the

home and the foreign country yields a relationship between the exchange rate and differentials

in output, inflation and interest rates. The good performance of Taylor rule models has been

documented among others by Molodtsova and Papell (2009) and Inoue and Rossi (2012), while

it has been questioned by Rogoff and Stavrakeva (2008).

Several other variables qualify as potential exchange rate predictors, including commodity

and oil prices, trade balance differentials and productivity measures. We focus however on

the most commonly used ones, given that our aim is to show whether the relationship between

exchange rates and predictors varies over time, rather than to find the best predictor. Therefore,

on the basis of the theoretical models outlined above, we allow exchange rates to be affected by

differentials in inflation, in the short-term interest rate and in industrial production growth.

4In-sample estimates of the UIRP model usually lead to opposite results from the theoretical relationship:
i.e. that the currency of high-interest rate countries appreciates. See, for instance, the discussion in Della Corte
et al. (2009).
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3 Empirical strategy

In this Section we first introduce a flexible model of parameter time variation, and later outline

the empirical strategy followed in the paper.

3.1 The time-varying parameter forgetting factor VAR

Time variation is modelled through a forgetting factor VAR (henceforth tvp ffvar), recently

introduced by Koop and Korobilis (2013). This model can be considered as an approximation of

the Bayesian VAR with time-varying parameters and stochastic volatility developed by Cogley

and Sargent (2005) and Primiceri (2005). Instead of using a sampler to draw the covariance

matrices of the time-varying parameters and volatilities, the tvp ffvar estimates them as a

weighted average of previous estimates and of the current forecast error variance. It is a more

parsimonious set up that considerably speeds up computational time, enables the analysis with

a larger number of variables, and has been shown to perform well in forecasting analyses.5

The assumptions of the tvp ffvar model imply a state-space model, with the following

measurement equation:

yt = Ztβt + εt , (3)

where yt is a n× 1 vector of observed variables, Zt is a n× k matrix of regressors, βt is a k× 1

vector of time-varying coefficients and ut is a n× 1 vector of innovations drawn from a Normal

distribution with mean 0 and covariance matrix Ωt. Let Zt contain a constant and p lags of each

variable; it is then defined as Zt = In ⊗ [1, y′t−1, . . . y
′
t−p] with dimension n× k = n×n(1+np).

Given information up to t−1, the slope coefficients in t are draws from a normal distribution:

βt| yt−1 ∼ N(βt|t−1, Pt|t−1). The Kalman filter routine, used in the first step of the Gibbs

sampler, entails a prediction for the coefficients’ covariance matrix, Pt|t−1 = Pt−1|t−1 + Q. To

avoid drawing from the posterior distribution of Q, the following approximation is used:

Pt|t−1 =
1

λ
Pt−1|t−1, with λ ∈ (0, 1] , (4)

where the parameter λ is a forgetting factor which discounts past information. A value of λ

equal to 0.99 implies, in the case of monthly data, that observations one year ago receive 89%

5See, for instance, Koop and Korobilis (2013). Moreover, in a previous version of this paper we show that the
tvp ffvar generally outperforms the Bayesian counterpart in a comparison based on a fewer number of exchange
rates. These results are available upon request.
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as much weight as current observations.

A similar approximation is used for the covariance matrix of the non-structural innovations,

Ωt. The latter is estimated as a weighted average of its past value, and of its current estimate:6

Ω̂t = κΩ̂t−1 + (1− κ)ε̂′tε̂t , (5)

where the weight is represented by the decay factor κ. To summarise, the procedure developed

by Koop and Korobilis (2013) is based on the Kalman filter and relies on the parametrisation

of equations 4 and 5, as well as on the choice of initial conditions for the covariance matrix Ω0,

for the slope coefficients β0 and their variance P0. Further details on the paramerisation are

provided in the next Section.

Note that equations (4) and (5) in the forgetting factor model do not provide any rule for

the out-of-sample evolution for the two covariance matrices. In order to generate samples from

the predictive density, we follow Koop and Korobilis (2013) and assume Ωt to be fixed out of

sample. In a similar way, the out-of-sample path for the slope coefficients βt+h is assumed to

be fixed out of sample and centred around the last estimated values for β̂t|t and for P̂t|t.7 Given

these assumptions, we simulate 5000 values for the vector ŷt+h = [ŷ′t+1, . . . , ŷ
′
t+h], and store

the mean and the relevant percentiles of the values {ŷt+i, κ, i = 1 . . . h}5000κ=1 .

3.2 Exchange-rate prediction models

The goal of the paper is to assess whether the point, interval and density forecasts of the levels

of nine major exchange rates vis-a-vis the US dollar can be improved relative to a random walk

by (1) jointly modelling the nine exchange rates, (2) modelling the nine exchange rates jointly

with macroeconomic differentials, and (3) allowing gradual time variation in the parameters of

the forecast models.

To this purpose, we consider the relative performance of five models, described in Table 1:

a time-varying univariate forgetting factor model (tvp ar), a time-varying forgetting factor

VAR with only exchange rates (tvp ffvar), a constant parameter Bayesian VAR with only

exchange rates (bvar), a time-varying forgetting factor VAR with exchange rates and funda-

mentals (tvp ffvar macro), and a constant parameter Bayesian VAR with exchange rates

and fundamentals (bvar macro). The constant parameter models are estimated recursively

6This is the Exponentially Weighted Moving Average estimator, commonly used in the finance literature.
7Allowing for the coefficients to drift out of sample does not improve the predictive ability of the model.
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Table 1: Exchange-rate prediction models

models description

1 rw Random walk

2 tvp ar Single-equation forgetting factor model, time-varying slope and volatility, λ = 0.99 and κ = 0.96

3 tvp ffvar Forgetting factor model, time-varying slope and volatility, λ = 0.99 and κ = 0.96

4 bvar Bayesian model with constant parameters, estimated recursively

5 tvp ffvar macro Forgetting factor model, time-varying slope and volatility, λ = 0.99 and κ = 0.96

augmented with macroeconomic fundamentals

6 bvar macro Bayesian model with constant parameters, estimated recursively

augmented with macroeconomic fundamentals

every month. The point and density forecasts are then compared to those of a random walk,

with standard deviation estimated recursively every month.

