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Non-technical summary

Research Question

In the last decade, stress tests have become indispensable in bank risk management which

has led to significantly increased requirements for stress tests for banks and regulators.

Although the complexity of stress testing frameworks has been enhanced considerably over

the course of the last few years, the majority of credit risk models (e.g. CreditMetrics)

still rely on Gaussian copulas which have been strongly criticized by financial experts

in the aftermath of the 2008-2009 financial crisis (e.g. Jones, 2009; Salmon, 2009). We

challenge this view by investigating the influence of different copula functions in credit

risk stress testing.

Contribution

This paper complements the finance literature providing new insights into the impact of

different copulas in stress test applications using supervisory data of 17 large German

banks. Our comprehensive simulation study allows us to disentangle the main drivers for

the observed effects and to explain which copula determines which stress level subject to

the chosen input parameters. Furthermore, this paper provides guidance for practitioners,

such as risk managers and regulators, on how to design a credit risk stress test and

recommends always investigating a variety of dependence structures to determine which

specification leads to the adequate stress forecasts.

Results

Our findings imply that the use of a Gaussian copula in credit risk stress testing should

not by default be dismissed in favor of a heavy-tailed copula as it is widely recommended

in the finance literature. While there might be pitfalls of Gaussian modeling in risk

management applications under normal scenarios, one should always be aware of possible

counterintuitive effects when truncating distributions as is the case in many stress test

approaches.



Nichttechnische Zusammenfassung

Fragestellung

In den vergangenen Jahren sind Stresstests ein unverzichtbarer Teil des Risikomanage-

ments von Banken geworden, was zu deutlich höheren Anforderungen an Stresstests so-

wohl für Banken als auch für Regulierungsbehörden geführt hat. Wenngleich die Kom-

plexität der Stresstests in den letzten Jahren erheblich gestiegen ist, basiert die Mehrheit

der Kreditrisikomodelle (z.B. CreditMetrics) immer noch auf Gauss-Copulas, obwohl die-

se in Folge der Finanzkrise 2008-2009 stark kritisiert wurden (e.g. Jones, 2009; Salmon,

2009). Wir stellen diese Kritik in Frage, indem wir die Einflüsse verschiedener Copulas in

Kreditrisiko-Stresstests untersuchen.

Beitrag

Dieses Papier liefert neue Erkenntnisse über die Auswirkungen verschiedener Copulas

in Stresstests anhand bankenaufsichtlicher Daten von 17 deutschen Großbanken. Unsere

umfassende Simulationsstudie ermöglicht es, die einzelnen Einflussfaktoren beobachteter

Effekte eindeutig zu identifizieren und zu erklären, welche Copula welches Stressniveau

unter den gewählten Eingangsparametern bestimmt. Außerdem gibt unsere Studie Ri-

sikomanagern wie Regulierern Richtlinien für den Aufbau von Stresstests und gibt die

Empfehlung, stets eine Vielzahl von Abhängigkeitsstrukturen zu untersuchen, um die

Spezifikation des Stresstests zu wählen, die zu den adäquaten Stressprognosen führt.

Ergebnisse

Unsere Erkenntnisse zeigen, dass, anders als häufig in der Finanzliteratur empfohlen, der

Gebrauch der Gauss-Copula in Kreditrisiko-Stresstests nicht grundsätzlich zu Gunsten

von heavy-tail Copulas verworfen werden sollte. Auch wenn die Modellierung mit Nor-

malverteilungsannahmen im Risikomanagement unter gewöhnlichen Bedingungen diverse

Probleme aufweist, sollte man sich der möglichen kontraintuitiven Effekte durch die Trun-

kierung von Verteilungen, die in vielen Stresstest-Ansätzen üblich ist, bewusst sein.



Bundesbank Discussion Paper No 46/2015

Credit risk stress testing and copulas - is the Gaussian
copula better than its reputation?∗

Philipp Koziol
Deutsche Bundesbank

Carmen Schell
Deutsche Bundesbank

Meik Eckhardt
Deutsche Bundesbank

Abstract

In the last decade, stress tests have become indispensable in bank risk management
which has led to significantly increased requirements for stress tests for banks and
regulators. Although the complexity of stress testing frameworks has been enhanced
considerably over the course of the last few years, the majority of credit risk models
(e.g. Merton (1974), CreditMetrics, KMV) still rely on Gaussian copulas. This
paper complements the finance literature providing new insights into the impact
of different copulas in stress test applications using supervisory data of 17 large
German banks. Our findings imply that the use of a Gaussian copula in credit risk
stress testing should not by default be dismissed in favor of a heavy-tailed copula
which is widely recommended in the finance literature. Gaussian copula would be
the appropriate choice for estimating high stress effects under extreme scenarios.
Heavy-tailed copulas like the Clayton or the t copula are recommended in the case
of less severe scenarios. Furthermore, the paper provides clear advice for designing
a credit risk stress test.

Keywords: credit risk, top-down stress tests, copulas, macroeconomic scenario
JEL classification: G21, G33, C13, C15

∗Contact address: Deutsche Bundesbank, P.O. Box 10 06 02, 60006 Frankfurt, Germany. Phone: +49
69 9566 4353. E-Mail: philipp.koziol@ecb.int, carmen.schell@bundesbank.de, meik.eckhardt@ecb.int.
The authors benefited from comments by Klaus Duellmann, Heinz Herrmann, Thomas Kick, Christian
Koziol, Christoph Memmel, Tim Obermeier, Peter Raupach, Benjamin Straub, Natalia Tente, Johannes
Vilsmeier and participants of the Deutsche Bundesbank Research Seminar. Discussion Papers represent
the authors’ personal opinions and do not necessarily reflect the views of the Deutsche Bundesbank or
its staff.



1 Introduction

In the last decade, stress tests have become indispensable in bank risk management.

Nowadays, stress tests are a key instrument for risk analysis and banking supervision

(e.g. Brunnermeier, Crockett, Goodhart, Persaud, and Shin, 2009; de Larosière, Bal-

cerowicz, Issing, Masera, McCarthy, Nyberg, Pérez, and Ruding, 2009; Turner, 2009).

Before the European Central Bank (ECB) assumed banking supervision tasks in Novem-

ber 2014 in its role within the Single Supervisory Mechanism (SSM), the ECB conducted

a comprehensive euro-area-wide stress test of the new significant institutions in order to

build confidence by assuring all stakeholders that, on completion of the identified reme-

dial actions, banks would be soundly capitalized (European Central Bank, 2014a). Since

2011, the Federal Reserve has been conducting the Comprehensive Capital Analysis and

Review (CCAR) (Federal Reserve, 2014a) and the Dodd-Frank Act Stress Test (DFAST)

(Federal Reserve, 2014b) on an annual basis to assess the resilience of the largest bank

holding companies operating in the US under different scenarios. In the new Supervisory

Review and Evaluation Process (SREP) (European Central Bank, 2014b) applied by the

SSM, stress tests are a central element, for instance, for assessing institutions’ exposures

and resilience to adverse but plausible future events. As a matter of course, stress tests

play an important role in risk management of individual banks as well (e.g. Basel Com-

mittee on Banking Supervision, 2009). Furthermore, CEBS’ guidelines on stress testing

(Committee of European Banking Supervision, 2010) require banks to consider severe

economic downturns under Pillar II capital requirements.

Stress testing frameworks have been developed considerably further over the last few

years. In the first years, approaches were characterized by mostly single shocks, limited

focus on selected products or business units, static frameworks, no usual link to capital

adequacy and one dimensionality solely considering losses. Today, broad macro scenarios

and market stress, comprehensive, firm-wide, dynamic and path-dependent, explicit post-

stress common equity thresholds, simultaneously losses, revenues and costs are taken into

account. This means that stress tests now include many aspects reaching a significant

level of complexity (e.g. Borio, Drehmann, and Tsatsaronis, 2014; Schuermann, 2014)1.

