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Non-technical summary

Research Question

When dealing with time series sampled at various frequencies it has become common

practice to directly incorporate high-frequency information into the econom(etr)ic model

at hand. These specifications were first restricted to the single regression case; with the

development of the (stacked) mixed-frequency vector autoregressive (MF-VAR) system

(Ghysels, 2015) it is now possible to treat all series similarly and investigate causal effects

between them. However, if the difference in frequencies between the series involved is large

(as, e.g., in a month/working day scenario), estimation accuracy of the system coefficients

is exacerbated, implying the detection of causal effects to be potentially inaccurate. To

overcome this issue various parameter reduction techniques are introduced and analyzed.

These methods are then evaluated in terms of their ability to detect causality patterns

between the series under consideration in the resulting restricted model.

Contribution

Two parameter reduction techniques are discussed in detail: three reduced rank regression

(RRR) model variants and a Bayesian MF-VAR. Using a Monte Carlo experiment both

approaches are compared in terms of their Granger causality testing behavior with an

unrestricted VAR, a (time-aggregated) low-frequency VAR and the max-test (Ghysels,

Motegi, and Hill, 2015a). To further enhance their finite sample properties we develop and

evaluate (whenever possible) two bootstrap variants of these tests. Finally, the methods

are applied to U.S. data by investigating channels of causality between the monthly growth

rate of the industrial production index (IPI) and daily bipower variation (BV) of the

S&P500 index.

Results

We find that, depending on the direction of causality under consideration, a different set

of tests results in the best Granger non-causality testing behavior. For the direction from

the high- to the low-frequency series, standard testing within the Bayesian MF-VAR,

the max-test and the restricted bootstrap version of the Wald test in two RRR model

versions performs best. For the reverse direction, the unrestricted bootstrap variants of

the Bonferroni-corrected Wald tests within the unrestricted VAR and the RRR models

dominate. As far as our application is concerned, Granger causality from BV to IPI-

growth is clearly supported by the data; evidence for causality in the reverse direction,

however, only comes from a subset of tests.



Nichttechnische Zusammenfassung

Fragestellung

Bei der Handhabe unterschiedlich frequenter Zeitreihen ist es nunmehr üblich hochfre-

quente Informationen direkt in das ökonom(etr)ische Modell enfließen zu lassen. Waren

diese Spezifikationen zunächst auf univariate Regressionen beschränkt, so ist es durch die

Entwicklung des (“gestapelten”) gemischtfrequenten vektor-autoregressiven (MF-VAR)

Systems (Ghysels, 2015) nun möglich alle Variablen gleichermaßen zu behandeln und

Kausalzusammenhänge zwischen ihnen zu untersuchen. Sollte der Frequenzunterschied

jedoch groß sein (wie z.B. in einem Monat/Arbeitstage Szenario), verschlechtert sich die

Schätzgenauigkeit der System-Koeffizienten, wodurch die Erfassung kausaler Effekte un-

genau werden könnte. Um dieses Problem zu umgehen werden Techniken zur Parameter-

Reduzierung vorgestellt und analysiert. Diese Methoden werden dann anhand ihrer Fähigkeit, 
Kausalzusammenhänge zwischen den entsprechenden Variablen zu erfassen, beurteilt.

Beitrag

Zwei Techniken zur Parameter-Reduzierung werden detailliert diskutiert: Drei Varian-

ten einer Reduzierter-Rang-Regression (RRR) und ein Bayesianisches MF-VAR. Mit-

tels einer Monte Carlo Analyse werden beide Ansätze anhand ihres Granger Kausa-

litätstestverhalten mit einem unrestriktierten VAR, einem (zeit-aggregierten) niedrig-

frequenten VAR und dem max-Test (Ghysels et al., 2015a) verglichen. Um ihre Ei-

genschaften weiter zu verbessern, entwickeln und bewerten wir (wann immer möglich)

zwei Bootstrap-Varianten dieser Tests. Als Anwendung untersuchen wir die Kausalzusam-

menhänge zwischen der Monatswachstumsrate des U.S.-Industrieproduktionsindex (IPI)

und der täglichen “bipower” Variation (BV) des S&500 Aktienindex.

Ergebnisse

Wir stellen fest, dass, je nach betrachteter Kausalitäts-Richtung, eine unterschiedliche

Gruppe von Tests zum jeweils besten Verhalten führt. Für einen kausalen Effekt von der

hoch- zur niedrigfrequenten Reihe erweisen sich Standard-Tests innerhalb des Bayesiani-

schen MF-VARs, der max-Test und die restriktierte Bootstrap-Version des Wald Tests in

zwei RRR-Varianten als am besten. Für die entgegensetzte Richtung dominieren die un-

restriktierten Bootstrap-Varianten der Bonferroni-korrigierten Wald Tests innerhalb des

unrestriktierten VARs und der RRR Modelle. In unserer Anwendung wird Granger Kau-

salität von BV zu IPI-Wachstum klar von den Daten unterstützt; Beweise für Kausalität

in die entgegengesetzte Richtung kommen allerdings nur von einer Teilmenge der Tests.
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1 Introduction

Economic time series are published at various frequencies. While higher frequency vari-
ables used to be aggregated (e.g., Silvestrini and Veredas, 2008), it has become more and
more popular to consider models that take into account the difference in frequencies of the
processes under consideration. As argued extensively in the mixed-frequency literature
(e.g., Ghysels, Sinko, and Valkanov, 2007), working in a mixed-frequency setup instead
of a common low-frequency one is advantageous due to the potential loss of information
in the latter scenario and feasibility of the former through MI(xed) DA(ta) S(ampling)
regressions (Ghysels, Santa-Clara, and Valkanov, 2004), even in the presence of many
high-frequency variables compared to the number of observations.

Until recently, the MIDAS literature was limited to the single-equation framework, in
which one of the low-frequency variables is chosen as the dependent variable and the high-
frequency ones are in the regressors. Since the work of Ghysels (2015) for stationary series
and the extension of Götz, Hecq, and Urbain (2013) and Ghysels and Miller (2013) for
the non-stationary and possibly cointegrated case, we can analyze the link between high-
and low-frequency series in a VAR system treating all variables as endogenous. Ghysels,
Motegi, and Hill (2015b) define causality in such a mixed-frequency VAR and develop
a corresponding test statistic. Decent size and power properties of their test, however,
are dependent on a relatively small difference in sampling frequencies of the variables
involved. Indeed, if the number of high-frequency observations within a low-frequency
period is large, size distortions and losses of power may be expected.

In this paper we analyze the finite sample behavior of Granger non-causality tests
when the number of high-frequency observations per low-frequency period is large as, e.g.,
in a month/working day-example. To avoid the proliferation of parameters we consider
two parameter reduction techniques: reduced rank restrictions and a Bayesian mixed-
frequency VAR. Both approaches are then compared to (i) temporally aggregating the
high-frequency variable (Breitung and Swanson, 2002), (ii) the max-test, independently
and simultaneously developed by Ghysels et al. (2015a), and (iii) the unrestricted ap-
proach.

With respect to reduced rank regressions, the factors are typically not observable and
must be estimated. This will obviously affect the distribution of the Wald tests to detect
directions of Granger causalities. Consequently, one important contribution of this paper
is the introduction of bootstrap versions of these tests (also for the unrestricted VAR),
which have correct size even for large VARs and a small sample size.

As far as the Bayesian VAR is concerned, we show how to adapt the analysis to the
presence of mixed frequencies. We do so by extending the dummy observation approach
of Banbura, Giannone, and Reichlin (2010) to a mixed-frequency setting.1 Importantly,
due to stacking the high-frequency variables in the mixed-frequency VAR (Ghysels, 2015),
their approach cannot be applied directly such that a properly adapted choice of auxil-
iary dummy variables corresponding to the prior moments is required. As these insights
transfer beyond Granger causality testing, the adaption of Bayesian methods to mixed-
frequency time series marks a significant contribution to the literature by itself.

1Banbura et al. (2010) refer to these variables as dummy observations. To avoid confusion between
high- and low-frequency observations and auxiliary variables, we use the term ’auxiliary dummy variables’
henceforth.
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The rest of the paper is organized as follows. In Section 2 notations are introduced,
the mixed-frequency VAR (MF-VAR hereafter) for our specific case at hand is presented
and Granger (non-)causality is defined. Section 3 discusses the approaches to reduce the
number of parameters to be estimated, whereby reduced rank restrictions (Section 3.1)
as well as Bayesian MF-VARs (Section 3.2) are presented in detail. The finite sample
performances of these tests are analyzed via a Monte Carlo experiment in Section 4. An
empirical example with U.S. data on the monthly industrial production index and daily
volatility in Section 5 illustrates the results. Section 6 concludes.

2 Causality in a Mixed-frequency VAR

2.1 Notation

Let us start from a two variable mixed-frequency system, where yt, t = 1, . . . , T, is the
low-frequency variable and x

(m)
t−i/m are the high-frequency variables with m high-frequency

observations per low-frequency period t. Throughout this paper we assume m to be
rather large as in a year/month- or month/working day-example. We also assume m
to be constant rather than varying with t.2 The value of i indicates the specific high-
frequency observation under consideration, ranging from the beginning of each t-period
(x

(m)
t−(m−1)/m) until the end (x

(m)
t with i = 0). These notational conventions have become

standard in the mixed-frequency literature and are similar to the ones in Götz, Hecq, and
Urbain (2014), Clements and Galvão (2008, 2009) or Miller (2012).

Furthermore, let Wt = (W ′
t−1, W ′

t−2, . . ., W ′
t−p)

′ denote the last p low-frequency lags
of any process W stacked. Finally, 0i×j (1i×j) denotes an (i × j)-matrix of zeros (ones),
Ii is an identity matrix of dimension i, ⊗ represents the Kronecker product and vec
corresponds to the operator stacking the columns of a matrix.

Remark 1. Extensions towards representations of higher dimensional multivariate systems
as in Ghysels et al. (2015b) can be considered, but are left for further research here.
Analyzing Granger causality among more than two variables inherently leads to multi-
horizon causality (see Lütkepohl, 1993 among others). The latter implies the potential
presence of a causal chain: for example, in a trivariate system, X may cause Y through
an auxiliary variable Z. To abstract from that scenario, Ghysels et al. (2015b) often
consider cases, in which high- and low-frequency variables are grouped and causality
patterns between these groups, viewed as a bivariate system, are analyzed. They study
the presence of a causal chain and multi-horizon causality in a Monte Carlo analysis
though.

2.2 MF-VARs

Considering each high-frequency variable such that

X
(m)
t = (x

(m)
t , x

(m)
t−1/m, . . . , x

(m)
t−(m−1)/m)′, (1)

2As long as m is deterministic, even time-varying frequency discrepancies do not pose a problem on a
theoretical level. However, the assumption of constant m simplifies the notation greatly (Ghysels, 2015).
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a dynamic structural equations model for the stationary multivariate process Zt = (yt, X
(m)′
t )′

is given by
AcZt = c+ A1Zt−1 + . . .+ ApZt−p + εt. (2)

Note that the parameters in Ac are related to the ones in A1 due to stacking the high-
frequency observations X

(m)
t in Zt (Ghysels, 2015).3 Explicitly for a lag length of p = 1,

the model reads as:
1 β1 β2 . . . βm
δ1 1 −ρ1 . . . −ρm−1

δ2 0 1 . . . −ρm−2
...

...
...

. . .
...

δm 0 0 . . . 1




yt
x

(m)
t

x
(m)
t−1/m

...

x
(m)
t−(m−1)/m

 =


c1

c2
...

cm+1

+


ρy θ1 θ2 . . . θm
ψ2 ρm . . . . . . 0
ψ3 ρm−1 ρm . . . 0
...

...
...

. . .
...

ψm+1 ρ1 ρ2 . . . ρm




yt−1

x
(m)
t−1

x
(m)
t−1−1/m

...

x
(m)
t−1−(m−1)/m

+


ε1t

ε2t
...

ε(m+1)t

 .

(3)
In general, we assume the high-frequency process to follow an AR(q) process with

q < m (we set q = m in the equation above; if q < m, one should set ρq+1 = . . . = ρm = 0).
For non-zero values of βj or δj the matrix Ac links contemporaneous values of y and x, a
feature referred to as nowcasting causality (Götz and Hecq, 2014).4

Pre-multiplying (3) by A−1
c we get to the mixed-frequency reduced-form VAR(p)

model:
Zt = µ+ Γ1Zt−1 + . . .+ ΓpZt−p + ut

= µ+B′Zt + ut.
(4)

Consequently, µ = A−1
c c, Γi = A−1

c Ai and ut = A−1
c εt. Let B = (Γ1,Γ2, . . . ,Γp)

′ and
B(z) = 1−

∑p
j=1 Γjz

j. We then make the following assumptions on the MF-VAR:

Assumption 1. Zt is generated by the MF-VAR(p) in (4), for which it holds that (i) the
roots of the matrix polynomial B(z) all lie outside the unit circle; (ii) ut is independent
and identically distributed (i.i.d.) with E(ut) = 0, E(utu

′
t) = Σu, with Σu positive definite,

and E(||ut||4) <∞, where || · || is the Frobenius norm.