As additional exchange rate predictors, we select differentials in the short term interest rate,

in inflation and in output growth, respectively measured as the month-on-month percentage

changes in the CPI and industrial production indexes. A full list and description of the series

is provided in Appendix B. To reduce the dimensionality of the VAR models, we consider only

the first principal component of the nine differentials in each macro category.8

The nine exchange rates are measured in log levels, in order not to lose relevant information.

To correctly evaluate all forecast models, we ensure that their priors, or initial values, are

comparable. We shrink the initial values of the exchange-rates coefficients towards random

walk processes. The same is done for the macro fundamentals, as they exhibit a strong degree

of persistence. Only three lags are used, to reduce dimensionality; however, results do not differ

if we allow for more lags and a larger degree of shrinkage. Following Koop and Korobilis (2013),

we initialise the priors (or initial values) for the covariance matrix of the innovations to the

variance of the data in the first estimation sample.

Accounting for the lag length, the estimation sample runs from 1976m4 to 1986m1, while

the forecast sample runs from 1986m2 to 2015m6. The estimation sample is then progressively

enlarged in a pseudo-real time exercise: in each month we re-estimate the models and compute

forecasts from one-month to two-years ahead.

8We have also explored alternative specifications such as modelling all exchange rates jointly with all differ-
entials, and having 9 single country VARs that model an exchange rate with its country-specific differentials.
Since none of these models improves on those shown in the paper, we do not report these results but make them
available upon request.
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4 Empirical results

4.1 Point and interval forecasts

We begin our analysis by assessing the accuracy of point forecasts and of forecast confidence

intervals delivered by the competing models, relative to those of a random walk.

Point forecasts from model j are compared with those from a random walk through their

relative mean squared forecast error:

RMSFEj,rw
i,h =

∑Tf

t=1(ŷ
j
i,t+h|t − yi,t+h)

2

∑Tf

t=1(ŷ
rw
i,t+h|t − yi,t+h)2

, (6)

where Tf is the number of forecasts, while i and h respectively index the variable and the

horizon. Table 2 reports the relative mean squared forecast errors of the competing models, for

selected horizons and forecast subsamples. Significance is established by means of a Diebold

and Mariano test at a 5% and 10% significance levels, modified using the small sample size

correction of Harvey et al. (1998).

Over the whole forecast sample, no model systematically delivers smaller point forecast

errors than a random walk. A relevant exception are time-varying parameter models, and in

particular the univariate one, which deliver significantly smaller forecast errors at a one-month

horizon for roughly half of the exchange rates analysed. This advantage is however small and

disappears at longer horizons. No significant advantage in terms of point forecast accuracy is

instead gained by controlling for macroeconomic predictors.

To analyse the performance of the models during the Great Financial Crisis period, we split

the sample into two. The cutoff date is 2007m1, so before the actual burst of the financial crisis.

In the pre-crisis sample (1986m2-2006m12), there are some gains from the tvp ffvar model

for Switzerland, Norway and New Zealand, but only at a one month horizon. The same model

woks well for Japan also at longer horizons. In the forecast subsample that includes the finan-

cial crisis, smaller point forecast errors can instead be obtained either by modelling exchange

rates independently but with time-varying parameters (for the Uk, Norway and Sweden), or by

modelling exchange rates jointly but allowing for no parameter time variation (for Switzerland,

the Euro Area, the Uk and Norway, at horizons greater or equal than 6 months).
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Table 2: Mean squared forecast errors of the competing models relative to a random walk for
different forecast samples and horizons. Two (one) stars denote significantly different RMSFE at a 5% (10%)
significance level according to a Diebold-Mariano test, modified using the small-sample correction of Harvey et al.
(1998). The forecast subsamples are defined as follows: pre-crisis sample (1986:m2 - 2006:m12), crisis sample
(2007:m1 - 2013:m6) and full sample (1986:m2 - 2013:m6).