With the increasing importance and heightened uncertainty in financial markets, severity

of stress scenarios had to increase as well. Against this background time horizons were

also extended significantly which led to an additional increase in the stress effect.

1Stress test frameworks for interbank network are even more complex (e.g. Amini, Cont, and Minca,
2012)
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Although both the complexity of stress testing frameworks and the severity of adverse

scenarios has increased considerably over the course of the last few years, the majority

of credit risk models (e.g. Merton (1974), CreditMetrics, KMV) still rely on Gaussian

copulas. In the aftermath of the 2008-2009 financial crisis, there has been a strong criticism

of mathematics and the mathematical models used by the finance industry, especially the

reliance on Gaussian copulas. Jones (2009) and Salmon (2009) thoroughly questioned

the usage of the Gaussian copula and tried to explain the limitations of this approach as

well as its dangerous role in the 2007-2008 financial crisis. Of course, the drawbacks of

light-tailed distributions are not new in the finance literature, as described in detail for

instance in Borio, Drehmann, and Tsatsaronis (2010). In general, Genest, Gendron, and

Bourdeau-Brien (2009) document the advent and spectacular growth of copula theory.

However, the appropriate usage of copulas in finance applications is still far from being

clear.

In general, the finance literature very rarely identifies the Gaussian copula as the most

appropriate copula for specific applications. Crook and Moreira (2011) apply copula

methods to model dependence across default rates in a credit card portfolio of one large

UK bank, but they do not stress the credit card portfolio. Their empirical results show

that copula families other than the Gaussian one are able to better model the dependence

structure of the credit portfolios. The paper by Brechmann, Czado, and Paterlini (2014)

reveals that Gaussian and t copulas can provide a good fit to model operational risk.

Fischer, Koeck, Schlueter, and Weigert (2009) find that, empirically, the Student t cop-

ula outperforms more general Archimedean copulas in terms of goodness of fit measures.

However, they also find that the relative performance of the Gaussian copula improves as

the number of dimensions increases. According to Diks, Panchenko, and van Dijk (2010)

the Student t copula outperforms other specifications in out-of-sample density forecasts

when using the Kullback-Leibler information criterion as means of comparison. Hamerle

and Roesch (2005) show that a Gaussian copula tends to overestimate the default corre-

lations, as compared to a t copula, implying that in the context of model misspecification,

the Gaussian copula might constitute a more conservative approach. The choice of copula

(normal versus Student t), which determines the level of tail dependence, has a rather

modest effect on risk (e.g. Rosenberg and Schuermann, 2006). For a portfolio consisting

of stocks, bonds and real estate, Kole, Koedijk, and Verbeek (2007) provide clear evidence

in favor of the Student’s t copula and reject Gaussian copula and the extreme value-based

Gumbel copula. Junker, Szimayer, and Wagner (2006) analyse the dependence in the

term structure of US Treasury yields. They show that the transformed Frank copula has

the best overall fit. Hakwa, Jäger-Ambrozewicz, and Rüdiger (2015) propose a flexible
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framework for the computation of the CoVaR in a very general stochastic setting based on

copula theory. When applying both elliptical and Archimedean copulas, the study does

not identify one of the copulas as the most adequate one. The study by Kalkbrener and

Packham (2015b) is the closest to ours and shows that Gaussian and t copulas behave

differently under stress using illustrative examples.2 In a theoretical study, Kalkbrener

and Packham (2015a) investigate correlations of asset returns in stress scenarios and find

that correlations in heavy-tailed normal variance mixture models react less sensitively

to stress than medium or light-tailed models. However, Choros-Tomczyk, Haerdle, and

Overbeck (2014) revisit the analysis of CDO prices and find that an inverse Gaussian

copula is superior to other specifications. To sum all these findings up, the choice of the

right copula clearly depends on the object under investigation and the degree to which

extreme scenarios are modeled. The usage of copulas in stress test applications has not

been tackled in detail so far except in Kalkbrener and Packham (2015b).

This study complements the finance literature providing new insights into the impact of

different dependence structures in stress test applications. We apply a standard multi-

factor credit risk model - CreditMetrics - with sector-dependent unobservable risk factors

as drivers of the systematic risk (e.g. Bonti, Kalkbrener, Lotz, and Stahl, 2006; Duellmann

and Kick, 2014) and add further copula functions to this framework - both elliptical and

Archimedean copulas - in order to achieve more insights into the choice of copula behavior

in stress tests. In the first part of the paper, we explore supervisory data of 17 large

German banks and measure the impact of the selected copulas on the banks’ regulatory

capital ratios. For this purpose, highly granular credit risk information on loan volumes

and banks’ internal estimates of default probabilities are considered in a departure from

the majority of stress test studies to cover appropriately the risk concentrations in the

banks’ credit portfolios. Furthermore, the applied macroeconomic scenario is, on the one

hand, parsimonious as well as very intuitive (“financial crisis”-type) and is derived from

historical distributions of German GDP per business sectors; on the other hand, it is

severe in line with the current trend of more severe scenarios and more complex stress

test frameworks (Busch, Koziol, and Mitrovic, 2015). In the second part, a comprehensive

simulation study allows us to disentangle the main drivers for the impact of the different

copulas in credit risk stress testing and to explain which copula determines which stress

level with respect to the chosen input parameters.

In a stress test framework, the key drivers, such as severity of stress effect on each business

sector and the correlation between business sectors, are exogenously determined by the

2In a similar study, Packham, Kalkbrener, and Overbeck (2016) investigate in particular probabilities
of default and default correlations under stress.
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macroeconomic scenario which limits the degrees of freedom in executing stress tests.

Thus, it is key to understand which copula fits best to the chosen macroeconomic scenario.

Against this background, this paper provides guidance for practitioners, such as risk

managers and regulators, on how to design a credit risk stress test and shows best practices

in using copula functions in stress testing.

Our findings imply that the use of a Gaussian copula in credit risk stress testing should not

by default be dismissed in favor of a copula with higher tail dependence. It is important

to investigate a variety of dependence structures and determine which specification leads

to the appropriate stress forecast. Our comprehensive stress test on 17 German banks

reveals that the Gaussian copula produces more severe reductions of the banks’ capital

ratios than the other heavy-tailed copulas. Even though the differences that appear in

terms of basis point capital ratio changes are not large, transforming them to concrete

capital positions, these differences are classified as material for banks and regulators.

The Gaussian copula would be an appropriate choice for estimating high stress effects in

situations if the applied stress scenario is very severe, meaning that it is characterized by

extreme cutoff values for a number of business sectors and high sector correlation values

possibly combined with a homogenous stress distribution across the affected business

sectors. Heavy-tailed copulas like the Clayton or the t copula are recommended in the

case of less severe adverse scenarios. Assuming very low correlation values means the t

copula generates comparably high stress levels for weak stress scenarios. Clayton copulas

are preferable under semi-strong adverse scenarios in which only a limited number of

business sectors are directly stressed.

This paper is structured as follows: Section 2 describes the stress test design applied in

this study introducing copulas, the credit risk model, the macroeconomic scenario and

the supervisory data set. In Section 3 the results of our bank stress tests are presented

using different copulas. These, at first glance counterintuitive results, are analyzed within

an in-depth simulation study in Section 4 which leads to practical implications for credit

risk stress testing in terms of the choice of copulas in Section 5.
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2 Stress test design

In this section, we introduce the features of the stress testing approach applied in this

study. First, we review some properties of copula functions that are necessary for the

modeling of dependence structures in our stress test. Then, we describe the actual stress

testing framework that we employ in more detail. The description is separated into an

explanation of the credit risk model, the specification of the macroeconomic stress scenario

and a summary of the data and the portfolio stress measures that we compute. A broad

overview of the stress test design can be found in Figure 1.