Assumption 1(i) ensures that the MF-VAR is I(0), while (ii) is a standard assumption
to ensure validity of the bootstrap for VAR models, see, e.g., Paparoditis (1996), Kilian
(1998) or Cavaliere, Rahbek, and Taylor (2012). For the derivation of the limit distribution
of the test statistics (ii) could be weakened (e.g., Ghysels et al., 2015b), but as we rely on

3Compared to Ghysels (2015) we simply reverse the mixed-frequency vector Zt and put the low-
frequency variable first.

4βj 6= 0 implies that yt is affected by incoming observations of X
(m)
t , whereas δj 6= 0 implies that

the high-frequency observations are influenced by yt (see Götz and Hecq, 2014). The latter becomes
interesting for studying policy analysis, where the high-frequency policy variable(s) may react to current
low-frequency conditions (see Ghysels, 2015 for details). Note that Götz, Hecq, and Lieb (2015) consider
a noncausal MF-VAR in which one allows for non-zero elements in the lead coefficients of the Ac matrix.
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the aforementioned literature to establish the asymptotic validity of our bootstrap tests
proposed in Section 3.1.4, we assume i.i.d. error terms here.

Remark 2. Assumption 1 implies that the data are truly generated at mixed frequencies.
Hence, similar to Ghysels et al. (2015a) but unlike Ghysels et al. (2015b), we do not start
with a common high-frequency data generating process (DGP hereafter).5 The latter
would imply causality patterns to arise at the high frequency. Consequently, we do not
investigate which causal relationships at high frequency get preserved when moving to
the mixed- or low-frequency case. Indeed, an extension of our methods along these lines
would demand a careful analysis of the mixed- and low-frequency systems corresponding
to their latent high-frequency counterpart (see Ghysels et al., 2015b for the unrestricted
VAR case).

Equation (4) is easy to estimate for small m, yet becomes a rather large system as the
latter grows. For example, in a MF-VAR(1),

yt
x

(m)
t

x
(m)
t−1/m

...

x
(m)
t−(m−1)/m

 =


µ1

µ2
...

µm+1

+


γ1,1 γ1,2 · · · γ1,m+1

γ2,1 γ2,3 · · · γ2,m+1
...

...
. . .

...
γm+1,1 γm+1,2 · · · γm+1,m+1


︸ ︷︷ ︸

Γ1

×


yt−1

x
(m)
t−1

x
(m)
t−1−1/m

...

x
(m)
t−1−(m−1)/m

+


u1t

u2t
...

u(m+1)t

 ,

(5)

ut
i.i.d.∼ (0((m+1)×1),Σu), Σu =


σ1,1 σ1,2 . . . σ1,m+1

σ2,1 σ2,2 . . .
...

...
...

. . .
...

σm+1,1 . . . . . . σm+1,m+1

 , (6)

there are (m+1)2 parameters to estimate in the matrix Γ1. Additional lags would further
complicate the issue.

5Given such a situation it would seem natural to cast the model in state space form and estimate
the parameters using the Kalman filter. However, this amounts to a ’parameter-driven’ model (Cox,
Gudmundsson, Lindgren, Bondesson, Harsaae, Laake, Juselius, and Lauritzen, 1981), which contains
latent processes, i.e., the high-frequency observations of y. The latter is a feature we try to avoid in our
MF-VAR: say we are interested in the impact of shocks to one or several variables on the whole system.
Using a high-frequency DGP with missing observations implies that shocks to these latent processes are
also latent and unobservable. This is undesirable given that, e.g., policy shocks are, of course, observable
(Foroni and Marcellino, 2014).
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2.3 Granger Causality in MF-VARs

Let Ωt represent the information set available at moment t and let ΩW
t denote the cor-

responding set excluding information about the stochastic process W . With P [X
(m)
t+h|Ω]

being the best linear forecast of X
(m)
t+h based on Ω, Granger non-causality is defined as

follows (Eichler and Didelez, 2009):

Definition 1. y does not Granger cause X(m) if

P [X
(m)
t+1 |Ω

y
t ] = P [X

(m)
t+1 |Ωt]. (7)

Similarly, X(m) does not Granger cause y if

P [yt+1|ΩX(m)

t ] = P [yt+1|Ωt]. (8)

In other words, y does not Granger cause X(m) if past information of the low-frequency
variable do not help in predicting current (or future) values of the high-frequency variables
and vice versa (Granger, 1969). In terms of (5), testing for Granger non-causality implies
the following null (and alternative) hypotheses:

• y does not Granger cause X(m)

H0 : γ2,1 = γ3,1 = . . . = γm+1,1 = 0,
HA : γi,1 6= 0 for at least one i = 2, . . . ,m+ 1.

(9)

• X(m) does not Granger cause y

H0 : γ1,2 = γ1,3 = . . . = γ1,m+1 = 0,
HA : γ1,i 6= 0 for at least one i = 2, . . . ,m+ 1.

(10)

3 Parameter Reduction

This section presents techniques that we have considered, and evaluated through a Monte
Carlo exercise, with the aim to reduce the amount of parameters to be estimated in the
MF-VAR model. Two approaches are discussed in detail, reduced rank restrictions and a
Bayesian MF-VAR.

There are many alternative approaches to reduce the number of parameters among
which are principal components, Lasso (Tibshirani, 1996) or ridge regressions (Hoerl and
Kennard, 1970, among others). However, using principal components does not necessarily
preserve the dynamics of the VAR under the null: nothing prevents, e.g., the first and
only principal component to be loading exclusively on y implying that the remaining
dynamics enter the error term. In other words, the autoregressive matrices in (4) may
and will most likely not be preserved, which naturally affects the block of parameters we
test on for Granger non-causality. As for Lasso and ridge regressions, it is well known
that they may be interpreted in a Bayesian context. In particular, the latter is equivalent
to imposing a normally distributed prior with mean zero on the parameter vector (Vogel,
2002, among others), while the former may be replicated using a zero-mean Laplace prior

5



distribution (Park and Casella, 2008). Given that our set of models contains a Bayesian
VAR for mixed-frequency data, we abstract from its connection to regularized versions of
least squares at this stage. Developing a system version of Marsilli (2014) and justifying
it from a Bayesian point of view, however, constitutes an interesting avenue for future
research.

3.1 Reduced Rank Restrictions

3.1.1 Reduced Rank Regression Model

In order to reduce the number of parameters to estimate in the MF-VAR, we propose the
following reduce rank regression model, for which we make the following assumption:

Assumption 2. Let BX(m) be the matrix obtained from B′ in (4) by excluding the first
columns of Γ1, Γ2, . . ., Γp. The rank of this matrix is smaller than the number of high-
frequency observation within Zt, i.e.,

rk(B′X(m)) = r < m.

The model then reads as follows:

Zt = µ+ γ·,1yt + α
∑p

i=1 δ
′(m)
i t−i + νt

= µ+ γ·,1yt + αδ′X
(m)
t + νt,

(11)

where γ·,1 is the (m+ 1)× p matrix containing the first columns of Γ1,Γ2, . . . ,Γp, and α
and δ = (δ′1, . . . , δ

′
p)
′ are (m + 1) × r and pm × r matrices, respectively. Note that (11)

can also be written in terms of Zt. Let us define Γi ≡ (γ
(i)
·,1 , αδ

′
i), where γ

(i)
·,1 , i = 1, . . . , p,

corresponds to the ith column of γ·,1. Then, (11) is equivalent to

Zt = µ+B′Zt + νt, (12)

where B = (Γ1, . . . ,Γp)
′. For p = 1 the models becomes

yt
x(m)

x
(m)
t−1/m

...

x
(m)
t−(m−1)/m

 = µ+


γ1,1

γ2,1
...

γm+1,1

 yt−1 +


α1

α2
...

αm+1

 δ′1


x

(m)
t−1

x
(m)
t−1−1/m

...

x
(m)
t−1−(m−1)/m

+ νt

= µ+




γ1,1

γ2,1
...

γm+1,1

 ,


α1

α2
...

αm+1

 δ′1


︸ ︷︷ ︸

Γ1

×


yt−1

x
(m)
t−1

x
(m)
t−1−1/m

...

x
(m)
t−1−(m−1)/m

+ νt,

(13)
where each αi, i = 1, . . . ,m + 1, is of dimension 1 × r and where δ1 is an m × r matrix.
Hence, we could call δ′X

(m)
t a vector of r high-frequency factors. Note that r = m − s,
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where s represents the rank reduction we are able to achieve within X
(m)
t . In terms of

parameter reduction, the unrestricted VAR in (4) requires p(m + 1)2 coefficients to be
estimated in the autoregressive matrices, whereas the VAR under reduced rank restrictions
in (11) or (12) needs p(m + 1) + r(m + 1) + prm parameter estimates. As an example,
assume p = 1 and m = 20. Then, if r = 1, 2 or 3, there are, respectively, 62, 103 or 144
coefficients to be estimated in Γ1 instead of 441 in Γ1 in. Note that we do not require
yt−1 to be included in the same transmission mechanism as the x variables.

Remark 3. There are several ways to justify the reduced rank feature of the autoregressive
matrix BX(m) . First, at the model representation level we may assume that, in the struc-
tural model (3), x follows an AR(q) process with q < m and that the last m− q elements

of each X
(m)
t−i , i = 1, . . . , p, have a zero coefficient in the equation for yt. Plugging these

restrictions into (4) results in a reduced rank of B′
X(m) because matrices Γi = A−1

c Ai have
the rank of Ai. Second, at the empirical level one can interpret the MF-VAR as an ap-
proximation of the VARMA obtained after the block marginalization of a high-frequency
VAR for each variable. In this situation, reduced rank matrices may empirically not be
rejected by the data because of the combinations of many elements. Thus, a small number
of dynamic factors can approximate more complicated (possibly nonlinear) dynamics. Fi-
nally, the way one typically restricts the MF-VAR in (4), i.e., assuming the high-frequency
series to follow an ARX-process (Ghysels, 2015), actually implies a reduced rank repre-
sentation. Looking slightly ahead, consider Equation (25) or the matrix in (29), which
we will use in our Monte Carlo section, for the special case p = 1. It is obvious that for
first order MF-VAR, Zt = Γ1Zt−1 + ut, with

Γ1 =


γ1,1 γ1,2 γ1,3 . . . γ1,21

γ∗2,1 ρ20 0 . . . 0

γ∗3,1 ρ19 ... . . . 0
...

...
...

. . .
...

γ∗21,1 ρ 0 . . . 0


we have, due to the block of zeros, a reduced rank matrix BX(m) with two (restricted
coefficient) factors:

rk




γ1,2 γ1,3 . . . γ1,21

ρ20 0 . . . 0

ρ19 ... . . . 0
...

...
. . .

...
ρ 0 . . . 0




= rk




1 0
0 ρ20

0 ρ19

...
...

0 ρ

AA−1

(
γ1,2 γ1,3 . . . γ1,21

1 0 . . . 0

)


= 2,

where A is a 2×2 full rank rotation matrix, the identity in this particular example. Hence,
under HA, e.g., two factors (although unrestricted in our setting) will capture the reduced
rank feature. Note that we could impose (overidentifying) restrictions to retain the large
block of zeros in Γ1. In that sense, the model with r = 2 would not be misspecified but
”suboptimal”. On the other hand, with merely one factor we would not be able to impose
the block of zeros implying the model to be misspecified. Under the null hypothesis the
model is not misspecified with either one or two factors, because the test tries to capture
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some dynamics that is not there.

Note that our focus is to compare the performance of different approaches including
their bootstrap versions (whenever applicable) and that in this light we view reduced
rank regressions as just one particular specification. In particular, next to the Bayesian
MF-VAR and the max-test, our bootstrap implementation has also made the unrestricted
MF-VAR (which is not subject to rank misspecification) a viable option to compare the
reduced rank regressions with.

3.1.2 Testing for Granger Non-Causality

Given r and Assumption 2, under the condition that the high-frequency factors δ′X
(m)
t are

observable, we can estimate (11) by OLS. Letting Γ̂ = (µ̂, γ̂·,1, α̂)′ denote the corresponding
OLS estimates, we can test for Granger non-causality by defining R as the matrix that
picks the set of coefficients we want to do inference on, i.e., Rvec(Γ̂). For a general
construction of the matrix R in the presence of several low- and high-frequency variables,6

we refer the reader to Ghysels et al. (2015b). The Wald test is constructed as

ξ̃W =
[
Rvec(Γ̂)

]′
(RΩ̂R′)−1

[
Rvec(Γ̂)

]
, (14)

with
Ω̂ = (W ′W )−1 ⊗ Σ̂u, (15)

where Σ̂u = 1
T
û′û is the empirical covariance matrix of the disturbance terms and W =

(W1, . . . ,WT )′ is the regressor set consisting of Wt = (1, y′
t
, δ′X

(m)′
t )′.7 As illustrated in

Ghysels et al. (2015b), ξW is asymptotically χ2
rank(R). A robust version of (14) is also

implemented in the empirical section.
Of course, the factors are typically not observable and must be estimated (unless we

impose specific factors). Using estimated rather than observed factors in the regression

(11) will obviously affect the distribution of ξ̃W , certainly in small samples. For this reason
we consider bootstrap versions of the tests. Before going into the details on the bootstrap
we describe how we estimate or impose the factors.