pre-crisis sample crisis sample full sample

model ↓ / h → 1 6 12 24 1 6 12 24 1 6 12 24

AUS

tvp ar 0.99 1.05 1.13 1.30 0.93∗∗ 0.96 0.96 0.99 0.96∗∗ 1.00 1.06 1.21

tvp ffvar 1.01 1.12 1.25 1.55 1.05 1.13 1.22 1.38 1.03 1.12 1.22 1.44

bvar 1.02 1.08 1.20 1.39 1.00 1.02 1.04 1.09 1.01 1.05 1.13 1.28

tvp ffvar macro 0.99 0.99 1.04 1.53 1.06 1.21 1.53 2.19 1.02 1.12 1.31 1.80

bvar macro 1.01 1.07 1.16 1.33 1.00 1.02 1.04 1.07 1.01 1.04 1.12 1.27

CAD

tvp ar 1.02 1.11 1.20 1.29 1.00 0.99 0.98 0.93∗ 1.01 1.04 1.09 1.21

tvp ffvar 1.09 1.53 1.81 2.10 0.97 1.15 1.38 1.95 1.02 1.29 1.56 1.97

bvar 1.01 1.09 1.16 1.27 1.00 1.02 1.05 1.12 1.01 1.05 1.10 1.20

tvp ffvar macro 1.03 1.19 1.35 2.00 1.00 1.27 1.92 4.11 1.01 1.23 1.62 2.48

bvar macro 1.01 1.09 1.13 1.16 1.00 1.02 1.05 1.06 1.01 1.05 1.09 1.15

CFH

tvp ar 1.02 1.11 1.15 1.22 1.02 1.08 1.15 1.29 1.02 1.10 1.15 1.24

tvp ffvar 0.94∗∗ 1.03 1.15 1.53 1.05 1.46 1.70 1.82 0.97 1.14 1.28 1.60

bvar 1.00 1.00 1.01 1.08 1.00 0.98 0.96∗∗ 0.87∗∗ 1.00 0.99 1.00 1.03

tvp ffvar macro 0.97 1.13 1.46 3.23 1.00 1.22 1.49 1.80 0.98 1.16 1.49 3.00

bvar macro 0.99 0.99 0.99 1.13 1.00 0.99 1.00 0.85∗ 0.99 0.99 0.99 1.08

EUR

tvp ar 0.99 1.09 1.11 1.14 0.95∗∗ 0.99 1.01 0.99 0.98∗∗ 1.06 1.09 1.14

tvp ffvar 1.06 1.14 1.34 1.71 1.12 1.15 1.43 2.26 1.07 1.14 1.36 1.76

bvar 1.00 1.00 1.01 1.05 1.00 0.99∗∗ 0.98∗∗ 0.95∗∗ 1.00 0.99 1.00 1.03

tvp ffvar macro 0.98 1.08 1.26 2.22 1.07 1.40 2.30 6.61 1.00 1.19 1.57 2.79

bvar macro 0.99 0.97 0.95∗ 1.04 1.02 1.09 1.27 2.35 1.00 1.01 1.03 1.17

GBP

tvp ar 1.02 1.08 1.17 1.34 0.98∗ 0.90∗∗ 0.82∗∗ 0.66∗∗ 1.01 1.02 1.06 1.14

tvp ffvar 1.01 1.11 1.21 1.76 0.98 1.15 1.48 1.72 1.00 1.13 1.29 1.74

bvar 1.01 1.06 1.13 1.22 1.00 0.99∗ 0.99 0.97∗∗ 1.01 1.03 1.08 1.14

tvp ffvar macro 1.02 1.24 1.47 2.78 1.01 1.32 1.97 2.88 1.02 1.27 1.65 2.78

bvar macro 1.01 1.07 1.14 1.33 1.01 1.02 1.04 0.98 1.01 1.05 1.11 1.23

JPY

tvp ar 1.02 1.09 1.18 1.70 1.00 1.00 1.00 1.01 1.01 1.07 1.12 1.45

tvp ffvar 0.99 0.98 0.86∗∗ 0.92∗ 1.03 1.15 1.15 0.97 1.00 1.02 0.94 0.94

bvar 1.00 1.01 1.04 1.14 1.00 1.00 0.99 1.02 1.00 1.01 1.03 1.10

tvp ffvar macro 0.98 1.10 1.14 1.76 1.01 1.09 1.10 1.51 0.99 1.10 1.14 1.74

bvar macro 0.99 0.99 0.98 1.08 1.01 1.06 1.10 1.20 1.00 1.01 1.02 1.12

NOK

tvp ar 1.01 1.04 1.07 1.12 0.99 0.95 0.91∗∗ 0.78∗∗ 1.00 1.00 1.02 1.08

tvp ffvar 0.96∗∗ 1.13 1.34 1.75 0.93∗∗ 1.04 1.20 1.24 0.95∗∗ 1.09 1.28 1.62

bvar 1.01 1.04 1.09 1.15 1.00 0.99∗ 0.98∗∗ 0.92∗∗ 1.01 1.02 1.05 1.10

tvp ffvar macro 1.00 1.25 1.52 2.85 0.96 1.15 1.66 2.70 0.98 1.21 1.61 2.86

bvar macro 1.00 1.02 1.06 1.16 1.00 1.02 1.07 1.06 1.00 1.03 1.07 1.17

NZD

tvp ar 1.01 1.03 1.05 1.05 1.01 0.98 0.99 1.18 1.01 1.01 1.04 1.09

tvp ffvar 0.96∗ 1.08 1.26 1.48 0.94 1.09 1.18 1.09 0.95∗∗ 1.09 1.22 1.39

bvar 1.02 1.08 1.17 1.27 1.00 1.00 1.00 0.99 1.01 1.04 1.11 1.21

tvp ffvar macro 0.97 0.91∗ 0.86∗∗ 1.29 1.00 1.33 1.85 2.71 0.99 1.13 1.29 1.67

bvar macro 1.01 1.03 1.10 1.25 1.00 1.03 1.05 0.97 1.01 1.04 1.10 1.23

SEK

tvp ar 1.01 1.02 1.04 1.08 0.99 0.94∗∗ 0.89∗∗ 0.78∗∗ 1.00 0.99 0.99 1.02

tvp ffvar 1.02 1.19 1.36 1.85 0.96 1.10 1.34 1.55 1.00 1.16 1.35 1.74

bvar 1.01 1.06 1.10 1.16 1.00 1.00 0.99 0.97 1.01 1.03 1.07 1.13

tvp ffvar macro 1.00 1.19 1.39 2.41 0.99 1.25 1.87 3.27 1.00 1.22 1.59 2.71

bvar macro 1.01 1.04 1.07 1.14 1.00 1.01 1.06 0.99 1.00 1.03 1.08 1.16
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We proceed to examine how the competing models fare in delivering accurately calibrated

forecast confidence intervals. We focus on 68% and 95% intervals, as these are the two most

commonly used in empirical studies. We compute coverage rates for each competing model; i.e.,

the percentage of times in which the actual exchange rate is contained in the forecast confidence

interval. As discussed previously, an accurate assessment of the uncertainty surrounding point

forecasts is likely to be of interest to a wide variety of forex market participants, from central

banks to private investors. A model that delivers coverage rates which are significantly below

their nominal counterparts underestimates forecast uncertainty. To the other extreme, coverage

rates of a 100% imply that the estimated forecast confidence intervals always contain the actual

values, but the confidence bands are so wide to be of little practical use. A model with correctly

calibrated forecast intervals would have coverage rates which do not significantly differ from

their nominal counterparts.

Table 3 reports actual coverage rates of the competing models, at different horizons over the

whole forecast sample.9 Values in bold denote coverage rates which are not statistically different

from their 68% and 95% nominal counterparts, according to the unconditional coverage test

described in Christoffersen (1998) and in Clements (2005).10

Despite yielding the best point forecasts, a random walk with recursively estimated variance

delivers coverage rates which are systematically different from their nominal counterparts. To

clarify this result, figure 2 shows the 68% forecast confidence intervals at a one-year horizon

of the random walk (dark grey area) and of the tvp ar (light grey area), along with the

actual exchange rates (dotted lines). It is evident that with very few exceptions, the random

walk overestimates forecast uncertainty and delivers confidence intervals which are excessively

large. On the contrary, the tvp ar model does a better job at estimating forecast uncertainty.