Figure 1: Overview of the stress test design

This diagram shows a schematic representation of the stress test design. The individual modules

represented as parts of the figure are described in detail in this section.

Stressed 
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2.1 Copulas

When looking at a multivariate random vector X = (X1, ..., Xn)T with distribution func-

tion F, i.e. F (x1, ..., xn) = P(X1 ≤ x1, ..., Xn ≤ xn), notice that F contains all the infor-

mation about the margins as well as the dependence structure between the components

of X. The mathematical concept of copulas allows us to examine both parts separately

and to model dependencies in non-linear contexts adequately.3

3For a detailed description of copulas, see Embrechts, Lindskog, and McNeil (2003), Cherubini, Lu-
ciano, and Vecchiato (2004) or Nelsen (2006).
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For the purpose of this paper, all distribution functions and densities are assumed to be

continuous.

Definition 1 (Copula) A copula C is a multivariate distribution function on the n-

dimensional unit cube with uniformly distributed marginals on [0, 1].

To link the idea of copulas to any desired distribution function, we use the standard

result of transformations of random variables: if X is a random variable with distribu-

tion function F and U is standard uniformly distributed, it holds that F−1(U) ∼ F and

F (X) ∼ U(0, 1). The first statement delivers a simple method to sample from the dis-

tribution F in first simulating a standard uniformly distributed variable U ∼ U(0, 1) and

then setting X = F−1(U) ∼ F . F (X) ∼ U(0, 1) assures that every random variable can

be transformed into a uniformly distributed random variable on [0, 1] in plugging it into its

own distribution function. The following equation now motivates Sklar’s theorem linking

the multivariate distribution function to its margins and the copula function representing

the dependence structure:

F (x1, ..., xn) = P(X1 ≤ x1, ..., Xn ≤ xn) = P[F1(X1) ≤ F1(x1), ..., Fn(Xn) ≤ Fn(xn)]

with Fi(Xi) ∼ U(0, 1).

Theorem 2 (Sklar’s theorem) If F is a multivariate distribution function with univariate

marginals F1, ..., Fn, then F can be written as

F (x1, ..., xn) = C[F1(x1), ..., Fn(xn)] ∀x ∈ Rn

for some copula C. In the case of F being continous, C is unique. Conversely, one can

define any multivariate distribution function F with univariate marginals F1, ..., Fn by

selecting an arbitrary copula function and setting F (x1, ..., xn) = C[F1(x1), ..., Fn(xn)]

∀x ∈ Rn
.4

In our stress test setup, we take advantage of the second part of Sklar’s theorem as we fix

the standard normal marginals and choose different copulas for the dependence structure

between the systematic risk factors. This method generates different multivariate distri-

bution functions in setting F = C[F1, ..., Fn] and is therefore called copula engineering.

4See Nelsen (2006) for the proof.
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There is a host of bivariate copulas that can be found in the literature, but that cannot be

generalized to higher dimensions. As our study works with a multivariate risk vector, we

now take a closer look at those copulas that can be used in higher dimensional applications

and that are frequently used in finance applications.

Definition 3 (Classifications) Let u = (u1, ..., un)T ∈ [0, 1]n. Then the following copula

functions can be defined:

1. The Gaussian copula function is given by

CGa
Σ (u) = ΦΣ

[
Φ−1(u1), ...,Φ−1(un)

]
=

1

(2π)
n
2 |Σ| 12

Φ−1(u1)∫
−∞

· · ·
Φ−1(un)∫
−∞

exp

[
−1

2
xTΣ−1x

]
dx1 · · · dxn,

where x ∈ Rn, with ΦΣ(·) being the distribution function of the n-dimensional nor-

mal distribution with linear correlation matrix Σ and Φ−1(·) being the inverse of the

univariate standard normal distribution.

CGa
Σ is the implicit copula function of a multivariate normal distribution, i.e. the

copula that “couples” n univariate normally distributed marginals to an n-dimensional

normal distribution with correlation matrix Σ. The density of the bivariate normal

copula can be written as

λGaρ (u1, u2) =
1√

(1− ρ2)
exp

(
2ρΦ−1(u1)Φ−1(u2)− ρ2(Φ−1(u1)2 + Φ−1(u2)2)

2(1− ρ2)

)

2. The Student t copula with m degrees of freedom (or tm copula) is given by

Ct
m,Σ(u) = tm,Σ

(
t−1
m (u1), ..., t−1

m (un)
)
,

where tm,Σ(·) is the implicit copula function of the multivariate t distribution with

m degrees of freedom, linear correlation matrix Σ and t−1
m (·) being the inverse of the

univariate t-distribution with m degrees of freedom.

The density of the bivariate tm copula can be written as

λtm,ρ(u1, u2) =

Γ
(
m+2

2

)
Γ
(
m
2

)(
1 + t−1

m (u1)2+t−1
m (u2)2−2ρt−1

m (u1)t−1
m (u2)

m
√

(1−ρ2)

)−m+2
2

√
(1− ρ2)Γ

(
m+1

2

)2∏2
i=1

(
1 + t−1

m (ui)2

2

)−m+1
2
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3. The Clayton copula with parameter α is given by

C(u1, ..., un) =

[
n∑
i=1

u−αi − n+ 1

]− 1
α

with α > 0

The density of the bivariate Clayton copula can be written as

λClaytonα (u1, u2) = (α + 1)(u1u2)−(α+1)
(
u−α1 + u−α1 − 1

)− 2α+1
α

The Gaussian and the tm copula are based on elliptical distribution functions and therefore

also called elliptical copula functions. Both can be characterized through the correlation

matrix and the degrees of freedom since the Gaussian copula is just a special case of the

tm copula for the degrees of freedom converting to infinity.

The Clayton copula is part of the Archimedean family containing copulas that can be

constructed via so-called generator functions ϕ that have to fulfill certain conditions. A

very important advantage of an Archimedean copula is that it can model asymmetric

asymptotic dependencies in the tails of a distribution.

Our study is based on the three copula functions Gaussian, t2 and Clayton where the

Gaussian choice is considered the standard that has to be challenged with distribution

functions capturing tail dependence. The t copula is a natural extension of the Gaussian

one and also frequently used in practice, the Clayton copula out of the Archimedean

family is taken for its effects of lower tail dependence.

For the copulas to be still comparable and to show the effect that lies only in the choice

of the copula function, parameters are calibrated such that (average) linear correlations

as well as marginals etc. are kept fix throughout our study. To be more precise, we

first relate the average linear correlation of the Gaussian and t copula approach to an

average Kendall’s τ and then translate Kendall’s τ as a global measure of dependence

when determining α for the Clayton copula.

Proposition 4 (Calibration of copula parameters) Based on a general proposition

of Kendall’s τ as a function of the copula C (Joe, 1997), the following relations between

copula parameters and Kendall’s τ hold:

8



Copula Kendall’s τ

Gaussian τ =
2

π
arcsin(ρ)

t τ =
2

π
arcsin(ρ)

Clayton τ =
α

α + 2

Figure 2 shows how the choice of the copula function influences realizations of a bivariate

random vector with normally distributed marginals and a fixed correlation parameter of

ρ = 0.7.

Figure 2: Realizations of a bivariate random vector under different copulas

The scatter plots are based on 10,000 realizations (simulated data pairs) under the Gaussian, the t2 and

Clayton copula, respectively, with standard normal marginals and consistent ρ = 0.7 in each case.

(a) Gaussian copula (b) tm copula with m = 2 (c) Clayton copula

2.2 The credit risk portfolio model

In this section of the paper, we describe the setup of the macroeconomic portfolio stress

test measuring the impact of our stress scenario on regulatory capital ratios of German

banks. Credit risk is described by a one-factor portfolio model based on Merton (1974)

and VVasicek (2002) where the default of company i depends on the (latent) asset value Yi.