3.1.3 Estimating the Factors

We use three ways to estimate the factors, canonical correlation analysis (CCA hereafter),
partial least squares (PLS hereafter) and heterogeneous autoregressive (HAR hereafter)
type restrictions. We briefly present the algorithms that are used to extract those factors.

CCA is based on analyzing the eigenvalues and corresponding eigenvectors of

Σ̂−1

X̃
(m)

X̃
(m)Σ̂X̃

(m)
Z̃

Σ̂−1

Z̃Z̃
Σ̂
Z̃X̃

(m) (16)

or, similarly, of the symmetric matrix

Σ̂
−1/2

X̃
(m)

X̃
(m)Σ̂X̃

(m)
Z̃

Σ̂−1

Z̃Z̃
Σ̂
Z̃X̃

(m)Σ̂
−1/2

X̃
(m)

X̃
(m) . (17)

6Within the unrestricted MF-VAR in (4), though.
7A sample size correction, i.e., using Σ̂u = 1

T−KW
û′û, where KW is the amount of elements in W ,

may alleviate size distortions in finite samples.
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For a detailed discussion we refer the reader to Anderson (1951) or, for the application
to common dynamics, to Vahid and Engle (1993). Note that Σ̂ij represents the empirical

covariance matrix of processes i and j. Furthermore, Z̃ and X̃
(m)

indicate Zt and X
(m)
t ,

respectively, to be concentrated out by the variables that do not enter in the reduced rank
regression, i.e., the intercept and yt−1. Denoting by V̂ = (v1, v2, . . . , vr), with v′ivj = 1 for
i = j and 0 otherwise, the eigenvectors corresponding to the r largest eigenvalues of the
matrix in (17), we obtain the estimators of α and δ as:

α̂ = Σ̂−1

Z̃Z̃
Σ̂
Z̃X̃

(m)Σ̂
−1/2

X̃
(m)

X̃
(m)V̂

δ̂ = Σ̂
−1/2

X̃
(m)

X̃
(m)V̂ .

(18)

Note that the estimation of the eigenvectors obtained from the canonical correlation
analysis in (16) or (17) may, however, perform poorly with high-dimensional systems,
because inversions of the large variance matrices Σ̂−1

Z̃Z̃
and Σ̂−1

X̃
(m)

X̃
(m) are required. As

an alternative to CCA we use a PLS algorithm similar to the one used in Cubadda and
Hecq (2011) or Cubadda and Guardabascio (2012). In order to make the solution of
this eigenvalue problem invariant to scale changes of individual elements, we compute the
eigenvectors associated with the largest eigenvalues of the matrix

D̂
−1/2

X̃
(m)

X̃
(m)Σ̂X̃

(m)
Z̃
D̂−1

Z̃Z̃
Σ̂
Z̃X̃

(m)D̂
−1/2

X̃
(m)

X̃
(m)

with D̂
X̃

(m)
X̃

(m) and D̂Z̃Z̃ being diagonal matrices having the diagonal elements of, respec-

tively, Σ̂
X̃

(m)
X̃

(m) and Σ̂Z̃Z̃ as their entries. The computation of α̂ and δ̂ works in a similar

fashion as with CCA-based factors.
Finally, we may impose the presence of r = 3p factors,8 inspired by the Corsi HAR-

model (Corsi, 2009). For i = 1, . . . , p:

δi =


03(i−1)×m

1 01×(m−1)

11×( 1
4
m) 0(1× 3

4
m)

11×m
03(p−i)×m


′

⇒ δ′X
(m)
t =



x
(m)
t−1∑ 1

4
m−1

i=0 x
(m)
t−1−i/m∑m−1

i=0 x
(m)
t−1−i/m

...

x
(m)
t−p∑ 1

4
m−1

i=0 x
(m)
t−p−i/m∑m−1

i=0 x
(m)
t−p−i/m


. (19)

For p = 1 and m = 20 this corresponds to

δ′X
(m)
t =

 x
(20)
t−1∑4

i=0 x
(20)
t−1−i/20∑19

i=0 x
(20)
t−1−i/20

 ≡
 xDt−1

xWt−1

xMt−1

 , (20)

8To ensure that r < m we assume that p < 1
3m at this stage.
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with xDt , x
W
t and xMt denoting daily, weekly and monthly measures, respectively.

Remark 4. As noted in Ghysels and Valkanov (2012) and Ghysels et al. (2007), these HAR-
type restrictions are a special case of MIDAS with step functions introduced in Forsberg
and Ghysels (2007). Considering partial sums of regressors x as Xt(K,m) =

∑K
i=0 x

(m)
t−i/m,

a MIDAS regression with M steps reads as yt = µ+
∑M

j=1 βjXt(Kj,m) + εt, where K1 <
. . . < KM . Alternatively, we could use MIDAS restrictions as introduced in Ghysels et al.
(2004), for the difference between the latter and HAR-type restrictions has been shown to
be small (Ghysels and Valkanov, 2012). However, step functions have the advantage of not
requiring non-linear estimation methods, since the distributed lag pattern is approximated
by a number of discrete steps, thereby simplifying the analysis. Furthermore, and more
crucially in the context of this paper, implementing MIDAS restrictions and testing for
Granger non-causality implies the well-known Davies (1987) problem, i.e., the parameters
determining the MIDAS weights (see Ghysels et al., 2004 for details) are not identified
under the null hypothesis.9

3.1.4 Bootstrap Tests

Despite the dimensionality reduction achieved by imposing the factor structure, a consid-
erable number of parameters remains to be estimated for conducting the Wald tests such
that the tests may still be subject to considerable small sample size distortions. Moreover,
the estimation of the factors will have a major effect on the distribution of the Wald test
statistic. We therefore also consider a bootstrap implementation of these tests to improve
the properties of the tests in finite samples.

Let B̂ = Γ̂δ̂′ denote the estimates of B obtained by one of the reduced rank methods,
and assume that δ is normalized such that its upper r × r block is equal to the identity
matrix.10 The first bootstrap method we consider is a standard “unrestricted” bootstrap,
that may have superior power properties in certain cases (cf. Paparoditis and Politis,
2005). Its algorithm looks as follows.

1. Obtain the residuals from the MF-VAR(p)

ν̃t = Zt − µ̂+ B̂
′
Zt, t = p+ 1, . . . , T. (21)

2. Draw the bootstrap errors ν∗1 , . . . , ν
∗
T with replacement from ν̃y,p+1, . . . , ν̃y,T .

3. Letting Z∗t = (Z∗′t−1, . . . , Z
∗′
t−p)

′, construct the bootstrap sample Z∗t recursively as

Z∗t = µ̂+ B̂
′
Z∗t + ν∗t , t = 1, . . . , T, Z∗0 = 0. (22)

9To properly test for Granger non-causality in this case, a grid for the weight specifying parameter
vector has to be considered and the corresponding Wald tests for each candidate have to be computed.
Subsequently, one can calculate the supremum of these tests (Davies, 1987) and obtain an ’asymptotic
p-value’ using bootstrap techniques (see Hansen, 1996 or Ghysels et al., 2007 for details). While this
approach is feasible, it is computationally more demanding. Admittedly, HAR-type restrictions provide
less flexibility than the MIDAS approach, yet their simplicity makes them very appealing from an applied
perspective.

10This ensures that the rotation of the factors is the same for the original sample and the bootstrap
sample, which ensures for the first bootstrap method that the correct bootstrap null hypothesis is imposed.
In the simulations we experimented with different normalizations which didn’t change any results.
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Note that the null hypothesis in the bootstrap is not imposed which has conse-
quences for the next step.

4. Estimate the bootstrap equivalent of (11), where the factors are estimated using
the same method as for the original sample, and obtain the bootstrap Wald test
statistic ξ̃∗W . As the “true” bootstrap parameters governing the Granger causality
are different from zero, we need to adapt the bootstrap Wald test such that it tests
the correct null hypothesis. Observing that those parameters form a subset of the
estimates in Γ̂ used in (22), the appropriate Wald test statistic is

ξ̃∗W =
[
Rvec(Γ̂

∗
)− Rvec(Γ̂)

]′
(RΩ̂∗R′)−1

[
Rvec(Γ̂

∗
)− Rvec(Γ̂)

]
, (23)

where all quantities with a superscript ‘*’ are calculated analogously to their sample
counterparts but then using the bootstrap sample.

5. Repeat steps 2 to 4 B times, and calculate the bootstrap p-value as the proportion
of bootstrap samples for which ξ̃∗W > ξ̃W .

While this bootstrap method has the advantage that it can be used for testing Granger
causality in both directions (as only the matrix R needs to change), it also has some
drawbacks. In particular, even with the dimensionality reduction provided by the reduced
rank estimation, it still relies on the generation of a bootstrap sample based on an (m+1)-
dimensional MF-VAR(p) that requires p(m+1)+r(m+1)+prm parameters to estimate.
This may make the bootstrap unstable and prone to generate outlying samples, with
potential size distortions or a loss of power as a result.

Therefore we consider a second bootstrap method that imposes the null hypothesis of
no Granger causality and in doing so achieves a further significant reduction of dimen-
sionality. A downside of this method is that it requires separate bootstrap algorithms
for testing in the two opposite directions. We describe the procedure here for the null
hypothesis that X(m) does not Granger cause y; we comment on the test in the opposite
direction below.

1. Estimate an AR(p) model for y and obtain the residuals

ũy,t = yt − µ̂−
p∑
j=1

ρ̂y,jyt−j, t = p+ 1, . . . , T.

2. Draw the bootstrap errors u∗1, . . . , u
∗
T with replacement from ũy,p+1, . . . , ũy,T .

3. Construct the bootstrap sample y∗t recursively as

y∗t =

p∑
j=1

ρ̂y,jy
∗
t−1 + u∗t , t = 1, . . . , T, y∗0 = 0,

thus imposing the null of no Granger causality from X(m) to y.
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4. Letting X
(m)∗
t = X

(m)
t , use the bootstrap sample to estimate the MF-VAR using the

same estimation method as for the original estimator, and obtain the corresponding
Wald test statistic ξ̃∗W . As the null hypothesis of no Granger causality has been

imposed in the bootstrap, ξ̃∗W now has the same form as ξ̃W in (14).

Note that only p parameters need to be estimated in order to generate the bootstrap
sample, most likely making the procedure more stable than the unrestricted bootstrap
above. A similar bootstrap procedure can be implemented for the reverse direction of
causality by only resampling X

(m)
t while keeping yt fixed. As one can resample X

(m)
t

independently of yt, it can be done in the original high-frequency as a univariate process.
Said differently, it only requires fitting an AR(q) process to x

(m)
t , again achieving a large

reduction of dimensionality.
It is also possible in step 2 of both algorithms to use the wild bootstrap to be

robust against heteroskedasticity. In this case the bootstrap errors are generated as
u∗t = ξ∗t ũt where we generate ξ∗1 , . . . , ξ

∗
T as independent standard normal random variables.

This would constitute the so-called “recursive wild bootstrap” scheme that Brüggemann,
Jentsch, and Trenkler (2014) prove to be asymptotically valid under conditionally het-
eroskedastic errors. In particular, employing the wild bootstrap then allows us to replace
the i.i.d. assumption in Assumption 1 with the martingale difference sequence assumption
in Assumption 2.1 of Brüggemann et al. (2014). We implement the wild bootstrap version
in the empirical application in Section 5.

Remark 5. Kilian (1998) and Paparoditis (1996) prove the asymptotic validity of the
unrestricted VAR bootstrap under Assumption 1. The validity of the restricted bootstrap
can be derived from the results for AR(p) processes in Bose (1988), and the observation
that conditioning is a valid approach in the absence of Granger causality. Van Giersbergen
and Kiviet (1996) provide a detailed examination of the two different types of bootstraps
in the context of ADL models and demonstrate that the restricted bootstrap even works
well in the absence of strong exogeneity.11

Remark 6. Gonçalves and Perron (2014) consider factor-augmented regression models,
with the factors estimated by principal components. In this setting the asymptotic im-
pact of factor estimation depends on which asymptotic framework is assumed. Under
the asymptotic framework, in which factor estimation has a non-negligible effect on the
limit distribution of the regression estimators, the bootstrap correctly mimics this ef-
fect and is therefore asymptotically valid. Consequently, the bootstrap provides a much
more accurate approximation to the finite sample distribution of the regression estimators
than the asymptotic approximation, that assumes a negligible effect of factor estimation.
We expect the bootstrap to have similar properties in our setting where the factors are
estimated using CCA or PLS.