Table 3 shows that at short horizons, the actual coverage rates are not systematically different

from their nominal counterparts. However, the performance worsens as the forecast horizon

increases. Controlling for all exchange rates and for macro fundamentals in a time-varying

framework marginally improves the coverage rates at medium and long horizons, especially at

a 95% coverage level, as the results of the tvp ffvar and tvp ffvar macro models show.

Overall, all three constant parameter models tend to overestimate forecast uncertainty, as

9No systematic differences are detected when splitting the sample in 2007m1, as for the point forecasts.
10An independence test as in Christoffersen (1998) systematically rejects the null hypothesis of correct condi-

tional coverage for all forecast models, and the results are therefore not reported. This indicates that all models
suffer from a problem of clustered outliers: i.e., the probability of a wrong coverage is likely to be affected by
past performance.
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Figure 2: Forecast confidence intervals: 68% forecast confidence intervals delivered by the random walk
(dark grey area) and by the tvp ar model (light grey area) at a one-year horizon. Dotted lines denote actual
exchange rate levels.
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shown by the coverage rates of the bvar, bvar macro and rw models, which are larger on

average than their empirical counterparts.

4.2 Density forecasts

Though point and interval forecasts are clearly interesting, it remains to be assessed which

model provides the best characterisation of the forecast distribution of the nine exchange rates.

This is relevant in order to attach reliable probabilities to all possible future realisations of the

variables analysed. To this purpose, we rank the density forecasts of the competing models

based on two scoring rules commonly used in the literature: logarithmic scores and continuous

ranked probability scores.

12



Table 3: Coverage rates: Unconditional coverage test results. Main table values denote actual coverage rates, corresponding to nominal coverages of 68% and 95%,
for different models and forecast horizons h over the full forecast sample. Values in bold are not significantly different from the nominal counterpart, according to a test of
unconditional coverage at a 5% significance level.

68% 95%

model h AUS CAD CFH EUR GBP JPY NOK NZD SEK AUS CAD CFH EUR GBP JPY NOK NZD SEK

rw

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6 0.98 0.95 0.99 1.00 0.96 0.98 0.95 0.98 0.98 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00

12 0.94 0.88 0.94 0.94 0.91 0.97 0.86 0.96 0.94 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00

24 0.81 0.65 0.87 0.83 0.79 0.95 0.76 0.86 0.85 1.00 0.98 0.99 0.99 0.97 0.98 0.99 1.00 1.00

tvp ar

1 0.70 0.69 0.69 0.73 0.71 0.70 0.71 0.73 0.71 0.95 0.93 0.95 0.95 0.96 0.97 0.95 0.94 0.95

6 0.59 0.67 0.67 0.54 0.72 0.69 0.66 0.68 0.66 0.91 0.91 0.97 0.93 0.95 0.94 0.93 0.94 0.93

12 0.59 0.60 0.69 0.58 0.69 0.69 0.64 0.60 0.63 0.87 0.91 0.99 0.92 0.95 0.96 0.94 0.91 0.91

24 0.54 0.54 0.68 0.65 0.67 0.64 0.61 0.52 0.57 0.86 0.88 0.98 0.92 0.93 0.95 0.98 0.85 0.93

tvp ffvar

1 0.71 0.71 0.71 0.72 0.76 0.69 0.71 0.75 0.72 0.96 0.93 0.96 0.96 0.97 0.96 0.95 0.94 0.96

6 0.62 0.65 0.67 0.59 0.76 0.68 0.70 0.75 0.72 0.91 0.92 0.93 0.92 0.93 0.96 0.91 0.95 0.93

12 0.60 0.62 0.67 0.56 0.69 0.74 0.66 0.68 0.70 0.89 0.93 0.97 0.93 0.95 0.98 0.90 0.92 0.91

24 0.62 0.59 0.71 0.70 0.71 0.77 0.65 0.69 0.67 0.92 0.95 1.00 1.00 0.93 0.98 0.97 0.93 0.97

bvar

1 0.73 0.67 0.80 0.77 0.79 0.76 0.70 0.77 0.73 0.97 0.91 0.97 0.97 0.98 0.98 0.94 0.96 0.95

6 0.72 0.75 0.87 0.62 0.85 0.74 0.72 0.78 0.70 0.96 0.93 1.00 0.96 0.97 0.97 0.94 0.96 0.96

12 0.75 0.81 0.95 0.67 0.89 0.77 0.74 0.76 0.69 0.95 0.96 1.00 0.99 0.98 0.99 0.97 0.97 0.96

24 0.83 0.86 1.00 0.78 0.92 0.79 0.83 0.77 0.73 1.00 0.99 1.00 1.00 1.00 0.99 1.00 0.99 0.98

tvp ffvar macro

1 0.74 0.71 0.73 0.71 0.76 0.73 0.72 0.74 0.69 0.97 0.93 0.95 0.96 0.96 0.97 0.94 0.94 0.96

6 0.66 0.72 0.77 0.66 0.80 0.73 0.76 0.76 0.77 0.94 0.95 0.97 0.93 0.95 0.97 0.93 0.97 0.94

12 0.66 0.76 0.79 0.62 0.83 0.82 0.75 0.80 0.75 0.96 0.96 0.99 0.97 0.96 0.99 0.94 0.96 0.94

24 0.81 0.83 0.86 0.82 0.85 0.90 0.82 0.85 0.78 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.98

bvar macro

1 0.72 0.68 0.79 0.84 0.81 0.76 0.72 0.76 0.73 0.97 0.91 0.97 0.99 0.98 0.97 0.94 0.96 0.95

6 0.66 0.79 0.86 0.95 0.88 0.75 0.80 0.79 0.72 0.94 0.94 1.00 1.00 0.97 0.97 0.96 0.97 0.95

12 0.66 0.83 0.97 0.99 0.94 0.83 0.84 0.80 0.72 0.94 0.96 1.00 1.00 0.98 0.98 0.99 0.97 0.95