Yi is a function of a sector-specific systematic risk factor and an idiosyncratic component,

i.e.

Yi = r ·Xs(i) +
√

1− r2 · Ui, r ∈ [0, 1] (1)

with s : {1, ..., n} → {1, ..., 17} assigning one sector to each company. Xs(i) is the sys-

tematic risk factor affecting company i pertaining to sector s(i). The coefficient r is
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calibrated using an average of historic intersector correlations ω̄ and the standard average

asset correlation for small and medium sized corporates ρ̄ = 0.09 as in Duellmann and

Kick (2014). Following their approach we derive ω̄ = 0.79 as the average of the correlation

matrix Σ̂ given in Appendix A.1 and set

r =

√
ρ̄

ω̄
= 0.34.

From now on, for simplicity of notation, the dependence of the sector on the company

identifier will not be explicitly displayed, i.e. the systematic risk factor for sector s is

denoted by Xs. The correlations between the risk factors are approximated by the sam-

ple correlations of sector stock index returns as suggested by Duellmann, Scheicher, and

Schmieder (2008). We use weekly Eurostoxx stock index returns of the 17 sectors for

the representative sample period from 1 January 2010 until 30 December 2011. As this

period contains to a large extent the financial crisis, the estimated values are considerably

impacted by the financial crisis and, therefore, they are higher than for other compa-

rable studies. The estimated correlation matrix Σ̂ can be found in Table A.1 in the

appendix. The risk factors are then obtained by simulating the multivariate risk vector

X = (X1, ..., X17)T , employing the respective copula for the interdependencies. In fix-

ing each marginal distribution to be standard normal, the assumptions of the one-factor

model with Merton background still hold and we can use different copulas to specify only

the dependence structure between business lines.

The remaining parameters of the copula functions are obtained from the estimated cor-

relation matrix Σ̂. For determining m in the tm copula, we fix Σ̂ and use a maximum

likelihood method based again on historical data from Euro Stoxx subindices and the

copula density function λt
m,Σ̂

. To derive the parameter α for the Clayton copula, we make

use of Proposition 4 and first calculate an average Kendall’s τ out of Σ̂ and then calibrate

α conditioned on τ . It is very important to note that following this concept, Kendall’s τ

as a global measure of dependence is kept consistent and results are compared subject to

copula functions.

In a nutshell, the stress test model works as follows: it is assumed that you have in-

formation about debtors of a corporate loan portfolio, i.e. you have estimates for the

probabilities of default (PD), exposures at default (EAD) and a sector affiliation for each

company. For the purpose of this study, LGDs are set to be constant at 0.45 (see Busch

et al. (2015) for a detailed explanation of this ad hoc choice for the LGD parameter).

First, calculate baseline risk ratios, such as expected loss (EL) and risk weighted assets

(RWA), for the portfolio in a normal unstressed environment.
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EL =
n∑
i=1

EADi

EAD
· LGDi · PDi

The Internal Ratings-Based Approach (IRBA) allows for the following asymptotic de-

scription of RWAs for credit risk taking in a portfolio with n borrowers:

RWACrR =
n∑
i=1

EADi

EAD
· LGDi

[
Φ

(
Φ−1(PDstress

i ) +
√
p (PDstress

i ) Φ−1(0.9999)√
1− p (PDstress

i )

)
− PDstress

i

]

·
[

1 + b (PDstress
i ) · (T − 2.5)

1− 1.5 · b (PDstress
i )

]
· 12.5 · 1.06

with

p (PDi) = 0.24 ·
[
1− 1− exp(−50PDi)

1− exp(−50)

]
− 0.12 ·

[
1− exp(−50PDi)

1− exp(−50)

]
,

b (PDi) = (0.11852− 0.05478 ln(PDi))
2

and maturity T = 2.5.

In a second step, simulate risk vectors using different copula functions with calibrated

parameters as explained. Take only those realisations which meet the conditions of the

stress scenario, i.e. each risk component has to be less or equal to a specified stress

threshold (Bonti et al., 2006). Then, plug the outcomes of the simulation into the one-

factor model and get a number of firm values and a corresponding default barrier for each

borrower in applying a reverse Merton approach, i.e. Φ−1(PDi). Calculate a stressed PD

by taking relative frequencies and generate the stressed expected loss ELstress and stressed

risk weighted assets RWAstress by just replacing PD with PDstress in the formulas above.

The impact of the stress scenario is then captured as the relation of unstressed and stressed

characteristics. Moreover, stressed regulatory capital ratios, e.g. the Tier1Capitalratio,

can be determined by means of a stress surcharge:

T1CRstress =
T1C − 1

2
max{ELstress − TEP, 0}

RWAstressCrR + 12.5 · (KMkR +KOpR)

with T1C being the Tier 1 Capital, ELstress being the expected loss under stressed condi-

tions and TEP as the total of eligible provisions in accordance with Basel II. KMkR and

KOpR represent regulatory capital requirements for unexpected losses from market and

operational risks.
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2.3 Macroeconomic scenario

With the setup of the portfolio model being illustrated, this section describes how a

given stress scenario can be incorporated applying the modeling approach of Bonti et al.

(2006). The stress impact is captured by restricting the distribution function of our sector-

dependent systematic risk vector X = (X1, ..., X17)T with a certain stress threshold for

each component. In order to obtain these cutoff values and to link the latent unobservable

variables of the sector-dependent systematic factors Xs to the historical stress scenarios

from the observable GDP sector growth rates, we follow the steps described in Duellmann

and Kick (2014) and Busch et al. (2015).

One of the most sensitive issues in macroeconomic stress testing is the question of scenario

selection (e.g. Jandacka, Rheinberger, Breuer, and Summer, 2009). Since our main interest

lies in the comparison of different copulas, we are content with a general stress scenario

that can be considered both severe and plausible. In line with Busch et al. (2015), we

apply a stress scenario that captures the experiences of the financial crisis in 2008/2009.

Our scenario is however slightly more extreme in order to allow for a better analysis of

the tail forecast of different copulas in stress testing. More precisely, we define the stress

period as the core of the financial crisis from the third quarter of 2008 to the second

quarter of 2009. The correlation structure of the risk factors ensures that all sectors are

stressed in the scenario.

In order to specify the stress scenario, we calculate the geometric mean of the sector-

specific GDP growth rates in the defined period. Using the historical development of the

German GDP by sectors, we derive the sector-specific stress scenario. As the data on

sectoral GDP breakdown are only available as of 1991 due to German reunification, it

is difficult to estimate kernel densities on the basis of 21 years with 84 observations. In

order to improve the estimation accuracy of the kernel densities, we obtain an enlarged

sample of yearly sectoral GDP growth rates by bootstrapping techniques. The algorithm

resamples the historical sectoral GDP growth rates and constructs yearly sectoral GDP

growth rates by drawing from the quarterly historical sectoral GDP observations. In doing

so, we obtain a robust sectoral GDP distribution. Compared with a flat GDP scenario

assumption for all business sectors, our granular approach has the advantage that it

enables us to exhibit more finely grained stress of the banks’ sectoral credit portfolios,

which were affected differently by the macroeconomic environment during the financial

crisis.
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Table 1: Cutoff values for the systematic risk factors

This table shows the cutoff values cs describing the upper threshold of the stress region of the systemic

risk factors in each sector.