3.2 Bayesian MF-VARs

3.2.1 Restricted MF-VARs

Ghysels (2015) discusses the issue of parsimony in MF-VAR models by specifying the high-

11If the test statistic (14) is asymptotically pivotal, we may expect the bootstrap to provide asymptotic
refinements as well and, hence, reduce small sample size distortions (cf. Bose, 1988; Horowitz, 2001).
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frequency process in such a way as to allow a number of parameters that is independent
from m. Indeed, while it seems reasonable to leave the equation for yt unrestricted,12 it
is less clear for the remaining ones. Hence, let us make the following assumption (see
Ghysels, 2015 or the numerical examples in Ghysels et al., 2015a).

Assumption 3. The high-frequency process x
(m)
t follows an AR(1) model with one lag

of the low-frequency variable in the regressor set

x
(m)
t−i/m = µi+2 + ρx

(m)
t−(i+1)/m + πyt−1 + υ(i+2)t (24)

for i = 0, . . . ,m− 1.

Completing the system with the equation for yt leads to the following restricted MF-
VAR:

yt
x

(m)
t

x
(m)
t−1/m

...

x
(m)
t−(m−1)/m

 =


µ1∑m−1

i=0 ρiµ2+i∑m−2
i=0 ρiµ3+i

...
µm+1

+


γ

(1)
1,1 γ

(1)
1,2 γ

(1)
1,3 . . . γ

(1)
1,m+1

π
∑m−1

i=0 ρi ρm

0m×(m−1)
π
∑m−2

i=0 ρi ρm−1

...
...

π ρ

×


yt−1

x
(m)
t−1

x
(m)
t−1−1/m

...

x
(m)
t−1−(m−1)/m

+
∑p

k=2

(
γ

(k)
1,1 γ

(k)
1,2 . . . γ

(k)
1,m+1

0m×(m+1)

)

×


yt−k
x

(m)
t−k
...

x
(m)
t−k−(m−1)/m

+


υ1t∑m−1

i=0 ρiυ(m+1−i)t∑m−2
i=0 ρiυ(m+1−i)t

...
υ(m+1)t


︸ ︷︷ ︸

υ∗t

,

(25)

where γ
(k)
i,j corresponds to the (i, j)-element of matrix Γk in (4). As for the error terms

υit, i = 1, . . . ,m + 1, we set E(υitυit) = σHH , E(υ1tυit) = σHL for i = 2, . . . ,m + 1, and
E(υ1tυ1t) = σLL. Furthermore, each error term is assumed to possess a zero mean and
to be normally distributed. Consequently, υ∗t ∼ N(0((m+1)×1),Συ∗), whereby we refer the
reader to Ghysels (2015) for the exact composition of Συ∗ .

12In fact, viewed as single equation, it boils down to an unrestricted MIDAS model (Foroni, Marcellino,
and Schumacher, 2015) without contemporaneous observations of the high-frequency variable. MIDAS
restrictions (Ghysels et al., 2004) can be imposed here as an alternative. However, doing so implies leaving
the linear framework, which is needed to apply the auxiliary dummy variable approach presented below.
Furthermore, even after having drawn the MIDAS hyperparameters, one still faces the aforementioned
Davies (1987) problem when attempting to test for Granger non-causality from X(m) to y.
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3.2.2 The Auxiliary Dummy Variable Approach for Mixed-Frequency Data

As pointed out by Carriero, Kapetanios, and Marcellino (2011), Bayesian methods allow
the imposition of restrictions such as the ones in Assumption 3, while also admitting
influence of the data. Consequently, Bayesian shrinkage has become a standard tool
when being faced with large-dimensional estimation problems such as large VARs (e.g.,
Banbura et al., 2010, Kadiyala and Karlsson, 1997). As for MF-VARs, Ghysels (2015)
describes a way to sample the MIDAS hyperparameters and subsequently formulates
prior beliefs for the remaining parameters.13 Once these hyperparameters are taken care
of, the Bayesian analyses of mixed- and common-frequency VAR models are quite similar
and, hence, traditional Bayesian VAR techniques (e.g., Kadiyala and Karlsson, 1997,
Litterman, 1986) can be applied.

We follow the approach of Banbura et al. (2010), which in turn is built on the work
of Sims and Zha (1998), showing that adding a set of auxiliary dummy variables to the
system is equivalent to imposing a normal inverted Wishart prior. The specification of
prior beliefs is derived from the Minnesota prior in Litterman (1986), whereby we center
the prior distributions of the coefficients in B around the restricted MF-VAR in (25):

E[γ
(k)
i,j ] =


ρm if i = j = k = 1

ρm+j−i if k = 1, j = 2, i > 1
0 else

,

V ar[γ
(k)
i,j ] =


φλ

2

k2
SLH for i = 1, j > 1

φλ
2

k2
SHL for j = 1, i > 1
λ2

k2
else

,

(26)

where all γ
(k)
i,j are assumed to be a priori independent and normally distributed. The

covariance matrix of the residuals is for now assumed diagonal and fixed, i.e., Σu =
Σ = Σd with Σd = diag(σ2

L, σ
2
H , . . . , σ

2
H) of dimension m + 1. The tightness of the prior

distributions around the AR(1) specification in (24) is determined by λ,14 the influence of

low- on high-frequency data and vice versa is controlled by φ and, finally, Sij =
σ2
i

σ2
j
, i, j =

L,H, governs the difference in scaling between y and the x-variables. For µ we take a
diffuse prior.

Remark 7. As for the common-frequency case, the expressions for V ar[γ
(k)
i,j ] in (26) imply

that more recent (low-frequency) lags provide more reliable information than more dis-

tant ones. However, due to the stacked nature of X
(m)
t , the coefficients could be shrunk

according to their high-frequency time difference instead. This implies specifying the
lag associated with each coefficient in fractions of the low-frequency time index: yt and
x

(m)
t−1−s/m, e.g., are 1 + i/m low-frequency time periods apart such that the denominator

in the corresponding coefficient’s prior variance would equal (1 + i/m)2.

13McCracken, Owyang, and Sekhposyan (2015) use a Sims-Zha shrinkage prior and the algorithm
in Waggoner and Zha (2003) to solve the parameter proliferation problem with Bayesian estimation
techniques. Bayesian methods within mixed-frequency VARs were also considered by Schorfheide and
Song (2015). However, they use a latent high-frequency VAR instead of the mixed-frequency system à la
Ghysels (2015).

14λ ≈ 0 results in the posterior coinciding with the prior, whereas λ =∞ causes the posterior mean to
coincide with the OLS estimate of the unrestricted VAR in (4).
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However, in the context of Granger causality testing such a specification is problematic
as the coefficients to test on are shrunk in ”opposite directions”: yt and x

(m)
t−1−1/2 are

1.5 t-periods apart, whereas x
(m)
t−1−1/2 and yt−1 are separated by only 0.5 low-frequency

periods. Consequently, for a given λ, the coefficients are shrunk much more when testing
for Granger causality from X(m) to y, especially for large m. This makes it difficult to
control the size of the respective tests in one or the other direction. The common-frequency
handling of the prior variances in (26) mitigates this issue, although some losses in power
have to be assumed.

Note that a treatment of the mixed-frequency nature of the variables along the lines
outlined above may well be advantageous in other circumstances (e.g., forecasting) such
that we present this approach in detail in Appendix A.15

Given the prior beliefs specified before, the analysis is very similar to the one in
Banbura et al. (2010). In short, let us write the MF-VAR as

Z = ZB∗ + E,

where Z = (Zµ
1 , . . . , Z

µ
T )′ with Zµ

t = (Z ′t, 1)′, Z = (Z1, . . . , ZT )′, E = (u1, . . . , uT )′ and
B∗ = (B′, µ)′. Then, one can show that augmenting the model by two dummy variables,
Yd and Xd, is equivalent to imposing a normal inverted Wishart prior that satisfies the
moments in (26). Finally, estimating the augmented model by ordinary least squares gives
us the posterior mean of the coefficients, on which we can do inference as outlined in the
next subsection.

Note that Xd is, in fact, identical to the matrix for the common-frequency VAR (Ban-
bura et al., 2010); Yd, however, is slightly different due to the prior means being centered
around the restricted VAR in (25):

Yd︸︷︷︸
((m+1)(p+1)+1)×(m+1)

=


ρmσL/λ 0 0 . . . 0

0 ρmσH/λ ρm−1σH/λ . . . ρσH/λ
0((m+1)p−2)×(m+1)

diag(σL, σH , . . . , σH)
01×(m+1)

 ,

Augmenting the model is then achieved by setting Z∗ = (Z ′, Y ′d)
′ and Z∗ = (Z ′, X ′d)

′.

3.2.3 Testing for Granger Non-Causality

In terms of analyzing the Granger non-causality testing behavior within the Bayesian
MF-VAR, the auxiliary dummy variable approach is quite appealing, as it provides a
closed-form solution for the posterior mean of the coefficients. It is thus straightforward
to compare the testing behavior with the ones from alternative approaches using the Wald

15When extending the approach we stick to the standard structure of the Minnesota prior in Litterman
(1986). It is, however, also feasible to address the aforementioned issue by introducing, say, three hyper-
parameters: λ1 governing the prior tightness for the coefficients determining Granger causality from y to

X
(m)
t , λ2 for parameters controlling causality in the reverse direction and λ3 taking care of the remain-

ing coefficients. This strategy is, however, a rather straightforward extension of the theory presented in
Appendix A such that we do not present it here.
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test.16 The latter is derived analogously to the one in (14), and is, given Assumption 3,
also asymptotically χ2

rank(R)-distributed.

Remark 8. Because the parameter vector vec(B∗) is not assumed fixed but random, con-
struction of the test statistic, and especially its interpretation, need to be treated with
special care. We consider Bayesian confidence intervals, in particular highest posterior
density (HPD) confidence intervals (Bauwens, Lubrano, and Richard, 2000), the tightness
of which is expressed by α, not coincidentally the same letter that denotes the significance
level in the frequentist’s framework. Here, it is interpreted such that (1−α)% of the prob-
ability mass falls within the respective interval. In other words, the probability that a
model parameter falls within the bounds of the interval is equal to (1−α)%. The interval
centered at the modal value for unimodal symmetric posterior densities is then called the
HPD (Zellner, 1996 or Bauwens et al., 2000). The connection to Wald tests is now im-
mediate using the equivalence between confidence intervals and respective test statistics,
whereby similar care is demanded when interpreting results.

3.3 Benchmark Models

3.3.1 Low-Frequency VAR

Before the introduction of MIDAS regression models, high-frequency variables were usu-
ally aggregated to the low frequency in order to obtain a common frequency for all
variables appearing in a regression (Silvestrini and Veredas, 2008 or Marcellino, 1999).
Likewise for systems, a monthly variable, for example, was usually aggregated to, say,
the quarterly frequency such that a VAR could be estimated in the resulting common
low frequency. Formally, xt = W (L1/m)x

(m)
t , where W (L1/m) denotes a high-frequency

lag polynomial of order A, i.e., W (L1/m)x
(m)
t =

∑A
i=0wix

(m)
t−i/m (Silvestrini and Veredas,

2008).17 As far as testing for Granger non-causality is concerned, we can rely on the Wald
statistic in (14), where the set of regressors, the matrix R and the coefficient matrix are
suitably adjusted.

Remark 9. Naturally, such temporal aggregation leads to a great reduction in parame-
ters. After all, each set of m high-frequency variables per t-period is aggregated into one
low-frequency observation. Of course, this decrease in parameters comes at the cost of
disregarding information embedded in the high-frequency process. As argued in Miller
(2011), if the aggregation scheme employed is different from the true one underlying the
DGP, potentially crucial high-frequency information will be forfeited. Additionally, ag-
gregating a high-frequency variable may lead to ’spurious’ (non-)causality in the common
low-frequency setup (Breitung and Swanson, 2002), since causality is a property which is
not invariant to temporal aggregation (Marcellino, 1999 or Sims, 1971).

16There is a large sample correspondence between classical Wald and Bayesian posterior odds tests
(Andrews, 1994). For certain choices of the prior distribution, the posterior odds ratio is approximately
equal to the Wald statistic. Andrews (1994) shows that for any significance level α there exist priors such
that the aforementioned correspondence holds, and vice versa.