24 0.77 0.86 1.00 1.00 0.93 0.82 0.90 0.84 0.77 0.95 1.00 1.00 1.00 1.00 0.98 1.00 0.98 0.97
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Logarithmic scores: Logarithmic scoring rules are based on the evolution over time of log-

predictive likelihoods, i.e. the log likelihood of observing the actual realisation of the variable,

given a forecast model:

log gj, h, t(yt+h | Fj, t) , (7)

where gj, h, t(·) denotes the predictive likelihood of model j at horizon h (possibly time-varying

and thus depending on time t), y is a target variable, and Ft, j is the information set of model j

which includes the actual value of the variables up to time t and the forecasts of the remaining

variables. Of interest is the cumulative difference between two competing prediction models:

Sj,h =

Tf−h∑
t=1

[
log g1, h, t(yt+h | F1, t)− log g2h t(yt+h| Fgj , t)

]
. (8)

This exercise is similar to what is undertaken in Amisano and Geweke (2010) and Amisano and

Geweke (2013), and enables us to gauge the contribution of different observations over time in

favour or against the first model g1, h, t(·). Moreover, the statistic in (8) can be interpreted as

the summed difference in density forecast errors and can be justified in terms of the Kullback-

Leibler distance (KLIC).11 Hence, when two different predictive densities are compared, the

average difference between their logarithms is directly related to their relative KLIC distance.

Among a class of alternative models, choosing the one with the highest average log-predictive

likelihood entails selecting the model with the minimal distance to the true data generating

process.

Figures 3 and 4 plot the statistic S in equation (8) at a one-month and two-year forecast

horizons,12 where the benchmark is the time-varying forgetting factor univariate model. Since

all models perform systematically better than a random walk, this comparison is not shown but

available upon request. At short horizons, all models perform better than the univariate time-

varying variant, suggesting that controlling for additional information matters for generating

accurate density forecasts. Time variation instead appears not to be important, as time-varying

parameter models perform similarly to constant-parameter ones.

At longer horizons the time-varying parameter model with only exchange rates delivers

higher predictive likelihoods for half the currencies in the sample.

11Under some regularity conditions, the average of the sample quantities of the true log predictive density ft(·),
and of the predictive density of model j, gj,t(·), yields a consistent estimator of the KLIC distance. For a more
detailed discussion, see Hall and Mitchell (2007).

12Results for other horizons are not shown as they are very similar to those presented in the text, but are
available upon request.
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Figure 3: Cumulative differences in log-predictive likelihoods, h = 1, relative to the tvp ar model.
Increases in the plotted statistics denote observations in favour of the tvp ffvar (solid line), bvar (dashed
dotted line), tvp ffvar macro (thicker dashed line), and the bvar macro (thicker dotted line).
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The better performance is however limited to the high-volatility period between 2000 and 2010

and, for some currencies, it disappears after 2010. Controlling for macroeconomic predictors

yields better density forecasts if and only if there is no time variation in the data generating

process. A constant-parameter Bayesian VAR augmented with macro fundamentals and esti-

mated recursively over the forecast sample generates in fact higher predictive likelihoods than

the competing models for one third of the currencies.

Continuous ranked probability scores: Logarithmic scores tend to be sensitive to the

distance between the centre of the forecast density and the realised outcome. To overcome this

problem, we employ a different scoring rule, the continuous ranked probability score (CRPS),

defined in terms of predictive cumulative distribution functions. As surveyed in Gneiting et al.

(2007), this scoring rule rewards the ”sharpness” of a forecasting rule, i.e. the concentration of

the forecast density around its centre, and is less sensitive to distance. Given a realised outcome

yt+h and the cumulative predictive density Gj, h of model j at horizon h, the associated CRPS

with negative orientation is expressed as:

CRPS(Gj, h, y) = EGj, h
|ŷj,t+h − yt+h| − 1

2
EGj, h

|ŷj,t+h − ŷ′j,t+h| , (9)

where EGj, h
is the expectation for the predictive density of model j at horizon h, while ŷj,t+h

and ŷ′j,t+h are h-step ahead forecasts for the realisation yt+h obtained from model j. Note that

the rule above nests the mean absolute error in the case of point, rather than probabilistic,

forecasts.

We compute the CRPS for the different forecast models using a rolling window of five years

and, following Ravazzolo and Vahey (2014), construct the relative weight of each model in

period t according to the rule:

wj, h, t =

∑t
τ=t−s Γj, h, τ∑N

j=1

[∑t
τ=t−s Γj, h, τ

] , (10)

where Γj, h, t is the inverse of equation (9) computed for model j at horizon h over the period

[t− s, t], s = 60, and N is the total number of models considered. A lower CRPS value (lower

density forecast error) translates into a higher relative weight of model j.

Figures 5 and 6 show the weights, relative to the time-varying autoregressive model, at a one-

month and two-year forecast horizons. At short horizons, all models have similar and relatively
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higher weights than the univariate time-varying model. Towards the end of the sample however,

the tvp ar receives progressively more weight, as the volatility of the currencies increases. The

cutoff date varies across currencies but is around the year 2005. At longer horizons, the tvp ff

var model receives on average a higher weight over the whole sample, and in particular in the

relatively more volatile period of the early 1990s and between 2000 and 2010. Models augmented

with macroeconomic fundamentals receive on average lower weights than their counterparts with

only exchange rates.

Both scoring rules have highlighted the difficulties in finding a model that performs uniformly

better than the others across forecast periods, horizons and exchange rates. This calls for

potentially positive gains from a forecast combination that assigns a weight on each model,

proportional to its forecast performance. To explore this issue, we use the CRPS-based weights

in (10) to construct point forecasts by optimally combining the competing models. In particular,

we compute an optimal forecast combination of all models (dma macro), and of the models

containing only exchange rates (dma). We distinguish between the two in order to isolate

the contribution of macroeconomic predictors. Point forecasts relative to a random walk are

reported in Table 4 and highlight two main results. First, the two dynamic forecast combinations

deliver more accurate point forecasts than a random walk only at a one-month ahead horizon.