ICB Classification Cutoff Value cs

Oil & Gas 0.27
Chemicals -1.97
Basic Resources -1.21
Construction & Materials 0.23
Industrial Goods & Services -2.25
Automobiles & Parts -2.08
Food & Beverages -1.59
Personal & Household Goods -2.08
Health Care -2.16
Retail -0.95
Media 4.26
Travel & Leisure -2.24
Telecommunications 4.26
Utilities 4.26
Insurance 4.26
Financial Services 4.26
Technology -2.32

As the business sectors are affected in different ways, the cutoff values cs show a heteroge-

nous stress impact across business sectors as Table 1 illustrates. The cutoff values are

determined such that truncating the estimated kernel density of the sector-specific GDP

growth rates at the cutoff value results in a conditional expectation that corresponds to

the observed sectoral growth rate from the third quarter of 2008 to the second quarter

of 2009. Business sectors such as industrial goods and services as well as technology are

heavily stressed whereas financial services or utilities sectors are not influenced by the

stress scenario.5

Following this approach, 12 out of 17 sectors are directly stressed in truncating the mul-

tivariate distribution function (a threshold of 4.26 is not a real truncation for a standard

normal variable). The impact on all other branches is captured via dependencies of risk

components using the copula concept.

5The result of no stress in the financial sector in the crisis is surprising; however, this is warranted
by the data on which the estimations are based. The financial services subsector of the German GDP
decreased only slightly during the stress period and remained on a relatively high level compared to e.g.
the period from 2002 until 2005, during which it saw a huge decline.
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2.4 Data and descriptive analysis

The models used require input data on the portfolio composition of the analyzed banks,

borrower credit quality and on the sector correlation structure. The reference date of our

stress test is 31 December 2011. The information about the portfolio composition and

the borrowers is based on the German credit register which is hosted by the Deutsche

Bundesbank and includes all national and international borrowers with a minimum to-

tal credit volume of e 1.5 mn. The term “borrower” in this context includes not only

single borrowers but also so-called borrower units which can comprise several formally

independent but (legally or economically) heavily interlinked entities.6 For each single

entity, borrower information on the loan volume, the PD and the sectoral “Nomenclature

statistique des activités économiques dans la Communauté européenne” (NACE) code is

available in this data base.

As for the sectors, the NACE codes of the respective borrowers are aggregated to su-

persectors as defined by the Industry Classification Benchmark (ICB) that concur with

Standard & Poor’s Eurostoxx sectoral subindices used for estimating the intersectoral

correlations.

Figure 3 displays the sectoral distribution of the loans. The major borrowing sectors are

industrial goods and services and financial services.

For the stress forecast output, three key measures are calculated: RWA, EL and regu-

latory capital ratios. Since the data contain only a sample of each bank’s portfolio, we

calculate the overall effect on these risk measures by combining the stress forecasts with

the respective figures in the German solvency reporting. The effect on RWA is calculated

by multiplying the total RWA for the corporate portfolio, i.e. RWA as treated under

the standardized approach and under the bank’s IRB approach, with the relative change

of RWA from the respective bank’s stress scenario. Furthermore, the RWAs under the

standardized approach increase due to the higher risk weights for defaulted exposures,

which affects the denominator of the capital ratio.

6Borrower units are defined as a group of single borrowers which can comprise several formally inde-
pendent but (legally or economically) heavily interlinked entities. For the borrower units, however, PD
and NACE are not contained in the data of the German credit register and need to be identified first.
For the mapping of the NACE code we use the NACE code of the sector with the highest loan amount
from within the total loan volume of all banks to this borrower unit as this information does not depend
on the situation in the respective bank. The PD of a borrower unit is calculated by a weighted average
of all loans of the respective bank to the single borrowers within this borrower unit. Where no PD on
single borrower basis is available we use the same concept as described for the single entities taking into
account the bank’s sectoral average PD or total bank average PD for the respective single borrower.
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Figure 3: Distribution of loan volume per sector

This bar chart shows the percentage of loan volume in the sample for each ICB sector. The figures are

based on the NACE code of the borrowers in the German credit register and aggregated to supersectors

that concur with the ICB classification.
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Due to the higher PDs under stress, the EL increases in the stress scenario. This only

affects the exposures treated under the IRB approaches because the calculation according

to the standardized approach does not include expected losses as these are already cov-

ered by the consideration of specific provisions when calculating the regulatory capital.

Furthermore, the EL for defaulted exposures is also not taken into account because the

PD is already equal to one and therefore the EL cannot increase anymore. The effect on

the EL for non-defaulted IRB exposures is calculated by multiplying the change in EL

per bank with the bank’s EL prior to the stress scenario.

The regulatory capital of the banks is affected by the capital requirements framework.

All banks have to calculate the excess or shortfall of provisioning over the EL. A shortfall

of provisions will be deducted from capital. To calculate the effect on the regulatory

capital, we deduct the increase in the EL from regulatory capital. In the case that a part

of the excess of provisions over the EL is not used as Tier 2 capital prior to the stress

calculation, we deduct only the part that is not covered by these unrecognized excesses.

This deduction will be taken 50 percent from Tier 1 capital and 50 percent from Tier 2

capital. If there is not enough Tier 2 capital to cover the respective EL deduction, the

exceeding amount will be recognized as an additional deduction from Tier 1 capital. The

calculated amount of Tier 1 and Tier 2 capital after stress will be used to calculate the
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effect on the capital ratios. The effect of the stress scenario on the capital ratios of the

banks is calculated by using the capital after stress and the RWA after stress as described

above. We calculate the Tier 1 capital ratio and the total capital ratio by dividing the

respective amount of capital after stress by the stressed RWA. A bank is considered to

fail the stress test if the Tier 1 capital ratio is below 4 percent. The descriptive statistics

of the applied bank sample are shown in Table 2.

Table 2: Descriptive statistics of bank sample

This table shows key figures of our stress test data set. Unless specified differently, all numbers are

composites from the amounts measured under the standardized approach (SA) and the IRB approach.

Variable Amount (in e bn. or %)

Number of banks 17
Total assets 5871.8
Percentage of total assets of all German banks 58.9%
Total credit exposure (corporates) 1,489.00
EL per credit exposure (corporates), IRB only 1.9%
Total RWA 1,419.90
Total RWA (corporates) 689.72
Total RWA per total credit exposure (corporates) 46.3%
Total Tier 1 capital 175.9
Tier 1 capital ratio 12.4%
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3 Bank stress test results

In this section we describe the stress impact on EL, RWA and regulatory capital ratios

using our stress testing framework subject to different copula functions. Figure 4 further

illustrates the levels of EL, RWA and regulatory capital ratios in the baseline and the

stress scenario using the different copula functions. EL in relation to credit exposure

values is forecast to raise from 1.9% to 3.2%, 3.1% and 3.0% using the Gaussian, the t2

and the Clayton copula, respectively. RWAs per exposure increase from 46.3% to 77.1%,

75.3% and 74.6% for the respective copulas, reflecting the procyclical characteristics of

the measurement of RWA. Even though these numbers by themselves merit attention, our

main interest here lies in the comparison of the stress forecasts using different copulas.

Figure 4: Stress impact on Expected Loss, Risk Weighted Assets and Regu-
latory capital ratios

These bar charts show the forecasts of key portfolio variables such as EL, RWAs and regulatory capital

ratios as a percentage of exposure. Baseline refers to the unstressed values, Gaussian, t2 and Clayton to

the stress scenario forecast using the Gaussian copula, the t2 copula and the Clayton copula,

respectively.
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As can be seen from the output, German banks are forecast to weather the stress scenario

relatively well, with the weighted average Tier 1 capital ratios consistently above nine

percent in the stress scenarios. What makes the results striking is, however, that the

state of banks’ capital ratios is forecast to be worse under the Gaussian copula than using

the t2 copula or the Clayton copula. The employed methodology does not yet allow for

an indication of uncertainty around the forecasts, so it is not possible to comment on the

statistical significance of the difference between the predictions. However, a comparison of

the three stress forecasts provides a crude indication of the extent of the difference between

the Gaussian copula and the other approaches: e.g. for EL, the difference between the

Gaussian and the t2 copula forecast, which is the forecast closest to the Gaussian one, is

more than three times larger than the difference between the t2 and the Clayton forecast.