17This generic specification nests the two dominating aggregation schemes in the literature, Point-in-
Time (A = 0, w0 = 1) and Average sampling (A = m − 1, wi = 1/m ∀i), where the former is usually
applied to stock and the latter to flow variables. In view of the high-frequency variable we consider in
our empirical application, the natural logarithm of bipower variation, we focus on Average sampling in
this paper.
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3.3.2 The max-test

Independently and simultaneously to this work, Ghysels et al. (2015a) have developed
a new Granger non-causality testing framework, whose parsimonious structure makes it
very appealing in a situation, where m is large relative to the sample size. In short,
the idea is to focus on the first line of the MF-VAR in (4), but rather than estimating
that (U)-MIDAS equation (Foroni et al., 2015) and test for Granger non-causality in the
direction from X(m) to y, the authors propose to compute the OLS estimates of βj in the
following h separate regression models:

yt = µ+

q∑
k=1

αk,jyt−k + βj+1x
(m)
t−1−j/m + vj, j = 0, . . . , h− 1,

whereby h needs to be set ”sufficiently large” (to achieve h > pm). The corresponding
max-test statistic is then the properly scaled and weighted maximum of {β̂2

1 , . . . , β̂
2
h}.

Although it has a non-standard limit distribution under H0, an asymptotic p-value may
be obtained in a similar way as when overcoming the Davies (1987) problem (see Remark
4). Testing for Granger non-causality in the reverse direction works analogously in the
following regression model:

yt = µ+

q∑
k=1

αk,jyt−k +
h∑
k=1

βk,jx
(m)
t−1−k/m + γjx

(m)
t+j/m + vj, j = 1, . . . , l.

Again, the corresponding max-test statistic is the maximum of {γ̂2
1 , . . . , γ̂

2
l } scaled and

weighted properly.18

3.3.3 Unrestricted VARs

Finally, we can attempt to estimate the full MF-VAR in (4) ignoring the possibility that
the amount of parameters may be too large to perform accurate estimations or adequate
Granger non-causality tests. To this end we estimate the MF-VAR using ordinary least
squares disregarding the potential parameter proliferation problem. In this sense the
comparison is related to the one of U-MIDAS (Foroni et al., 2015) and MIDAS regression
models for large m. We can test for Granger non-causality using the Wald statistic in
(14). Again, W , R and B have to be adjusted adequately. We also consider a bootstrap
version of the unrestricted MF-VAR, which we expect to alleviate size distortions, but
which cannot solve power issues due to the parameter proliferation.

18A MIDAS polynomial (Ghysels et al., 2004) on
∑h
k=1 βk,jx

(m)
t−1−k/m may be imposed to increase

parsimony. Note that the aforementioned Davies problem does not occur due to testing for Granger
non-causality by looking at the OLS estimates of γj . Furthermore, Ghysels et al. (2015a) argue that m
contemporaneous high-frequency observations of x should be included as instruments in order to handle
simultaneity between y and x.
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4 Monte Carlo Simulations

In order to assess the finite sample performance of our different parameter reduction
techniques, we conduct a Monte Carlo experiment. In light of our empirical investigation
we set m = 20, i.e., as in a month/ working day-example.19 Furthermore, we start by
investigating the case where p = 1 and keep the analysis of higher lag orders for future
research.

As far as investigating the size of our Granger non-causality tests is concerned, we
assume that the data are generated as a mixed-frequency white noise process, i.e.,

Zt = ut. (27)

Remark 10. Additionally, we have considered three alternative DGPs for size, all based
on the restricted VAR in (25): (i) γ1,i = γ∗i,1 = 0 (’diagonal’), (ii) γ1,i = 0 and γ∗i,1 6= 0

(’only Granger non-causality from X(m) to y’) or (iii) γ∗i,1 = 0 and γ1,i 6= 0 (’only Granger

non-causality from y to X(m)’) ∀i = 2, . . . , 21, where the parameters γ1,i and γ∗i,1 refer to
(29). However, with the respect to the respective testing direction, the outcomes do not
differ qualitatively and quantitative differences are very small. Results are available upon
request.

To analyze power we generate two different DGPs that are closely related to the
restricted VAR in (25):

Zt = ΓPZt−1 + ut (28)

with

ΓP =


γ1,1 γ1,2 γ1,3 . . . γ1,21

γ∗2,1 ρ20 0 . . . 0

γ∗3,1 ρ19 ... . . . 0
...

...
...

. . .
...

γ∗21,1 ρ 0 . . . 0

 , (29)

where γ1,1 = 0.5, ρ = 0.6 and γ1,j = βw∗j−1(−0.01) for j > 1. Note that wi(ψ) =
exp(ψi2)∑20
i=1 exp(ψi

2)
corresponds to the two-dimensional exponential Almon lag polynomial with

the first parameter set to zero (Ghysels et al., 2007). Now, for the first power DGP we
simply set w∗i (ψ) = wi(ψ), whereas in the second power DGP w∗i (ψ) = wi(ψ)−w(ψ) with
the horizontal bar symbolizing the arithmetic mean. As far as γ∗j,1 is concerned we take
γ∗j,1 = γj,1 (first power DGP) and γ∗j,1 = γj,1 − γ·,1 (second power DGP) for j = 2, . . . , 21,
whereby γj,1 = (γj−1,1)1.11 for j = 3, . . . , 21.20 As an example, Figure 1 plots βw∗j−1 and
γ∗j,1 for β = 2 and γ2,1 = 0.25.

19See Section 5 for a justification of the time-invariance of m within this setup.
20The parameter values have been chosen to mimic part of the structure of the restricted VAR in (25)

and to ensure stability of the system. In the first DGP late xt−1-observations have a larger impact on yt,
and positive values of yt−1 increase x towards the end of the current period, but hardly have an impact
at the beginning. In the second power DGP a zero-mean feature is imposed on the coefficients w∗j−1(ψ)
and γ∗j,1 without changing the general pattern of their evolvement.
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Figure 1: Parameter values for 2w∗j−1(−0.01) and γ∗j,1 (γ2,1 = 0.25)

Remark 11. Due to the zero-mean feature of w∗j−1(ψ) and γ∗j,1, j = 2, . . . , 21, in the second
power DGP, we expect the presence of Granger causality to be ’hidden’ when Average
sampling the high-frequency variable (see Section 3.3.1). It is thus a situation, in which
classical temporal aggregation is expected not to preserve the causality patterns in the
data (Marcellino, 1999). The first power DGP serves as a benchmark in the sense that
we do not a priori expect one approach to be better or worse than the others.

For the methods in Section 3 we analyze size and power for T = 50, 250 and 500,
corresponding to roughly 4, 21 and 42 years of monthly data. Note that an additional
100 monthly observations are used to initialize the process. As far as the error term
is concerned, we assume ut ∼ N(0(21×1),Σu), where Σu has the same structure as the
covariance matrix of the restricted VAR in (25) with σLL = 0.5 and σHH = 1.21

For CCA and PLS we consider r = 1, 2 and leave the analysis of higher factor di-
mensions for further research. Recall from Remark 3 that under H0 the model is not
misspecified with either amount of factors. Under HA, however, the model is misspecified
for r = 1, but not for r = 2. In that sense, we implicitly analyze the impact of mis-
specification, stemming from choosing r too small, on the behavior of the respective test
statistics. As far as the Bayesian approach is concerned, we experimented with various
values for the hyperparameter and found λ = 0.175 to be a good choice. Furthermore,
we approximate ρ by running a corresponding univariate regression. For the max-test we
take q = 1 and h = l = m = 20.

We consider different variants of our size and power DGPs by varying the values
of σHL and β. To be more precise, we choose σHL = 0,−0.05,−0.1 when analyzing size
properties of our tests in both directions. A value of zero implies the absence of nowcasting
causality, whereas the other two values imply some degree of correlation between the low-

21These values resemble the data in the empirical section, where σ̂LL = 0.55 and σ̂HH = 1.09.
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and high-frequency series. For both power DGPs we fix σHL = −0.05, though. When
investigating Granger causality testing from X(m) to y in the first power DGP we consider
β = 0.5, 0.8, 2; in the second power DGP we only take the β = 0.5. For causality in the
reverse direction we take γ2,1 = 0.2 in both power DGPs, because the results do not seem
sensitive in this respect.

The figures in the tables below represent the percentage amount of rejections at α =
5%.22 All figures are based on 2,500 replications and are computed using GAUSS12. For
the bootstrap versions we use B = 499.

4.1 Size

Tables 1 and 2 contain the size results for Granger non-causality tests within the following
approaches: the low-frequeny VAR (LF), the unrestricted VAR (UNR), reduced rank
restrictions using canonical correlations analysis (CCA) or partial least squares (PLS),
and with three imposed factors using the HAR model (HAR), the max-test (max) and
the Bayesian mixed-frequency VAR (BMF). With respect to CCA and PLS, the outcomes
for r = 2 turn out to be qualitatively very similar to the r = 1 case, showing that the
methods are apparently not affected by the presence of misspecification. Consequently, we
only show the outcomes for r = 1 to save on space. Furthermore, aside from the results of
the standard Wald tests, we only display the outcomes for the best performing bootstrap
variant, which are denoted with a superscript ‘∗’ (e.g., CCA∗ is the bootstrap CCA-
based Wald test). In the case of testing causality in the direction from the high- to the
low-frequency series this turns out to be the bootstrap that imposes the null hypothesis,
whereas the unrestricted variant dominates for the reverse direction.23 For both methods
we set the lag length within the bootstrap equal to p = 1.

When testing causality from y to X(m) size distortions may occur due to computing a
joint test on mp parameters from m different equations in the system. In order to address
this issue, we take the maximum of the Wald statistics computed equation by equation.
We denote these tests by adding a subscript ’b’, e.g., CCAb. For the tests with asymptotic
critical values we apply a Bonferroni correction to control the size under multiple testing
(Dunn, 1961). In similar spirit as in White (2000), the bootstrap implementations of these
tests automatically provide an implicit Bonferroni-type correction for multiple testing, as
we calculate the corresponding maximum of the single-equation Wald tests within each
bootstrap iteration and compare that to the maximum of the original tests. We will refer
to all these tests as ‘Bonferroni-type’ tests to avoid confusion with the max-test, and
present the corresponding outcomes in Table 3.

Let us start by analyzing the testing behavior from X(m) to y. First, LF has size
close to the nominal one, which is not surprising given that the flat aggregation scheme
is correct in this white noise DGP (no matter the value of σHL). The unrestricted VAR,
however, incurs some size distortions for small T due to parameter proliferation. Reduced
rank restrictions based on CCA and PLS yield considerable size distortions, whereby the
imposed HAR-type factor structure delivers good results (despite being slightly oversized

22Outcomes for α = 10% and α = 1% are available upon request.
23The unrestricted bootstrap is seriously oversized testing causality from X(m) to y, while the other

way around the bootstrap under the null is mildly oversized for small samples. All outcomes not shown
here are available upon request.
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Table 1: Size of Granger Non-Causality Tests from X(m) to y

X(m) to y T LF UNR CCA PLS HAR max BMF UNR∗ CCA∗ PLS∗ HAR∗

σHL = 0
50 5.4 13.4 18.8 11.4 6.9 4.3 5.7 5.0 4.6 4.9 5.2
250 4.7 6.4 28.6 12.4 5.4 4.4 5.2 4.9 4.7 5.3 5.3
500 4.9 5.6 29.2 12.8 5.2 4.1 5.3 5.1 5.2 6.2 5.3

σHL = −0.05
50 5.3 12.6 20.9 16.7 6.6 4.6 5.6 4.7 5.6 8.2 5.0
250 4.8 5.8 28.3 17.1 5.5 4.4 5.2 4.7 4.8 9.2 5.4
500 4.8 6.2 30.0 16.9 4.4 4.2 5.3 5.6 5.2 8.5 4.5

σHL = −0.1
50 5.0 12.5 20.0 32.6 6.3 4.6 5.0 4.8 4.8 19.6 4.8
250 4.6 7.2 28.8 35.7 5.5 4.8 5.1 5.8 5.8 23.2 5.2
500 4.7 5.4 28.9 36.5 5.3 4.5 5.2 4.8 6.3 23.0 5.2

Note: For testing Granger non-causality from X(m) to y the figures represent percentages of rejections of the asymptotic Wald test statistics and the
restricted bootstrap variants (indicated with a superscript ’*’) of the following approaches: The low-frequeny VAR (LF), the unrestricted approach (UNR),
reduced rank restrictions with one factor using canonical correlations analysis (CCA) or partial least squares (PLS), and with three imposed factors using
the HAR model (HAR), the max-test (max) and the Bayesian mixed-frequency approach (BMF). The lag length of the estimated VARs is equal to one.
The underlying DGP is found in (27), where the variance-covariance matrix of the error term is equal to Σu with σHL = 0,−0.05,−0.1.
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for T = 50). Finally, max and BMF show almost perfect size, whereby the former is
marginally under- and the latter marginally oversized.