Second, controlling for the two models augmented with macroeconomic predictors lowers point

forecast errors on average. This is particularly evident in the forecast subsample that precedes

the financial crisis where controlling for the macro models improves the point forecasts of the

Euro, the New Zealand dollar and, to a lesser extent, of the Swiss Franc and the Yen.
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Figure 5: CRPS-based weights, h = 1: Weights relative to the tvp ar model, computed using a 5-year
window. Higher weights denote a better performance of the tvp ffvar (solid line), bvar (dashed dotted line),
tvp ffvar macro (thicker dashed line), and the bvar macro (thicker dotted line).
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Table 4: Mean squared forecast errors of the forecast combinations relative to a random walk for different forecast samples and horizons. Forecast combinations
pertain to all models (dma macro), or to the models with only exchange rates (dma). Two (one) stars denote significantly different RMSFE at a 5% (10%) significance level
according to a Diebold-Mariano test, modified using the small-sample correction of Harvey et al. (1998). The forecast subsamples are defined as follows: pre-crisis sample
(1986:m2 - 2006:m12), crisis sample (2007:m1 - 2013:m6) and full sample (1986:m2 - 2013:m6).

pre-crisis sample crisis sample full sample

model ↓ / h → 1 6 12 24 1 6 12 24 1 6 12 24

AUS
dma 1.00 1.04 1.13 1.32 0.98∗∗ 0.99 0.97∗ 0.89∗∗ 0.99∗ 1.01 1.06 1.17

dma macro 0.99 1.00 1.05 1.21 0.99 1.02 1.04 0.94∗∗ 0.99 1.01 1.06 1.14

CAD
dma 1.03 1.18 1.29 1.44 0.99∗∗ 1.02 1.06 1.07 1.00 1.08 1.17 1.32

dma macro 1.02 1.12 1.18 1.29 0.99 1.04 1.15 1.21 1.00 1.07 1.16 1.26

CFH
dma 0.98∗∗ 1.01 1.05 1.14 1.00 1.10 1.16 1.13 0.99∗ 1.03 1.07 1.15

dma macro 0.97∗∗ 0.96 0.96 1.09 0.99 1.05 1.09 0.88∗∗ 0.97∗∗ 0.98 0.99 1.08

EUR
dma 1.00 1.03 1.08 1.12 1.01 1.02 1.08 1.12 1.00 1.03 1.08 1.13

dma macro 0.97∗∗ 0.94∗ 0.93∗ 1.01 1.02 1.08 1.25 1.51 0.99 0.99 1.02 1.10

GBP
dma 1.00 1.00 0.98 1.06 0.98 0.98 1.02 0.95∗∗ 0.99 1.00 1.00 1.04

dma macro 0.99 1.02 0.98 1.05 0.99 1.04 1.17 1.17 0.99 1.03 1.05 1.11

JPY
dma 1.00 1.00 0.96 1.07 0.99 1.00 0.98 0.90∗∗ 1.00 1.00 0.96 1.01

dma macro 0.98 0.96 0.89∗∗ 1.00 0.99 1.00 0.97∗∗ 0.98 0.99 0.97 0.92∗∗ 0.99

NOK
dma 0.98∗∗ 1.03 1.08 1.18 0.97∗∗ 0.98∗∗ 0.97∗ 0.79∗∗ 0.98∗∗ 1.00 1.04 1.11

dma macro 0.98∗∗ 1.01 1.02 1.09 0.97∗∗ 1.00 1.08 0.93∗∗ 0.97∗∗ 1.01 1.06 1.11

NZD
dma 0.98∗ 1.01 1.09 1.19 0.97∗ 0.96 0.92∗∗ 0.72∗∗ 0.98∗∗ 0.99 1.03 1.10

dma macro 0.98∗∗ 0.94∗∗ 0.95∗∗ 1.04 0.98∗ 1.02 1.07 0.83∗∗ 0.98∗∗ 0.98 1.02 1.03

SEK
dma 1.00 1.04 1.06 1.13 0.98∗ 0.99 1.00 0.84∗∗ 0.99 1.02 1.04 1.08

dma macro 0.99 1.01 0.99 1.05 0.98∗ 1.02 1.11 0.98 0.99∗∗ 1.02 1.04 1.07
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4.3 Discussion: decomposing parameter time variation

We have seen that accounting for parameter time-variation is better suited in the case of the

model with only exchange rates. In addition, its performance relative to the constant-parameter

bvar varies over time. We explore here which source of parameter time variation matters

the most: whether it is in the parameters of the slope coefficients, or in the volatility of the

innovations. To this purpose, we experiment with different parameterisations of the tvp ffvar

models and switch off the variation either in the slope coefficients or in the volatilities. This is

achieved by either setting the forgetting factor λ to 1, or the decay factor κ to 0.99.13

Figures 7a and 7b report the joint predictive likelihoods of the nine currencies from the tvp

ffvar model with only exchange rates, relative to those from a model with no time variation

in the slope parameters, or with little time variation in the volatilities. Results show that the

forecast improvement derived from allowing time variation in the slope parameters is negligible,

as there are very little differences in the log-predictive likelihoods of the two models. On the

contrary, modelling time-varying volatility increases the log-predictive likelihood, but is less

important after the financial crisis.

Allowing for time variation in the slope parameters is actually detrimental for the forecasting

performance of the model with exchange rates and fundamentals, as it can be seen by the mostly

negative values in Figure 7a. This is in line with the good forecasting results of the bvar macro

model. Instead, allowing for a higher degree of variation in the volatilities improves the forecast

performance, but only up to one-year ahead (see Figure 8b).

5 Economic evaluation

So far, we have relied on purely statistical criteria to evaluate the competing exchange-rate

forecast models. However, an evaluation based on economic criteria might be of interest as

well, particularly if the statistical models are to be used in real-world applications. To this

purpose, we follow Della Corte et al. (2009) and assume that the different forecast models are

used to build dynamic trading strategies with a one-month horizon, which are then evaluated

in a mean-variance framework. In particular, we take the perspective of a US based investor,

who in each period optimally allocates his wealth by buying a portfolio of home and foreign

bonds that redeem in the next period. We outline the different steps in what follows.