Even though the differences in terms of capital ratio changes appear not to be considerable,

transforming them into concrete capital positions, these differences can be material. This

implies that the greater severity of the Gaussian forecast cannot be easily dismissed as a

chance phenomenon but rather merits a more in-depth analysis.

Figure 5 displays more fine-grained information on the stress forecasts of the Tier 1 capital

ratios. Again, the results clearly show that the Gaussian copula gives a more severe stress

forecast than heavy-tailed copulas.

Figure 5: Distribution of Tier 1 capital ratios under normal and stressed
conditions

This box plot depicts the variation of the Tier 1 capital ratio forecasts across the individual banks in

the sample. Baseline refers to the unstressed values, Gaussian, t2 and Clayton to the stress scenario

forecast using the Gaussian copula, the t2 copula and the Clayton copula, respectively. The upper and

lower limits of the boxes are the 75% quantile (q3) and the 25% quantile (q1). The middle horizontal

line is the median and the single point in the box represents the mean. The two whiskers are the most

extreme data points not considered to be outliers. Points are drawn as outliers if they are larger than

q3 + 1.5 · (q3 − q1) or smaller than q1 − 1.5 · (q3 − q1). The box plots for capital ratios are shown without

outliers.
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We hypothesize that this obtained result stems from our stress test setup with a high

correlation structure between business sectors and a severe stress scenario where more

than two thirds of the components lie under a given stress threshold. Investigating the

variables of the model, we see that the difference between the stress forecasts originates

from the simulated risk factors in the credit risk model: the mean of the risk vector

is -2.83 in the Gaussian, -2.74 in the t2 copula and -2.73 in the Clayton case. Since

these risk factors have a strong impact on probabilities of default of the entities in the

credit portfolio, the risk indicators of our stress test are affected in equal measure. If we

choose another less severe stress scenario with only three stressed sectors, as in the setup

in Duellmann and Kick (2014), but keep the correlation matrix fixed, the averages of

simulated risk vectors are, in the same order as previously, -2.39, -2.57 and -2.80. Hence,

with this kind of scenario setup, the Clayton copula delivers the adequate stress forecast

whereas in the Gaussian case, the stress impact is much lower. It therefore seems that

the phenomenon of greater severity using the Gaussian copula is related to the number of

truncated risk factors and their particular cutoff level. In the next section, this question

will be further investigated by examining the expected values of the risk factors under

variations of the input parameters for the stress scenarios applying simulation algorithms:

the correlation matrix, the number of stressed factors and the severity of the stress scenario

characterized by cutoffs.
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4 Simulation study of input parameters

In order to explain the results of Section 3, we derive precise results on the expected

values of the risk vector in our stress testing methodology here. The reason why we focus

on the risk vector is that it is the main driver of stress in the setup of the model since the

idiosyncratic components Ui in equation (1) are modeled as an i.i.d. white noise process

that, on aggregate, cannot account for systematic differences. The results of this section

apply more generally to random variables linked by copulas. However, for illustrative

purposes, we will still refer to X as the systematic risk vector and the cutoff value c as

the stress threshold. For the analysis to be feasible, we restrict the risk vector to be

two-dimensional for the first part of this section.

With X = (X1, X2), X1 ∼ F1, X2 ∼ F2 and X ∼ F = C(F1, F2), the target measure

is the conditional expectation of the random variable X̄ representing the average of two

components X1 and X2, i.e.

X̄ =
1

2
X1 +

1

2
X2

and

EC [X̄|X1 ≤ c1, X2 ≤ c2] =
1

2
EC [X1|X1 ≤ c1, X2 ≤ c2] +

1

2
EC [X2|X1 ≤ c1, X2 ≤ c2]

due to the linearity of conditional expectations. With the notation EC we stress that

the conditional expectation, and above all, its outcome are determined by the choice of

copula function to model dependence between the risk components. In the following, we

discuss the impact of copulas for both homogenous and heterogenous stress effects.

4.1 Homogeneous stress effect

For the homogeneous stress case where c1 = c2 = c and X1, X2 are uniformly distributed,

it holds that

EC [X1|X1 ≤ c1, X2 ≤ c2] = EC [X2|X1 ≤ c1, X2 ≤ c2] = EC [X̄|X1 ≤ c1, X2 ≤ c2]

and it is sufficient to compute the conditional expected value of X2.

Let u1, u2 be two uniformly distributed random variables and λC the density of the copula

function which models the joint distribution of u1 and u2. Then, the two-dimensional ran-
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dom vectorX = (X1, X2) with standard normal marginals can be written as (Φ−1(u1),Φ−1(u2))

(see Chapter 3) and we can calculate

EC [X2|X1 ≤ c1, X2 ≤ c2] =

∫ c2

−∞
x2 · P(X2 ∈ dx2|X1 ≤ c1, X2 ≤ c2) dx2

=

∫ c2

−∞
x2 ·

P(X2 ∈ dx2, X1 ≤ c1)

P(X1 ≤ c1, X2 ≤ c2)
dx2

=
1

P(u1 ≤ Φ(c1), u2 ≤ Φ(c2))

∫ c2

−∞
x2 · P(u2 ∈ dΦ(x2), u1 ≤ Φ(c1)) ϕ(x2) dx2

=
1

P(u1 ≤ Φ(c1), u2 ≤ Φ(c2))

∫ c2

−∞
x2 ·

∫ Φ(c1)

0

λC(x1,Φ(x2)) dx1 ϕ(x2) dx2 (2)

The inner integral must be solved numerically because integrating Φ(·) is not analytically

tractable. For the Clayton copula, the conditional expectation can be rewritten explicitly

EClayton[X2|X1 ≤ c1, X2 ≤ c2] =
1

(Φ(c1)−α + Φ(c2)−α − 1)−1/α

·
∫ c2

−∞
x2 · lim

ε→0

( (
Φ(c1)−α + Φ(x2)−α − 2

)−α+1
α −

(
ε−α + Φ(x2)−α − 1

)−α+1
α

)
ϕ(x2) dx2

which then has to be solved numerically.

For the Gaussian copula, the expression for the expected value of a two-dimensional

normally distributed random variable can be employed

EGa[X2|X1 ≤ c1, X2 ≤ c2] =
1

Φ2(c1, c2)

∫ c2

−∞

∫ c1

−∞
x2 · ϕ(x1, x2) dx1 dx2,

which can also be solved numerically.

For the t2 copula, the density of a t2 copula as described in Definition 3 can be plugged

into Equation 2, such that

Et2 [X2|X1 ≤ c1, X2 ≤ c2] =
1

P(u1 ≤ Φ(c1), u2 ≤ Φ(c2))

·
∫ c2

−∞
x2 ·

∫ Φ(c1)

0

(
1 +

t−1
2 (x1)2+t−1

2 (Φ(x2))2−2ρt−1
2 (x1)t−1

2 (Φ(x2))

2
√

(1−ρ2)

)−2

√
(1− ρ2)Γ

(
3
2

)2
(

1 +
t−1
2 (x1)2

2

)− 3
2
(

1 +
t−1
2 (Φ(x2))2

2

)− 3
2

dx1 ϕ(x2) dx2

where the double integral needs to be solved numerically.

Applying the formulas derived here, we now analyse how the simulation input parameters
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in our stress test setup, i.e. correlation and cutoff values, influence our quantity of interest

for each choice of copula function.

4.1.1 Impact of the degree of correlation

Figure 6 shows the conditional expected value of X̄ as a function of the correlation value

of the two risk components for a given cutoff value c = −2 which represents a severe stress

level. In general, the economic impact of the difference is not that large as it amounts

up to ten percent. When correlation is weak, the t2 copula generates the most severe

results, for moderate correlation values of approximately 15% to 50%, the Clayton copula

yields the lowest expected value of the risk factor meaning the strongest stress effect. As

one can observe here, there is something like a turning point where for higher degrees of

correlation, i.e. correlations greater than 60%, the Gaussian copula implies the highest

level.