Turning to the outcomes of the bootstrap versions we observe that, independent of the
value of σHL, even for T = 50 the actual size of the Wald tests within the unrestricted VAR
and reduced rank restriction models with CCA- or HAR-type factors is very close to the
nominal one, such that the bootstrap tests clearly dominate their asymptotic counterparts.
For PLS-based factors this conclusion only holds in the absence of nowcasting causality,
and size distortions arise quickly as we increase the contemporaneous correlation between
X(m) and y.

Many of the aforementioned statements carry over to testing causality in the reverse
direction: LF delivering nearly perfect size (as it is the correct model under the null), max
performing very well (being only marginally oversized for small T ) and BMF being a bit
oversized (by a slightly larger degree than in Table 1).24 The size distortions incurred by
UNR, CCA, PLS and HAR are, however, amplified. The use of the Bonferroni-corrected
UNRb, CCAb, PLSb and HARb can only mitigate this effect, yet not fully eradicate it.
The bootstrap version does eliminate the size distrotions, though: actual size of UNR∗,
PLS∗ and HAR∗ becomes oftentimes very close to 5%; only CCA∗ remains a bit oversized
for T = 50. The Bonferroni-type tests UNR∗b , CCA∗b , PLS∗b and HAR∗b all have size very
close to the nominal one for all sample sizes.

To sum up, the Granger non-causality tests with size close to the nominal one are
LF, max and BMF to some degree. Furthermore, these are UNR∗, CCA∗, PLS∗ (with
at most ”mild” nowcasting causality) and HAR∗ when testing the direction from X(m)

to y, and UNR∗, CCA∗, PLS∗ and HAR∗ as well as their Bonferroni-type counterparts
when testing the reverse direction. Consequently, these are the cases we focus on when
analyzing power (and when dealing with real data in Section 5).

4.2 Power

Tables 4 and 5 contain the corresponding outcomes under the alternative hypothesis.
Recall that for the direction from X(m) to y we consider three different values of β within
the first power DGP, β = 0.5, 0.8 and 2. For the second power DGP we fix β = 0.5. For
the reverse direction we always keep γ2,1 = 0.2.

Let us again start with the direction from the high- to the low-frequency variable and
first focus on the outcomes for the first power DGP, i.e., the top three blocks of Table 4.
Observe (i) how power reaches one asymptotically for all approaches, and (ii) how larger
values of β imply an increase in the rejection frequencies for a given T . Naturally, for a
large enough β all tests have power equal to one, irrespective of the sample size (as nearly
happens for β = 2). So, in order to compare our different tests let us focus on β = 0.5.

The asymptotic Wald test within the low-frequency VAR still performs very well, with
the highest rejection frequency for T = 50. Note, however, that the Granger causality
feature in the data does not get averaged out by temporal aggregation in the first power
DGP. The bootstrapped version of the Wald test after HAR-type restrictions have been
imposed in a reduced rank regression perform almost as well as LF. max, BMF and
PLS∗ appear to fall a bit short, but catch up quickly as either T or β grows. A similar

24Strangely, BMF seems to be rejected less and less for growing σHL, with the effect being strongest
for small T .

22



Table 2: Size of Granger Non-Causality Tests from y to X(m)

y to X(m) T LF UNR CCA PLS HAR max BMF UNR∗ CCA∗ PLS∗ HAR∗

σHL = 0
50 5.7 91.1 82.0 58.6 59.8 6.1 7.9 4.6 8.8 5.0 5.2
250 5.5 11.5 11.8 10.6 10.2 4.6 10.4 5.2 5.3 5.0 5.3
500 5.2 6.7 7.4 6.8 6.6 5.9 7.8 4.6 4.8 4.6 4.8

σHL = −0.05
50 5.6 92.4 83.8 62.0 60.6 5.7 4.8 5.6 9.4 4.9 5.6
250 5.4 10.9 13.2 11.9 10.3 4.8 8.9 4.7 4.5 4.4 4.8
500 5.0 7.4 9.2 8.7 7.3 5.5 7.3 5.4 5.4 5.3 5.2

σHL = −0.1
50 5.7 92.1 87.1 64.2 58.5 5.7 0.5 5.5 9.2 4.0 4.4
250 4.7 11.0 20.5 14.8 10.5 5.0 5.4 5.2 6.3 5.1 5.3
500 5.3 7.4 13.8 10.7 7.2 5.5 5.0 5.3 5.7 4.2 5.2

Note: For testing Granger non-causality from y to X(m) the figures represent percentages of rejections of the asymptotic Wald test statistics and the
unrestricted bootstrap variants (indicated with a superscript ’*’) of the following approaches: The low-frequency VAR (LF), the unrestricted approach
(UNR), reduced rank restrictions with one factor using canonical correlations analysis (CCA) or partial least squares (PLS), and with three imposed
factors using the HAR model (HAR), the max-test (max) and the Bayesian mixed-frequency approach (BMF). The lag length of the estimated VARs is
equal to one. The underlying DGP is found in (27), where the variance-covariance matrix of the error term is equal to Σu with σHL = 0,−0.05,−0.1.
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Table 3: Size of Granger Non-Causality Tests from y to X(m) (Bonferroni)

y to X(m) T UNRb CCAb PLSb HARb BMFb UNR∗b CCA∗b PLS∗b HAR∗b

σHL = 0
50 16.9 17.3 16.4 13.9 2.9 3.4 4.6 3.9 3.7
250 12.7 13.6 13.1 12.7 5.1 4.6 5.0 5.0 4.9
500 12.4 12.4 12.1 12.2 4.4 5.0 5.0 4.6 4.9

σHL = −0.05
50 17.9 18.9 18.3 15.2 2.1 3.8 4.8 4.0 4.0
250 13.4 14.5 14.4 12.8 4.8 5.4 5.2 5.4 5.4
500 12.3 13.7 14.8 12.5 4.0 5.0 5.2 5.0 4.6

σHL = −0.1
50 17.2 20.2 21.6 15.4 0.4 3.3 5.0 4.3 4.4
250 12.0 15.4 17.0 12.2 3.3 4.9 5.3 4.8 4.7
500 11.9 14.9 17.0 11.7 3.3 5.4 5.2 5.1 5.2

Note: For testing Granger non-causality from y to X(m) the figures represent percentages of rejections of the Bonferroni-type tests (indicated with a
subscript ’b’) for both the asymptotic Wald test statistics and the unrestricted bootstrap variants (indicated with a superscript ’*’) of the following
approaches: The unrestricted approach (UNR), reduced rank restrictions with one factor using canonical correlations analysis (CCA) or partial least
squares (PLS), and with three imposed factors using the HAR model (HAR) and the Bayesian mixed-frequency approach (BMF). For the low-frequency
VAR (LF) and the max-test (max) the Bonferroni-type test is not applicable. The lag length of the estimated VARs is equal to one. The underlying
DGP is found in (27), where the variance-covariance matrix of the error term is equal to Σu with σHL = 0,−0.05,−0.1.
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Table 4: Power of Granger Non-Causality Tests from X(m) to y

X(m) to y T LF max BMF UNR∗ CCA∗ PLS∗ HAR∗

Power-DGP
1, β = 0.5

50 64.1 39.6 52.8 23.1 12.7 54.0 62.6
250 99.9 100.0 99.8 99.8 96.0 98.7 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Power-DGP
1, β = 0.8

50 93.6 79.4 92.2 54.6 26.6 77.9 93.0
250 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Power-DGP
1, β = 2

50 100.0 100.0 100.0 100.0 85.3 98.4 100.0
250 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Power-DGP
2, β = 0.5

50 5.8 14.5 21.9 9.7 8.0 25.1 22.3
250 5.0 75.9 79.2 71.2 58.8 79.7 89.4
500 4.7 98.6 99.0 98.3 87.6 97.3 99.8

Note: For testing Granger non-causality from X(m) to y the figures represent percentages of rejections of the asymptotic Wald test statistics of the
low-frequeny VAR (LF), the max-test (max) and the Bayesian mixed-frequency approach (BMF). Furthermore, it contains percentages of rejections of
the restricted bootstrap variants (indicated with a superscript ’*’) of the unrestricted approach (UNR), reduced rank restrictions with one factor using
canonical correlations analysis (CCA) or partial least squares (PLS), and with three imposed factors using the HAR model (HAR). The lag length of the
estimated VARs is equal to one. The underlying DGP is found in (28) or (29), where the variance-covariance matrix of the error term is equal to Σu with
σHL = −0.05. In power-DGP 1 the Granger causality determining coefficients do not sum up to zero, whereas they do so in power-DGP 2. See Section 4
for details. β = 0.5, 0.8, 2 in power-DGP 1 and β = 0.5 in power-DGP 2.
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observation holds for UNR∗ and CCA∗, whereby they seem to be markedly less powerful
for small T .

These conclusions generally carry over to the second power DGP, with two exceptions:
First and foremost, the outcomes of LF show that Average sampling of X(m) annihilates
the causality feature between the series for all sample sizes (power actually almost coin-
cides with the nominal size of 5%). Second, the rejection frequencies are lower than they
were in the corresponding setting of the first power DGP.

Turning to the direction from y to X(m), it becomes obvious that the outcomes for
the first and second power DGP are, once again, similar, with the same two exceptions
mentioned before. This being said and leaving aside the ones for LF due Granger causality
not being invariant to temporal aggregation (Marcellino, 1999), it suffices to analyze the
results of the first power DGP.

Both max and BMF have higher power than the bootstrapped Wald tests correspond-
ing to the reduced rank restrictions approaches. However, recall that BMF and max were
somewhat oversized, especially for small T , which may inflate their power. However, so
far we did not consider the Bonferroni-type tests based on the maximum of the individual
Wald tests. Given the way in which max is constructed though, it seems more natural
to compare it to the Bonferroni-type counterparts of the bootstrap tests. Indeed, both
approaches rely on a statistic that is computed as the maximum of a set of test statis-
tics.25 Here it turns out that, for a given T , almost all approaches are more powerful
than max. The fact that UNR∗b , PLS∗b and HAR∗b are all slightly undersized for small T ,
while max is marginally oversized, even strengthens the aforementioned conclusions. Also
note that the bootstrap tests based on the reduced rank restrictions seem to be slightly
more powerful than UNR∗b , confirming again (though less pronounced than in the other
direction) that while the bootstrap can correct size of the unrestricted MF-VAR approach
well, the parameter proliferation problem continues to have a negative effect on power.

Combining the power and size outcomes, it seems that BMF, HAR∗, max (for large
enough β when T is small) and PLS∗ (in the absence of nowcasting causality) are the
dominant Granger non-causality testing approaches as far as the direction from X(m) to
y is concerned. For the reverse direction of causality, CCA∗b , PLS∗b and HAR∗b as well as
UNR∗b and max (though both to a lesser degree) appear superior.

5 Application

We apply the approaches described in Section 3 to a MF-VAR consisting of the monthly
growth rate of the U.S. industrial production index (ipi hereafter), a measure of busi-
ness cycle fluctuations, and the logarithm of daily bipower variation (bv hereafter) of the
S&P500 stock index, a realized volatility measure more robust to jumps than the realized
variance. While the degree to which macroeconomic variables can help to predict volatility
movements has been investigated widely in the literature (see Schwert, 1989b, Hamilton
and Gang, 1996, or Engle and Rangel, 2008, among others), the reverse, i.e., whether
the future path of the economy can be predicted using return volatility, has been granted

25There is a difference in terms of the underlying regression to obtain the various test statistics, of
course. Ghysels et al. (2015a) consider univariate MIDAS regressions with leads, whereas the Bonferroni-
type tests are based on estimated coefficients from different equations, i.e., the ones for X(m), of the
corresponding system regression.
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Table 5: Power of Granger Non-Causality Tests from y to X(m)

y to X(m) T LF max BMF UNR∗ CCA∗ PLS∗ HAR∗ UNR∗b CCA∗b PLS∗b HAR∗b

Power-DGP 1
50 6.9 8.0 15.8 5.6 9.9 6.2 6.2 6.8 11.4 10.7 10.8
250 19.9 24.2 31.0 17.7 20.0 20.3 19.3 51.0 54.3 54.7 53.8
500 36.4 53.2 49.1 39.3 44.7 43.9 42.4 83.1 85.2 85.2 84.6

Power-DGP 2
50 4.7 7.9 18.4 5.7 10.6 5.7 5.3 5.9 10.0 8.9 8.0
250 5.0 22.9 25.1 13.5 14.6 14.3 14.3 32.2 34.7 34.2 32.6
500 5.2 49.9 33.7 26.6 29.9 28.4 27.7 57.3 62.2 62.2 59.3

Note: For testing Granger non-causality from y to X(m) the figures represent percentages of rejections of the asymptotic Wald test statistics of the
low-frequeny VAR (LF), the max-test (max) and the Bayesian mixed-frequency approach (BMF). Furthermore, it contains percentages of rejections of
the unrestricted bootstrap variants (indicated with a superscript ’*’) of the unrestricted approach (UNR), reduced rank restrictions with one factor using
canonical correlations analysis (CCA) or partial least squares (PLS), and with three imposed factors using the HAR model (HAR). For the latter set of
approaches, it also shows the outcomes for the Bonferroni-type tests (indicated with a subscript ’b’). The lag length of the estimated VARs is equal to one.
The underlying DGP is found in (28) or (29), where the variance-covariance matrix of the error term is equal to Σu with σHL = −0.05. In power-DGP 1
the Granger causality determining coefficients do not sum up to zero, whereas they do so in power-DGP 2. See Section 4 for details. γ2,1 = 0.2 in both
power-DGPs.
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comparably few attention (examples are Schwert, 1989a, Mele, 2007, and Andreou, Os-
born, and Sensier, 2000). Instead of using an aggregate measure of volatility such as, e.g.,
monthly realized volatilities (Chauvet, Senyuz, and Yoldas, 2015) or monthly GARCH es-
timated variances, we use daily bipower variation computed on 5-minute returns obtained
from the database in Heber, Lunde, Shephard, and Sheppard (2009). With the bv-series
being available at a higher frequency than most indicators of business cycle fluctuations,
we obtain the mixed-frequency framework analyzed in this paper.