13The closest κ is to unity, the closest is the covariance matrix of the VAR innovations to its initial value.
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Figure 7: tvp ffvar: Cumulative differences in joint log-predictive likelihoods (increases denote observations
in favour of the tvp ffvar model)

(a) Relative to the constant slope variant
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(b) Relative to the constant volatility variant
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Figure 8: tvp ffvar macro: Cumulative differences in joint log-predictive likelihoods (increases denote obser-
vations in favour of the tvp ffvar macro model)

(a) Relative to the constant slope variant
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(b) Relative to the constant volatility variant
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The return on home and foreign bonds is assumed to be safe and equalised across countries,

so that the riskiness of foreign bonds originates solely from the future value of the exchange rate.

Based on the expectation of the conditional mean and variance of next period’s exchange rates,

the investor will optimally allocate his wealth in the various bonds by solving the following

problem:

maxwtw
′
tμt+1|t + (1− w′

tι)r
f
t+1 s.t. w′

tΣt+1|twt = σ̄2 (11)

where wt is a M × 1 vector of portfolio weights on the risky assets, rft+1 is the log return on

the safe asset and σ̄2 is a target conditional volatility of the portfolio returns, which we fix to

be 10%. We denote now with Δst+1 the percentage exchange-rate returns, where the exchange

rate st = log et is the number of currency units needed to purchase 1 dollar (in logs). Then, each
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forecast model provides the information needed to construct the conditional expected mean and

variance of the risky assets returns, respectively denoted as μt+1|t and Σt+1|t and defined by:

μt+1|t = Et[rt+1] = Et[r
f
t+1 −Δst+1] (12)

Σt+1|t = Et[(r
f
t+1 −Δst+1 − μt+1|t)(r

f
t+1 −Δst+1 − μt+1|t)′ (13)

The solution to the optimisation problem yields the optimal portfolio composition, i.e. the

weights on the risky assets:

wt = σ̄
[
(μt+1|t − ιrft+1)

′Σ−1
t+1|t(μt+1|t − ιrft+1)

]− 1
2Σ−1

t+1|t(μt+1|t − ιrft+1) (14)

We define the trading strategy associated to forecast model j as the optimal choice of portfolio

weights, given the forecast model predictions of μt+1|t and Σt+1|t. The different trading strategies

(portfolio choices), are then evaluated within a mean-variance framework. Following Della Corte

et al. (2009) and West et al. (1993), we assume that the utility of the investor is increasing in

wealth and decreasing in its variance, with constant degree of relative risk aversion δ, which we

fix to 6. This enables us to consistently estimate the expected utility generated by an initial

level of wealth W0 through the average realised utility Ū :

Ū = W0

T−1∑
t=0

[
Rj, t+1 − δ

2(1 + δ)
R2

j, t+1

]
, (15)

where Rj, t+1 = 1+(1−w′
j,tι)r

f
t+1−w′

j,trt+1 is the gross realised return on portfolio j . Assuming

a constant risk aversion further simplifies the problem by allowing the initial level of wealth W0

to be normalised to unity.14

A strategy j is better than a benchmark if it leads to a higher average realised utility. So,

following Della Corte et al. (2009), we calculate the maximum fee Φ that the investor is willing

to pay to switch from the benchmark trading strategy b to strategy j as the value that equalises

the average realised utilities obtained from the two strategies:

T−1∑
t=0

[
(Rj, t+1 − Φ)− δ

2(1 + δ)
(Rj, t+1 − Φ)2

]
=

T−1∑
t=0

[
Rb, t+1 − δ

2(1 + δ)
R2

b t+1

]
, (16)

14As shown in West et al. (1993), a constant relative risk aversion implies in fact that the expected utility is
linearly homogeneous in wealth.
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where the benchmark strategy is a random walk, i.e., it entails buying the safe domestic asset.

Additionally, since all trading strategies beside the benchmark are dynamic, we need to take

into account transaction costs. The positive realised utility might in fact be undone, if a given

strategy requires many portfolio changes and if transaction costs are sufficiently high. Following

Della Corte and Tsiakas (2013) and Han (2006) we calculate the break-even transaction cost τ

that makes investors indifferent between two strategies. A strategy is preferred to the benchmark

only if actual transaction costs are lower than the breakeven cost.

Table 5 reports for each strategy the maximum fee Φ, the break-even transaction cost τ ,

as well as the average realised portfolio return R̄j , the portfolio standard deviation σR, j and

its Sharpe ratio (SR).15 Controlling for time-varying parameters and macroeconomic funda-

mentals yields the highest portfolio returns. In addition, all time-varying models yield higher

returns than their constant-parameter counterparts, and conditioning on additional information

improves the univariate-based strategy. However, the portfolios based on time-varying param-

eter models are on average more volatile than the benchmark strategy, and this is reflected on

the latter having the highest Sharpe ratio. Moreover, since the differences in portfolio returns

are small, both the maximum performance fees and breakeven transaction costs are also rather

low. Nevertheless, results point towards a positive contribution of macroeconomic fundamen-

tals. First, the strategy with the highest performance fee is the one based on the time-varying

model augmented with fundamentals. Second, the strategy with the highest breakeven trans-

action cost is the one based on the forecast combination that employs all competing models.

In particular, breakeven transaction costs increase by 45% once models augmented with macro

fundamentals are accounted for in the forecast combination.

6 Conclusions

A big puzzle in the foreign exchange literature is the inability to predict the future behaviour

of exchange rates. Moreover, most of the literature evaluates competing forecast models based

on their point forecasts relative to a random walk. Little attention has so far been paid to

how well the models characterise forecast uncertainty, a feature likely to be of interest for many

real-world applications.