Figure 6: Impact of the degree of correlation on the conditional expected
value of X̄

This figure displays the impact of a change in the degree of correlation on the relative severity of the

stress forecast under different copulas, leaving everything else equal. The horizontal axis displays the

degree of correlation ρ, whereas the vertical axis shows the expected value of the risk factor as a

function of ρ for a symmetric truncation of both risk factors at c = −2.
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The correlation value is one of the main drivers of our results discussed in Section 3. This

property of the conditional expectations of the systematic risk factors is very striking

and counterintuitive at first glance, but it can be explained by the truncation of risk

components which reverses general intuition associated with copulas. Next, we investigate

the dependence of the expected value of the risk factor X̄ on both the degree of correlation

and on the cutoff level.

4.1.2 Impact of cutoff level and of the degree of correlation

Figure 7 plots the level curves of the expected values of X̄ as functions of the cutoff level c

and the degree of correlation, i.e. all points (c, ρ) for which EC [X̄|X1 ≤ c,X2 ≤ c] is equal

to i, with i ∈ {−0.5,−1.0,−1.5,−2.0,−2.5}. The plotted curves therefore show which

configuration of the input parameters is necessary to generate a given level of stress. If,

for the same level of stress, the level curve for one copula lies above the one for another

copula, the former copula can be considered as more severe since then, on average, the

same stress level will be generated under a less strict truncation of the distribution of the

risk factor.

Examining Figure 7, it becomes clear that the relative severity of the different copulas

depends on the configuration of the input parameters and that one general rule does

not apply. For low degrees of correlation and small i, the level curves for the Gaussian

copula lie below those of the other two, which is in line with the intuition of the Gaussian

copula being the least severe. However, the result reverses when other input parameter

configurations are made. First, for EC [X̄|X1 ≤ c,X2 ≤ c](c, ρ) = −0.5 , i.e. for a low

level of stress, the Gaussian copula is more severe than the t2 copula. Second, and more

importantly, in more extreme stress scenarios, the Gaussian copula becomes more severe

than the others when the correlation value between the two risk components increases,

which can already be seen from Figure 6. Figure 7 shows that there is also an interaction

effect between the cutoff value and the degree of correlation at which the Gaussian copula

turns more severe: the smaller the cutoff value, the smaller the degree of correlation

at which the Gaussian and the Clayton level curves intersect, which is the degree of

correlation at which the Gaussian copula becomes more severe than the Clayton copula.
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Figure 7: Impact of cutoff level and the degree of correlation on the condi-
tional expected value of X̄

This figure displays the level curves of the conditional expectation of X̄ for different values of c as a

function of the degree of correlation. The impact on the relative severity of the stress forecast is

analyzed for different copulas, leaving everything else constant. More precisely, the figure shows all

points (ρ, c) for which EC [X̄|X1 ≤ c,X2 ≤ c] = i, i ∈ {−0.5,−1.0,−1.5,−2.0,−2.5}.
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These results indicate that there is no general rule for the behavior of risk factor EC [X̄|X1 ≤
c1, X2 ≤ c2] dependent on the copula function, the underlying correlation and the cutoff

levels (even in the case of homogeneous stress). Assumptions regarding certain properties

of copulas might not hold true given specific stress constellations, such that in order to

determine the copula function creating the most severe results, one might have to test

different copula models. Next, we relax the simplifying assumption of c1 = c2.

4.2 Heterogeneous stress effect

In situations where the cutoffs forX1 andX2 vary, looking only at the conditional expected

value of X2 is not sufficient such that we have to calculate conditional expected values for
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both of the components of our risk vector. The corresponding formula for X1 is derived

in analogy to the formulas given in the first paragraphs of Section 4.2. Figure 8 again

plots the level curves of the conditional expectation of the random variable X̄, but now

for a fixed degree of correlation and as a function of the two cutoff values, c1 and c2. It

therefore illustrates how the results change when the risk factors X1 and X2 are truncated

at different levels, i.e. when the stress on the risk factors is heterogeneous.

Figure 8: Impact on the conditional expected value of X̄ for different values
of c1 and c2

This figure displays the impact of a change in either of the two cutoff values on the relative severity of

the stress forecast under different copulas, leaving everything else constant. More precisely, the figure

shows all points (c1, c2) for which EC [X̄|X1 ≤ c1, X2 ≤ c2] = i, i ∈ {−0.5,−1.5,−2.5,−3.5}. The left

subfigure displays the relationship for ρ = 0.3 whereas the right subfigure does the same relationship for

ρ = 0.8.
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From the slopes of the level curves it can be seen that, except for mild stress conditions, our

quantity of interest EC [X̄|X1 ≤ c1, X2 ≤ c2] is more responsive to a change in one of the

cutoff levels while the other cutoff level remains fixed under the Gaussian copula, which

is probably due to the Gaussian copula exhibiting no tail dependence. As ρ increases,

the level curves approach an “L”-shape, the ones for the t2 and the Clayton copula at an

even faster pace than the Gaussian one. For c1 close to c2, the Gaussian level curve then

lies above the other two. Consequently, the phenomenon of the Gaussian copula giving

more severe stress forecasts is specific to the case of high correlation of the risk factors

and relatively homogenous stress.
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4.2.1 Impact of number of cutoffs

Besides the analysis on correlation and cutoff values, another important issue concerns

the relationship between the expected values of X̄ using different copula approaches and

the number of truncated risk factors compared to the total number of risk components.

We need to analyze higher dimensional risk vectors which is important, in particular, for

large stress test exercises considering detailed breakdowns of systematic factors such as

country or business sector in order to investigate this relationship. Since clear formulas

for the conditional expectations of X̄ can only be derived for the two dimensional case, we

perform Monte Carlo simulations extending the sample to five and ten business sectors.7

The number of simulations for each configuration of the data generating process is Nsim =

10, 000. A configuration refers to the choice of copula, the degree of correlation, ρ ∈
{0.3, 0.8}, the number of total risk factors, NX ∈ {5, 10}, and the number of truncated

or stressed factors, N stressed
X ∈ {1, 2, . . . , NX}. Each stressed factor is truncated at a fixed

level of c = −2 which implies a relatively severe level of stress. Figure 9 shows the average

realizations of the first stressed risk factor for different copulas8.

Examining Figure 9, we find that the Gaussian copula gives more severe stress forecasts

than the other two copulas for high ρ and high ratio N stressed
X /NX . The striking feature

of the figure is that it implies that the higher severity of the Gaussian copula occurs only

if a large part of the total number of risk factors is stressed: As can be seen in Figure

6, for NX = N stressed
X = 2, ρ = 0.8, the Gaussian copula obtains the most severe stress

forecasts, for the same degree of correlation and the same cutoff value, this is the case

only if N stressed
X ≥ 4 for NX = 5 and N stressed

X ≥ 7 for NX = 10. The number of stressed

risk factors is another condition under which the counterintuitive result of higher severity

of the Gaussian copula holds: A large group (more than 70-80%) of the risk factors need

to be severely stressed.

7The standard errors of the Monte Carlo simulations are very low. The largest single calculated
standard error is 0.009 and, therefore, does not impact on the estimations.