The sample covers the period from January 2000 to June 2012 yielding a sample size
of T = 150. We take m = 20 as it is the maximum amount of working days that is
available in every month throughout the sample we deal with.26 Consequently, we have
BV

(20)
t = (bv

(20)
t , bv

(20)
t−1/20, . . . , bv

(20)
t−19/20)′. Figure 2 plots the data.

Figure 2: Growth Rate of Industrial Production Index and the logarithm of Bipower
Variation

Note: This figure shows the monthly growth rate of the U.S. industrial production index (lower line),
i.e., ipi, and the logarithm of daily bipower variation of the S&P500 stock index (top lines), i.e., BV (20),
for the time period from January 2000 to June 2012. The graph for the former is shifted downwards to
enable a visual separation of ipi from the bv-lines.

Table 6 contains the outcomes of Granger non-causality tests for all approaches dis-
cussed in Section 3. As mentioned before, we disregard the cases that showed considerable

26Whenever a month contains more than 20 working days we disregard the corresponding amount of
days at the beginning of the month. In June 2012, e.g., there are 21 working days such that we do not
consider June 1. For May 2012 we disregard the first three days. An alternative (balanced) strategy would
have been to take the maximum number of days in a particular month (i.e., 23, usually in July, August
or October) and to create additional values for non-existing days in other months whenever necessary.

As far as the treatment of daily data is concerned we have also taken bv
(20)
t = bv

(20)
t−1/20 when there are

no quotations for bv
(20)
t .
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size distortions in the Monte Carlo analysis. Note that a lag length of p = 1 and 2 is
considered (the same for the bootstrap) and that the numbers represent p-values (in per-
centages). For reduced rank restrictions using CCA and PLS we consider one up to three
factors, whereby we only show the outcomes for r = 1 and r = 2 for representational ease;
r = 3 gives similar results. For the non-bootstrap tests, except the max-test and the
Wald-test within the Bayesian mixed-frequency VAR,27 we also consider a heteroscedas-
ticity consistent variant of (14) by computing a robust estimator of Ω (see Ravikumar,
Ray, and Savin, 2000) to account for the potential presence of a time varying multivariate
process:

Ω̂R = T ((W ′W )−1 ⊗ Im+1)Ŝ0((W ′W )−1 ⊗ Im+1), (30)

where

Ŝ0 =
1

T

T∑
t=1

(Wt ⊗ ût)′(Wt ⊗ ût). (31)

For the bootstrap tests we achieve the robustness to heteroskedasticity by implement-
ing the wild bootstrap version as described in Section 3.1.4.

If we consider the test statistics that perform best in our Monte Carlo experiment,
the outcomes above clearly point towards Granger-causality from BV (20) to ipi. This
result supports Andreou et al. (2000) concluding that ”[...] volatilities may also be useful
[...] indicators for both the growth and volatility of industrial production” (p. 15).
The situation is less clear cut when looking at Granger-causality from the low-frequency
variable to the high-frequency volatility measures. Indeed, max and most Bonferroni-
type tests seem to reject the null of no Granger-causality, whereas the joint tests do
not. However, the higher power obtained on the maximum of the individual Wald-type
tests would favor the presence of Granger-causality in the direction from business cycle
movements to financial uncertainties as well. A more careful investigation, out of the
scope of this paper, could be done on different subsamples in order to analyze whether,
e.g., periods before, during or after the financial crises lead to similar conclusions.

6 Conclusion

We investigate Granger non-causality testing in a mixed-frequency VAR, where the mis-
match between the sampling frequencies of the variables under consideration is large,
causing estimation and inference to be potentially problematic. To avoid this issue we
discuss two parameter reduction techniques in detail, reduced rank restrictions and a
Bayesian MF-VAR approach, and compare them to (i) a common low-frequency VAR,
(ii) the max-test approach and (iii) the unrestricted VAR in terms of their Granger non-
causality testing behavior. To further improve their finite sample test properties we also
consider two bootstrap variants for the reduced rank regression approaches (and the un-
restricted VAR).

27Note that, as discussed in Section 3.2.2, there is a one-to-one correspondence between the OLS
estimator of the augmented model and the prior setting we consider in our Bayesian framework. As we
did not discuss setting that corresponds to a robust version of the Wald test we disregard from that test
variant here.
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Table 6: Testing for Granger Causality between BV (20) and ipi

BV (20) to ipi
p = 1 p = 2

Wald Robust Wald Robust

LF 0.0 0.2 0.1 2.1
max 0.1 ./. 0.0 ./.
BMF 14.4 ./. 21.8 ./.

UNR∗ 15.0 17.4 7.3 8.7
CCA1∗ 2.9 7.9 12.4 20.4
CCA2∗ 14.5 16.2 19.2 25.1
PLS1∗ 0.1 0.7 0.2 1.9
PLS2∗ 0.6 2.8 0.1 1.4
HAR∗ 1.2 2.2 1.5 2.4

ipi to BV (20) p = 1 p = 2
Wald Robust Wald Robust

LF 0.1 1.5 0.4 5.0
max 4.4 ./. 1.1 ./.
BMF 23.5 ./. 42.5 ./.

UNR∗ 28.9 34.2 25.8 26.4
CCA1∗ 25.8 33.5 20.5 38.4
CCA2∗ 35.9 46.1 17.6 34.3
PLS1∗ 15.8 24.6 11.4 24.4
PLS2∗ 18.3 26.9 10.3 18.0
HAR∗ 19.2 27.0 11.4 18.6

UNR∗b 5.4 8.9 20.0 22.9
CCA1∗b 4.1 10.5 7.8 16.9
CCA2∗b 5.0 10.8 7.7 15.1
PLS1∗b 1.5 4.3 1.5 9.5
PLS2∗b 1.2 5.2 1.1 4.0
HAR∗b 2.3 6.5 6.2 14.1

Note: For testing Granger non-causality between BV (20) and ipi the figures represent p-values (in per-
centages) of the asymptotic Wald test statistics, the restricted bootstrap variants for the direction from
BV (20) to ipi and the unrestricted bootstrap variants for the direction from ipi to BV (20) (bootstrap
variants are indicated with a superscript ’*’, the Bonferroni-type tests with a subscript ’b’). For all
approaches but the max-test (max) and the Bayesian MF-VAR (BMF) a robustified version is computed
as well. The lag length of the estimated VARs is equal to one or two. For CCA and PLS the results for
one and two factors are displayed.
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For both directions of causality we find a different set of tests to result in the best
Granger non-causality testing behavior. For the direction from the high- to the low-
frequency series, standard testing within the Bayesian mixed-frequency VAR, the max-
test of Ghysels et al. (2015a), and the restricted bootstrap version of the Wald test in a
reduced rank regression after HAR-type factors have been imposed or PLS-type factors
have been computed, the latter of which being restricted to nowcasting non-causality
(Götz and Hecq, 2014), perform best. For the reverse direction, the unrestricted bootstrap
variants of the Bonferroni-corrected Wald tests within the following models dominate: the
unrestricted VAR and reduced rank regressions with CCA-, PLS- or HAR-based factors.

An application investigating the presence of a causal link between business cycle fluc-
tuations and uncertainty in financial markets illustrates the practical usefulness of these
approaches. While Granger causality from uncertainty in financial markets to business
cycle fluctuations was clearly supported by the data, evidence for causality in the reverse
direction only comes from a subset of the tests, yet the more powerful ones according to
our simulation results.
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A Bayesian VAR estimation with mixed-frequency prior variances

Properly accounting for the high-frequency time difference between the variables involved
implies the following prior variances:

V ar[γ
(k)
i,j ] =


φ λ2

(k+(j−2)/m)2
SLH for i = 1, j > 1

φ λ2

(k+(2−i)/m)2
SHL for j = 1, i > 1

λ2

(k+(j−i)/m)2
else

, (32)

Now, define Z = (Zµ
1 , . . . , Z

µ
T )′, where Zµ

t = (Z ′t, 1)′, and let us re-write the MF-VAR
in (4) in the following way:

vec(Z)︸ ︷︷ ︸
(m+1)T×1

= Z∗︸︷︷︸
(m+1)T×(m+1)n

vec(B∗)︸ ︷︷ ︸
(m+1)n×1

+ vec(E)︸ ︷︷ ︸
(m+1)T×1

, (33)

where Z = (Z1, . . . , ZT )′, Z∗ = Im+1 ⊗ Z, E = (u1, . . . , uT )′, B∗ = (B′, µ)′ and n =
(m+ 1)p+ 1. In order to drop the undesirable feature of a fixed and diagonal covariance
matrix Σ, we impose a normal inverted Wishart prior (at the cost of having to set φ = 1)
with the following form (Kadiyala and Karlsson, 1997):

vec(B∗)|Σ ∼ N(vec(B∗0), [Z∗′0 (Σ−1 ⊗ IT )Z∗0 ]−1) and Σ ∼ iW (V0, v0), (34)

where Z∗0 = Im+1 ⊗ Z0 with Z0 being a (T × n)-matrix. B∗0 and Z0 have to be chosen
as to let expectations and variances of the elements in B∗ coincide with the moments in
(26). Likewise, V0 and v0 need to be set such that E[Σ] = Σd.

Similar to Banbura et al. (2010), we can show that adding auxiliary dummy variables
Yd and Xd, the precise composition of which is given in Appendix B, to (33) is equivalent
to imposing the normal inverted Wishart prior in (34). To this end, let

B∗aux0 = (X ′dXd)
−1X ′dYd,

Zaux
0 = Xd

V0 = (Yd −XdB
∗aux
0 )′(Yd −XdB

∗aux
0 ) and

v0 = m+ 3 = Td − naux + 2,

(35)

where naux = m(2p+ 1) and Td = naux + (m+ 1), and subsequently set

vec(B∗0) = S ′vec(B∗aux0 ) and
V ar[vec(B∗)] = S ′[Z∗aux′0 (Σ−1 ⊗ ITd)Z∗aux0 ]−1S,

(36)

with Z∗aux0 = Im+1⊗Zaux
0 and where S is an [(m+1)naux×(m+1)n]-dimensional selection

matrix, the precise construction of which is given in Appendix C.

Remark 12. Intuitively speaking, Zaux
0 is an auxiliary matrix constructed as the ’union’

of the Z0 matrices corresponding to the different columns of B∗. The non-random matrix
S selects, for each column of B∗, the corresponding elements of Zaux

0 in order to let the
variance of each element in B∗ match the corresponding prior variance. Likewise, B∗aux0

is an auxiliary matrix from which we derive B∗0 .

In order to augment the model in (33), let us define Zd
j = (Z ′, (XdSj)

′)′, where Sj is
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the jth block of the selection matrix S (see Appendix C for details), j = 1, . . . ,m + 1.28

Then, the augmented system becomes

vec(Z∗)︸ ︷︷ ︸
(m+1)(T+Td)×1

= Z∗∗︸︷︷︸
(m+1)(T+Td)×(m+1)n

vec(B∗)︸ ︷︷ ︸
(m+1)n×1

+ vec(E∗)︸ ︷︷ ︸
(m+1)(T+Td)×1

, (37)

where Z∗ = (Z ′, Y ′d)
′, E∗ = (E ′, E ′d)

′ and Z∗∗ is block diagonal with Z∗∗ = diag{Zd
1, Z

d
2, . . . , Z

d
m+1}.

The posterior then has the form

vec(B∗)|Σ, Z ∼ N(vec(B̂∗), [Z∗′∗ (Σ−1⊗ IT+Td)Z∗∗]
−1) and Σ|Z ∼ iW (V̂ , T +m+ 3), (38)

where V̂ = Ê ′∗Ê∗ with vec(Ê∗) = vec(Z∗) − Z∗∗vec(B̂∗).29 Note that the posterior mean
of the coefficients boils down to

vec(B̂∗) = [Z∗′∗ (Σ−1 ⊗ IT+Td)Z∗∗]
−1Z∗′∗ (Σ−1 ⊗ IT+Td)vec(Z∗), (39)

i.e., the GLS estimate of a SUR regression of vec(Z∗) on Z∗∗. As for the common-frequency
case, it can be checked that it also coincides with the posterior mean for the prior setup
in (26). An example with p = 1 and m = 2 illustrates the auxiliary dummy variables
approach and is provided in Appendix D.