In this paper we conduct a comprehensive statistical and economic evaluation of exchange

15The Sharpe ratio is defined as the ratio between the mean return and its standard deviation, and it is an
effective way to summarise the mean-variance trade-off of a given investment strategy.
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Table 5: Trading strategies results based on the different forecast models. The statistics reported are the

average portfolio return R̄j , the portfolio standard deviation σR, j and Sharpe ratio (SRj =
R̄j

σR, j
), the maximum

performance fee Φ an investor is willing to pay to switch from the benchmark random walk strategy (rw) to
strategy j (in annual percentage points), and the percentage transaction costs τ that would have to be paid in
each period to cancel the positive utility derived from strategy j (in basis points, and reported only if positive).
The target conditional volatility of the portfolio returns σ̄2 is 10%, and the constant degree of relative risk
aversion δ is fixed to 6. Bold values denote the best-performing strategy for each statistic.

model R̄ σR SR Φ τ

tvp ar 4.96 2.85 1.74 0.17 1.64

tvp ffvar 5.04 2.95 1.71 0.32 5.43

bvar 4.90 2.85 1.72 0.11 −
tvp ffvar macro 5.07 3.03 1.68 0.43 3.94

bvar macro 4.95 2.89 1.72 0.19 0.68

dma 5.02 2.83 1.78 0.21 7.54

dma macro 5.05 2.87 1.76 0.28 10.91

rw 4.92 2.68 1.83 − −

rate forecast models, and gauge whether exchange-rate unpredictability can be resolved by mod-

elling time variation in the parameters of the underlying stochastic processes. In particular, we

assess whether the point, interval and density forecasts of nine major currencies vis-a-vis the US

dollar can be improved by controlling for other currencies and for macroeconomic fundamentals,

as well as by allowing for parameter time-variation in the slope and volatility parameters. Time

variation is modelled through a parsimonious set up based on forgetting factors recently pro-

posed by Koop and Korobilis (2013), which determines the amount of parameter time variation

on the basis of current forecast errors.

We find that modelling parameter time variation significantly improves the estimation of

forecast uncertainty. Time-varying parameter models deliver in fact 68% and 95% forecast

confidence intervals which are on average accurately calibrated. Conversely, forecast confidence

intervals from constant-parameter models are excessively large, thus overestimating forecast un-

certainty. Moreover, density forecast results indicate an advantage of time-varying parameter

models in high-volatility periods, especially in the one between 2000 and 2010. On the other

hand, we do not find evidence that parameter time variation helps to unravel exchange rate

predictability by macroeconomic fundamentals. Models augmented with macroeconomic differ-

entials perform in fact better when no parameter time variation is allowed and, at long horizons,

yield higher predictive likelihoods for one third of the currencies in the sample. An optimal

forecast combination that uses weights based on the relative density forecast performances fur-

ther reveals that controlling for macroeconomic predictors lowers point forecast errors for half
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the currencies in the sample, though often not significantly.

Lastly, we have used the competing models to build trading strategies, evaluated within

a mean-variance framework. Results show that allowing for parameter time variation and

controlling for macroeconomic fundamentals leads to higher portfolios returns, and to higher

values for investors, though the differences with respect to a benchmark random walk strategy

are not economically large.
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Appendix: Database description

Table 6: Database description: All series below are monthly data and dowloaded from Datastream. Exchange
rates are monthly averages of daily data. The yen is scaled down by 100. The German Mark series, after January
1999, is equal to the Euro scaled by the fixed conversion rate of 1.96. Macro variables are expressed as differentials
from the US counterpart. Where needed, seasonality has been removed using a 13-term moving average filter.
Industrial production indexes for Australia and Canada are back-casted using the EM algorithm. Finally, we
drop the industrial production index for New Zealand on the account of data length.

variable mnemonic unit source

Australian Dollar to US Dollar AUXRUSD − Bank of England

Canadian Dollar to US Dollar CNUSBOE − Bank of England

Swiss Franc to US Dollar SWUSBOE − Bank of England

German Marks to US Dollar BDXRUSD. − Bank of England

British Pound to US Dollar BDXRUSD. − Bank of England

Japanese Yen to US Dollar JPUSBOE − Bank of England

Norwegian Krone to US Dollar NWUSBOE − Bank of England

New Zealand Dollar to US Dollar NZUSBOE − Bank of England

Swedish Krona to US Dollar SDUSBOE − Bank of England

CPI, Australia AUCCPI..E Price Index (SA) Australian Bureau of Statistics

CPI, Canada CNCONPRCF Price Index (NSA) CANSIM - Statistics Canada

CPI, Switzerland SWCONPRCE Price Index (SA) KOF - Swiss Economic Institute

CPI, Germany BDCONPRCE Price Index (SA) Deutsche Bundesbank

Retail Sales, UK UKRETTOTG Price Index (SA) ONS, UK

CPI, Japan JPCONPRCF Price Index (NSA) Statistics Bureau, Japan

CPI, Norway JPCONPRCF Price Index (NSA) Statistics Norway

CPI, New Zealand NZCCPI..E Price Index (SA) Statistics New Zealand

CPI, Sweden SDCONPRCF Price Index (NSA) SCB - Statistics Sweden

CPI, United States USCONPRCE Price Index (SA) Bureau of Labor Statistics

Industrial Prod., Australia AUCIND..G Price Index (SA) Australian Bureau of Statistics

Industrial Prod., Canada CNI66..CE Price Index (SA) IMF

Industrial Prod., Switzerland SWM66..XR YoY Change (NSA) IMF

Industrial Prod., Germany BDI66..CE Price Index (SA) IMF

Industrial Prod., UK UKI66..CE Price Index (SA) IMF

Industrial Prod., Japan JPI66..CE Price Index (SA) IMF

Industrial Prod., Norway NWI66..CE Price Index (SA) IMF

Industrial Prod., Sweden SDI66..CE Price Index (SA) IMF

Industrial Prod., United States USI66..CE Price Index (SA) IMF

Gov. Bond Rate (Short-Term), Australia AUI61A.. Percentage (NSA) IMF

Gov. Bond Rate, Canada CNI61A.. Percentage (NSA) IMF

Gov. Bond Rate, Switzerland SWI61A.. Percentage (NSA) IMF

Gov. Bond Rate, Germany BDI61A.. Percentage (NSA) IMF

Gov. Bond Rate, UK UKI61A.. Percentage (NSA) IMF

Gov. Bond Rate, Norway NWI61A.. Percentage (NSA) IMF

Gov. Bond Rate, Sweden SDI61A.. Percentage (NSA) IMF

Gov. Bond Rate, Japan JPI61A.. Percentage (NSA) IMF

Gov. Bond Rate, United States USI61A.. Percentage (NSA) IMF
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