8For this analysis, the setup equals again that of a homogeneous stress case with standard normal
marginals; therefore it is sufficient to limit the estimation to a single random variable X1 in order to
measure the behavior of X̄.
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Figure 9: Impact of a different number of stressed factors

This figure displays the average realization of the first stressed risk factor as a function of the number of

truncated risk factors, Nstressed
X ∈ {1, 2, . . . , NX}, using different copulas. The upper two and the lower

two subfigures show this for a total number of risk factors NX = 5 and NX = 10, respectively. The left

column assumes ρ = 0.3, the right one ρ = 0.8. The number of simulations is Nsim = 10, 000 and the

cutoff value is set to c = −2 in each case.
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In this section, we have shown that the higher severity of the Gaussian copula under

normal marginals in a stress scenario is not just a chance result but a feature of the

conditional expectation of the systematic risk factors. We have also identified four con-

ditions under which the result of a more severe Gaussian copula holds: high correlation

between the risk factors, high and homogeneous stress and a large proportion of stressed

risk factors.
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5 Implications for stress testing

Copulas are an indispensable tool for modeling multivariate dependencies, in stress testing

as well as in other areas of risk management. The use of the Gaussian copula has often

been heavily criticized for downplaying interdependencies compared to other copulas with

higher tail dependence. In this paper, we show that the latter is not necessarily true.

However, to choose the appropriate copula for credit risk stress testing, multiple criteria

have to be taken into account. No copula can be classified a priori as the best selection.

It would be advisable to investigate a variety of dependence structures and determine

which specification leads to the most severe stress forecast. The specification of the stress

scenario is normally exogenously determined and based on macroeconomic information.

More precisely, in our stress testing framework, the stress scenario specifies the correlation

value between the business sectors, the direct stress level via cut off values, the stress

distribution across risk factors (homogenous/heterogenous) and the number of stressed

business sectors. Against this background, the only remaining degree of freedom is the

choice of dependence modeling meaning the selection of the copula function. As our

simulation study reveals, this choice can impact considerably on the banks’ capital ratios

or other obtained figures.

The Gaussian copula is able to generate severe stress scenarios when assuming extreme

stress forecasts which outweigh the effects of the Clayton or t copula. More precisely, if

the determined stress scenario is characterized by very low cut off values for many business

sectors and high sector correlation values possibly combined with a homogenous stress

distribution across the affected sectors, the Gaussian copula would be an appropriate

choice for estimating high stress effects. The reason for this is that the Gaussian copula is

an elliptical distribution for which (joint) extreme events are less likely when considering

the entire distribution but more probable when limited to a very small part of its tail.

In general, other light-tailed copulas such as the Frank copula could also be suitable.

Nevertheless, as the Gaussian copula is still the industry-standard today and can be easily

applied for stress testing, alternatives are only recommended when additional restrictions

are present.

In case of less severe adverse scenarios, either the Clayton or the t copula would be the

recommended copulas. The Clayton copula as an asymmetric distribution is characterized

by strong tail dependence on one side which means that it is a heavy-tailed copula. Against

this background, it is possible to estimate rather high stress levels in environments with

lower correlation values and only a few stressed business sectors, i.e. spill-over effects are
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then captured very well.

The t copula, like the Gaussian copula, belongs to the elliptical distributions and is ac-

cordingly symmetric. The level of tail dependence is lower than for the Clayton copula,

but it is modeled at both tails. For very low correlation values, meaning for weak stress

scenarios, the t copula generates comparably high stress levels. With regard to its simi-

larity to the Gaussian copula, the t copula always represents the first alternative for using

the Gaussian copula as this copula can easily replace the other. However, in a number of

cases, the considered heavy-tailed copulas generate stress levels which are close to each

other. Special attention has to be paid to situations with a limited number of stressed

sectors in which the Clayton copulas considerably outperform the elliptical copulas.

The conditions for the severity of the Gaussian copula to hold true are not as restrictive as

they may sound: our study shows that these situations might easily arise in practice. Our

results intend to raise awareness regarding possible counterintuitive effects when designing

stress test frameworks and conducting top-down stress test exercises. In particular, our

findings could be beneficial for banks running their own internal stress tests as well as

for regulators and market analysts. Implementing the adequate severity for the applied

stress scenarios leads to a better assessment of internal risk structures and identification

of impacted business areas. Furthermore, some topics, such as concentration risk, which

have only sparsely been considered in stress test exercises so far, can be incorporated in

stress testing frameworks to more properly account for relevant side effects. Furthermore,

quality assurance processes for bottom-up stress tests can benefit from using adequate

copulas when implementing assumptions on underlying dependence structures.

Our paper shows that future work on the behavior of copula functions in unusual circum-

stances, in particular in stress testing, might be a fruitful endeavor. As one example, the

modeling of higher dimensional risk vectors using vine copulas warrants further attention.
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A Appendix

A.1 Correlation matrix

Table A.1: Correlation matrix of the sector indices

This table shows inter-sectoral correlations of 17 sector indices following the ICB sector classification. The correlations were estimated from weekly

stock index returns from 1 January 2010 until 30 December 2011.

Sector 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 Oil and Gas 1 0.84 0.86 0.89 0.87 0.76 0.69 0.83 0.74 0.79 0.89 0.78 0.82 0.87 0.89 0.87 0.80
2 Chemicals 0.84 1 0.87 0.88 0.91 0.84 0.74 0.89 0.77 0.81 0.83 0.79 0.73 0.78 0.82 0.86 0.77
3 Basic Resources 0.86 0.87 1 0.90 0.93 0.83 0.62 0.83 0.66 0.77 0.85 0.80 0.69 0.78 0.82 0.87 0.8
4 Construction and Materials 0.89 0.88 0.90 1 0.93 0.81 0.69 0.86 0.71 0.84 0.90 0.82 0.80 0.85 0.90 0.90 0.82
5 Industrial Goods and Services 0.87 0.91 0.93 0.93 1 0.90 0.70 0.90 0.73 0.85 0.90 0.85 0.77 0.83 0.86 0.92 0.851
6 Automobiles and Parts 0.76 0.84 0.83 0.81 0.90 1 0.60 0.86 0.69 0.80 0.79 0.77 0.65 0.72 0.75 0.84 0.74
7 Food and Beverage 0.69 0.74 0.62 0.69 0.70 0.60 1 0.77 0.71 0.73 0.75 0.70 0.67 0.65 0.66 0.65 0.63
8 Personal and Household Goods 0.83 0.89 0.83 0.86 0.90 0.86 0.77 1 0.74 0.85 0.85 0.82 0.71 0.74 0.78 0.85 0.78
9 Health Care 0.74 0.77 0.66 0.71 0.73 0.69 0.71 0.74 1 0.75 0.75 0.71 0.66 0.66 0.71 0.72 0.69
10 Retail 0.79 0.81 0.77 0.84 0.85 0.80 0.73 0.85 0.75 1 0.85 0.80 0.76 0.78 0.80 0.81 0.79
11 Media 0.89 0.83 0.85 0.90 0.90 0.79 0.75 0.85 0.75 0.85 1 0.83 0.83 0.84 0.89 0.87 0.79
12 Travel and Leisure 0.78 0.79 0.80 0.82 0.85 0.77 0.70 0.82 0.71 0.80 0.83 1 0.69 0.70 0.78 0.81 0.80
13 Telecommunications 0.82 0.73 0.69 0.80 0.77 0.65 0.67 0.71 0.66 0.76 0.83 0.69 1 0.91 0.89 0.80 0.68
14 Utilities 0.87 0.78 0.78 0.85 0.83 0.72 0.65 0.74 0.66 0.78 0.84 0.70 0.91 1 0.91 0.84 0.74
15 Insurance 0.89 0.82 0.82 0.90 0.86 0.75 0.66 0.78 0.71 0.80 0.89 0.78 0.89 0.91 1 0.86 0.78
16 Financial Services 0.87 0.86 0.87 0.90 0.92 0.84 0.65 0.85 0.72 0.81 0.87 0.81 0.80 0.84 0.86 1 0.81
17 Technology 0.80 0.77 0.81 0.82 0.85 0.74 0.63 0.78 0.69 0.79 0.79 0.80 0.68 0.74 0.78 0.81 1
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