B The auxiliary dummy variables with mixed-frequency prior variances

The auxiliary dummy variables that imply a matching of the prior moments turn out to
be

Yd︸︷︷︸
Td×(m+1)

=


02(m−1)×1

Dρ ⊗ (0, σH/λ)′σLρ
m/λ
0
0(m(2p−1)−1)×(m+1)

diag(σL, σH , . . . , σH)
01×(m+1)

 , (40)

Xd︸︷︷︸
Td×naux

=


J1
p ⊗ diag(σL, σH)/λ 02pm×(m−1) 02pm×1

0(m−1)×2pm J2
pσH/λ 0(m−1)×1

0(m+1)×2pm 0(m+1)×(m−1) 0(m+1)×1

01×2pm 01×(m−1) ε

 , (41)

where Dρ = diaga(ρm, m−1
m
ρm−1, . . . , 2

m
ρ2, 1

m
ρ), with diaga(·) denoting an anti-diagonal

matrix. Furthermore,

J1
p = diag( 1

m
, 2
m
, . . . , 1, m+1

m
, . . . , 2, . . . , . . . , p),

J2
p = diag(p+ 1

m
, p+ 2

m
, . . . , p+ m−1

m
).

(42)

28Here, Sj picks the elements of Zaux0 = Xd corresponding to column j of B∗.
29In practice, we estimate Σ in the standard way, i.e., Σ̂ = 1

T+Td
Êols′∗ Êols∗ , where Êols∗ denotes the OLS

residuals of the system in (37). Again, a sample size correction alleviates potential size distortions (see
Section 3.1.2). The ith column of Êols∗ , i = 1, . . . ,m + 1, corresponds to the residuals of a regression of
(Z ′·,i, Y

′
d,i)
′ on Zdi , where Z·,i and Yd,i denote the ith columns of Z and Yd, respectively.
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The last line of both, Yd and Xd, corresponds to the diffuse prior for the intercept (ε is a
very small number), the block above imposes the prior for Σ and the remaining blocks set

the priors for the coefficients γ
(k)
i,j . As in Banbura et al. (2010), we set σ2

i = s2
i , i = L,H,

where s2
i is the variance of a residual from an AR(p), respectively an AR(mp), model for

yt, respectively for x
(m)
t .

C Construction of the selection matrix S

Let us investigate the variance of vec(B∗)|Σ more closely. Noting that we have to choose
Z0, or Z∗0 in (34), in such a way as to let the variances of the corresponding coefficients
coincide with the prior variances in (26), it turns out that we need to set

V ar[vec(B∗)|Σ] =


σ2
LΩ

(2)
0 0n×n . . . . . . 0n×n

0n×n σ2
HΩ

(2)
0 0n×n . . . 0n×n

... 0n×n σ2
HΩ

(3)
0 . . .

...
...

...
...

. . . 0n×n
0n×n 0n×n . . . 0n×n σ2

HΩ
(m+1)
0

 , (43)

where

Ω
(i)
0 = diag( λ2

(1+(2−i)/m)2σ2
L
, λ2

(1+(2−i)/m)2σ2
H
, λ2

(1+(3−i)/m)2σ2
H
, . . . , λ2

(1+1+(1−i)/m)2σ2
H
, . . . ,

. . . , λ2

(p+(2−i)/m)2σ2
L
, λ2

(p+(2−i)/m)2σ2
H
, . . . , λ2

(p+1+(1−i)/m)2σ2
H
, 1
ε2

)

(44)
for i = 2, . . . ,m+ 1.

Hence, unlike in the common-frequency case, where Ω
(i)
0 = Ω0 ∀i (Banbura et al.,

2010), the set of variances changes due to the stacked nature of the vector Zt and the
specific lag structure for each coefficient (see the variances in (26)). Let us form an

auxiliary matrix Ωaux
0 , which contains the union of all elements in Ω

(2)
0 , . . . ,Ω

(m+1)
0 . Each

matrix Ω
(i)
0 contains p + 1 new elements compared to Ω

(i−1)
0 for i > 2. As there are n

elements in Ω
(2)
0 , we end up with a dimension of m(2p + 1) = naux for the square matrix

Ωaux
0 :

Ωaux
0 = diag( λ2

(1/m)2σ2
L
, λ2

(1/m)2σ2
H
, . . . , λ2

12σ2
L
, λ2

12σ2
H
, λ2

(1+1/m)2σ2
L
, λ2

(1+1/m)2σ2
H
, . . . , λ2

22σ2
H
,

. . . , . . . , λ2

p2σ2
L
, λ2

p2σ2
H
, λ2

(p+1/m)2σ2
H
, . . . , λ2

(p+1−1/m)2σ2
H
, 1
ε2

).
(45)

All that remains is to define a [(m + 1)naux × (m + 1)n]-dimensional selection matrix S
such that S ′(Σd ⊗ Ωaux

0 )S = V ar[vec(B∗)|Σ] . Note that from Ωaux
0 we can then derive

Zaux
0 = Xd by using Ωaux

0 = (Zaux′
0 Zaux

0 )−1.
Let us denote by 1i an naux-dimensional column vector with a one in row i and zeros

elsewhere. It turns out that S is a block-diagonal matrix, i.e., S = diag{S1, S2, . . . , Sm+1},
where each off-diagonal block is 0naux×n. Each Sj, j = 1, . . . ,m + 1, can be described as
follows:

Sj = (S1
j , S

2
j , 1naux) for j = 2, . . . ,m+ 1, (46)
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where

S1
j = ( 12m−(2j−3), 12m−(2j−4), 12m−(2j−6), . . . , 14m−(2j−2), 14m−(2j−3), . . . ,

16m−(2j−2), . . . , . . . , 12pm−(2j−3), 12pm−(2j−4), . . . , 12pm),
(47)

S2
j =

{
∅ for j = m+ 1
(12pm+1, 12pm+2, . . . , 12pm+m−(j−1)) else

(48)

and
S1 = S2. (49)

Each of the indices in Sj reveals which row element of the jth column of Baux
0 gets selected

by S. Put differently, the indices that are missing in Sj correspond to elements of Baux
0 (in

column j) that will not get chosen by S. This implies that the values of these elements do
not play a role for the computation of vec(B∗0). Consequently, when constructing Baux

0 ,
and subsequently also Yd, we assign these elements a value of zero for simplicity.

D Example of the auxiliary dummy variables approach with mixed-frequency
prior variances

Let p = 1 and m = 2. The prior beliefs in (26) corresponding to this setup, and written
in terms of vec(B∗) = vec((B′, µ)′), are given by

E(vec(B∗)) = vec


ρ2 0 0
0 ρ2 ρ
0 0 0
0 0 0


and

V ar(vec(B∗)) =

λ2



1 0 . . . 0
0 SLH 0 . . . 0
0 0 1

(3/2)2 SLH 0 . . . 0

0 . . . 0
σ2
L

ε2λ2 0 . . . 0
0 . . . 0 SHL 0 . . . 0
0 . . . 0 1 0 . . . 0
0 . . . 0 1

(3/2)2 0 . . . 0

0 . . . 0
σ2
H

ε2λ2 0 . . . 0
0 . . . 0 1

(1/2)2 SHL 0 . . . 0

0 . . . 0 1
(1/2)2 0 0

0 . . . 0 1 0

0 . . . 0
σ2
H

ε2λ2



.
(50)
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With Td = 9 and naux = 6 the auxiliary dummy variables look as follows:

Yd =



0 0 0

0 0
1
2
ρσH
λ

ρ2σL
λ

0 0

0 ρ2σH
λ

0
0 0 0
σL 0 0
0 σH 0
0 0 σH
0 0 0


, Xd =



1
2
σL
λ

0 0 0 0 0

0
1
2
σH
λ

0 0 0 0
0 0 σL

λ
0 0 0

0 0 0 σH
λ

0 0

0 0 0 0
3
2
σH
λ

0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ε


.

Let us demonstrate that these auxiliary dummy variables truly imply a matching of
the prior moments in (34) and the prior beliefs given above. Simple algebra gives us
Zaux

0 = Xd, v0 = 5 as well as

B∗aux0 = (X ′dXd)
−1X ′dYd =


0 0 0
0 0 ρ
ρ2 0 0
0 ρ2 0
0 0 0
0 0 0

 ,

V0 = (Yd −XdB
∗aux
0 )′(Yd −XdB

∗aux
0 ) =

 σ2
L 0
0 σ2

H 0
0 0 σ2

H

 .

To obtain vec(B∗0) we require the selection matrix S. Following the guidelines in Appendix
C yields S = diag{S1, S2, S3}, where the off-diagonal blocks are of dimension 6× 4 and

S1 = S2 =



0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, S3 =



1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1


.

Now it is easy to show that, indeed,

vec(B∗0) = S ′vec(B∗aux0 ) = vec


ρ2 0 0
0 ρ2 ρ
0 0 0
0 0 0

 = E(vec(B∗))

and S ′[Σ⊗ (Zaux′
0 Zaux

0 )−1]S = V ar(vec(B∗)) as in equation (50).
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Having shown that Yd and Xd capture the prior moments, we need to augment the
MF-VAR. Let us start by re-writing it into the format presented in equation (33):

vec

 y2 x
(2)
2 x

(2)
2−1/2

...
...

...

yT x
(2)
T x

(2)
T−1/2

 =

I3 ⊗

 y1 x
(2)
1 x

(2)
1/2 1

...
...

...
...

yT−1 x
(2)
T−1 x

(2)
T−1−1/2 1


 vec


γ1,1 γ2,1 γ3,1

γ1,2 γ2,2 γ3,2

γ1,3 γ2,3 γ3,3

µ1 µ2 µ3


︸ ︷︷ ︸

vec(B∗)

+vec(E).

Following the steps outlined at the end of Section 3.2.2 gives us the augmented system:

vec



y2 x
(2)
2 x

(2)
2−1/2

...
...

...

yT x
(2)
T x

(2)
T−1/2

0 0 0

0 0
1
2
ρσH
λ

ρ2σL
λ

0 0

0 ρ2σH
λ

0
0 0 0
σL 0 0
0 σH 0
0 0 σH
0 0 0



= Z∗∗vec(B
∗) + vec(E∗).
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with

Z∗∗ =



y1 x
(2)
1 x

(2)
1/2 1

0(T+9)×4 0(T+9)×4

...
...

...
...

yT−1 x
(2)
T−1 x

(2)
T−1−1/2 1

0 0 0 0
0 0 0 0
σL
λ 0 0 0
0 σH

λ 0 0

0 0
3
2
σH
λ 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ε

0(T+9)×4

y1 x
(2)
1 x

(2)
1/2 1

0(T+9)×4

...
...

...
...

yT−1 x
(2)
T−1 x

(2)
T−1−1/2 1

0 0 0 0
0 0 0 0
σL
λ 0 0 0
0 σH

λ 0 0

0 0
3
2
σH
λ 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ε

0(T+9)×4 0(T+9)×4

y1 x
(2)
1 x

(2)
1/2 1

...
...

...
...

yT−1 x
(2)
T−1 x

(2)
T−1−1/2 1

1
2
σL
λ 0 0 0

0
1
2
σH
λ 0 0

0 0 0 0
0 0 σH

λ 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ε



.

The GLS estimate of vec(B∗) in the regression above is then a closed-form solution
for the posterior mean of the coefficients.

38



References

Anderson, T. W. (1951). Estimating linear restrictions on regression coefficients for mul-
tivariate normal distributions. The Annals of Mathematical Statistics 22 (3), 327–351.

Andreou, E., D. R. Osborn, and M. Sensier (2000). A comparison of the statistical
properties of financial variables in the usa, uk and germany over the business cycle.
Manchester School 68 (4), 396–418.

Andrews, D. W. K. (1994). The large sample correspondence between classical hypothesis
tests and Bayesian posterior odds tests. Econometrica 62 (5), 1207–1232.

Banbura, M., D. Giannone, and L. Reichlin (2010). Large bayesian vector auto regressions.
Journal of Applied Econometrics 25 (1), 71–92.

Bauwens, L., M. Lubrano, and J.-F. Richard (2000). Bayesian inference in dynamic
econometric models. Oxford University Press.

Bose, A. (1988). Edgeworth correction by bootstrap in autoregressions. Annals of Statis-
tics 16, 1709–1722.

Breitung, J. and N. R. Swanson (2002). Temporal aggregation and spurious instantaneous
causality in multiple time series models. Journal of Time Series Analysis 23, 651–666.
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